xref: /openbmc/qemu/target/riscv/vector_helper.c (revision daf866b6)
1 /*
2  * RISC-V Vector Extension Helpers for QEMU.
3  *
4  * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/memop.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "tcg/tcg-gvec-desc.h"
26 #include "internals.h"
27 #include <math.h>
28 
29 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
30                             target_ulong s2)
31 {
32     int vlmax, vl;
33     RISCVCPU *cpu = env_archcpu(env);
34     uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
35     uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
36     bool vill = FIELD_EX64(s2, VTYPE, VILL);
37     target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
38 
39     if ((sew > cpu->cfg.elen) || vill || (ediv != 0) || (reserved != 0)) {
40         /* only set vill bit. */
41         env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
42         env->vl = 0;
43         env->vstart = 0;
44         return 0;
45     }
46 
47     vlmax = vext_get_vlmax(cpu, s2);
48     if (s1 <= vlmax) {
49         vl = s1;
50     } else {
51         vl = vlmax;
52     }
53     env->vl = vl;
54     env->vtype = s2;
55     env->vstart = 0;
56     return vl;
57 }
58 
59 /*
60  * Note that vector data is stored in host-endian 64-bit chunks,
61  * so addressing units smaller than that needs a host-endian fixup.
62  */
63 #ifdef HOST_WORDS_BIGENDIAN
64 #define H1(x)   ((x) ^ 7)
65 #define H1_2(x) ((x) ^ 6)
66 #define H1_4(x) ((x) ^ 4)
67 #define H2(x)   ((x) ^ 3)
68 #define H4(x)   ((x) ^ 1)
69 #define H8(x)   ((x))
70 #else
71 #define H1(x)   (x)
72 #define H1_2(x) (x)
73 #define H1_4(x) (x)
74 #define H2(x)   (x)
75 #define H4(x)   (x)
76 #define H8(x)   (x)
77 #endif
78 
79 static inline uint32_t vext_nf(uint32_t desc)
80 {
81     return FIELD_EX32(simd_data(desc), VDATA, NF);
82 }
83 
84 static inline uint32_t vext_mlen(uint32_t desc)
85 {
86     return FIELD_EX32(simd_data(desc), VDATA, MLEN);
87 }
88 
89 static inline uint32_t vext_vm(uint32_t desc)
90 {
91     return FIELD_EX32(simd_data(desc), VDATA, VM);
92 }
93 
94 static inline uint32_t vext_lmul(uint32_t desc)
95 {
96     return FIELD_EX32(simd_data(desc), VDATA, LMUL);
97 }
98 
99 static uint32_t vext_wd(uint32_t desc)
100 {
101     return (simd_data(desc) >> 11) & 0x1;
102 }
103 
104 /*
105  * Get vector group length in bytes. Its range is [64, 2048].
106  *
107  * As simd_desc support at most 256, the max vlen is 512 bits.
108  * So vlen in bytes is encoded as maxsz.
109  */
110 static inline uint32_t vext_maxsz(uint32_t desc)
111 {
112     return simd_maxsz(desc) << vext_lmul(desc);
113 }
114 
115 /*
116  * This function checks watchpoint before real load operation.
117  *
118  * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
119  * In user mode, there is no watchpoint support now.
120  *
121  * It will trigger an exception if there is no mapping in TLB
122  * and page table walk can't fill the TLB entry. Then the guest
123  * software can return here after process the exception or never return.
124  */
125 static void probe_pages(CPURISCVState *env, target_ulong addr,
126                         target_ulong len, uintptr_t ra,
127                         MMUAccessType access_type)
128 {
129     target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
130     target_ulong curlen = MIN(pagelen, len);
131 
132     probe_access(env, addr, curlen, access_type,
133                  cpu_mmu_index(env, false), ra);
134     if (len > curlen) {
135         addr += curlen;
136         curlen = len - curlen;
137         probe_access(env, addr, curlen, access_type,
138                      cpu_mmu_index(env, false), ra);
139     }
140 }
141 
142 #ifdef HOST_WORDS_BIGENDIAN
143 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
144 {
145     /*
146      * Split the remaining range to two parts.
