xref: /openbmc/qemu/target/s390x/kvm/kvm.c (revision 5e0d6590)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "target/s390x/kvm/pv.h"
54 
55 #ifndef DEBUG_KVM
56 #define DEBUG_KVM  0
57 #endif
58 
59 #define DPRINTF(fmt, ...) do {                \
60     if (DEBUG_KVM) {                          \
61         fprintf(stderr, fmt, ## __VA_ARGS__); \
62     }                                         \
63 } while (0)
64 
65 #define kvm_vm_check_mem_attr(s, attr) \
66     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
67 
68 #define IPA0_DIAG                       0x8300
69 #define IPA0_SIGP                       0xae00
70 #define IPA0_B2                         0xb200
71 #define IPA0_B9                         0xb900
72 #define IPA0_EB                         0xeb00
73 #define IPA0_E3                         0xe300
74 
75 #define PRIV_B2_SCLP_CALL               0x20
76 #define PRIV_B2_CSCH                    0x30
77 #define PRIV_B2_HSCH                    0x31
78 #define PRIV_B2_MSCH                    0x32
79 #define PRIV_B2_SSCH                    0x33
80 #define PRIV_B2_STSCH                   0x34
81 #define PRIV_B2_TSCH                    0x35
82 #define PRIV_B2_TPI                     0x36
83 #define PRIV_B2_SAL                     0x37
84 #define PRIV_B2_RSCH                    0x38
85 #define PRIV_B2_STCRW                   0x39
86 #define PRIV_B2_STCPS                   0x3a
87 #define PRIV_B2_RCHP                    0x3b
88 #define PRIV_B2_SCHM                    0x3c
89 #define PRIV_B2_CHSC                    0x5f
90 #define PRIV_B2_SIGA                    0x74
91 #define PRIV_B2_XSCH                    0x76
92 
93 #define PRIV_EB_SQBS                    0x8a
94 #define PRIV_EB_PCISTB                  0xd0
95 #define PRIV_EB_SIC                     0xd1
96 
97 #define PRIV_B9_EQBS                    0x9c
98 #define PRIV_B9_CLP                     0xa0
99 #define PRIV_B9_PCISTG                  0xd0
100 #define PRIV_B9_PCILG                   0xd2
101 #define PRIV_B9_RPCIT                   0xd3
102 
103 #define PRIV_E3_MPCIFC                  0xd0
104 #define PRIV_E3_STPCIFC                 0xd4
105 
106 #define DIAG_TIMEREVENT                 0x288
107 #define DIAG_IPL                        0x308
108 #define DIAG_SET_CONTROL_PROGRAM_CODES  0x318
109 #define DIAG_KVM_HYPERCALL              0x500
110 #define DIAG_KVM_BREAKPOINT             0x501
111 
112 #define ICPT_INSTRUCTION                0x04
113 #define ICPT_PROGRAM                    0x08
114 #define ICPT_EXT_INT                    0x14
115 #define ICPT_WAITPSW                    0x1c
116 #define ICPT_SOFT_INTERCEPT             0x24
117 #define ICPT_CPU_STOP                   0x28
118 #define ICPT_OPEREXC                    0x2c
119 #define ICPT_IO                         0x40
120 #define ICPT_PV_INSTR                   0x68
121 #define ICPT_PV_INSTR_NOTIFICATION      0x6c
122 
123 #define NR_LOCAL_IRQS 32
124 /*
125  * Needs to be big enough to contain max_cpus emergency signals
126  * and in addition NR_LOCAL_IRQS interrupts
127  */
128 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
129                                      (max_cpus + NR_LOCAL_IRQS))
130 /*
131  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
132  * as the dirty bitmap must be managed by bitops that take an int as
133  * position indicator. This would end at an unaligned  address
134  * (0x7fffff00000). As future variants might provide larger pages
135  * and to make all addresses properly aligned, let us split at 4TB.
136  */
137 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
138 
139 static CPUWatchpoint hw_watchpoint;
140 /*
141  * We don't use a list because this structure is also used to transmit the
142  * hardware breakpoints to the kernel.
143  */
144 static struct kvm_hw_breakpoint *hw_breakpoints;
145 static int nb_hw_breakpoints;
146 
147 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
148     KVM_CAP_LAST_INFO
149 };
150 
151 static int cap_sync_regs;
152 static int cap_async_pf;
153 static int cap_mem_op;
154 static int cap_mem_op_extension;
155 static int cap_s390_irq;
156 static int cap_ri;
157 static int cap_hpage_1m;
158 static int cap_vcpu_resets;
159 static int cap_protected;
160 static int cap_zpci_op;
161 static int cap_protected_dump;
162 
163 static bool mem_op_storage_key_support;
164 
165 static int active_cmma;
166 
167 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
168 {
169     struct kvm_device_attr attr = {
170         .group = KVM_S390_VM_MEM_CTRL,
171         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
172         .addr = (uint64_t) memory_limit,
173     };
174 
175     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
176 }
177 
178 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
179 {
180     int rc;
181 
182     struct kvm_device_attr attr = {
183         .group = KVM_S390_VM_MEM_CTRL,
184         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
185         .addr = (uint64_t) &new_limit,
186     };
187 
188     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
189         return 0;
190     }
191 
192     rc = kvm_s390_query_mem_limit(hw_limit);
193     if (rc) {
194         return rc;
195     } else if (*hw_limit < new_limit) {
196         return -E2BIG;
197     }
198 
199     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
200 }
201 
202 int kvm_s390_cmma_active(void)
203 {
204     return active_cmma;
205 }
206 
207 static bool kvm_s390_cmma_available(void)
208 {
209     static bool initialized, value;
210 
211     if (!initialized) {
212         initialized = true;
213         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
214                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
215     }
216     return value;
217 }
218 
219 void kvm_s390_cmma_reset(void)
220 {
221     int rc;
222     struct kvm_device_attr attr = {
223         .group = KVM_S390_VM_MEM_CTRL,
224         .attr = KVM_S390_VM_MEM_CLR_CMMA,
225     };
226 
227     if (!kvm_s390_cmma_active()) {
228         return;
229     }
230 
231     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
232     trace_kvm_clear_cmma(rc);
233 }
234 
235 static void kvm_s390_enable_cmma(void)
236 {
237     int rc;
238     struct kvm_device_attr attr = {
239         .group = KVM_S390_VM_MEM_CTRL,
240         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
241     };
242 
243     if (cap_hpage_1m) {
244         warn_report("CMM will not be enabled because it is not "
245                     "compatible with huge memory backings.");
246         return;
247     }
248     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
249     active_cmma = !rc;
250     trace_kvm_enable_cmma(rc);
251 }
252 
253 static void kvm_s390_set_attr(uint64_t attr)
254 {
255     struct kvm_device_attr attribute = {
256         .group = KVM_S390_VM_CRYPTO,
257         .attr  = attr,
258     };
259 
260     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
261 
262     if (ret) {
263         error_report("Failed to set crypto device attribute %lu: %s",
264                      attr, strerror(-ret));
265     }
266 }
267 
268 static void kvm_s390_init_aes_kw(void)
269 {
270     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
271 
272     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
273                                  NULL)) {
274             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
275     }
276 
277     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
278             kvm_s390_set_attr(attr);
279     }
280 }
281 
282 static void kvm_s390_init_dea_kw(void)
283 {
284     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
285 
286     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
287                                  NULL)) {
288             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
289     }
290 
291     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
292             kvm_s390_set_attr(attr);
293     }
294 }
295 
296 void kvm_s390_crypto_reset(void)
297 {
298     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
299         kvm_s390_init_aes_kw();
300         kvm_s390_init_dea_kw();
301     }
302 }
303 
304 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
305 {
306     if (pagesize == 4 * KiB) {
307         return;
308     }
309 
310     if (!hpage_1m_allowed()) {
311         error_setg(errp, "This QEMU machine does not support huge page "
312                    "mappings");
313         return;
314     }
315 
316     if (pagesize != 1 * MiB) {
317         error_setg(errp, "Memory backing with 2G pages was specified, "
318                    "but KVM does not support this memory backing");
319         return;
320     }
321 
322     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
323         error_setg(errp, "Memory backing with 1M pages was specified, "
324                    "but KVM does not support this memory backing");
325         return;
326     }
327 
328     cap_hpage_1m = 1;
329 }
330 
331 int kvm_s390_get_hpage_1m(void)
332 {
333     return cap_hpage_1m;
334 }
335 
336 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
337 {
338     MachineClass *mc = MACHINE_CLASS(oc);
339 
340     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
341 }
342 
343 int kvm_arch_get_default_type(MachineState *ms)
344 {
345     return 0;
346 }
347 
348 int kvm_arch_init(MachineState *ms, KVMState *s)
349 {
350     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
351                          false, NULL);
352 
353     if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
354         error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
355                      "please use kernel 3.15 or newer");
356         return -1;
357     }
358     if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
359         error_report("KVM is missing capability KVM_CAP_S390_COW - "
360                      "unsupported environment");
361         return -1;
362     }
363 
364     cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
365     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
366     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
367     cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
368     mem_op_storage_key_support = cap_mem_op_extension > 0;
369     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
370     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
371     cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
372     cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
373     cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
374 
375     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
376     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
377     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
378     if (ri_allowed()) {
379         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
380             cap_ri = 1;
381         }
382     }
383     if (cpu_model_allowed()) {
384         kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
385     }
386 
387     /*
388      * The migration interface for ais was introduced with kernel 4.13
389      * but the capability itself had been active since 4.12. As migration
390      * support is considered necessary, we only try to enable this for
391      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
392      */
393     if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
394         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
395         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
396     }
397 
398     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
399     return 0;
400 }
401 
402 int kvm_arch_irqchip_create(KVMState *s)
403 {
404     return 0;
405 }
406 
407 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
408 {
409     return cpu->cpu_index;
410 }
411 
412 int kvm_arch_init_vcpu(CPUState *cs)
413 {
414     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
415     S390CPU *cpu = S390_CPU(cs);
416     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
417     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
418     return 0;
419 }
420 
421 int kvm_arch_destroy_vcpu(CPUState *cs)
422 {
423     S390CPU *cpu = S390_CPU(cs);
424 
425     g_free(cpu->irqstate);
426     cpu->irqstate = NULL;
427 
428     return 0;
429 }
430 
431 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
432 {
433     CPUState *cs = CPU(cpu);
434 
435     /*
436      * The reset call is needed here to reset in-kernel vcpu data that
437      * we can't access directly from QEMU (i.e. with older kernels
438      * which don't support sync_regs/ONE_REG).  Before this ioctl
439      * cpu_synchronize_state() is called in common kvm code
440      * (kvm-all).
