xref: /openbmc/qemu/target/riscv/vector_internals.h (revision 28004fb741343b77b1044a0f01d27d8b36b59651)
1 /*
2  * RISC-V Vector Extension Internals
3  *
4  * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #ifndef TARGET_RISCV_VECTOR_INTERNALS_H
20 #define TARGET_RISCV_VECTOR_INTERNALS_H
21 
22 #include "qemu/bitops.h"
23 #include "cpu.h"
24 #include "tcg/tcg-gvec-desc.h"
25 #include "internals.h"
26 
27 static inline uint32_t vext_nf(uint32_t desc)
28 {
29     return FIELD_EX32(simd_data(desc), VDATA, NF);
30 }
31 
32 /*
33  * Note that vector data is stored in host-endian 64-bit chunks,
34  * so addressing units smaller than that needs a host-endian fixup.
35  */
36 #if HOST_BIG_ENDIAN
37 #define H1(x)   ((x) ^ 7)
38 #define H1_2(x) ((x) ^ 6)
39 #define H1_4(x) ((x) ^ 4)
40 #define H2(x)   ((x) ^ 3)
41 #define H4(x)   ((x) ^ 1)
42 #define H8(x)   ((x))
43 #else
44 #define H1(x)   (x)
45 #define H1_2(x) (x)
46 #define H1_4(x) (x)
47 #define H2(x)   (x)
48 #define H4(x)   (x)
49 #define H8(x)   (x)
50 #endif
51 
52 /*
53  * Encode LMUL to lmul as following:
54  *     LMUL    vlmul    lmul
55  *      1       000       0
56  *      2       001       1
57  *      4       010       2
58  *      8       011       3
59  *      -       100       -
60  *     1/8      101      -3
61  *     1/4      110      -2
62  *     1/2      111      -1
63  */
64 static inline int32_t vext_lmul(uint32_t desc)
65 {
66     return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
67 }
68 
69 static inline uint32_t vext_vm(uint32_t desc)
70 {
71     return FIELD_EX32(simd_data(desc), VDATA, VM);
72 }
73 
74 static inline uint32_t vext_vma(uint32_t desc)
75 {
76     return FIELD_EX32(simd_data(desc), VDATA, VMA);
77 }
78 
79 static inline uint32_t vext_vta(uint32_t desc)
80 {
81     return FIELD_EX32(simd_data(desc), VDATA, VTA);
82 }
83 
84 static inline uint32_t vext_vta_all_1s(uint32_t desc)
85 {
86     return FIELD_EX32(simd_data(desc), VDATA, VTA_ALL_1S);
87 }
88 
89 /*
90  * Earlier designs (pre-0.9) had a varying number of bits
91  * per mask value (MLEN). In the 0.9 design, MLEN=1.
92  * (Section 4.5)
93  */
94 static inline int vext_elem_mask(void *v0, int index)
95 {
96     int idx = index / 64;
97     int pos = index  % 64;
98     return (((uint64_t *)v0)[idx] >> pos) & 1;
99 }
100 
101 /*
102  * Get number of total elements, including prestart, body and tail elements.
103  * Note that when LMUL < 1, the tail includes the elements past VLMAX that
104  * are held in the same vector register.