147      * The first part is in the last uint64_t unit.
148      * The second part start from the next uint64_t unit.
149      */
150     int part1 = 0, part2 = tot - cnt;
151     if (cnt % 8) {
152         part1 = 8 - (cnt % 8);
153         part2 = tot - cnt - part1;
154         memset(QEMU_ALIGN_PTR_DOWN(tail, 8), 0, part1);
155         memset(QEMU_ALIGN_PTR_UP(tail, 8), 0, part2);
156     } else {
157         memset(tail, 0, part2);
158     }
159 }
160 #else
161 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
162 {
163     memset(tail, 0, tot - cnt);
164 }
165 #endif
166 
167 static void clearb(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
168 {
169     int8_t *cur = ((int8_t *)vd + H1(idx));
170     vext_clear(cur, cnt, tot);
171 }
172 
173 static void clearh(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
174 {
175     int16_t *cur = ((int16_t *)vd + H2(idx));
176     vext_clear(cur, cnt, tot);
177 }
178 
179 static void clearl(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
180 {
181     int32_t *cur = ((int32_t *)vd + H4(idx));
182     vext_clear(cur, cnt, tot);
183 }
184 
185 static void clearq(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
186 {
187     int64_t *cur = (int64_t *)vd + idx;
188     vext_clear(cur, cnt, tot);
189 }
190 
191 static inline void vext_set_elem_mask(void *v0, int mlen, int index,
192         uint8_t value)
193 {
194     int idx = (index * mlen) / 64;
195     int pos = (index * mlen) % 64;
196     uint64_t old = ((uint64_t *)v0)[idx];
197     ((uint64_t *)v0)[idx] = deposit64(old, pos, mlen, value);
198 }
199 
200 static inline int vext_elem_mask(void *v0, int mlen, int index)
201 {
202     int idx = (index * mlen) / 64;
203     int pos = (index * mlen) % 64;
204     return (((uint64_t *)v0)[idx] >> pos) & 1;
205 }
206 
207 /* elements operations for load and store */
208 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
209                                uint32_t idx, void *vd, uintptr_t retaddr);
210 typedef void clear_fn(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot);
211 
212 #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF)     \
213 static void NAME(CPURISCVState *env, abi_ptr addr,         \
214                  uint32_t idx, void *vd, uintptr_t retaddr)\
215 {                                                          \
216     MTYPE data;                                            \
217     ETYPE *cur = ((ETYPE *)vd + H(idx));                   \
218     data = cpu_##LDSUF##_data_ra(env, addr, retaddr);      \
219     *cur = data;                                           \
220 }                                                          \
221 
222 GEN_VEXT_LD_ELEM(ldb_b, int8_t,  int8_t,  H1, ldsb)
223 GEN_VEXT_LD_ELEM(ldb_h, int8_t,  int16_t, H2, ldsb)
224 GEN_VEXT_LD_ELEM(ldb_w, int8_t,  int32_t, H4, ldsb)
225 GEN_VEXT_LD_ELEM(ldb_d, int8_t,  int64_t, H8, ldsb)
226 GEN_VEXT_LD_ELEM(ldh_h, int16_t, int16_t, H2, ldsw)
227 GEN_VEXT_LD_ELEM(ldh_w, int16_t, int32_t, H4, ldsw)
228 GEN_VEXT_LD_ELEM(ldh_d, int16_t, int64_t, H8, ldsw)
229 GEN_VEXT_LD_ELEM(ldw_w, int32_t, int32_t, H4, ldl)
230 GEN_VEXT_LD_ELEM(ldw_d, int32_t, int64_t, H8, ldl)
231 GEN_VEXT_LD_ELEM(lde_b, int8_t,  int8_t,  H1, ldsb)
232 GEN_VEXT_LD_ELEM(lde_h, int16_t, int16_t, H2, ldsw)
233 GEN_VEXT_LD_ELEM(lde_w, int32_t, int32_t, H4, ldl)