441      */
442     if (kvm_vcpu_ioctl(cs, type)) {
443         error_report("CPU reset failed on CPU %i type %lx",
444                      cs->cpu_index, type);
445     }
446 }
447 
448 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
449 {
450     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
451 }
452 
453 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
454 {
455     if (cap_vcpu_resets) {
456         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
457     } else {
458         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
459     }
460 }
461 
462 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
463 {
464     if (cap_vcpu_resets) {
465         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
466     }
467 }
468 
469 static int can_sync_regs(CPUState *cs, int regs)
470 {
471     return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
472 }
473 
474 int kvm_arch_put_registers(CPUState *cs, int level)
475 {
476     S390CPU *cpu = S390_CPU(cs);
477     CPUS390XState *env = &cpu->env;
478     struct kvm_sregs sregs;
479     struct kvm_regs regs;
480     struct kvm_fpu fpu = {};
481     int r;
482     int i;
483 
484     /* always save the PSW  and the GPRS*/
485     cs->kvm_run->psw_addr = env->psw.addr;
486     cs->kvm_run->psw_mask = env->psw.mask;
487 
488     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
489         for (i = 0; i < 16; i++) {
490             cs->kvm_run->s.regs.gprs[i] = env->regs[i];
491             cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
492         }
493     } else {
494         for (i = 0; i < 16; i++) {
495             regs.gprs[i] = env->regs[i];
496         }
497         r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
498         if (r < 0) {
499             return r;
500         }
501     }
502 
503     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
504         for (i = 0; i < 32; i++) {
505             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
506             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
507         }
508         cs->kvm_run->s.regs.fpc = env->fpc;
509         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
510     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
511         for (i = 0; i < 16; i++) {
512             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
513         }
514         cs->kvm_run->s.regs.fpc = env->fpc;
515         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
516     } else {
517         /* Floating point */
518         for (i = 0; i < 16; i++) {
519             fpu.fprs[i] = *get_freg(env, i);
520         }
521         fpu.fpc = env->fpc;
522 
523         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
524         if (r < 0) {
525             return r;
526         }
527     }
528 
529     /* Do we need to save more than that? */
530     if (level == KVM_PUT_RUNTIME_STATE) {
531         return 0;
532     }
533 
534     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
535         cs->kvm_run->s.regs.cputm = env->cputm;
536         cs->kvm_run->s.regs.ckc = env->ckc;
537         cs->kvm_run->s.regs.todpr = env->todpr;
538         cs->kvm_run->s.regs.gbea = env->gbea;
539         cs->kvm_run->s.regs.pp = env->pp;
540         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
541     } else {
542         /*
543          * These ONE_REGS are not protected by a capability. As they are only
544          * necessary for migration we just trace a possible error, but don't
545          * return with an error return code.
546          */
547         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
548         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
549         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
550         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
551         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
552     }
553 
554     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
555         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
556         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
557     }
558 
559     /* pfault parameters */
560     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
561         cs->kvm_run->s.regs.pft = env->pfault_token;
562         cs->kvm_run->s.regs.pfs = env->pfault_select;
563         cs->kvm_run->s.regs.pfc = env->pfault_compare;
564         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
565     } else if (cap_async_pf) {
566         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
567         if (r < 0) {
568             return r;
569         }
570         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
571         if (r < 0) {
572             return r;
573         }
574         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
575         if (r < 0) {
576             return r;
577         }
578     }
579 
580     /* access registers and control registers*/
581     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
582         for (i = 0; i < 16; i++) {
583             cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
584             cs->kvm_run->s.regs.crs[i] = env->cregs[i];
585         }
586         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
587         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
588     } else {
589         for (i = 0; i < 16; i++) {
590             sregs.acrs[i] = env->aregs[i];
591             sregs.crs[i] = env->cregs[i];
592         }
593         r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
594         if (r < 0) {
595             return r;
596         }
597     }
598 
599     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
600         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
601         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
602     }
603 
604     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
605         cs->kvm_run->s.regs.bpbc = env->bpbc;
606         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
607     }
608 
609     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
610         cs->kvm_run->s.regs.etoken = env->etoken;
611         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
612         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
613     }
614 
615     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
616         cs->kvm_run->s.regs.diag318 = env->diag318_info;
617         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
618     }
619 
620     /* Finally the prefix */
621     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
622         cs->kvm_run->s.regs.prefix = env->psa;
623         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
624     } else {
625         /* prefix is only supported via sync regs */
626     }
627     return 0;
628 }
629 
630 int kvm_arch_get_registers(CPUState *cs)
631 {
632     S390CPU *cpu = S390_CPU(cs);
633     CPUS390XState *env = &cpu->env;
634     struct kvm_sregs sregs;
635     struct kvm_regs regs;
636     struct kvm_fpu fpu;
637     int i, r;
638 
639     /* get the PSW */
640     env->psw.addr = cs->kvm_run->psw_addr;
641     env->psw.mask = cs->kvm_run->psw_mask;
642 
643     /* the GPRS */
644     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
645         for (i = 0; i < 16; i++) {
646             env->regs[i] = cs->kvm_run->s.regs.gprs[i];
647         }
648     } else {
649         r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
650         if (r < 0) {
651             return r;
652         }
653          for (i = 0; i < 16; i++) {
654             env->regs[i] = regs.gprs[i];
655         }
656     }
657 
658     /* The ACRS and CRS */
659     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
660         for (i = 0; i < 16; i++) {
661             env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
662             env->cregs[i] = cs->kvm_run->s.regs.crs[i];
663         }
664     } else {
665         r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
666         if (r < 0) {
667             return r;
668         }
669          for (i = 0; i < 16; i++) {
670             env->aregs[i] = sregs.acrs[i];
671             env->cregs[i] = sregs.crs[i];
672         }
673     }
674 
675     /* Floating point and vector registers */
676     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
677         for (i = 0; i < 32; i++) {
678             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
679             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
680         }
681         env->fpc = cs->kvm_run->s.regs.fpc;
682     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
683         for (i = 0; i < 16; i++) {
684             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
685         }
686         env->fpc = cs->kvm_run->s.regs.fpc;
687     } else {
688         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
689         if (r < 0) {
690             return r;
691         }
692         for (i = 0; i < 16; i++) {
693             *get_freg(env, i) = fpu.fprs[i];
694         }
695         env->fpc = fpu.fpc;
696     }
697 
698     /* The prefix */
699     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
700         env->psa = cs->kvm_run->s.regs.prefix;
701     }
702 
703     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
704         env->cputm = cs->kvm_run->s.regs.cputm;
705         env->ckc = cs->kvm_run->s.regs.ckc;
706         env->todpr = cs->kvm_run->s.regs.todpr;
707         env->gbea = cs->kvm_run->s.regs.gbea;
708         env->pp = cs->kvm_run->s.regs.pp;
709     } else {
710         /*
711          * These ONE_REGS are not protected by a capability. As they are only
712          * necessary for migration we just trace a possible error, but don't
713          * return with an error return code.
