xref: /openbmc/qemu/target/s390x/kvm/kvm.c (revision 8d3031fa)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "gdbstub/enums.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "target/s390x/kvm/pv.h"
54 
55 #define kvm_vm_check_mem_attr(s, attr) \
56     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
57 
58 #define IPA0_DIAG                       0x8300
59 #define IPA0_SIGP                       0xae00
60 #define IPA0_B2                         0xb200
61 #define IPA0_B9                         0xb900
62 #define IPA0_EB                         0xeb00
63 #define IPA0_E3                         0xe300
64 
65 #define PRIV_B2_SCLP_CALL               0x20
66 #define PRIV_B2_CSCH                    0x30
67 #define PRIV_B2_HSCH                    0x31
68 #define PRIV_B2_MSCH                    0x32
69 #define PRIV_B2_SSCH                    0x33
70 #define PRIV_B2_STSCH                   0x34
71 #define PRIV_B2_TSCH                    0x35
72 #define PRIV_B2_TPI                     0x36
73 #define PRIV_B2_SAL                     0x37
74 #define PRIV_B2_RSCH                    0x38
75 #define PRIV_B2_STCRW                   0x39
76 #define PRIV_B2_STCPS                   0x3a
77 #define PRIV_B2_RCHP                    0x3b
78 #define PRIV_B2_SCHM                    0x3c
79 #define PRIV_B2_CHSC                    0x5f
80 #define PRIV_B2_SIGA                    0x74
81 #define PRIV_B2_XSCH                    0x76
82 
83 #define PRIV_EB_SQBS                    0x8a
84 #define PRIV_EB_PCISTB                  0xd0
85 #define PRIV_EB_SIC                     0xd1
86 
87 #define PRIV_B9_EQBS                    0x9c
88 #define PRIV_B9_CLP                     0xa0
89 #define PRIV_B9_PTF                     0xa2
90 #define PRIV_B9_PCISTG                  0xd0
91 #define PRIV_B9_PCILG                   0xd2
92 #define PRIV_B9_RPCIT                   0xd3
93 
94 #define PRIV_E3_MPCIFC                  0xd0
95 #define PRIV_E3_STPCIFC                 0xd4
96 
97 #define DIAG_TIMEREVENT                 0x288
98 #define DIAG_IPL                        0x308
99 #define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
100 #define DIAG_KVM_HYPERCALL              0x500
101 #define DIAG_KVM_BREAKPOINT             0x501
102 
103 #define ICPT_INSTRUCTION                0x04
104 #define ICPT_PROGRAM                    0x08
105 #define ICPT_EXT_INT                    0x14
106 #define ICPT_WAITPSW                    0x1c
107 #define ICPT_SOFT_INTERCEPT             0x24
108 #define ICPT_CPU_STOP                   0x28
109 #define ICPT_OPEREXC                    0x2c
110 #define ICPT_IO                         0x40
111 #define ICPT_PV_INSTR                   0x68
112 #define ICPT_PV_INSTR_NOTIFICATION      0x6c
113 
114 #define NR_LOCAL_IRQS 32
115 /*
116  * Needs to be big enough to contain max_cpus emergency signals
117  * and in addition NR_LOCAL_IRQS interrupts
118  */
119 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
120                                      (max_cpus + NR_LOCAL_IRQS))
121 /*
122  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
123  * as the dirty bitmap must be managed by bitops that take an int as
124  * position indicator. This would end at an unaligned  address
125  * (0x7fffff00000). As future variants might provide larger pages
126  * and to make all addresses properly aligned, let us split at 4TB.
127  */
128 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
129 
130 static CPUWatchpoint hw_watchpoint;
131 /*
132  * We don't use a list because this structure is also used to transmit the
133  * hardware breakpoints to the kernel.
134  */
135 static struct kvm_hw_breakpoint *hw_breakpoints;
136 static int nb_hw_breakpoints;
137 
138 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
139     KVM_CAP_LAST_INFO
140 };
141 
142 static int cap_async_pf;
143 static int cap_mem_op;
144 static int cap_mem_op_extension;
145 static int cap_s390_irq;
146 static int cap_ri;
147 static int cap_hpage_1m;
148 static int cap_vcpu_resets;
149 static int cap_protected;
150 static int cap_zpci_op;
151 static int cap_protected_dump;
152 
153 static bool mem_op_storage_key_support;
154 
155 static int active_cmma;
156 
157 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
158 {
159     struct kvm_device_attr attr = {
160         .group = KVM_S390_VM_MEM_CTRL,
161         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
162         .addr = (uint64_t) memory_limit,
163     };
164 
165     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
166 }
167 
168 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
169 {
170     int rc;
171 
172     struct kvm_device_attr attr = {
173         .group = KVM_S390_VM_MEM_CTRL,
174         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
175         .addr = (uint64_t) &new_limit,
176     };
177 
178     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
179         return 0;
180     }
181 
182     rc = kvm_s390_query_mem_limit(hw_limit);
183     if (rc) {
184         return rc;
185     } else if (*hw_limit < new_limit) {
186         return -E2BIG;
187     }
188 
189     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
190 }
191 
192 int kvm_s390_cmma_active(void)
193 {
194     return active_cmma;
195 }
196 
197 static bool kvm_s390_cmma_available(void)
198 {
199     static bool initialized, value;
200 
201     if (!initialized) {
202         initialized = true;
203         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
204                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
205     }
206     return value;
207 }
208 
209 void kvm_s390_cmma_reset(void)
210 {
211     int rc;
212     struct kvm_device_attr attr = {
213         .group = KVM_S390_VM_MEM_CTRL,
214         .attr = KVM_S390_VM_MEM_CLR_CMMA,
215     };
216 
217     if (!kvm_s390_cmma_active()) {
218         return;
219     }
220 
221     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
222     trace_kvm_clear_cmma(rc);
223 }
224 
225 static void kvm_s390_enable_cmma(void)
226 {
227     int rc;
228     struct kvm_device_attr attr = {
229         .group = KVM_S390_VM_MEM_CTRL,
230         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
231     };
232 
233     if (cap_hpage_1m) {
234         warn_report("CMM will not be enabled because it is not "
235                     "compatible with huge memory backings.");
236         return;
237     }
238     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
239     active_cmma = !rc;
240     trace_kvm_enable_cmma(rc);
241 }
242 
243 static void kvm_s390_set_crypto_attr(uint64_t attr)
244 {
245     struct kvm_device_attr attribute = {
246         .group = KVM_S390_VM_CRYPTO,
247         .attr  = attr,
248     };
249 
250     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
251 
252     if (ret) {
253         error_report("Failed to set crypto device attribute %lu: %s",
254                      attr, strerror(-ret));
255     }
256 }
257 
258 static void kvm_s390_init_aes_kw(void)
259 {
260     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
261 
262     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
263                                  NULL)) {
264             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
265     }
266 
267     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
268             kvm_s390_set_crypto_attr(attr);
269     }
270 }
271 
272 static void kvm_s390_init_dea_kw(void)
273 {
274     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
275 
276     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
277                                  NULL)) {
278             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
279     }
280 
281     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
282             kvm_s390_set_crypto_attr(attr);
283     }
284 }
285 
286 void kvm_s390_crypto_reset(void)
287 {
288     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
289         kvm_s390_init_aes_kw();
290         kvm_s390_init_dea_kw();
291     }
292 }
293 
294 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
295 {
296     if (pagesize == 4 * KiB) {
297         return;
298     }
299 
300     if (!hpage_1m_allowed()) {
301         error_setg(errp, "This QEMU machine does not support huge page "
302                    "mappings");
303         return;
304     }
305 
306     if (pagesize != 1 * MiB) {
307         error_setg(errp, "Memory backing with 2G pages was specified, "
308                    "but KVM does not support this memory backing");
309         return;
310     }
311 
312     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
313         error_setg(errp, "Memory backing with 1M pages was specified, "
314                    "but KVM does not support this memory backing");
315         return;
316     }
317 
318     cap_hpage_1m = 1;
319 }
320 
321 int kvm_s390_get_hpage_1m(void)
322 {
323     return cap_hpage_1m;
324 }
325 
326 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
327 {
328     MachineClass *mc = MACHINE_CLASS(oc);
329 
330     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
331 }
332 
333 int kvm_arch_get_default_type(MachineState *ms)
334 {
335     return 0;
336 }
337 
338 int kvm_arch_init(MachineState *ms, KVMState *s)
339 {
340     int required_caps[] = {
341         KVM_CAP_DEVICE_CTRL,
342         KVM_CAP_SYNC_REGS,
343     };
344 
345     for (int i = 0; i < ARRAY_SIZE(required_caps); i++) {
346         if (!kvm_check_extension(s, required_caps[i])) {
347             error_report("KVM is missing capability #%d - "
348                          "please use kernel 3.15 or newer", required_caps[i]);
349             return -1;
350         }
351     }
352 
353     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
354                          false, NULL);
355 
356     if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
357         error_report("KVM is missing capability KVM_CAP_S390_COW - "
358                      "unsupported environment");
359         return -1;
360     }
361 
362     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
363     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
364     cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
365     mem_op_storage_key_support = cap_mem_op_extension > 0;
366     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
367     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
368     cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
369     cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
370     cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
371 
372     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
373     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
374     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
375     kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0);
376     if (ri_allowed()) {
377         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
378             cap_ri = 1;
379         }
380     }
381     if (cpu_model_allowed()) {
382         kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
383     }
384 
385     /*
386      * The migration interface for ais was introduced with kernel 4.13
387      * but the capability itself had been active since 4.12. As migration
388      * support is considered necessary, we only try to enable this for
389      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
390      */
391     if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
392         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
393         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
394     }
395 
396     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
397     return 0;
398 }
399 
400 int kvm_arch_irqchip_create(KVMState *s)
401 {
402     return 0;
403 }
404 
405 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
406 {
407     return cpu->cpu_index;
408 }
409 
410 int kvm_arch_init_vcpu(CPUState *cs)
411 {
412     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
413     S390CPU *cpu = S390_CPU(cs);
414     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
415     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
416     return 0;
417 }
418 
419 int kvm_arch_destroy_vcpu(CPUState *cs)
420 {
421     S390CPU *cpu = S390_CPU(cs);
422 
423     g_free(cpu->irqstate);
424     cpu->irqstate = NULL;
425 
426     return 0;
427 }
428 
429 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
430 {
431     CPUState *cs = CPU(cpu);
432 
433     /*
434      * The reset call is needed here to reset in-kernel vcpu data that
435      * we can't access directly from QEMU (i.e. with older kernels
436      * which don't support sync_regs/ONE_REG).  Before this ioctl
437      * cpu_synchronize_state() is called in common kvm code
438      * (kvm-all).