234 GEN_VEXT_LD_ELEM(lde_d, int64_t, int64_t, H8, ldq)
235 GEN_VEXT_LD_ELEM(ldbu_b, uint8_t,  uint8_t,  H1, ldub)
236 GEN_VEXT_LD_ELEM(ldbu_h, uint8_t,  uint16_t, H2, ldub)
237 GEN_VEXT_LD_ELEM(ldbu_w, uint8_t,  uint32_t, H4, ldub)
238 GEN_VEXT_LD_ELEM(ldbu_d, uint8_t,  uint64_t, H8, ldub)
239 GEN_VEXT_LD_ELEM(ldhu_h, uint16_t, uint16_t, H2, lduw)
240 GEN_VEXT_LD_ELEM(ldhu_w, uint16_t, uint32_t, H4, lduw)
241 GEN_VEXT_LD_ELEM(ldhu_d, uint16_t, uint64_t, H8, lduw)
242 GEN_VEXT_LD_ELEM(ldwu_w, uint32_t, uint32_t, H4, ldl)
243 GEN_VEXT_LD_ELEM(ldwu_d, uint32_t, uint64_t, H8, ldl)
244 
245 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF)            \
246 static void NAME(CPURISCVState *env, abi_ptr addr,         \
247                  uint32_t idx, void *vd, uintptr_t retaddr)\
248 {                                                          \
249     ETYPE data = *((ETYPE *)vd + H(idx));                  \
250     cpu_##STSUF##_data_ra(env, addr, data, retaddr);       \
251 }
252 
253 GEN_VEXT_ST_ELEM(stb_b, int8_t,  H1, stb)
254 GEN_VEXT_ST_ELEM(stb_h, int16_t, H2, stb)
255 GEN_VEXT_ST_ELEM(stb_w, int32_t, H4, stb)
256 GEN_VEXT_ST_ELEM(stb_d, int64_t, H8, stb)
257 GEN_VEXT_ST_ELEM(sth_h, int16_t, H2, stw)
258 GEN_VEXT_ST_ELEM(sth_w, int32_t, H4, stw)
259 GEN_VEXT_ST_ELEM(sth_d, int64_t, H8, stw)
260 GEN_VEXT_ST_ELEM(stw_w, int32_t, H4, stl)
261 GEN_VEXT_ST_ELEM(stw_d, int64_t, H8, stl)
262 GEN_VEXT_ST_ELEM(ste_b, int8_t,  H1, stb)
263 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
264 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
265 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
266 
267 /*
268  *** stride: access vector element from strided memory
269  */
270 static void
271 vext_ldst_stride(void *vd, void *v0, target_ulong base,
272                  target_ulong stride, CPURISCVState *env,
273                  uint32_t desc, uint32_t vm,
274                  vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
275                  uint32_t esz, uint32_t msz, uintptr_t ra,
276                  MMUAccessType access_type)
277 {
278     uint32_t i, k;
279     uint32_t nf = vext_nf(desc);
280     uint32_t mlen = vext_mlen(desc);
281     uint32_t vlmax = vext_maxsz(desc) / esz;
282 
283     /* probe every access*/
284     for (i = 0; i < env->vl; i++) {
285         if (!vm && !vext_elem_mask(v0, mlen, i)) {
286             continue;
287         }
288         probe_pages(env, base + stride * i, nf * msz, ra, access_type);
289     }
290     /* do real access */
291     for (i = 0; i < env->vl; i++) {
292         k = 0;
293         if (!vm && !vext_elem_mask(v0, mlen, i)) {
294             continue;
295         }
296         while (k < nf) {
297             target_ulong addr = base + stride * i + k * msz;
298             ldst_elem(env, addr, i + k * vlmax, vd, ra);
299             k++;
300         }
301     }
302     /* clear tail elements */
303     if (clear_elem) {
304         for (k = 0; k < nf; k++) {
305             clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
306         }
307     }
308 }
309 
310 #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN)       \
311 void HELPER(NAME)(void *vd, void * v0, target_ulong base,               \
312                   target_ulong stride, CPURISCVState *env,              \