714          */
715         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
716         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
717         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
718         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
719         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
720     }
721 
722     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
723         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
724     }
725 
726     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
727         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
728     }
729 
730     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
731         env->bpbc = cs->kvm_run->s.regs.bpbc;
732     }
733 
734     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
735         env->etoken = cs->kvm_run->s.regs.etoken;
736         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
737     }
738 
739     /* pfault parameters */
740     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
741         env->pfault_token = cs->kvm_run->s.regs.pft;
742         env->pfault_select = cs->kvm_run->s.regs.pfs;
743         env->pfault_compare = cs->kvm_run->s.regs.pfc;
744     } else if (cap_async_pf) {
745         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
746         if (r < 0) {
747             return r;
748         }
749         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
750         if (r < 0) {
751             return r;
752         }
753         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
754         if (r < 0) {
755             return r;
756         }
757     }
758 
759     if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
760         env->diag318_info = cs->kvm_run->s.regs.diag318;
761     }
762 
763     return 0;
764 }
765 
766 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
767 {
768     int r;
769     struct kvm_device_attr attr = {
770         .group = KVM_S390_VM_TOD,
771         .attr = KVM_S390_VM_TOD_LOW,
772         .addr = (uint64_t)tod_low,
773     };
774 
775     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
776     if (r) {
777         return r;
778     }
779 
780     attr.attr = KVM_S390_VM_TOD_HIGH;
781     attr.addr = (uint64_t)tod_high;
782     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
783 }
784 
785 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
786 {
787     int r;
788     struct kvm_s390_vm_tod_clock gtod;
789     struct kvm_device_attr attr = {
790         .group = KVM_S390_VM_TOD,
791         .attr = KVM_S390_VM_TOD_EXT,
792         .addr = (uint64_t)&gtod,
793     };
794 
795     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
796     *tod_high = gtod.epoch_idx;
797     *tod_low  = gtod.tod;
798 
799     return r;
800 }
801 
802 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
803 {
804     int r;
805     struct kvm_device_attr attr = {
806         .group = KVM_S390_VM_TOD,
807         .attr = KVM_S390_VM_TOD_LOW,
808         .addr = (uint64_t)&tod_low,
809     };
810 
811     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
812     if (r) {
813         return r;
814     }
815 
816     attr.attr = KVM_S390_VM_TOD_HIGH;
817     attr.addr = (uint64_t)&tod_high;
818     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
819 }
820 
821 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
822 {
823     struct kvm_s390_vm_tod_clock gtod = {
824         .epoch_idx = tod_high,
825         .tod  = tod_low,
826     };
827     struct kvm_device_attr attr = {
828         .group = KVM_S390_VM_TOD,
829         .attr = KVM_S390_VM_TOD_EXT,
830         .addr = (uint64_t)&gtod,
831     };
832 
833     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
834 }
835 
836 /**
837  * kvm_s390_mem_op:
838  * @addr:      the logical start address in guest memory
839  * @ar:        the access register number
840  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
841  * @len:       length that should be transferred
842  * @is_write:  true = write, false = read
843  * Returns:    0 on success, non-zero if an exception or error occurred
844  *
845  * Use KVM ioctl to read/write from/to guest memory. An access exception
846  * is injected into the vCPU in case of translation errors.
847  */
848 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
849                     int len, bool is_write)
850 {
851     struct kvm_s390_mem_op mem_op = {
852         .gaddr = addr,
853         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
854         .size = len,
855         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
856                        : KVM_S390_MEMOP_LOGICAL_READ,
857         .buf = (uint64_t)hostbuf,
858         .ar = ar,
859         .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
860     };
861     int ret;
862 
863     if (!cap_mem_op) {
864         return -ENOSYS;
865     }
866     if (!hostbuf) {
867         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
868     }
869     if (mem_op_storage_key_support) {
870         mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
871     }
872 
873     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
874     if (ret < 0) {
875         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
876     }
877     return ret;
878 }
879 
880 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
881                        int len, bool is_write)
882 {
883     struct kvm_s390_mem_op mem_op = {
884         .sida_offset = offset,
885         .size = len,
886         .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
887                        : KVM_S390_MEMOP_SIDA_READ,
888         .buf = (uint64_t)hostbuf,
889     };
890     int ret;
891 
892     if (!cap_mem_op || !cap_protected) {
893         return -ENOSYS;
894     }
895 
896     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
897     if (ret < 0) {
898         error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
899         abort();
900     }
901     return ret;
902 }
903 
904 static uint8_t const *sw_bp_inst;
905 static uint8_t sw_bp_ilen;
906 
907 static void determine_sw_breakpoint_instr(void)
908 {
909         /* DIAG 501 is used for sw breakpoints with old kernels */
910         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
911         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
912         static const uint8_t instr_0x0000[] = {0x00, 0x00};
913 
914         if (sw_bp_inst) {
915             return;
916         }
917         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
918             sw_bp_inst = diag_501;
919             sw_bp_ilen = sizeof(diag_501);
920             DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
921         } else {
922             sw_bp_inst = instr_0x0000;
923             sw_bp_ilen = sizeof(instr_0x0000);
924             DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
925         }
926 }
927 
928 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
929 {
930     determine_sw_breakpoint_instr();
931 
932     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
933                             sw_bp_ilen, 0) ||
934         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
935         return -EINVAL;
936     }
937     return 0;
938 }
939 
940 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
941 {
942     uint8_t t[MAX_ILEN];
943 
944     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
945         return -EINVAL;
946     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
947         return -EINVAL;
948     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
949                                    sw_bp_ilen, 1)) {
950         return -EINVAL;
951     }
952 
953     return 0;
954 }
955 
956 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
957                                                     int len, int type)
958 {
959     int n;
960 
961     for (n = 0; n < nb_hw_breakpoints; n++) {
962         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
963             (hw_breakpoints[n].len == len || len == -1)) {
964             return &hw_breakpoints[n];
965         }
966     }
967 
968     return NULL;
969 }
970 
971 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
972 {
973     int size;
974 
975     if (find_hw_breakpoint(addr, len, type)) {
976         return -EEXIST;
977     }
978 
979     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
980 
981     if (!hw_breakpoints) {
982         nb_hw_breakpoints = 0;
983         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
984     } else {
985         hw_breakpoints =
986             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
987     }
988 
989     if (!hw_breakpoints) {
990         nb_hw_breakpoints = 0;
991         return -ENOMEM;
992     }
993 
994     hw_breakpoints[nb_hw_breakpoints].addr = addr;
995     hw_breakpoints[nb_hw_breakpoints].len = len;
996     hw_breakpoints[nb_hw_breakpoints].type = type;
997 
998     nb_hw_breakpoints++;
999 
1000     return 0;
1001 }
1002 
1003 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1004                                   target_ulong len, int type)
1005 {
1006     switch (type) {
1007     case GDB_BREAKPOINT_HW:
1008         type = KVM_HW_BP;
1009         break;
1010     case GDB_WATCHPOINT_WRITE:
1011         if (len < 1) {
1012             return -EINVAL;
1013         }
1014         type = KVM_HW_WP_WRITE;
1015         break;
1016     default:
1017         return -ENOSYS;
1018     }
1019     return insert_hw_breakpoint(addr, len, type);
1020 }
1021 
1022 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1023                                   target_ulong len, int type)
1024 {
1025     int size;
1026     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1027 
1028     if (bp == NULL) {
1029         return -ENOENT;
1030     }
1031 
1032     nb_hw_breakpoints--;
1033     if (nb_hw_breakpoints > 0) {
1034         /*
1035          * In order to trim the array, move the last element to the position to
1036          * be removed - if necessary.