439      */
440     if (kvm_vcpu_ioctl(cs, type)) {
441         error_report("CPU reset failed on CPU %i type %lx",
442                      cs->cpu_index, type);
443     }
444 }
445 
446 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
447 {
448     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
449 }
450 
451 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
452 {
453     if (cap_vcpu_resets) {
454         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
455     } else {
456         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
457     }
458 }
459 
460 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
461 {
462     if (cap_vcpu_resets) {
463         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
464     }
465 }
466 
467 static int can_sync_regs(CPUState *cs, int regs)
468 {
469     return (cs->kvm_run->kvm_valid_regs & regs) == regs;
470 }
471 
472 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \
473                                 KVM_SYNC_CRS | KVM_SYNC_PREFIX)
474 
475 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
476 {
477     CPUS390XState *env = cpu_env(cs);
478     struct kvm_fpu fpu = {};
479     int r;
480     int i;
481 
482     g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
483 
484     /* always save the PSW  and the GPRS*/
485     cs->kvm_run->psw_addr = env->psw.addr;
486     cs->kvm_run->psw_mask = env->psw.mask;
487 
488     memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs));
489     cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
490 
491     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
492         for (i = 0; i < 32; i++) {
493             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
494             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
495         }
496         cs->kvm_run->s.regs.fpc = env->fpc;
497         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
498     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
499         for (i = 0; i < 16; i++) {
500             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
501         }
502         cs->kvm_run->s.regs.fpc = env->fpc;
503         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
504     } else {
505         /* Floating point */
506         for (i = 0; i < 16; i++) {
507             fpu.fprs[i] = *get_freg(env, i);
508         }
509         fpu.fpc = env->fpc;
510 
511         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
512         if (r < 0) {
513             return r;
514         }
515     }
516 
517     /* Do we need to save more than that? */
518     if (level == KVM_PUT_RUNTIME_STATE) {
519         return 0;
520     }
521 
522     /*
523      * Access registers, control registers and the prefix - these are
524      * always available via kvm_sync_regs in the kernels that we support
525      */
526     memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs));
527     memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs));
528     cs->kvm_run->s.regs.prefix = env->psa;
529     cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX;
530 
531     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
532         cs->kvm_run->s.regs.cputm = env->cputm;
533         cs->kvm_run->s.regs.ckc = env->ckc;
534         cs->kvm_run->s.regs.todpr = env->todpr;
535         cs->kvm_run->s.regs.gbea = env->gbea;
536         cs->kvm_run->s.regs.pp = env->pp;
537         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
538     } else {
539         /*
540          * These ONE_REGS are not protected by a capability. As they are only
541          * necessary for migration we just trace a possible error, but don't
542          * return with an error return code.
543          */
544         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
545         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
546         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
547         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
548         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
549     }
550 
551     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
552         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
553         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
554     }
555 
556     /* pfault parameters */
557     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
558         cs->kvm_run->s.regs.pft = env->pfault_token;
559         cs->kvm_run->s.regs.pfs = env->pfault_select;
560         cs->kvm_run->s.regs.pfc = env->pfault_compare;
561         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
562     } else if (cap_async_pf) {
563         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
564         if (r < 0) {
565             return r;
566         }
567         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
568         if (r < 0) {
569             return r;
570         }
571         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
572         if (r < 0) {
573             return r;
574         }
575     }
576 
577     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
578         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
579         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
580     }
581 
582     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
583         cs->kvm_run->s.regs.bpbc = env->bpbc;
584         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
585     }
586 
587     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
588         cs->kvm_run->s.regs.etoken = env->etoken;
589         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
590         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
591     }
592 
593     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
594         cs->kvm_run->s.regs.diag318 = env->diag318_info;
595         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
596     }
597 
598     return 0;
599 }
600 
601 int kvm_arch_get_registers(CPUState *cs, Error **errp)
602 {
603     CPUS390XState *env = cpu_env(cs);
604     struct kvm_fpu fpu;
605     int i, r;
606 
607     /* get the PSW */
608     env->psw.addr = cs->kvm_run->psw_addr;
609     env->psw.mask = cs->kvm_run->psw_mask;
610 
611     /* the GPRS, ACRS and CRS */
612     g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS));
613     memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs));
614     memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs));
615     memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs));
616 
617     /* The prefix */
618     env->psa = cs->kvm_run->s.regs.prefix;
619 
620     /* Floating point and vector registers */
621     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
622         for (i = 0; i < 32; i++) {
623             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
624             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
625         }
626         env->fpc = cs->kvm_run->s.regs.fpc;
627     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
628         for (i = 0; i < 16; i++) {
629             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
630         }
631         env->fpc = cs->kvm_run->s.regs.fpc;
632     } else {
633         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
634         if (r < 0) {
635             return r;
636         }
637         for (i = 0; i < 16; i++) {
638             *get_freg(env, i) = fpu.fprs[i];
639         }
640         env->fpc = fpu.fpc;
641     }
642 
643     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
644         env->cputm = cs->kvm_run->s.regs.cputm;
645         env->ckc = cs->kvm_run->s.regs.ckc;
646         env->todpr = cs->kvm_run->s.regs.todpr;
647         env->gbea = cs->kvm_run->s.regs.gbea;
648         env->pp = cs->kvm_run->s.regs.pp;
649     } else {
650         /*
651          * These ONE_REGS are not protected by a capability. As they are only
652          * necessary for migration we just trace a possible error, but don't
653          * return with an error return code.