313                   uint32_t desc)                                        \
314 {                                                                       \
315     uint32_t vm = vext_vm(desc);                                        \
316     vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN,      \
317                      CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE),            \
318                      GETPC(), MMU_DATA_LOAD);                           \
319 }
320 
321 GEN_VEXT_LD_STRIDE(vlsb_v_b,  int8_t,   int8_t,   ldb_b,  clearb)
322 GEN_VEXT_LD_STRIDE(vlsb_v_h,  int8_t,   int16_t,  ldb_h,  clearh)
323 GEN_VEXT_LD_STRIDE(vlsb_v_w,  int8_t,   int32_t,  ldb_w,  clearl)
324 GEN_VEXT_LD_STRIDE(vlsb_v_d,  int8_t,   int64_t,  ldb_d,  clearq)
325 GEN_VEXT_LD_STRIDE(vlsh_v_h,  int16_t,  int16_t,  ldh_h,  clearh)
326 GEN_VEXT_LD_STRIDE(vlsh_v_w,  int16_t,  int32_t,  ldh_w,  clearl)
327 GEN_VEXT_LD_STRIDE(vlsh_v_d,  int16_t,  int64_t,  ldh_d,  clearq)
328 GEN_VEXT_LD_STRIDE(vlsw_v_w,  int32_t,  int32_t,  ldw_w,  clearl)
329 GEN_VEXT_LD_STRIDE(vlsw_v_d,  int32_t,  int64_t,  ldw_d,  clearq)
330 GEN_VEXT_LD_STRIDE(vlse_v_b,  int8_t,   int8_t,   lde_b,  clearb)
331 GEN_VEXT_LD_STRIDE(vlse_v_h,  int16_t,  int16_t,  lde_h,  clearh)
332 GEN_VEXT_LD_STRIDE(vlse_v_w,  int32_t,  int32_t,  lde_w,  clearl)
333 GEN_VEXT_LD_STRIDE(vlse_v_d,  int64_t,  int64_t,  lde_d,  clearq)
334 GEN_VEXT_LD_STRIDE(vlsbu_v_b, uint8_t,  uint8_t,  ldbu_b, clearb)
335 GEN_VEXT_LD_STRIDE(vlsbu_v_h, uint8_t,  uint16_t, ldbu_h, clearh)
336 GEN_VEXT_LD_STRIDE(vlsbu_v_w, uint8_t,  uint32_t, ldbu_w, clearl)
337 GEN_VEXT_LD_STRIDE(vlsbu_v_d, uint8_t,  uint64_t, ldbu_d, clearq)
338 GEN_VEXT_LD_STRIDE(vlshu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
339 GEN_VEXT_LD_STRIDE(vlshu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
340 GEN_VEXT_LD_STRIDE(vlshu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
341 GEN_VEXT_LD_STRIDE(vlswu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
342 GEN_VEXT_LD_STRIDE(vlswu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
343 
344 #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN)                \
345 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
346                   target_ulong stride, CPURISCVState *env,              \
347                   uint32_t desc)                                        \
348 {                                                                       \
349     uint32_t vm = vext_vm(desc);                                        \
350     vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN,     \
351                      NULL, sizeof(ETYPE), sizeof(MTYPE),                \
352                      GETPC(), MMU_DATA_STORE);                          \
353 }
354 
355 GEN_VEXT_ST_STRIDE(vssb_v_b, int8_t,  int8_t,  stb_b)
356 GEN_VEXT_ST_STRIDE(vssb_v_h, int8_t,  int16_t, stb_h)
357 GEN_VEXT_ST_STRIDE(vssb_v_w, int8_t,  int32_t, stb_w)
358 GEN_VEXT_ST_STRIDE(vssb_v_d, int8_t,  int64_t, stb_d)
359 GEN_VEXT_ST_STRIDE(vssh_v_h, int16_t, int16_t, sth_h)
360 GEN_VEXT_ST_STRIDE(vssh_v_w, int16_t, int32_t, sth_w)
361 GEN_VEXT_ST_STRIDE(vssh_v_d, int16_t, int64_t, sth_d)
362 GEN_VEXT_ST_STRIDE(vssw_v_w, int32_t, int32_t, stw_w)
363 GEN_VEXT_ST_STRIDE(vssw_v_d, int32_t, int64_t, stw_d)