1037          */
1038         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1039             *bp = hw_breakpoints[nb_hw_breakpoints];
1040         }
1041         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1042         hw_breakpoints =
1043              g_realloc(hw_breakpoints, size);
1044     } else {
1045         g_free(hw_breakpoints);
1046         hw_breakpoints = NULL;
1047     }
1048 
1049     return 0;
1050 }
1051 
1052 void kvm_arch_remove_all_hw_breakpoints(void)
1053 {
1054     nb_hw_breakpoints = 0;
1055     g_free(hw_breakpoints);
1056     hw_breakpoints = NULL;
1057 }
1058 
1059 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1060 {
1061     int i;
1062 
1063     if (nb_hw_breakpoints > 0) {
1064         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1065         dbg->arch.hw_bp = hw_breakpoints;
1066 
1067         for (i = 0; i < nb_hw_breakpoints; ++i) {
1068             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1069                                                        hw_breakpoints[i].addr);
1070         }
1071         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1072     } else {
1073         dbg->arch.nr_hw_bp = 0;
1074         dbg->arch.hw_bp = NULL;
1075     }
1076 }
1077 
1078 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1079 {
1080 }
1081 
1082 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1083 {
1084     return MEMTXATTRS_UNSPECIFIED;
1085 }
1086 
1087 int kvm_arch_process_async_events(CPUState *cs)
1088 {
1089     return cs->halted;
1090 }
1091 
1092 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1093                                      struct kvm_s390_interrupt *interrupt)
1094 {
1095     int r = 0;
1096 
1097     interrupt->type = irq->type;
1098     switch (irq->type) {
1099     case KVM_S390_INT_VIRTIO:
1100         interrupt->parm = irq->u.ext.ext_params;
1101         /* fall through */
1102     case KVM_S390_INT_PFAULT_INIT:
1103     case KVM_S390_INT_PFAULT_DONE:
1104         interrupt->parm64 = irq->u.ext.ext_params2;
1105         break;
1106     case KVM_S390_PROGRAM_INT:
1107         interrupt->parm = irq->u.pgm.code;
1108         break;
1109     case KVM_S390_SIGP_SET_PREFIX:
1110         interrupt->parm = irq->u.prefix.address;
1111         break;
1112     case KVM_S390_INT_SERVICE:
1113         interrupt->parm = irq->u.ext.ext_params;
1114         break;
1115     case KVM_S390_MCHK:
1116         interrupt->parm = irq->u.mchk.cr14;
1117         interrupt->parm64 = irq->u.mchk.mcic;
1118         break;
1119     case KVM_S390_INT_EXTERNAL_CALL:
1120         interrupt->parm = irq->u.extcall.code;
1121         break;
1122     case KVM_S390_INT_EMERGENCY:
1123         interrupt->parm = irq->u.emerg.code;
1124         break;
1125     case KVM_S390_SIGP_STOP:
1126     case KVM_S390_RESTART:
1127         break; /* These types have no parameters */
1128     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1129         interrupt->parm = irq->u.io.subchannel_id << 16;
1130         interrupt->parm |= irq->u.io.subchannel_nr;
1131         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1132         interrupt->parm64 |= irq->u.io.io_int_word;
1133         break;
1134     default:
1135         r = -EINVAL;
1136         break;
1137     }
1138     return r;
1139 }
1140 
1141 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1142 {
1143     struct kvm_s390_interrupt kvmint = {};
1144     int r;
1145 
1146     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1147     if (r < 0) {
1148         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1149         exit(1);
1150     }
1151 
1152     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1153     if (r < 0) {
1154         fprintf(stderr, "KVM failed to inject interrupt\n");
1155         exit(1);
1156     }
1157 }
1158 
1159 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1160 {
1161     CPUState *cs = CPU(cpu);
1162     int r;
1163 
1164     if (cap_s390_irq) {
1165         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1166         if (!r) {
1167             return;
1168         }
1169         error_report("KVM failed to inject interrupt %llx", irq->type);
1170         exit(1);
1171     }
1172 
1173     inject_vcpu_irq_legacy(cs, irq);
1174 }
1175 
1176 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1177 {
1178     struct kvm_s390_interrupt kvmint = {};
1179     int r;
1180 
1181     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1182     if (r < 0) {
1183         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1184         exit(1);
1185     }
1186 
1187     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1188     if (r < 0) {
1189         fprintf(stderr, "KVM failed to inject interrupt\n");
1190         exit(1);
1191     }
1192 }
1193 
1194 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1195 {
1196     struct kvm_s390_irq irq = {
1197         .type = KVM_S390_PROGRAM_INT,
1198         .u.pgm.code = code,
1199     };
1200     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1201                   cpu->env.psw.addr);
1202     kvm_s390_vcpu_interrupt(cpu, &irq);
1203 }
1204 
1205 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1206 {
1207     struct kvm_s390_irq irq = {
1208         .type = KVM_S390_PROGRAM_INT,
1209         .u.pgm.code = code,
1210         .u.pgm.trans_exc_code = te_code,
1211         .u.pgm.exc_access_id = te_code & 3,
1212     };
1213 
1214     kvm_s390_vcpu_interrupt(cpu, &irq);
1215 }
1216 
1217 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1218                                  uint16_t ipbh0)
1219 {
1220     CPUS390XState *env = &cpu->env;
1221     uint64_t sccb;
1222     uint32_t code;
1223     int r;
1224 
1225     sccb = env->regs[ipbh0 & 0xf];
1226     code = env->regs[(ipbh0 & 0xf0) >> 4];
1227 
1228     switch (run->s390_sieic.icptcode) {
1229     case ICPT_PV_INSTR_NOTIFICATION:
1230         g_assert(s390_is_pv());
1231         /* The notification intercepts are currently handled by KVM */
1232         error_report("unexpected SCLP PV notification");
1233         exit(1);
1234         break;
1235     case ICPT_PV_INSTR:
1236         g_assert(s390_is_pv());
1237         sclp_service_call_protected(env, sccb, code);
1238         /* Setting the CC is done by the Ultravisor. */
1239         break;
1240     case ICPT_INSTRUCTION:
1241         g_assert(!s390_is_pv());
1242         r = sclp_service_call(env, sccb, code);
1243         if (r < 0) {
1244             kvm_s390_program_interrupt(cpu, -r);
1245             return;
1246         }
1247         setcc(cpu, r);
1248     }
1249 }
1250 
1251 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1252 {
1253     CPUS390XState *env = &cpu->env;
1254     int rc = 0;
1255     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1256 
1257     switch (ipa1) {
1258     case PRIV_B2_XSCH:
1259         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1260         break;
1261     case PRIV_B2_CSCH:
1262         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1263         break;
1264     case PRIV_B2_HSCH:
1265         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1266         break;
1267     case PRIV_B2_MSCH:
1268         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1269         break;
1270     case PRIV_B2_SSCH:
1271         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1272         break;
1273     case PRIV_B2_STCRW:
1274         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1275         break;
1276     case PRIV_B2_STSCH:
1277         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1278         break;
1279     case PRIV_B2_TSCH:
1280         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1281         fprintf(stderr, "Spurious tsch intercept\n");
1282         break;
1283     case PRIV_B2_CHSC:
1284         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1285         break;
1286     case PRIV_B2_TPI:
1287         /* This should have been handled by kvm already. */
1288         fprintf(stderr, "Spurious tpi intercept\n");
1289         break;
1290     case PRIV_B2_SCHM:
1291         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1292                            run->s390_sieic.ipb, RA_IGNORED);
1293         break;
1294     case PRIV_B2_RSCH:
1295         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1296         break;
1297     case PRIV_B2_RCHP:
1298         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1299         break;
1300     case PRIV_B2_STCPS:
1301         /* We do not provide this instruction, it is suppressed. */
1302         break;
1303     case PRIV_B2_SAL:
1304         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1305         break;
1306     case PRIV_B2_SIGA:
1307         /* Not provided, set CC = 3 for subchannel not operational */
1308         setcc(cpu, 3);
1309         break;
1310     case PRIV_B2_SCLP_CALL:
1311         kvm_sclp_service_call(cpu, run, ipbh0);
1312         break;
1313     default:
1314         rc = -1;
1315         DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1316         break;
1317     }
1318 
1319     return rc;
1320 }
1321 
1322 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1323                                   uint8_t *ar)