654          */
655         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
656         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
657         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
658         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
659         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
660     }
661 
662     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
663         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
664     }
665 
666     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
667         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
668     }
669 
670     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
671         env->bpbc = cs->kvm_run->s.regs.bpbc;
672     }
673 
674     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
675         env->etoken = cs->kvm_run->s.regs.etoken;
676         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
677     }
678 
679     /* pfault parameters */
680     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
681         env->pfault_token = cs->kvm_run->s.regs.pft;
682         env->pfault_select = cs->kvm_run->s.regs.pfs;
683         env->pfault_compare = cs->kvm_run->s.regs.pfc;
684     } else if (cap_async_pf) {
685         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
686         if (r < 0) {
687             return r;
688         }
689         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
690         if (r < 0) {
691             return r;
692         }
693         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
694         if (r < 0) {
695             return r;
696         }
697     }
698 
699     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
700         env->diag318_info = cs->kvm_run->s.regs.diag318;
701     }
702 
703     return 0;
704 }
705 
706 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
707 {
708     int r;
709     struct kvm_device_attr attr = {
710         .group = KVM_S390_VM_TOD,
711         .attr = KVM_S390_VM_TOD_LOW,
712         .addr = (uint64_t)tod_low,
713     };
714 
715     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
716     if (r) {
717         return r;
718     }
719 
720     attr.attr = KVM_S390_VM_TOD_HIGH;
721     attr.addr = (uint64_t)tod_high;
722     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
723 }
724 
725 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
726 {
727     int r;
728     struct kvm_s390_vm_tod_clock gtod;
729     struct kvm_device_attr attr = {
730         .group = KVM_S390_VM_TOD,
731         .attr = KVM_S390_VM_TOD_EXT,
732         .addr = (uint64_t)&gtod,
733     };
734 
735     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
736     *tod_high = gtod.epoch_idx;
737     *tod_low  = gtod.tod;
738 
739     return r;
740 }
741 
742 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
743 {
744     int r;
745     struct kvm_device_attr attr = {
746         .group = KVM_S390_VM_TOD,
747         .attr = KVM_S390_VM_TOD_LOW,
748         .addr = (uint64_t)&tod_low,
749     };
750 
751     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
752     if (r) {
753         return r;
754     }
755 
756     attr.attr = KVM_S390_VM_TOD_HIGH;
757     attr.addr = (uint64_t)&tod_high;
758     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
759 }
760 
761 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
762 {
763     struct kvm_s390_vm_tod_clock gtod = {
764         .epoch_idx = tod_high,
765         .tod  = tod_low,
766     };
767     struct kvm_device_attr attr = {
768         .group = KVM_S390_VM_TOD,
769         .attr = KVM_S390_VM_TOD_EXT,
770         .addr = (uint64_t)&gtod,
771     };
772 
773     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
774 }
775 
776 /**
777  * kvm_s390_mem_op:
778  * @addr:      the logical start address in guest memory
779  * @ar:        the access register number
780  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
781  * @len:       length that should be transferred
782  * @is_write:  true = write, false = read
783  * Returns:    0 on success, non-zero if an exception or error occurred
784  *
785  * Use KVM ioctl to read/write from/to guest memory. An access exception
786  * is injected into the vCPU in case of translation errors.
787  */
788 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
789                     int len, bool is_write)
790 {
791     struct kvm_s390_mem_op mem_op = {
792         .gaddr = addr,
793         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
794         .size = len,
795         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
796                        : KVM_S390_MEMOP_LOGICAL_READ,
797         .buf = (uint64_t)hostbuf,
798         .ar = ar,
799         .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
800     };
801     int ret;
802 
803     if (!cap_mem_op) {
804         return -ENOSYS;
805     }
806     if (!hostbuf) {
807         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
808     }
809     if (mem_op_storage_key_support) {
810         mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
811     }
812 
813     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
814     if (ret < 0) {
815         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
816     }
817     return ret;
818 }
819 
820 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
821                        int len, bool is_write)
822 {
823     struct kvm_s390_mem_op mem_op = {
824         .sida_offset = offset,
825         .size = len,
826         .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
827                        : KVM_S390_MEMOP_SIDA_READ,
828         .buf = (uint64_t)hostbuf,
829     };
830     int ret;
831 
832     if (!cap_mem_op || !cap_protected) {
833         return -ENOSYS;
834     }
835 
836     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
837     if (ret < 0) {
838         error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
839         abort();
840     }
841     return ret;
842 }
843 
844 static uint8_t const *sw_bp_inst;
845 static uint8_t sw_bp_ilen;
846 
847 static void determine_sw_breakpoint_instr(void)
848 {
849         /* DIAG 501 is used for sw breakpoints with old kernels */
850         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
851         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
852         static const uint8_t instr_0x0000[] = {0x00, 0x00};
853 
854         if (sw_bp_inst) {
855             return;
856         }
857         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
858             sw_bp_inst = diag_501;
859             sw_bp_ilen = sizeof(diag_501);
860             trace_kvm_sw_breakpoint(4);
861         } else {
862             sw_bp_inst = instr_0x0000;
863             sw_bp_ilen = sizeof(instr_0x0000);
864             trace_kvm_sw_breakpoint(2);
865         }
866 }
867 
868 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
869 {
870     determine_sw_breakpoint_instr();
871 
872     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
873                             sw_bp_ilen, 0) ||
874         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
875         return -EINVAL;
876     }
877     return 0;
878 }
879 
880 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
881 {
882     uint8_t t[MAX_ILEN];
883 
884     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
885         return -EINVAL;
886     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
887         return -EINVAL;
888     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
889                                    sw_bp_ilen, 1)) {
890         return -EINVAL;
891     }
892 
893     return 0;
894 }
895 
896 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
897                                                     int len, int type)
898 {
899     int n;
900 
901     for (n = 0; n < nb_hw_breakpoints; n++) {
902         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
903             (hw_breakpoints[n].len == len || len == -1)) {
904             return &hw_breakpoints[n];
905         }
906     }
907 
908     return NULL;
909 }
910 
911 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
912 {
913     int size;
914 
915     if (find_hw_breakpoint(addr, len, type)) {
916         return -EEXIST;
917     }
918 
919     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
920 
921     if (!hw_breakpoints) {
922         nb_hw_breakpoints = 0;
923         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
924     } else {
925         hw_breakpoints =
926             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
927     }
928 
929     if (!hw_breakpoints) {
930         nb_hw_breakpoints = 0;
931         return -ENOMEM;
932     }
933 
934     hw_breakpoints[nb_hw_breakpoints].addr = addr;
935     hw_breakpoints[nb_hw_breakpoints].len = len;
936     hw_breakpoints[nb_hw_breakpoints].type = type;
937 
938     nb_hw_breakpoints++;
939 
940     return 0;
941 }
942 
943 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
944 {
945     switch (type) {
946     case GDB_BREAKPOINT_HW:
947         type = KVM_HW_BP;
948         break;
949     case GDB_WATCHPOINT_WRITE:
950         if (len < 1) {
951             return -EINVAL;
952         }
953         type = KVM_HW_WP_WRITE;
954         break;
955     default:
956         return -ENOSYS;
957     }
958     return insert_hw_breakpoint(addr, len, type);
959 }
960 
961 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
962 {
963     int size;
964     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
965 
966     if (bp == NULL) {
967         return -ENOENT;
968     }
969 
970     nb_hw_breakpoints--;
971     if (nb_hw_breakpoints > 0) {
972         /*
973          * In order to trim the array, move the last element to the position to
974          * be removed - if necessary.