364 GEN_VEXT_ST_STRIDE(vsse_v_b, int8_t,  int8_t,  ste_b)
365 GEN_VEXT_ST_STRIDE(vsse_v_h, int16_t, int16_t, ste_h)
366 GEN_VEXT_ST_STRIDE(vsse_v_w, int32_t, int32_t, ste_w)
367 GEN_VEXT_ST_STRIDE(vsse_v_d, int64_t, int64_t, ste_d)
368 
369 /*
370  *** unit-stride: access elements stored contiguously in memory
371  */
372 
373 /* unmasked unit-stride load and store operation*/
374 static void
375 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
376              vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
377              uint32_t esz, uint32_t msz, uintptr_t ra,
378              MMUAccessType access_type)
379 {
380     uint32_t i, k;
381     uint32_t nf = vext_nf(desc);
382     uint32_t vlmax = vext_maxsz(desc) / esz;
383 
384     /* probe every access */
385     probe_pages(env, base, env->vl * nf * msz, ra, access_type);
386     /* load bytes from guest memory */
387     for (i = 0; i < env->vl; i++) {
388         k = 0;
389         while (k < nf) {
390             target_ulong addr = base + (i * nf + k) * msz;
391             ldst_elem(env, addr, i + k * vlmax, vd, ra);
392             k++;
393         }
394     }
395     /* clear tail elements */
396     if (clear_elem) {
397         for (k = 0; k < nf; k++) {
398             clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
399         }
400     }
401 }
402 
403 /*
404  * masked unit-stride load and store operation will be a special case of stride,
405  * stride = NF * sizeof (MTYPE)
406  */
407 
408 #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN)           \
409 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base,         \
410                          CPURISCVState *env, uint32_t desc)             \
411 {                                                                       \
412     uint32_t stride = vext_nf(desc) * sizeof(MTYPE);                    \
413     vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN,   \
414                      CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE),            \
415                      GETPC(), MMU_DATA_LOAD);                           \
416 }                                                                       \
417                                                                         \
418 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
419                   CPURISCVState *env, uint32_t desc)                    \
420 {                                                                       \
421     vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN,                \
422                  sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \
423 }
424 
425 GEN_VEXT_LD_US(vlb_v_b,  int8_t,   int8_t,   ldb_b,  clearb)
426 GEN_VEXT_LD_US(vlb_v_h,  int8_t,   int16_t,  ldb_h,  clearh)
427 GEN_VEXT_LD_US(vlb_v_w,  int8_t,   int32_t,  ldb_w,  clearl)
428 GEN_VEXT_LD_US(vlb_v_d,  int8_t,   int64_t,  ldb_d,  clearq)
429 GEN_VEXT_LD_US(vlh_v_h,  int16_t,  int16_t,  ldh_h,  clearh)
430 GEN_VEXT_LD_US(vlh_v_w,  int16_t,  int32_t,  ldh_w,  clearl)
431 GEN_VEXT_LD_US(vlh_v_d,  int16_t,  int64_t,  ldh_d,  clearq)
432 GEN_VEXT_LD_US(vlw_v_w,  int32_t,  int32_t,  ldw_w,  clearl)
433 GEN_VEXT_LD_US(vlw_v_d,  int32_t,  int64_t,  ldw_d,  clearq)
434 GEN_VEXT_LD_US(vle_v_b,  int8_t,   int8_t,   lde_b,  clearb)
435 GEN_VEXT_LD_US(vle_v_h,  int16_t,  int16_t,  lde_h,  clearh)