1324 {
1325     CPUS390XState *env = &cpu->env;
1326     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1327     uint32_t base2 = run->s390_sieic.ipb >> 28;
1328     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1329                      ((run->s390_sieic.ipb & 0xff00) << 4);
1330 
1331     if (disp2 & 0x80000) {
1332         disp2 += 0xfff00000;
1333     }
1334     if (ar) {
1335         *ar = base2;
1336     }
1337 
1338     return (base2 ? env->regs[base2] : 0) +
1339            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1340 }
1341 
1342 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1343                                   uint8_t *ar)
1344 {
1345     CPUS390XState *env = &cpu->env;
1346     uint32_t base2 = run->s390_sieic.ipb >> 28;
1347     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1348                      ((run->s390_sieic.ipb & 0xff00) << 4);
1349 
1350     if (disp2 & 0x80000) {
1351         disp2 += 0xfff00000;
1352     }
1353     if (ar) {
1354         *ar = base2;
1355     }
1356 
1357     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1358 }
1359 
1360 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1361 {
1362     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1363 
1364     if (s390_has_feat(S390_FEAT_ZPCI)) {
1365         return clp_service_call(cpu, r2, RA_IGNORED);
1366     } else {
1367         return -1;
1368     }
1369 }
1370 
1371 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1372 {
1373     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1374     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1375 
1376     if (s390_has_feat(S390_FEAT_ZPCI)) {
1377         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1378     } else {
1379         return -1;
1380     }
1381 }
1382 
1383 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1384 {
1385     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1386     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1387 
1388     if (s390_has_feat(S390_FEAT_ZPCI)) {
1389         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1390     } else {
1391         return -1;
1392     }
1393 }
1394 
1395 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1396 {
1397     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1398     uint64_t fiba;
1399     uint8_t ar;
1400 
1401     if (s390_has_feat(S390_FEAT_ZPCI)) {
1402         fiba = get_base_disp_rxy(cpu, run, &ar);
1403 
1404         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1405     } else {
1406         return -1;
1407     }
1408 }
1409 
1410 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1411 {
1412     CPUS390XState *env = &cpu->env;
1413     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1414     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1415     uint8_t isc;
1416     uint16_t mode;
1417     int r;
1418 
1419     mode = env->regs[r1] & 0xffff;
1420     isc = (env->regs[r3] >> 27) & 0x7;
1421     r = css_do_sic(env, isc, mode);
1422     if (r) {
1423         kvm_s390_program_interrupt(cpu, -r);
1424     }
1425 
1426     return 0;
1427 }
1428 
1429 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1430 {
1431     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1432     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1433 
1434     if (s390_has_feat(S390_FEAT_ZPCI)) {
1435         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1436     } else {
1437         return -1;
1438     }
1439 }
1440 
1441 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1442 {
1443     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1444     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1445     uint64_t gaddr;
1446     uint8_t ar;
1447 
1448     if (s390_has_feat(S390_FEAT_ZPCI)) {
1449         gaddr = get_base_disp_rsy(cpu, run, &ar);
1450 
1451         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1452     } else {
1453         return -1;
1454     }
1455 }
1456 
1457 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1458 {
1459     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1460     uint64_t fiba;
1461     uint8_t ar;
1462 
1463     if (s390_has_feat(S390_FEAT_ZPCI)) {
1464         fiba = get_base_disp_rxy(cpu, run, &ar);
1465 
1466         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1467     } else {
1468         return -1;
1469     }
1470 }
1471 
1472 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1473 {
1474     int r = 0;
1475 
1476     switch (ipa1) {
1477     case PRIV_B9_CLP:
1478         r = kvm_clp_service_call(cpu, run);
1479         break;
1480     case PRIV_B9_PCISTG:
1481         r = kvm_pcistg_service_call(cpu, run);
1482         break;
1483     case PRIV_B9_PCILG:
1484         r = kvm_pcilg_service_call(cpu, run);
1485         break;
1486     case PRIV_B9_RPCIT:
1487         r = kvm_rpcit_service_call(cpu, run);
1488         break;
1489     case PRIV_B9_EQBS:
1490         /* just inject exception */
1491         r = -1;
1492         break;
1493     default:
1494         r = -1;
1495         DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1496         break;
1497     }
1498 
1499     return r;
1500 }
1501 
1502 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1503 {
1504     int r = 0;
1505 
1506     switch (ipbl) {
1507     case PRIV_EB_PCISTB:
1508         r = kvm_pcistb_service_call(cpu, run);
1509         break;
1510     case PRIV_EB_SIC:
1511         r = kvm_sic_service_call(cpu, run);
1512         break;
1513     case PRIV_EB_SQBS:
1514         /* just inject exception */
1515         r = -1;
1516         break;
1517     default:
1518         r = -1;
1519         DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1520         break;
1521     }
1522 
1523     return r;
1524 }
1525 
1526 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1527 {
1528     int r = 0;
1529 
1530     switch (ipbl) {
1531     case PRIV_E3_MPCIFC:
1532         r = kvm_mpcifc_service_call(cpu, run);
1533         break;
1534     case PRIV_E3_STPCIFC:
1535         r = kvm_stpcifc_service_call(cpu, run);
1536         break;
1537     default:
1538         r = -1;
1539         DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1540         break;
1541     }
1542 
1543     return r;
1544 }
1545 
1546 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1547 {
1548     CPUS390XState *env = &cpu->env;
1549     int ret;
1550 
1551     ret = s390_virtio_hypercall(env);
1552     if (ret == -EINVAL) {
1553         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1554         return 0;
1555     }
1556 
1557     return ret;
1558 }
1559 
1560 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1561 {
1562     uint64_t r1, r3;
1563     int rc;
1564 
1565     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1566     r3 = run->s390_sieic.ipa & 0x000f;
1567     rc = handle_diag_288(&cpu->env, r1, r3);
1568     if (rc) {
1569         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1570     }
1571 }
1572 
1573 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1574 {
1575     uint64_t r1, r3;
1576 
1577     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1578     r3 = run->s390_sieic.ipa & 0x000f;
1579     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1580 }
1581 
1582 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1583 {
1584     CPUS390XState *env = &cpu->env;
1585     unsigned long pc;
1586 
1587     pc = env->psw.addr - sw_bp_ilen;
1588     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1589         env->psw.addr = pc;
1590         return EXCP_DEBUG;
1591     }
1592 
1593     return -ENOENT;
1594 }
1595 
1596 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1597 {
1598     CPUS390XState *env = &S390_CPU(cs)->env;
1599 
1600     /* Feat bit is set only if KVM supports sync for diag318 */
1601     if (s390_has_feat(S390_FEAT_DIAG_318)) {
1602         env->diag318_info = diag318_info;
1603         cs->kvm_run->s.regs.diag318 = diag318_info;
1604         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1605         /*
1606          * diag 318 info is zeroed during a clear reset and
1607          * diag 308 IPL subcodes.
1608          */
1609     }
1610 }
1611 
1612 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1613 {
1614     uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1615     uint64_t diag318_info = run->s.regs.gprs[reg];
1616     CPUState *t;
1617 
1618     /*
1619      * DIAG 318 can only be enabled with KVM support. As such, let's
1620      * ensure a guest cannot execute this instruction erroneously.
1621      */
1622     if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1623         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1624         return;
1625     }
1626 
1627     CPU_FOREACH(t) {
1628         run_on_cpu(t, s390_do_cpu_set_diag318,
1629                    RUN_ON_CPU_HOST_ULONG(diag318_info));
1630     }
1631 }
1632 
1633 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1634 
1635 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1636 {
1637     int r = 0;
1638     uint16_t func_code;
1639 
1640     /*
1641      * For any diagnose call we support, bits 48-63 of the resulting
1642      * address specify the function code; the remainder is ignored.