975          */
976         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
977             *bp = hw_breakpoints[nb_hw_breakpoints];
978         }
979         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
980         hw_breakpoints =
981              g_realloc(hw_breakpoints, size);
982     } else {
983         g_free(hw_breakpoints);
984         hw_breakpoints = NULL;
985     }
986 
987     return 0;
988 }
989 
990 void kvm_arch_remove_all_hw_breakpoints(void)
991 {
992     nb_hw_breakpoints = 0;
993     g_free(hw_breakpoints);
994     hw_breakpoints = NULL;
995 }
996 
997 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
998 {
999     int i;
1000 
1001     if (nb_hw_breakpoints > 0) {
1002         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1003         dbg->arch.hw_bp = hw_breakpoints;
1004 
1005         for (i = 0; i < nb_hw_breakpoints; ++i) {
1006             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1007                                                        hw_breakpoints[i].addr);
1008         }
1009         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1010     } else {
1011         dbg->arch.nr_hw_bp = 0;
1012         dbg->arch.hw_bp = NULL;
1013     }
1014 }
1015 
1016 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1017 {
1018 }
1019 
1020 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1021 {
1022     return MEMTXATTRS_UNSPECIFIED;
1023 }
1024 
1025 int kvm_arch_process_async_events(CPUState *cs)
1026 {
1027     return cs->halted;
1028 }
1029 
1030 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1031                                      struct kvm_s390_interrupt *interrupt)
1032 {
1033     int r = 0;
1034 
1035     interrupt->type = irq->type;
1036     switch (irq->type) {
1037     case KVM_S390_INT_VIRTIO:
1038         interrupt->parm = irq->u.ext.ext_params;
1039         /* fall through */
1040     case KVM_S390_INT_PFAULT_INIT:
1041     case KVM_S390_INT_PFAULT_DONE:
1042         interrupt->parm64 = irq->u.ext.ext_params2;
1043         break;
1044     case KVM_S390_PROGRAM_INT:
1045         interrupt->parm = irq->u.pgm.code;
1046         break;
1047     case KVM_S390_SIGP_SET_PREFIX:
1048         interrupt->parm = irq->u.prefix.address;
1049         break;
1050     case KVM_S390_INT_SERVICE:
1051         interrupt->parm = irq->u.ext.ext_params;
1052         break;
1053     case KVM_S390_MCHK:
1054         interrupt->parm = irq->u.mchk.cr14;
1055         interrupt->parm64 = irq->u.mchk.mcic;
1056         break;
1057     case KVM_S390_INT_EXTERNAL_CALL:
1058         interrupt->parm = irq->u.extcall.code;
1059         break;
1060     case KVM_S390_INT_EMERGENCY:
1061         interrupt->parm = irq->u.emerg.code;
1062         break;
1063     case KVM_S390_SIGP_STOP:
1064     case KVM_S390_RESTART:
1065         break; /* These types have no parameters */
1066     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1067         interrupt->parm = irq->u.io.subchannel_id << 16;
1068         interrupt->parm |= irq->u.io.subchannel_nr;
1069         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1070         interrupt->parm64 |= irq->u.io.io_int_word;
1071         break;
1072     default:
1073         r = -EINVAL;
1074         break;
1075     }
1076     return r;
1077 }
1078 
1079 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1080 {
1081     struct kvm_s390_interrupt kvmint = {};
1082     int r;
1083 
1084     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1085     if (r < 0) {
1086         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1087         exit(1);
1088     }
1089 
1090     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1091     if (r < 0) {
1092         fprintf(stderr, "KVM failed to inject interrupt\n");
1093         exit(1);
1094     }
1095 }
1096 
1097 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1098 {
1099     CPUState *cs = CPU(cpu);
1100     int r;
1101 
1102     if (cap_s390_irq) {
1103         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1104         if (!r) {
1105             return;
1106         }
1107         error_report("KVM failed to inject interrupt %llx", irq->type);
1108         exit(1);
1109     }
1110 
1111     inject_vcpu_irq_legacy(cs, irq);
1112 }
1113 
1114 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1115 {
1116     struct kvm_s390_interrupt kvmint = {};
1117     int r;
1118 
1119     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1120     if (r < 0) {
1121         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1122         exit(1);
1123     }
1124 
1125     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1126     if (r < 0) {
1127         fprintf(stderr, "KVM failed to inject interrupt\n");
1128         exit(1);
1129     }
1130 }
1131 
1132 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1133 {
1134     struct kvm_s390_irq irq = {
1135         .type = KVM_S390_PROGRAM_INT,
1136         .u.pgm.code = code,
1137     };
1138     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1139                   cpu->env.psw.addr);
1140     kvm_s390_vcpu_interrupt(cpu, &irq);
1141 }
1142 
1143 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1144 {
1145     struct kvm_s390_irq irq = {
1146         .type = KVM_S390_PROGRAM_INT,
1147         .u.pgm.code = code,
1148         .u.pgm.trans_exc_code = te_code,
1149         .u.pgm.exc_access_id = te_code & 3,
1150     };
1151 
1152     kvm_s390_vcpu_interrupt(cpu, &irq);
1153 }
1154 
1155 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1156                                  uint16_t ipbh0)
1157 {
1158     CPUS390XState *env = &cpu->env;
1159     uint64_t sccb;
1160     uint32_t code;
1161     int r;
1162 
1163     sccb = env->regs[ipbh0 & 0xf];
1164     code = env->regs[(ipbh0 & 0xf0) >> 4];
1165 
1166     switch (run->s390_sieic.icptcode) {
1167     case ICPT_PV_INSTR_NOTIFICATION:
1168         g_assert(s390_is_pv());
1169         /* The notification intercepts are currently handled by KVM */
1170         error_report("unexpected SCLP PV notification");
1171         exit(1);
1172         break;
1173     case ICPT_PV_INSTR:
1174         g_assert(s390_is_pv());
1175         sclp_service_call_protected(cpu, sccb, code);
1176         /* Setting the CC is done by the Ultravisor. */
1177         break;
1178     case ICPT_INSTRUCTION:
1179         g_assert(!s390_is_pv());
1180         r = sclp_service_call(cpu, sccb, code);
1181         if (r < 0) {
1182             kvm_s390_program_interrupt(cpu, -r);
1183             return;
1184         }
1185         setcc(cpu, r);
1186     }
1187 }
1188 
1189 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1190 {
1191     CPUS390XState *env = &cpu->env;
1192     int rc = 0;
1193     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1194 
1195     switch (ipa1) {
1196     case PRIV_B2_XSCH:
1197         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1198         break;
1199     case PRIV_B2_CSCH:
1200         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1201         break;
1202     case PRIV_B2_HSCH:
1203         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1204         break;
1205     case PRIV_B2_MSCH:
1206         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1207         break;
1208     case PRIV_B2_SSCH:
1209         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1210         break;
1211     case PRIV_B2_STCRW:
1212         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1213         break;
1214     case PRIV_B2_STSCH:
1215         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1216         break;
1217     case PRIV_B2_TSCH:
1218         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1219         fprintf(stderr, "Spurious tsch intercept\n");
1220         break;
1221     case PRIV_B2_CHSC:
1222         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1223         break;
1224     case PRIV_B2_TPI:
1225         /* This should have been handled by kvm already. */
1226         fprintf(stderr, "Spurious tpi intercept\n");
1227         break;
1228     case PRIV_B2_SCHM:
1229         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1230                            run->s390_sieic.ipb, RA_IGNORED);
1231         break;
1232     case PRIV_B2_RSCH:
1233         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1234         break;
1235     case PRIV_B2_RCHP:
1236         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1237         break;
1238     case PRIV_B2_STCPS:
1239         /* We do not provide this instruction, it is suppressed. */
1240         break;
1241     case PRIV_B2_SAL:
1242         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1243         break;
1244     case PRIV_B2_SIGA:
1245         /* Not provided, set CC = 3 for subchannel not operational */
1246         setcc(cpu, 3);
1247         break;
1248     case PRIV_B2_SCLP_CALL:
1249         kvm_sclp_service_call(cpu, run, ipbh0);
1250         break;
1251     default:
1252         rc = -1;
1253         trace_kvm_insn_unhandled_priv(ipa1);
1254         break;
1255     }
1256 
1257     return rc;
1258 }
1259 
1260 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1261                                   uint8_t *ar)
1262 {
1263     CPUS390XState *env = &cpu->env;
1264     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1265     uint32_t base2 = run->s390_sieic.ipb >> 28;
1266     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1267                      ((run->s390_sieic.ipb & 0xff00) << 4);
1268 
1269     if (disp2 & 0x80000) {
1270         disp2 += 0xfff00000;
1271     }
1272     if (ar) {
1273         *ar = base2;
1274     }
1275 
1276     return (base2 ? env->regs[base2] : 0) +
1277            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1278 }
1279 
1280 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1281                                   uint8_t *ar)
1282 {
1283     CPUS390XState *env = &cpu->env;
1284     uint32_t base2 = run->s390_sieic.ipb >> 28;
1285     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1286                      ((run->s390_sieic.ipb & 0xff00) << 4);
1287 
1288     if (disp2 & 0x80000) {
1289         disp2 += 0xfff00000;
1290     }
1291     if (ar) {
1292         *ar = base2;
1293     }
1294 
1295     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1296 }
1297 
1298 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1299 {
1300     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1301 
1302     if (s390_has_feat(S390_FEAT_ZPCI)) {
1303         return clp_service_call(cpu, r2, RA_IGNORED);
1304     } else {
1305         return -1;
1306     }
1307 }
1308 
1309 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1310 {
1311     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1312     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1313 
1314     if (s390_has_feat(S390_FEAT_ZPCI)) {
1315         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1316     } else {
1317         return -1;
1318     }
1319 }
1320 
1321 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1322 {