436 GEN_VEXT_LD_US(vle_v_w,  int32_t,  int32_t,  lde_w,  clearl)
437 GEN_VEXT_LD_US(vle_v_d,  int64_t,  int64_t,  lde_d,  clearq)
438 GEN_VEXT_LD_US(vlbu_v_b, uint8_t,  uint8_t,  ldbu_b, clearb)
439 GEN_VEXT_LD_US(vlbu_v_h, uint8_t,  uint16_t, ldbu_h, clearh)
440 GEN_VEXT_LD_US(vlbu_v_w, uint8_t,  uint32_t, ldbu_w, clearl)
441 GEN_VEXT_LD_US(vlbu_v_d, uint8_t,  uint64_t, ldbu_d, clearq)
442 GEN_VEXT_LD_US(vlhu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
443 GEN_VEXT_LD_US(vlhu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
444 GEN_VEXT_LD_US(vlhu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
445 GEN_VEXT_LD_US(vlwu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
446 GEN_VEXT_LD_US(vlwu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
447 
448 #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN)                    \
449 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base,         \
450                          CPURISCVState *env, uint32_t desc)             \
451 {                                                                       \
452     uint32_t stride = vext_nf(desc) * sizeof(MTYPE);                    \
453     vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN,  \
454                      NULL, sizeof(ETYPE), sizeof(MTYPE),                \
455                      GETPC(), MMU_DATA_STORE);                          \
456 }                                                                       \
457                                                                         \
458 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
459                   CPURISCVState *env, uint32_t desc)                    \
460 {                                                                       \
461     vext_ldst_us(vd, base, env, desc, STORE_FN, NULL,                   \
462                  sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\
463 }
464 
465 GEN_VEXT_ST_US(vsb_v_b, int8_t,  int8_t , stb_b)
466 GEN_VEXT_ST_US(vsb_v_h, int8_t,  int16_t, stb_h)
467 GEN_VEXT_ST_US(vsb_v_w, int8_t,  int32_t, stb_w)
468 GEN_VEXT_ST_US(vsb_v_d, int8_t,  int64_t, stb_d)
469 GEN_VEXT_ST_US(vsh_v_h, int16_t, int16_t, sth_h)
470 GEN_VEXT_ST_US(vsh_v_w, int16_t, int32_t, sth_w)
471 GEN_VEXT_ST_US(vsh_v_d, int16_t, int64_t, sth_d)
472 GEN_VEXT_ST_US(vsw_v_w, int32_t, int32_t, stw_w)
473 GEN_VEXT_ST_US(vsw_v_d, int32_t, int64_t, stw_d)
474 GEN_VEXT_ST_US(vse_v_b, int8_t,  int8_t , ste_b)
475 GEN_VEXT_ST_US(vse_v_h, int16_t, int16_t, ste_h)
476 GEN_VEXT_ST_US(vse_v_w, int32_t, int32_t, ste_w)
477 GEN_VEXT_ST_US(vse_v_d, int64_t, int64_t, ste_d)
478 
479 /*
480  *** index: access vector element from indexed memory
481  */
482 typedef target_ulong vext_get_index_addr(target_ulong base,
483         uint32_t idx, void *vs2);
484 
485 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H)        \
486 static target_ulong NAME(target_ulong base,            \
487                          uint32_t idx, void *vs2)      \
488 {                                                      \
489     return (base + *((ETYPE *)vs2 + H(idx)));          \
490 }
491 
492 GEN_VEXT_GET_INDEX_ADDR(idx_b, int8_t,  H1)
493 GEN_VEXT_GET_INDEX_ADDR(idx_h, int16_t, H2)
494 GEN_VEXT_GET_INDEX_ADDR(idx_w, int32_t, H4)
495 GEN_VEXT_GET_INDEX_ADDR(idx_d, int64_t, H8)