1643      */
1644     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1645     switch (func_code) {
1646     case DIAG_TIMEREVENT:
1647         kvm_handle_diag_288(cpu, run);
1648         break;
1649     case DIAG_IPL:
1650         kvm_handle_diag_308(cpu, run);
1651         break;
1652     case DIAG_SET_CONTROL_PROGRAM_CODES:
1653         handle_diag_318(cpu, run);
1654         break;
1655     case DIAG_KVM_HYPERCALL:
1656         r = handle_hypercall(cpu, run);
1657         break;
1658     case DIAG_KVM_BREAKPOINT:
1659         r = handle_sw_breakpoint(cpu, run);
1660         break;
1661     default:
1662         DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1663         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1664         break;
1665     }
1666 
1667     return r;
1668 }
1669 
1670 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1671 {
1672     CPUS390XState *env = &cpu->env;
1673     const uint8_t r1 = ipa1 >> 4;
1674     const uint8_t r3 = ipa1 & 0x0f;
1675     int ret;
1676     uint8_t order;
1677 
1678     /* get order code */
1679     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1680 
1681     ret = handle_sigp(env, order, r1, r3);
1682     setcc(cpu, ret);
1683     return 0;
1684 }
1685 
1686 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1687 {
1688     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1689     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1690     int r = -1;
1691 
1692     DPRINTF("handle_instruction 0x%x 0x%x\n",
1693             run->s390_sieic.ipa, run->s390_sieic.ipb);
1694     switch (ipa0) {
1695     case IPA0_B2:
1696         r = handle_b2(cpu, run, ipa1);
1697         break;
1698     case IPA0_B9:
1699         r = handle_b9(cpu, run, ipa1);
1700         break;
1701     case IPA0_EB:
1702         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1703         break;
1704     case IPA0_E3:
1705         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1706         break;
1707     case IPA0_DIAG:
1708         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1709         break;
1710     case IPA0_SIGP:
1711         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1712         break;
1713     }
1714 
1715     if (r < 0) {
1716         r = 0;
1717         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1718     }
1719 
1720     return r;
1721 }
1722 
1723 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1724                                    int pswoffset)
1725 {
1726     CPUState *cs = CPU(cpu);
1727 
1728     s390_cpu_halt(cpu);
1729     cpu->env.crash_reason = reason;
1730     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1731 }
1732 
1733 /* try to detect pgm check loops */
1734 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1735 {
1736     CPUState *cs = CPU(cpu);
1737     PSW oldpsw, newpsw;
1738 
1739     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1740                            offsetof(LowCore, program_new_psw));
1741     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1742                            offsetof(LowCore, program_new_psw) + 8);
1743     oldpsw.mask  = run->psw_mask;
1744     oldpsw.addr  = run->psw_addr;
1745     /*
1746      * Avoid endless loops of operation exceptions, if the pgm new
1747      * PSW will cause a new operation exception.
1748      * The heuristic checks if the pgm new psw is within 6 bytes before
1749      * the faulting psw address (with same DAT, AS settings) and the
1750      * new psw is not a wait psw and the fault was not triggered by
1751      * problem state. In that case go into crashed state.
1752      */
1753 
1754     if (oldpsw.addr - newpsw.addr <= 6 &&
1755         !(newpsw.mask & PSW_MASK_WAIT) &&
1756         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1757         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1758         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1759         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1760                                offsetof(LowCore, program_new_psw));
1761         return EXCP_HALTED;
1762     }
1763     return 0;
1764 }
1765 
1766 static int handle_intercept(S390CPU *cpu)
1767 {
1768     CPUState *cs = CPU(cpu);
1769     struct kvm_run *run = cs->kvm_run;
1770     int icpt_code = run->s390_sieic.icptcode;
1771     int r = 0;
1772 
1773     DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr);
1774     switch (icpt_code) {
1775         case ICPT_INSTRUCTION:
1776         case ICPT_PV_INSTR:
1777         case ICPT_PV_INSTR_NOTIFICATION:
1778             r = handle_instruction(cpu, run);
1779             break;
1780         case ICPT_PROGRAM:
1781             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1782                                    offsetof(LowCore, program_new_psw));
1783             r = EXCP_HALTED;
1784             break;
1785         case ICPT_EXT_INT:
1786             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1787                                    offsetof(LowCore, external_new_psw));
1788             r = EXCP_HALTED;
1789             break;
1790         case ICPT_WAITPSW:
1791             /* disabled wait, since enabled wait is handled in kernel */
1792             s390_handle_wait(cpu);
1793             r = EXCP_HALTED;
1794             break;
1795         case ICPT_CPU_STOP:
1796             do_stop_interrupt(&cpu->env);
1797             r = EXCP_HALTED;
1798             break;
1799         case ICPT_OPEREXC:
1800             /* check for break points */
1801             r = handle_sw_breakpoint(cpu, run);
1802             if (r == -ENOENT) {
1803                 /* Then check for potential pgm check loops */
1804                 r = handle_oper_loop(cpu, run);
1805                 if (r == 0) {
1806                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1807                 }
1808             }
1809             break;
1810         case ICPT_SOFT_INTERCEPT:
1811             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1812             exit(1);
1813             break;
1814         case ICPT_IO:
1815             fprintf(stderr, "KVM unimplemented icpt IO\n");
1816             exit(1);
1817             break;
1818         default:
1819             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1820             exit(1);
1821             break;
1822     }
1823 
1824     return r;
1825 }
1826 
1827 static int handle_tsch(S390CPU *cpu)
1828 {
1829     CPUState *cs = CPU(cpu);
1830     struct kvm_run *run = cs->kvm_run;
1831     int ret;
1832 
1833     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1834                              RA_IGNORED);
1835     if (ret < 0) {
1836         /*
1837          * Failure.
1838          * If an I/O interrupt had been dequeued, we have to reinject it.
1839          */
1840         if (run->s390_tsch.dequeued) {
1841             s390_io_interrupt(run->s390_tsch.subchannel_id,
1842                               run->s390_tsch.subchannel_nr,
1843                               run->s390_tsch.io_int_parm,
1844                               run->s390_tsch.io_int_word);
1845         }
1846         ret = 0;
1847     }
1848     return ret;
1849 }
1850 
1851 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1852 {
1853     const MachineState *ms = MACHINE(qdev_get_machine());
1854     uint16_t conf_cpus = 0, reserved_cpus = 0;
1855     SysIB_322 sysib;
1856     int del, i;
1857 
1858     if (s390_is_pv()) {
1859         s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1860     } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1861         return;
1862     }
1863     /* Shift the stack of Extended Names to prepare for our own data */
1864     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1865             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1866     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1867      * assumed it's not capable of managing Extended Names for lower levels.
1868      */
1869     for (del = 1; del < sysib.count; del++) {
1870         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1871             break;
1872         }
1873     }
1874     if (del < sysib.count) {
1875         memset(sysib.ext_names[del], 0,
1876                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1877     }
1878 
1879     /* count the cpus and split them into configured and reserved ones */
1880     for (i = 0; i < ms->possible_cpus->len; i++) {
1881         if (ms->possible_cpus->cpus[i].cpu) {
1882             conf_cpus++;
1883         } else {
1884             reserved_cpus++;
1885         }
1886     }
1887     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1888     sysib.vm[0].conf_cpus = conf_cpus;
1889     sysib.vm[0].reserved_cpus = reserved_cpus;
1890 
1891     /* Insert short machine name in EBCDIC, padded with blanks */
1892     if (qemu_name) {
1893         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1894         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1895                                                     strlen(qemu_name)));
1896     }
1897     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1898     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1899      * considered by s390 as not capable of providing any Extended Name.
1900      * Therefore if no name was specified on qemu invocation, we go with the
1901      * same "KVMguest" default, which KVM has filled into short name field.