105  */
106 static inline uint32_t vext_get_total_elems(CPURISCVState *env, uint32_t desc,
107                                             uint32_t esz)
108 {
109     uint32_t vlenb = simd_maxsz(desc);
110     uint32_t sew = 1 << FIELD_EX64(env->vtype, VTYPE, VSEW);
111     int8_t emul = ctzl(esz) - ctzl(sew) + vext_lmul(desc) < 0 ? 0 :
112                   ctzl(esz) - ctzl(sew) + vext_lmul(desc);
113     return (vlenb << emul) / esz;
114 }
115 
116 /* set agnostic elements to 1s */
117 void vext_set_elems_1s(void *base, uint32_t is_agnostic, uint32_t cnt,
118                        uint32_t tot);
119 
120 /* expand macro args before macro */
121 #define RVVCALL(macro, ...)  macro(__VA_ARGS__)
122 
123 /* (TD, T2, TX2) */
124 #define OP_UU_B uint8_t, uint8_t, uint8_t
125 #define OP_UU_H uint16_t, uint16_t, uint16_t
126 #define OP_UU_W uint32_t, uint32_t, uint32_t
127 #define OP_UU_D uint64_t, uint64_t, uint64_t
128 
129 /* (TD, T1, T2, TX1, TX2) */
130 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
131 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
132 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
133 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
134 
135 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP)         \
136 static void do_##NAME(void *vd, void *vs2, int i)      \
137 {                                                      \
138     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
139     *((TD *)vd + HD(i)) = OP(s2);                      \
140 }
141 
142 #define GEN_VEXT_V(NAME, ESZ)                          \
143 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
144                   CPURISCVState *env, uint32_t desc)   \
145 {                                                      \
146     uint32_t vm = vext_vm(desc);                       \
147     uint32_t vl = env->vl;                             \
148     uint32_t total_elems =                             \
149         vext_get_total_elems(env, desc, ESZ);          \
150     uint32_t vta = vext_vta(desc);                     \
151     uint32_t vma = vext_vma(desc);                     \
152     uint32_t i;                                        \
153                                                        \
154     for (i = env->vstart; i < vl; i++) {               \
155         if (!vm && !vext_elem_mask(v0, i)) {           \
156             /* set masked-off elements to 1s */        \
157             vext_set_elems_1s(vd, vma, i * ESZ,        \
158                               (i + 1) * ESZ);          \
159             continue;                                  \
160         }                                              \
161         do_##NAME(vd, vs2, i);                         \
162     }                                                  \
163     env->vstart = 0;                                   \
164     /* set tail elements to 1s */                      \
165     vext_set_elems_1s(vd, vta, vl * ESZ,               \
166                       total_elems * ESZ);              \
167 }
168 
169 /* operation of two vector elements */
170 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
171 
172 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)    \
173 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)    \
174 {                                                               \
175     TX1 s1 = *((T1 *)vs1 + HS1(i));                             \
176     TX2 s2 = *((T2 *)vs2 + HS2(i));                             \
177     *((TD *)vd + HD(i)) = OP(s2, s1);                           \
178 }
179 
180 void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
181                 CPURISCVState *env, uint32_t desc,
182                 opivv2_fn *fn, uint32_t esz);
183 
184 /* generate the helpers for OPIVV */
185 #define GEN_VEXT_VV(NAME, ESZ)                            \
186 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
187                   void *vs2, CPURISCVState *env,          \
188                   uint32_t desc)                          \
189 {                                                         \
190     do_vext_vv(vd, v0, vs1, vs2, env, desc,               \
191                do_##NAME, ESZ);                           \
192 }
193 
194 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
195 
196 /*
197  * (T1)s1 gives the real operator type.
198  * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
199  */
200 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
201 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
202 {                                                                   \
203     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
204     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1);                      \
205 }
206 
207 void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
208                 CPURISCVState *env, uint32_t desc,
209                 opivx2_fn fn, uint32_t esz);
210 
211 /* generate the helpers for OPIVX */
212 #define GEN_VEXT_VX(NAME, ESZ)                            \
213 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
214                   void *vs2, CPURISCVState *env,          \
215                   uint32_t desc)                          \
216 {                                                         \
217     do_vext_vx(vd, v0, s1, vs2, env, desc,                \
218                do_##NAME, ESZ);                           \
219 }
220 
221 /* Three of the widening shortening macros: */
222 /* (TD, T1, T2, TX1, TX2) */
223 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
224 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
225 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
226 
227 #endif /* TARGET_RISCV_VECTOR_INTERNALS_H */
228