1323     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1324     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1325 
1326     if (s390_has_feat(S390_FEAT_ZPCI)) {
1327         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1328     } else {
1329         return -1;
1330     }
1331 }
1332 
1333 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1334 {
1335     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1336     uint64_t fiba;
1337     uint8_t ar;
1338 
1339     if (s390_has_feat(S390_FEAT_ZPCI)) {
1340         fiba = get_base_disp_rxy(cpu, run, &ar);
1341 
1342         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1343     } else {
1344         return -1;
1345     }
1346 }
1347 
1348 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1349 {
1350     CPUS390XState *env = &cpu->env;
1351     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1352     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1353     uint8_t isc;
1354     uint16_t mode;
1355     int r;
1356 
1357     mode = env->regs[r1] & 0xffff;
1358     isc = (env->regs[r3] >> 27) & 0x7;
1359     r = css_do_sic(cpu, isc, mode);
1360     if (r) {
1361         kvm_s390_program_interrupt(cpu, -r);
1362     }
1363 
1364     return 0;
1365 }
1366 
1367 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1368 {
1369     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1370     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1371 
1372     if (s390_has_feat(S390_FEAT_ZPCI)) {
1373         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1374     } else {
1375         return -1;
1376     }
1377 }
1378 
1379 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1380 {
1381     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1382     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1383     uint64_t gaddr;
1384     uint8_t ar;
1385 
1386     if (s390_has_feat(S390_FEAT_ZPCI)) {
1387         gaddr = get_base_disp_rsy(cpu, run, &ar);
1388 
1389         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1390     } else {
1391         return -1;
1392     }
1393 }
1394 
1395 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1396 {
1397     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1398     uint64_t fiba;
1399     uint8_t ar;
1400 
1401     if (s390_has_feat(S390_FEAT_ZPCI)) {
1402         fiba = get_base_disp_rxy(cpu, run, &ar);
1403 
1404         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1405     } else {
1406         return -1;
1407     }
1408 }
1409 
1410 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run)
1411 {
1412     uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f;
1413 
1414     s390_handle_ptf(cpu, r1, RA_IGNORED);
1415 }
1416 
1417 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1418 {
1419     int r = 0;
1420 
1421     switch (ipa1) {
1422     case PRIV_B9_CLP:
1423         r = kvm_clp_service_call(cpu, run);
1424         break;
1425     case PRIV_B9_PCISTG:
1426         r = kvm_pcistg_service_call(cpu, run);
1427         break;
1428     case PRIV_B9_PCILG:
1429         r = kvm_pcilg_service_call(cpu, run);
1430         break;
1431     case PRIV_B9_RPCIT:
1432         r = kvm_rpcit_service_call(cpu, run);
1433         break;
1434     case PRIV_B9_PTF:
1435         kvm_handle_ptf(cpu, run);
1436         break;
1437     case PRIV_B9_EQBS:
1438         /* just inject exception */
1439         r = -1;
1440         break;
1441     default:
1442         r = -1;
1443         trace_kvm_insn_unhandled_priv(ipa1);
1444         break;
1445     }
1446 
1447     return r;
1448 }
1449 
1450 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1451 {
1452     int r = 0;
1453 
1454     switch (ipbl) {
1455     case PRIV_EB_PCISTB:
1456         r = kvm_pcistb_service_call(cpu, run);
1457         break;
1458     case PRIV_EB_SIC:
1459         r = kvm_sic_service_call(cpu, run);
1460         break;
1461     case PRIV_EB_SQBS:
1462         /* just inject exception */
1463         r = -1;
1464         break;
1465     default:
1466         r = -1;
1467         trace_kvm_insn_unhandled_priv(ipbl);
1468         break;
1469     }
1470 
1471     return r;
1472 }
1473 
1474 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1475 {
1476     int r = 0;
1477 
1478     switch (ipbl) {
1479     case PRIV_E3_MPCIFC:
1480         r = kvm_mpcifc_service_call(cpu, run);
1481         break;
1482     case PRIV_E3_STPCIFC:
1483         r = kvm_stpcifc_service_call(cpu, run);
1484         break;
1485     default:
1486         r = -1;
1487         trace_kvm_insn_unhandled_priv(ipbl);
1488         break;
1489     }
1490 
1491     return r;
1492 }
1493 
1494 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1495 {
1496     CPUS390XState *env = &cpu->env;
1497     int ret;
1498 
1499     ret = s390_virtio_hypercall(env);
1500     if (ret == -EINVAL) {
1501         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1502         return 0;
1503     }
1504 
1505     return ret;
1506 }
1507 
1508 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1509 {
1510     uint64_t r1, r3;
1511     int rc;
1512 
1513     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1514     r3 = run->s390_sieic.ipa & 0x000f;
1515     rc = handle_diag_288(&cpu->env, r1, r3);
1516     if (rc) {
1517         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1518     }
1519 }
1520 
1521 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1522 {
1523     uint64_t r1, r3;
1524 
1525     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1526     r3 = run->s390_sieic.ipa & 0x000f;
1527     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1528 }
1529 
1530 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1531 {
1532     CPUS390XState *env = &cpu->env;
1533     unsigned long pc;
1534 
1535     pc = env->psw.addr - sw_bp_ilen;
1536     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1537         env->psw.addr = pc;
1538         return EXCP_DEBUG;
1539     }
1540 
1541     return -ENOENT;
1542 }
1543 
1544 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1545 {
1546     CPUS390XState *env = &S390_CPU(cs)->env;
1547 
1548     /* Feat bit is set only if KVM supports sync for diag318 */
1549     if (s390_has_feat(S390_FEAT_DIAG_318)) {
1550         env->diag318_info = diag318_info;
1551         cs->kvm_run->s.regs.diag318 = diag318_info;
1552         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1553         /*
1554          * diag 318 info is zeroed during a clear reset and
1555          * diag 308 IPL subcodes.
1556          */
1557     }
1558 }
1559 
1560 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1561 {
1562     uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1563     uint64_t diag318_info = run->s.regs.gprs[reg];
1564     CPUState *t;
1565 
1566     /*
1567      * DIAG 318 can only be enabled with KVM support. As such, let's
1568      * ensure a guest cannot execute this instruction erroneously.
1569      */
1570     if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1571         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1572         return;
1573     }
1574 
1575     CPU_FOREACH(t) {
1576         run_on_cpu(t, s390_do_cpu_set_diag318,
1577                    RUN_ON_CPU_HOST_ULONG(diag318_info));
1578     }
1579 }
1580 
1581 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1582 
1583 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1584 {
1585     int r = 0;
1586     uint16_t func_code;
1587 
1588     /*
1589      * For any diagnose call we support, bits 48-63 of the resulting
1590      * address specify the function code; the remainder is ignored.
1591      */
1592     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1593     switch (func_code) {
1594     case DIAG_TIMEREVENT:
1595         kvm_handle_diag_288(cpu, run);
1596         break;
1597     case DIAG_IPL:
1598         kvm_handle_diag_308(cpu, run);
1599         break;
1600     case DIAG_SET_CONTROL_PROGRAM_CODES:
1601         handle_diag_318(cpu, run);
1602         break;
1603     case DIAG_KVM_HYPERCALL:
1604         r = handle_hypercall(cpu, run);
1605         break;
1606     case DIAG_KVM_BREAKPOINT:
1607         r = handle_sw_breakpoint(cpu, run);
1608         break;
1609     default:
1610         trace_kvm_insn_diag(func_code);
1611         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1612         break;
1613     }
1614 
1615     return r;
1616 }
1617 
1618 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1619 {
1620     CPUS390XState *env = &cpu->env;
1621     const uint8_t r1 = ipa1 >> 4;
1622     const uint8_t r3 = ipa1 & 0x0f;
1623     int ret;
1624     uint8_t order;
1625 
1626     /* get order code */
1627     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1628 
1629     ret = handle_sigp(env, order, r1, r3);
1630     setcc(cpu, ret);
1631     return 0;
1632 }
1633 
1634 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1635 {
1636     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1637     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1638     int r = -1;
1639 
1640     trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb);
1641     switch (ipa0) {
1642     case IPA0_B2:
1643         r = handle_b2(cpu, run, ipa1);
1644         break;
1645     case IPA0_B9:
1646         r = handle_b9(cpu, run, ipa1);
1647         break;
1648     case IPA0_EB:
1649         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1650         break;
1651     case IPA0_E3:
1652         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1653         break;
1654     case IPA0_DIAG:
1655         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1656         break;
1657     case IPA0_SIGP:
1658         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1659         break;
1660     }
1661 
1662     if (r < 0) {
1663         r = 0;
1664         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1665     }
1666 
1667     return r;
1668 }
1669 
1670 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1671                                    int pswoffset)
1672 {
1673     CPUState *cs = CPU(cpu);
1674 
1675     s390_cpu_halt(cpu);
1676     cpu->env.crash_reason = reason;
1677     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1678 }
1679 
1680 /* try to detect pgm check loops */
1681 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1682 {
1683     CPUState *cs = CPU(cpu);
1684     PSW oldpsw, newpsw;
1685 
1686     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1687                            offsetof(LowCore, program_new_psw));
1688     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1689                            offsetof(LowCore, program_new_psw) + 8);
1690     oldpsw.mask  = run->psw_mask;
1691     oldpsw.addr  = run->psw_addr;
1692     /*
1693      * Avoid endless loops of operation exceptions, if the pgm new
1694      * PSW will cause a new operation exception.
1695      * The heuristic checks if the pgm new psw is within 6 bytes before
1696      * the faulting psw address (with same DAT, AS settings) and the
1697      * new psw is not a wait psw and the fault was not triggered by
1698      * problem state. In that case go into crashed state.