1902      */
1903     strpadcpy((char *)sysib.ext_names[0],
1904               sizeof(sysib.ext_names[0]),
1905               qemu_name ?: "KVMguest", '\0');
1906 
1907     /* Insert UUID */
1908     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1909 
1910     if (s390_is_pv()) {
1911         s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1912     } else {
1913         s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1914     }
1915 }
1916 
1917 static int handle_stsi(S390CPU *cpu)
1918 {
1919     CPUState *cs = CPU(cpu);
1920     struct kvm_run *run = cs->kvm_run;
1921 
1922     switch (run->s390_stsi.fc) {
1923     case 3:
1924         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1925             return 0;
1926         }
1927         /* Only sysib 3.2.2 needs post-handling for now. */
1928         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1929         return 0;
1930     default:
1931         return 0;
1932     }
1933 }
1934 
1935 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1936 {
1937     CPUState *cs = CPU(cpu);
1938     struct kvm_run *run = cs->kvm_run;
1939 
1940     int ret = 0;
1941     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1942 
1943     switch (arch_info->type) {
1944     case KVM_HW_WP_WRITE:
1945         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1946             cs->watchpoint_hit = &hw_watchpoint;
1947             hw_watchpoint.vaddr = arch_info->addr;
1948             hw_watchpoint.flags = BP_MEM_WRITE;
1949             ret = EXCP_DEBUG;
1950         }
1951         break;
1952     case KVM_HW_BP:
1953         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1954             ret = EXCP_DEBUG;
1955         }
1956         break;
1957     case KVM_SINGLESTEP:
1958         if (cs->singlestep_enabled) {
1959             ret = EXCP_DEBUG;
1960         }
1961         break;
1962     default:
1963         ret = -ENOSYS;
1964     }
1965 
1966     return ret;
1967 }
1968 
1969 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1970 {
1971     S390CPU *cpu = S390_CPU(cs);
1972     int ret = 0;
1973 
1974     qemu_mutex_lock_iothread();
1975 
1976     kvm_cpu_synchronize_state(cs);
1977 
1978     switch (run->exit_reason) {
1979         case KVM_EXIT_S390_SIEIC:
1980             ret = handle_intercept(cpu);
1981             break;
1982         case KVM_EXIT_S390_RESET:
1983             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1984             break;
1985         case KVM_EXIT_S390_TSCH:
1986             ret = handle_tsch(cpu);
1987             break;
1988         case KVM_EXIT_S390_STSI:
1989             ret = handle_stsi(cpu);
1990             break;
1991         case KVM_EXIT_DEBUG:
1992             ret = kvm_arch_handle_debug_exit(cpu);
1993             break;
1994         default:
1995             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1996             break;
1997     }
1998     qemu_mutex_unlock_iothread();
1999 
2000     if (ret == 0) {
2001         ret = EXCP_INTERRUPT;
2002     }
2003     return ret;
2004 }
2005 
2006 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2007 {
2008     return true;
2009 }
2010 
2011 void kvm_s390_enable_css_support(S390CPU *cpu)
2012 {
2013     int r;
2014 
2015     /* Activate host kernel channel subsystem support. */
2016     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2017     assert(r == 0);
2018 }
2019 
2020 void kvm_arch_init_irq_routing(KVMState *s)
2021 {
2022     /*
2023      * Note that while irqchip capabilities generally imply that cpustates
2024      * are handled in-kernel, it is not true for s390 (yet); therefore, we
2025      * have to override the common code kvm_halt_in_kernel_allowed setting.
2026      */
2027     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2028         kvm_gsi_routing_allowed = true;
2029         kvm_halt_in_kernel_allowed = false;
2030     }
2031 }
2032 
2033 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2034                                     int vq, bool assign)
2035 {
2036     struct kvm_ioeventfd kick = {
2037         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2038         KVM_IOEVENTFD_FLAG_DATAMATCH,
2039         .fd = event_notifier_get_fd(notifier),
2040         .datamatch = vq,
2041         .addr = sch,
2042         .len = 8,
2043     };
2044     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2045                                      kick.datamatch);
2046     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2047         return -ENOSYS;
2048     }
2049     if (!assign) {
2050         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2051     }
2052     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2053 }
2054 
2055 int kvm_s390_get_protected_dump(void)
2056 {
2057     return cap_protected_dump;
2058 }
2059 
2060 int kvm_s390_get_ri(void)
2061 {
2062     return cap_ri;
2063 }
2064 
2065 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2066 {
2067     struct kvm_mp_state mp_state = {};
2068     int ret;
2069 
2070     /* the kvm part might not have been initialized yet */
2071     if (CPU(cpu)->kvm_state == NULL) {
2072         return 0;
2073     }
2074 
2075     switch (cpu_state) {
2076     case S390_CPU_STATE_STOPPED:
2077         mp_state.mp_state = KVM_MP_STATE_STOPPED;
2078         break;
2079     case S390_CPU_STATE_CHECK_STOP:
2080         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2081         break;
2082     case S390_CPU_STATE_OPERATING:
2083         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2084         break;
2085     case S390_CPU_STATE_LOAD:
2086         mp_state.mp_state = KVM_MP_STATE_LOAD;
2087         break;
2088     default:
2089         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2090                      cpu_state);
2091         exit(1);
2092     }
2093 
2094     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2095     if (ret) {
2096         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2097                                        strerror(-ret));
2098     }
2099 
2100     return ret;
2101 }
2102 
2103 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2104 {
2105     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2106     struct kvm_s390_irq_state irq_state = {
2107         .buf = (uint64_t) cpu->irqstate,
2108         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2109     };
2110     CPUState *cs = CPU(cpu);
2111     int32_t bytes;
2112 
2113     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2114         return;
2115     }
2116 
2117     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2118     if (bytes < 0) {
2119         cpu->irqstate_saved_size = 0;
2120         error_report("Migration of interrupt state failed");
2121         return;
2122     }
2123 
2124     cpu->irqstate_saved_size = bytes;
2125 }
2126 
2127 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2128 {
2129     CPUState *cs = CPU(cpu);
2130     struct kvm_s390_irq_state irq_state = {
2131         .buf = (uint64_t) cpu->irqstate,
2132         .len = cpu->irqstate_saved_size,
2133     };
2134     int r;
2135 
2136     if (cpu->irqstate_saved_size == 0) {
2137         return 0;
2138     }
2139 
2140     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2141         return -ENOSYS;
2142     }
2143 
2144     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2145     if (r) {
2146         error_report("Setting interrupt state failed %d", r);
2147     }
2148     return r;
2149 }
2150 
2151 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2152                              uint64_t address, uint32_t data, PCIDevice *dev)
2153 {
2154     S390PCIBusDevice *pbdev;
2155     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2156 
2157     if (!dev) {
2158         DPRINTF("add_msi_route no pci device\n");
2159         return -ENODEV;
2160     }
2161 
2162     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2163     if (!pbdev) {
2164         DPRINTF("add_msi_route no zpci device\n");
2165         return -ENODEV;
2166     }
2167 
2168     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2169     route->flags = 0;
2170     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2171     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2172     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2173     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2174     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2175     return 0;
2176 }
2177 
2178 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2179                                 int vector, PCIDevice *dev)
2180 {
2181     return 0;
2182 }
2183 
2184 int kvm_arch_release_virq_post(int virq)
2185 {
2186     return 0;
2187 }
2188 
2189 int kvm_arch_msi_data_to_gsi(uint32_t data)
2190 {
2191     abort();
2192 }
2193 
2194 static int query_cpu_subfunc(S390FeatBitmap features)
2195 {
2196     struct kvm_s390_vm_cpu_subfunc prop = {};
2197     struct kvm_device_attr attr = {
2198         .group = KVM_S390_VM_CPU_MODEL,
2199         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2200         .addr = (uint64_t) &prop,
2201     };
2202     int rc;
2203 
2204     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2205     if (rc) {
2206         return  rc;
2207     }
2208 
2209     /*
2210      * We're going to add all subfunctions now, if the corresponding feature
2211      * is available that unlocks the query functions.