1699      */
1700 
1701     if (oldpsw.addr - newpsw.addr <= 6 &&
1702         !(newpsw.mask & PSW_MASK_WAIT) &&
1703         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1704         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1705         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1706         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1707                                offsetof(LowCore, program_new_psw));
1708         return EXCP_HALTED;
1709     }
1710     return 0;
1711 }
1712 
1713 static int handle_intercept(S390CPU *cpu)
1714 {
1715     CPUState *cs = CPU(cpu);
1716     struct kvm_run *run = cs->kvm_run;
1717     int icpt_code = run->s390_sieic.icptcode;
1718     int r = 0;
1719 
1720     trace_kvm_intercept(icpt_code, (long)run->psw_addr);
1721     switch (icpt_code) {
1722         case ICPT_INSTRUCTION:
1723         case ICPT_PV_INSTR:
1724         case ICPT_PV_INSTR_NOTIFICATION:
1725             r = handle_instruction(cpu, run);
1726             break;
1727         case ICPT_PROGRAM:
1728             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1729                                    offsetof(LowCore, program_new_psw));
1730             r = EXCP_HALTED;
1731             break;
1732         case ICPT_EXT_INT:
1733             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1734                                    offsetof(LowCore, external_new_psw));
1735             r = EXCP_HALTED;
1736             break;
1737         case ICPT_WAITPSW:
1738             /* disabled wait, since enabled wait is handled in kernel */
1739             s390_handle_wait(cpu);
1740             r = EXCP_HALTED;
1741             break;
1742         case ICPT_CPU_STOP:
1743             do_stop_interrupt(&cpu->env);
1744             r = EXCP_HALTED;
1745             break;
1746         case ICPT_OPEREXC:
1747             /* check for break points */
1748             r = handle_sw_breakpoint(cpu, run);
1749             if (r == -ENOENT) {
1750                 /* Then check for potential pgm check loops */
1751                 r = handle_oper_loop(cpu, run);
1752                 if (r == 0) {
1753                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1754                 }
1755             }
1756             break;
1757         case ICPT_SOFT_INTERCEPT:
1758             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1759             exit(1);
1760             break;
1761         case ICPT_IO:
1762             fprintf(stderr, "KVM unimplemented icpt IO\n");
1763             exit(1);
1764             break;
1765         default:
1766             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1767             exit(1);
1768             break;
1769     }
1770 
1771     return r;
1772 }
1773 
1774 static int handle_tsch(S390CPU *cpu)
1775 {
1776     CPUState *cs = CPU(cpu);
1777     struct kvm_run *run = cs->kvm_run;
1778     int ret;
1779 
1780     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1781                              RA_IGNORED);
1782     if (ret < 0) {
1783         /*
1784          * Failure.
1785          * If an I/O interrupt had been dequeued, we have to reinject it.
1786          */
1787         if (run->s390_tsch.dequeued) {
1788             s390_io_interrupt(run->s390_tsch.subchannel_id,
1789                               run->s390_tsch.subchannel_nr,
1790                               run->s390_tsch.io_int_parm,
1791                               run->s390_tsch.io_int_word);
1792         }
1793         ret = 0;
1794     }
1795     return ret;
1796 }
1797 
1798 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1799 {
1800     const MachineState *ms = MACHINE(qdev_get_machine());
1801     uint16_t conf_cpus = 0, reserved_cpus = 0;
1802     SysIB_322 sysib;
1803     int del, i;
1804 
1805     if (s390_is_pv()) {
1806         s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1807     } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1808         return;
1809     }
1810     /* Shift the stack of Extended Names to prepare for our own data */
1811     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1812             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1813     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1814      * assumed it's not capable of managing Extended Names for lower levels.
1815      */
1816     for (del = 1; del < sysib.count; del++) {
1817         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1818             break;
1819         }
1820     }
1821     if (del < sysib.count) {
1822         memset(sysib.ext_names[del], 0,
1823                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1824     }
1825 
1826     /* count the cpus and split them into configured and reserved ones */
1827     for (i = 0; i < ms->possible_cpus->len; i++) {
1828         if (ms->possible_cpus->cpus[i].cpu) {
1829             conf_cpus++;
1830         } else {
1831             reserved_cpus++;
1832         }
1833     }
1834     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1835     sysib.vm[0].conf_cpus = conf_cpus;
1836     sysib.vm[0].reserved_cpus = reserved_cpus;
1837 
1838     /* Insert short machine name in EBCDIC, padded with blanks */
1839     if (qemu_name) {
1840         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1841         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1842                                                     strlen(qemu_name)));
1843     }
1844     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1845     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1846      * considered by s390 as not capable of providing any Extended Name.
1847      * Therefore if no name was specified on qemu invocation, we go with the
1848      * same "KVMguest" default, which KVM has filled into short name field.
1849      */
1850     strpadcpy((char *)sysib.ext_names[0],
1851               sizeof(sysib.ext_names[0]),
1852               qemu_name ?: "KVMguest", '\0');
1853 
1854     /* Insert UUID */
1855     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1856 
1857     if (s390_is_pv()) {
1858         s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1859     } else {
1860         s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1861     }
1862 }
1863 
1864 static int handle_stsi(S390CPU *cpu)
1865 {
1866     CPUState *cs = CPU(cpu);
1867     struct kvm_run *run = cs->kvm_run;
1868 
1869     switch (run->s390_stsi.fc) {
1870     case 3:
1871         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1872             return 0;
1873         }
1874         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1875         return 0;
1876     case 15:
1877         insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr,
1878                            run->s390_stsi.ar, RA_IGNORED);
1879         return 0;
1880     default:
1881         return 0;
1882     }
1883 }
1884 
1885 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1886 {
1887     CPUState *cs = CPU(cpu);
1888     struct kvm_run *run = cs->kvm_run;
1889 
1890     int ret = 0;
1891     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1892 
1893     switch (arch_info->type) {
1894     case KVM_HW_WP_WRITE:
1895         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1896             cs->watchpoint_hit = &hw_watchpoint;
1897             hw_watchpoint.vaddr = arch_info->addr;
1898             hw_watchpoint.flags = BP_MEM_WRITE;
1899             ret = EXCP_DEBUG;
1900         }
1901         break;
1902     case KVM_HW_BP:
1903         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1904             ret = EXCP_DEBUG;
1905         }
1906         break;
1907     case KVM_SINGLESTEP:
1908         if (cs->singlestep_enabled) {
1909             ret = EXCP_DEBUG;
1910         }
1911         break;
1912     default:
1913         ret = -ENOSYS;
1914     }
1915 
1916     return ret;
1917 }
1918 
1919 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1920 {
1921     S390CPU *cpu = S390_CPU(cs);
1922     int ret = 0;
1923 
1924     bql_lock();
1925 
1926     kvm_cpu_synchronize_state(cs);
1927 
1928     switch (run->exit_reason) {
1929         case KVM_EXIT_S390_SIEIC:
1930             ret = handle_intercept(cpu);
1931             break;
1932         case KVM_EXIT_S390_RESET:
1933             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1934             break;
1935         case KVM_EXIT_S390_TSCH:
1936             ret = handle_tsch(cpu);
1937             break;
1938         case KVM_EXIT_S390_STSI:
1939             ret = handle_stsi(cpu);
1940             break;
1941         case KVM_EXIT_DEBUG:
1942             ret = kvm_arch_handle_debug_exit(cpu);
1943             break;
1944         default:
1945             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1946             break;
1947     }
1948     bql_unlock();
1949 
1950     if (ret == 0) {
1951         ret = EXCP_INTERRUPT;
1952     }
1953     return ret;
1954 }
1955 
1956 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1957 {
1958     return true;
1959 }
1960 
1961 void kvm_s390_enable_css_support(S390CPU *cpu)
1962 {
1963     int r;
1964 
1965     /* Activate host kernel channel subsystem support. */
1966     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1967     assert(r == 0);
1968 }
1969 
1970 void kvm_arch_init_irq_routing(KVMState *s)
1971 {
1972     /*
1973      * Note that while irqchip capabilities generally imply that cpustates
1974      * are handled in-kernel, it is not true for s390 (yet); therefore, we
1975      * have to override the common code kvm_halt_in_kernel_allowed setting.