2212      */
2213     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2214     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2215         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2216     }
2217     if (test_bit(S390_FEAT_MSA, features)) {
2218         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2219         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2220         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2221         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2222         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2223     }
2224     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2225         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2226     }
2227     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2228         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2229         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2230         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2231         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2232     }
2233     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2234         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2235     }
2236     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2237         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2238     }
2239     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2240         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2241     }
2242     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2243         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2244     }
2245     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2246         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2247     }
2248     return 0;
2249 }
2250 
2251 static int configure_cpu_subfunc(const S390FeatBitmap features)
2252 {
2253     struct kvm_s390_vm_cpu_subfunc prop = {};
2254     struct kvm_device_attr attr = {
2255         .group = KVM_S390_VM_CPU_MODEL,
2256         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2257         .addr = (uint64_t) &prop,
2258     };
2259 
2260     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2261                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2262         /* hardware support might be missing, IBC will handle most of this */
2263         return 0;
2264     }
2265 
2266     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2267     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2268         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2269     }
2270     if (test_bit(S390_FEAT_MSA, features)) {
2271         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2272         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2273         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2274         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2275         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2276     }
2277     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2278         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2279     }
2280     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2281         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2282         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2283         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2284         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2285     }
2286     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2287         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2288     }
2289     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2290         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2291     }
2292     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2293         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2294     }
2295     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2296         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2297     }
2298     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2299         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2300     }
2301     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2302 }
2303 
2304 static int kvm_to_feat[][2] = {
2305     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2306     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2307     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2308     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2309     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2310     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2311     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2312     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2313     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2314     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2315     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2316     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2317     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2318     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2319 };
2320 
2321 static int query_cpu_feat(S390FeatBitmap features)
2322 {
2323     struct kvm_s390_vm_cpu_feat prop = {};
2324     struct kvm_device_attr attr = {
2325         .group = KVM_S390_VM_CPU_MODEL,
2326         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2327         .addr = (uint64_t) &prop,
2328     };
2329     int rc;
2330     int i;
2331 
2332     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2333     if (rc) {
2334         return  rc;
2335     }
2336 
2337     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2338         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2339             set_bit(kvm_to_feat[i][1], features);
2340         }
2341     }
2342     return 0;
2343 }
2344 
2345 static int configure_cpu_feat(const S390FeatBitmap features)
2346 {
2347     struct kvm_s390_vm_cpu_feat prop = {};
2348     struct kvm_device_attr attr = {
2349         .group = KVM_S390_VM_CPU_MODEL,
2350         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2351         .addr = (uint64_t) &prop,
2352     };
2353     int i;
2354 
2355     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2356         if (test_bit(kvm_to_feat[i][1], features)) {
2357             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2358         }
2359     }
2360     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2361 }
2362 
2363 bool kvm_s390_cpu_models_supported(void)
2364 {
2365     if (!cpu_model_allowed()) {
2366         /* compatibility machines interfere with the cpu model */
2367         return false;
2368     }
2369     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2370                              KVM_S390_VM_CPU_MACHINE) &&
2371            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2372                              KVM_S390_VM_CPU_PROCESSOR) &&
2373            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2374                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2375            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2376                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2377            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2378                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2379 }
2380 
2381 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2382 {
2383     struct kvm_s390_vm_cpu_machine prop = {};
2384     struct kvm_device_attr attr = {
2385         .group = KVM_S390_VM_CPU_MODEL,
2386         .attr = KVM_S390_VM_CPU_MACHINE,
2387         .addr = (uint64_t) &prop,
2388     };
2389     uint16_t unblocked_ibc = 0, cpu_type = 0;
2390     int rc;
2391 
2392     memset(model, 0, sizeof(*model));
2393 
2394     if (!kvm_s390_cpu_models_supported()) {
2395         error_setg(errp, "KVM doesn't support CPU models");
2396         return;
2397     }
2398 
2399     /* query the basic cpu model properties */
2400     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2401     if (rc) {
2402         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2403         return;
2404     }
2405 
2406     cpu_type = cpuid_type(prop.cpuid);
2407     if (has_ibc(prop.ibc)) {
2408         model->lowest_ibc = lowest_ibc(prop.ibc);
2409         unblocked_ibc = unblocked_ibc(prop.ibc);
2410     }
2411     model->cpu_id = cpuid_id(prop.cpuid);
2412     model->cpu_id_format = cpuid_format(prop.cpuid);
2413     model->cpu_ver = 0xff;
2414 
2415     /* get supported cpu features indicated via STFL(E) */
2416     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2417                              (uint8_t *) prop.fac_mask);
2418     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2419     if (test_bit(S390_FEAT_STFLE, model->features)) {
2420         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2421     }
2422     /* get supported cpu features indicated e.g. via SCLP */
2423     rc = query_cpu_feat(model->features);
2424     if (rc) {
2425         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2426         return;
2427     }
2428     /* get supported cpu subfunctions indicated via query / test bit */
2429     rc = query_cpu_subfunc(model->features);
2430     if (rc) {
2431         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2432         return;
2433     }
2434 
2435     /* PTFF subfunctions might be indicated although kernel support missing */
2436     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2437         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2438         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2439         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2440         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2441     }
2442 
2443     /* with cpu model support, CMM is only indicated if really available */
2444     if (kvm_s390_cmma_available()) {
2445         set_bit(S390_FEAT_CMM, model->features);
2446     } else {
2447         /* no cmm -> no cmm nt */
2448         clear_bit(S390_FEAT_CMM_NT, model->features);
2449     }
2450 
2451     /* bpb needs kernel support for migration, VSIE and reset */
2452     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2453         clear_bit(S390_FEAT_BPB, model->features);
2454     }
2455 
2456     /*
2457      * If we have support for protected virtualization, indicate
2458      * the protected virtualization IPL unpack facility.
2459      */
2460     if (cap_protected) {
2461         set_bit(S390_FEAT_UNPACK, model->features);
2462     }
2463 
2464     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2465     set_bit(S390_FEAT_ZPCI, model->features);
2466     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2467 
2468     if (s390_known_cpu_type(cpu_type)) {
2469         /* we want the exact model, even if some features are missing */
2470         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2471                                        ibc_ec_ga(unblocked_ibc), NULL);
2472     } else {
2473         /* model unknown, e.g. too new - search using features */
2474         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2475                                        ibc_ec_ga(unblocked_ibc),
2476                                        model->features);
2477     }
2478     if (!model->def) {
2479         error_setg(errp, "KVM: host CPU model could not be identified");
2480         return;
2481     }
2482     /* for now, we can only provide the AP feature with HW support */
2483     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2484         KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2485         set_bit(S390_FEAT_AP, model->features);
2486     }
2487 
2488     /*
2489      * Extended-Length SCCB is handled entirely within QEMU.
2490      * For PV guests this is completely fenced by the Ultravisor, as Service
2491      * Call error checking and STFLE interpretation are handled via SIE.
2492      */
2493     set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2494 
2495     if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2496         set_bit(S390_FEAT_DIAG_318, model->features);
2497     }
2498 
2499     /* strip of features that are not part of the maximum model */
2500     bitmap_and(model->features, model->features, model->def->full_feat,
2501                S390_FEAT_MAX);
2502 }
2503 
2504 static void kvm_s390_configure_apie(bool interpret)
2505 {
2506     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2507                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2508 
2509     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2510         kvm_s390_set_attr(attr);
2511     }
2512 }
2513 
2514 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2515 {
2516     struct kvm_s390_vm_cpu_processor prop  = {
2517         .fac_list = { 0 },
2518     };
2519     struct kvm_device_attr attr = {
2520         .group = KVM_S390_VM_CPU_MODEL,
2521         .attr = KVM_S390_VM_CPU_PROCESSOR,
2522         .addr = (uint64_t) &prop,
2523     };
2524     int rc;
2525 
2526     if (!model) {
2527         /* compatibility handling if cpu models are disabled */
2528         if (kvm_s390_cmma_available()) {
2529             kvm_s390_enable_cmma();
2530         }
2531         return;
2532     }
2533     if (!kvm_s390_cpu_models_supported()) {
2534         error_setg(errp, "KVM doesn't support CPU models");
2535         return;
2536     }
2537     prop.cpuid = s390_cpuid_from_cpu_model(model);
2538     prop.ibc = s390_ibc_from_cpu_model(model);
2539     /* configure cpu features indicated via STFL(e) */
2540     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2541                          (uint8_t *) prop.fac_list);
2542     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2543     if (rc) {
2544         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2545         return;
2546     }
2547     /* configure cpu features indicated e.g. via SCLP */
2548     rc = configure_cpu_feat(model->features);
2549     if (rc) {
2550         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2551         return;
2552     }
2553     /* configure cpu subfunctions indicated via query / test bit */
2554     rc = configure_cpu_subfunc(model->features);
2555     if (rc) {
2556         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2557         return;
2558     }
2559     /* enable CMM via CMMA */
2560     if (test_bit(S390_FEAT_CMM, model->features)) {
2561         kvm_s390_enable_cmma();
2562     }
2563 
2564     if (test_bit(S390_FEAT_AP, model->features)) {
2565         kvm_s390_configure_apie(true);
2566     }
2567 }
2568 
2569 void kvm_s390_restart_interrupt(S390CPU *cpu)
2570 {
2571     struct kvm_s390_irq irq = {
2572         .type = KVM_S390_RESTART,
2573     };
2574 
2575     kvm_s390_vcpu_interrupt(cpu, &irq);
2576 }
2577 
2578 void kvm_s390_stop_interrupt(S390CPU *cpu)
2579 {
2580     struct kvm_s390_irq irq = {
2581         .type = KVM_S390_SIGP_STOP,
2582     };
2583 
2584     kvm_s390_vcpu_interrupt(cpu, &irq);
2585 }
2586 
2587 bool kvm_arch_cpu_check_are_resettable(void)
2588 {
2589     return true;
2590 }
2591 
2592 int kvm_s390_get_zpci_op(void)
2593 {
2594     return cap_zpci_op;
2595 }
2596 
2597 void kvm_arch_accel_class_init(ObjectClass *oc)
2598 {
2599 }
2600