1976      */
1977     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1978         kvm_gsi_routing_allowed = true;
1979         kvm_halt_in_kernel_allowed = false;
1980     }
1981 }
1982 
1983 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1984                                     int vq, bool assign)
1985 {
1986     struct kvm_ioeventfd kick = {
1987         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1988         KVM_IOEVENTFD_FLAG_DATAMATCH,
1989         .fd = event_notifier_get_fd(notifier),
1990         .datamatch = vq,
1991         .addr = sch,
1992         .len = 8,
1993     };
1994     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1995                                      kick.datamatch);
1996     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1997         return -ENOSYS;
1998     }
1999     if (!assign) {
2000         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2001     }
2002     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2003 }
2004 
2005 int kvm_s390_get_protected_dump(void)
2006 {
2007     return cap_protected_dump;
2008 }
2009 
2010 int kvm_s390_get_ri(void)
2011 {
2012     return cap_ri;
2013 }
2014 
2015 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2016 {
2017     struct kvm_mp_state mp_state = {};
2018     int ret;
2019 
2020     /* the kvm part might not have been initialized yet */
2021     if (CPU(cpu)->kvm_state == NULL) {
2022         return 0;
2023     }
2024 
2025     switch (cpu_state) {
2026     case S390_CPU_STATE_STOPPED:
2027         mp_state.mp_state = KVM_MP_STATE_STOPPED;
2028         break;
2029     case S390_CPU_STATE_CHECK_STOP:
2030         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2031         break;
2032     case S390_CPU_STATE_OPERATING:
2033         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2034         break;
2035     case S390_CPU_STATE_LOAD:
2036         mp_state.mp_state = KVM_MP_STATE_LOAD;
2037         break;
2038     default:
2039         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2040                      cpu_state);
2041         exit(1);
2042     }
2043 
2044     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2045     if (ret) {
2046         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2047                                        strerror(-ret));
2048     }
2049 
2050     return ret;
2051 }
2052 
2053 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2054 {
2055     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2056     struct kvm_s390_irq_state irq_state = {
2057         .buf = (uint64_t) cpu->irqstate,
2058         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2059     };
2060     CPUState *cs = CPU(cpu);
2061     int32_t bytes;
2062 
2063     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2064         return;
2065     }
2066 
2067     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2068     if (bytes < 0) {
2069         cpu->irqstate_saved_size = 0;
2070         error_report("Migration of interrupt state failed");
2071         return;
2072     }
2073 
2074     cpu->irqstate_saved_size = bytes;
2075 }
2076 
2077 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2078 {
2079     CPUState *cs = CPU(cpu);
2080     struct kvm_s390_irq_state irq_state = {
2081         .buf = (uint64_t) cpu->irqstate,
2082         .len = cpu->irqstate_saved_size,
2083     };
2084     int r;
2085 
2086     if (cpu->irqstate_saved_size == 0) {
2087         return 0;
2088     }
2089 
2090     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2091         return -ENOSYS;
2092     }
2093 
2094     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2095     if (r) {
2096         error_report("Setting interrupt state failed %d", r);
2097     }
2098     return r;
2099 }
2100 
2101 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2102                              uint64_t address, uint32_t data, PCIDevice *dev)
2103 {
2104     S390PCIBusDevice *pbdev;
2105     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2106 
2107     if (!dev) {
2108         trace_kvm_msi_route_fixup("no pci device");
2109         return -ENODEV;
2110     }
2111 
2112     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2113     if (!pbdev) {
2114         trace_kvm_msi_route_fixup("no zpci device");
2115         return -ENODEV;
2116     }
2117 
2118     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2119     route->flags = 0;
2120     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2121     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2122     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2123     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2124     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2125     return 0;
2126 }
2127 
2128 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2129                                 int vector, PCIDevice *dev)
2130 {
2131     return 0;
2132 }
2133 
2134 int kvm_arch_release_virq_post(int virq)
2135 {
2136     return 0;
2137 }
2138 
2139 int kvm_arch_msi_data_to_gsi(uint32_t data)
2140 {
2141     abort();
2142 }
2143 
2144 static int query_cpu_subfunc(S390FeatBitmap features)
2145 {
2146     struct kvm_s390_vm_cpu_subfunc prop = {};
2147     struct kvm_device_attr attr = {
2148         .group = KVM_S390_VM_CPU_MODEL,
2149         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2150         .addr = (uint64_t) &prop,
2151     };
2152     int rc;
2153 
2154     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2155     if (rc) {
2156         return  rc;
2157     }
2158 
2159     /*
2160      * We're going to add all subfunctions now, if the corresponding feature
2161      * is available that unlocks the query functions.
2162      */
2163     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2164     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2165         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2166     }
2167     if (test_bit(S390_FEAT_MSA, features)) {
2168         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2169         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2170         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2171         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2172         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2173     }
2174     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2175         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2176     }
2177     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2178         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2179         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2180         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2181         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2182     }
2183     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2184         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2185     }
2186     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2187         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2188     }
2189     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2190         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2191     }
2192     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2193         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2194     }
2195     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2196         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2197     }
2198     return 0;
2199 }
2200 
2201 static int configure_cpu_subfunc(const S390FeatBitmap features)
2202 {
2203     struct kvm_s390_vm_cpu_subfunc prop = {};
2204     struct kvm_device_attr attr = {
2205         .group = KVM_S390_VM_CPU_MODEL,
2206         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2207         .addr = (uint64_t) &prop,
2208     };
2209 
2210     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2211                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2212         /* hardware support might be missing, IBC will handle most of this */
2213         return 0;
2214     }
2215 
2216     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2217     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2218         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2219     }
2220     if (test_bit(S390_FEAT_MSA, features)) {
2221         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2222         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2223         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2224         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2225         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2226     }
2227     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2228         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2229     }
2230     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2231         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2232         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2233         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2234         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2235     }
2236     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2237         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2238     }
2239     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2240         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2241     }
2242     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2243         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2244     }
2245     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2246         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2247     }
2248     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2249         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2250     }
2251     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2252 }
2253 
2254 static bool ap_available(void)
2255 {
2256     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2257                              KVM_S390_VM_CRYPTO_ENABLE_APIE);
2258 }
2259 
2260 static bool ap_enabled(const S390FeatBitmap features)
2261 {
2262     return test_bit(S390_FEAT_AP, features);
2263 }
2264 
2265 static bool uv_feat_supported(void)
2266 {
2267     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2268                              KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST);
2269 }
2270 
2271 static int query_uv_feat_guest(S390FeatBitmap features)
2272 {
2273     struct kvm_s390_vm_cpu_uv_feat prop = {};
2274     struct kvm_device_attr attr = {
2275         .group = KVM_S390_VM_CPU_MODEL,
2276         .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST,
2277         .addr = (uint64_t) &prop,
2278     };
2279     int rc;
2280 
2281     /* AP support check is currently the only user of the UV feature test */
2282     if (!(uv_feat_supported() && ap_available())) {
2283         return 0;
2284     }
2285 
2286     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2287     if (rc) {
2288         return  rc;
2289     }
2290 
2291     if (prop.ap) {
2292         set_bit(S390_FEAT_UV_FEAT_AP, features);
2293     }
2294     if (prop.ap_intr) {
2295         set_bit(S390_FEAT_UV_FEAT_AP_INTR, features);
2296     }
2297 
2298     return 0;
2299 }
2300 
2301 static int kvm_to_feat[][2] = {
2302     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2303     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2304     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2305     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2306     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2307     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2308     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2309     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2310     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2311     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2312     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2313     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2314     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2315     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2316 };
2317 
2318 static int query_cpu_feat(S390FeatBitmap features)
2319 {
2320     struct kvm_s390_vm_cpu_feat prop = {};
2321     struct kvm_device_attr attr = {
2322         .group = KVM_S390_VM_CPU_MODEL,
2323         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2324         .addr = (uint64_t) &prop,
2325     };
2326     int rc;
2327     int i;
2328 
2329     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2330     if (rc) {
2331         return  rc;
2332     }
2333 
2334     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2335         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2336             set_bit(kvm_to_feat[i][1], features);
2337         }
2338     }
2339     return 0;
2340 }
2341 
2342 static int configure_cpu_feat(const S390FeatBitmap features)
2343 {
2344     struct kvm_s390_vm_cpu_feat prop = {};
2345     struct kvm_device_attr attr = {
2346         .group = KVM_S390_VM_CPU_MODEL,
2347         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2348         .addr = (uint64_t) &prop,
2349     };
2350     int i;
2351 
2352     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2353         if (test_bit(kvm_to_feat[i][1], features)) {
2354             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2355         }
2356     }
2357     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2358 }
2359 
2360 bool kvm_s390_cpu_models_supported(void)
2361 {
2362     if (!cpu_model_allowed()) {
2363         /* compatibility machines interfere with the cpu model */
2364         return false;
2365     }
2366     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2367                              KVM_S390_VM_CPU_MACHINE) &&
2368            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2369                              KVM_S390_VM_CPU_PROCESSOR) &&
2370            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2371                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2372            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2373                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2374            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2375                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2376 }
2377 
2378 bool kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2379 {
2380     struct kvm_s390_vm_cpu_machine prop = {};
2381     struct kvm_device_attr attr = {
2382         .group = KVM_S390_VM_CPU_MODEL,
2383         .attr = KVM_S390_VM_CPU_MACHINE,
2384         .addr = (uint64_t) &prop,
2385     };
2386     uint16_t unblocked_ibc = 0, cpu_type = 0;
2387     int rc;
2388 
2389     memset(model, 0, sizeof(*model));
2390 
2391     if (!kvm_s390_cpu_models_supported()) {
2392         error_setg(errp, "KVM doesn't support CPU models");
2393         return false;
2394     }
2395 
2396     /* query the basic cpu model properties */
2397     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2398     if (rc) {
2399         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2400         return false;
2401     }
2402 
2403     cpu_type = cpuid_type(prop.cpuid);
2404     if (has_ibc(prop.ibc)) {
2405         model->lowest_ibc = lowest_ibc(prop.ibc);
2406         unblocked_ibc = unblocked_ibc(prop.ibc);
2407     }
2408     model->cpu_id = cpuid_id(prop.cpuid);
2409     model->cpu_id_format = cpuid_format(prop.cpuid);
2410     model->cpu_ver = 0xff;
2411 
2412     /* get supported cpu features indicated via STFL(E) */
2413     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2414                              (uint8_t *) prop.fac_mask);
2415     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2416     if (test_bit(S390_FEAT_STFLE, model->features)) {
2417         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2418     }
2419     /* get supported cpu features indicated e.g. via SCLP */
2420     rc = query_cpu_feat(model->features);
2421     if (rc) {
2422         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2423         return false;
2424     }
2425     /* get supported cpu subfunctions indicated via query / test bit */
2426     rc = query_cpu_subfunc(model->features);
2427     if (rc) {
2428         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2429         return false;
2430     }
2431 
2432     /* PTFF subfunctions might be indicated although kernel support missing */
2433     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2434         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2435         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2436         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2437         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2438     }
2439 
2440     /* with cpu model support, CMM is only indicated if really available */
2441     if (kvm_s390_cmma_available()) {
2442         set_bit(S390_FEAT_CMM, model->features);
2443     } else {
2444         /* no cmm -> no cmm nt */
2445         clear_bit(S390_FEAT_CMM_NT, model->features);
2446     }
2447 
2448     /* bpb needs kernel support for migration, VSIE and reset */
2449     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2450         clear_bit(S390_FEAT_BPB, model->features);
2451     }
2452 
2453     /*
2454      * If we have support for protected virtualization, indicate
2455      * the protected virtualization IPL unpack facility.
2456      */
2457     if (cap_protected) {
2458         set_bit(S390_FEAT_UNPACK, model->features);
2459     }
2460 
2461     /*
2462      * If we have kernel support for CPU Topology indicate the
2463      * configuration-topology facility.
2464      */
2465     if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) {
2466         set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features);
2467     }
2468 
2469     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2470     set_bit(S390_FEAT_ZPCI, model->features);
2471     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2472 
2473     if (s390_known_cpu_type(cpu_type)) {
2474         /* we want the exact model, even if some features are missing */
2475         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2476                                        ibc_ec_ga(unblocked_ibc), NULL);
2477     } else {
2478         /* model unknown, e.g. too new - search using features */
2479         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2480                                        ibc_ec_ga(unblocked_ibc),
2481                                        model->features);
2482     }
2483     if (!model->def) {
2484         error_setg(errp, "KVM: host CPU model could not be identified");
2485         return false;
2486     }
2487     /* for now, we can only provide the AP feature with HW support */
2488     if (ap_available()) {
2489         set_bit(S390_FEAT_AP, model->features);
2490     }
2491 
2492     /*
2493      * Extended-Length SCCB is handled entirely within QEMU.
2494      * For PV guests this is completely fenced by the Ultravisor, as Service
2495      * Call error checking and STFLE interpretation are handled via SIE.
2496      */
2497     set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2498 
2499     if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2500         set_bit(S390_FEAT_DIAG_318, model->features);
2501     }
2502 
2503     /* Test for Ultravisor features that influence secure guest behavior */
2504     query_uv_feat_guest(model->features);
2505 
2506     /* strip of features that are not part of the maximum model */
2507     bitmap_and(model->features, model->features, model->def->full_feat,
2508                S390_FEAT_MAX);
2509     return true;
2510 }
2511 
2512 static int configure_uv_feat_guest(const S390FeatBitmap features)
2513 {
2514     struct kvm_s390_vm_cpu_uv_feat uv_feat = {};
2515     struct kvm_device_attr attribute = {
2516         .group = KVM_S390_VM_CPU_MODEL,
2517         .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST,
2518         .addr = (__u64) &uv_feat,
2519     };
2520 
2521     /* AP support check is currently the only user of the UV feature test */
2522     if (!(uv_feat_supported() && ap_enabled(features))) {
2523         return 0;
2524     }
2525 
2526     if (test_bit(S390_FEAT_UV_FEAT_AP, features)) {
2527         uv_feat.ap = 1;
2528     }
2529     if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) {
2530         uv_feat.ap_intr = 1;
2531     }
2532 
2533     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2534 }
2535 
2536 static void kvm_s390_configure_apie(bool interpret)
2537 {
2538     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2539                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2540 
2541     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2542         kvm_s390_set_crypto_attr(attr);
2543     }
2544 }
2545 
2546 bool kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2547 {
2548     struct kvm_s390_vm_cpu_processor prop  = {
2549         .fac_list = { 0 },
2550     };
2551     struct kvm_device_attr attr = {
2552         .group = KVM_S390_VM_CPU_MODEL,
2553         .attr = KVM_S390_VM_CPU_PROCESSOR,
2554         .addr = (uint64_t) &prop,
2555     };
2556     int rc;
2557 
2558     if (!model) {
2559         /* compatibility handling if cpu models are disabled */
2560         if (kvm_s390_cmma_available()) {
2561             kvm_s390_enable_cmma();
2562         }
2563         return true;
2564     }
2565     if (!kvm_s390_cpu_models_supported()) {
2566         error_setg(errp, "KVM doesn't support CPU models");
2567         return false;
2568     }
2569     prop.cpuid = s390_cpuid_from_cpu_model(model);
2570     prop.ibc = s390_ibc_from_cpu_model(model);
2571     /* configure cpu features indicated via STFL(e) */
2572     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2573                          (uint8_t *) prop.fac_list);
2574     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2575     if (rc) {
2576         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2577         return false;
2578     }
2579     /* configure cpu features indicated e.g. via SCLP */
2580     rc = configure_cpu_feat(model->features);
2581     if (rc) {
2582         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2583         return false;
2584     }
2585     /* configure cpu subfunctions indicated via query / test bit */
2586     rc = configure_cpu_subfunc(model->features);
2587     if (rc) {
2588         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2589         return false;
2590     }
2591     /* enable CMM via CMMA */
2592     if (test_bit(S390_FEAT_CMM, model->features)) {
2593         kvm_s390_enable_cmma();
2594     }
2595 
2596     if (ap_enabled(model->features)) {
2597         kvm_s390_configure_apie(true);
2598     }
2599 
2600     /* configure UV-features for the guest indicated via query / test_bit */
2601     rc = configure_uv_feat_guest(model->features);
2602     if (rc) {
2603         error_setg(errp, "KVM: Error configuring CPU UV features %d", rc);
2604         return false;
2605     }
2606     return true;
2607 }
2608 
2609 void kvm_s390_restart_interrupt(S390CPU *cpu)
2610 {
2611     struct kvm_s390_irq irq = {
2612         .type = KVM_S390_RESTART,
2613     };
2614 
2615     kvm_s390_vcpu_interrupt(cpu, &irq);
2616 }
2617 
2618 void kvm_s390_stop_interrupt(S390CPU *cpu)
2619 {
2620     struct kvm_s390_irq irq = {
2621         .type = KVM_S390_SIGP_STOP,
2622     };
2623 
2624     kvm_s390_vcpu_interrupt(cpu, &irq);
2625 }
2626 
2627 int kvm_s390_get_zpci_op(void)
2628 {
2629     return cap_zpci_op;
2630 }
2631 
2632 int kvm_s390_topology_set_mtcr(uint64_t attr)
2633 {
2634     struct kvm_device_attr attribute = {
2635         .group = KVM_S390_VM_CPU_TOPOLOGY,
2636         .attr  = attr,
2637     };
2638 
2639     if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) {
2640         return 0;
2641     }
2642     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) {
2643         return -ENOTSUP;
2644     }
2645 
2646     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2647 }
2648 
2649 void kvm_arch_accel_class_init(ObjectClass *oc)
2650 {
2651 }
2652