496 
497 static inline void
498 vext_ldst_index(void *vd, void *v0, target_ulong base,
499                 void *vs2, CPURISCVState *env, uint32_t desc,
500                 vext_get_index_addr get_index_addr,
501                 vext_ldst_elem_fn *ldst_elem,
502                 clear_fn *clear_elem,
503                 uint32_t esz, uint32_t msz, uintptr_t ra,
504                 MMUAccessType access_type)
505 {
506     uint32_t i, k;
507     uint32_t nf = vext_nf(desc);
508     uint32_t vm = vext_vm(desc);
509     uint32_t mlen = vext_mlen(desc);
510     uint32_t vlmax = vext_maxsz(desc) / esz;
511 
512     /* probe every access*/
513     for (i = 0; i < env->vl; i++) {
514         if (!vm && !vext_elem_mask(v0, mlen, i)) {
515             continue;
516         }
517         probe_pages(env, get_index_addr(base, i, vs2), nf * msz, ra,
518                     access_type);
519     }
520     /* load bytes from guest memory */
521     for (i = 0; i < env->vl; i++) {
522         k = 0;
523         if (!vm && !vext_elem_mask(v0, mlen, i)) {
524             continue;
525         }
526         while (k < nf) {
527             abi_ptr addr = get_index_addr(base, i, vs2) + k * msz;
528             ldst_elem(env, addr, i + k * vlmax, vd, ra);
529             k++;
530         }
531     }
532     /* clear tail elements */
533     if (clear_elem) {
534         for (k = 0; k < nf; k++) {
535             clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
536         }
537     }
538 }
539 
540 #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \
541 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                   \
542                   void *vs2, CPURISCVState *env, uint32_t desc)            \
543 {                                                                          \
544     vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN,                \
545                     LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE),       \
546                     GETPC(), MMU_DATA_LOAD);                               \
547 }
548 
549 GEN_VEXT_LD_INDEX(vlxb_v_b,  int8_t,   int8_t,   idx_b, ldb_b,  clearb)
550 GEN_VEXT_LD_INDEX(vlxb_v_h,  int8_t,   int16_t,  idx_h, ldb_h,  clearh)
551 GEN_VEXT_LD_INDEX(vlxb_v_w,  int8_t,   int32_t,  idx_w, ldb_w,  clearl)
552 GEN_VEXT_LD_INDEX(vlxb_v_d,  int8_t,   int64_t,  idx_d, ldb_d,  clearq)
553 GEN_VEXT_LD_INDEX(vlxh_v_h,  int16_t,  int16_t,  idx_h, ldh_h,  clearh)
554 GEN_VEXT_LD_INDEX(vlxh_v_w,  int16_t,  int32_t,  idx_w, ldh_w,  clearl)
555 GEN_VEXT_LD_INDEX(vlxh_v_d,  int16_t,  int64_t,  idx_d, ldh_d,  clearq)
556 GEN_VEXT_LD_INDEX(vlxw_v_w,  int32_t,  int32_t,  idx_w, ldw_w,  clearl)
557 GEN_VEXT_LD_INDEX(vlxw_v_d,  int32_t,  int64_t,  idx_d, ldw_d,  clearq)
558 GEN_VEXT_LD_INDEX(vlxe_v_b,  int8_t,   int8_t,   idx_b, lde_b,  clearb)
559 GEN_VEXT_LD_INDEX(vlxe_v_h,  int16_t,  int16_t,  idx_h, lde_h,  clearh)
560 GEN_VEXT_LD_INDEX(vlxe_v_w,  int32_t,  int32_t,  idx_w, lde_w,  clearl)
561 GEN_VEXT_LD_INDEX(vlxe_v_d,  int64_t,  int64_t,  idx_d, lde_d,  clearq)
562 GEN_VEXT_LD_INDEX(vlxbu_v_b, uint8_t,  uint8_t,  idx_b, ldbu_b, clearb)
563 GEN_VEXT_LD_INDEX(vlxbu_v_h, uint8_t,  uint16_t, idx_h, ldbu_h, clearh)
564 GEN_VEXT_LD_INDEX(vlxbu_v_w, uint8_t,  uint32_t, idx_w, ldbu_w, clearl)
565 GEN_VEXT_LD_INDEX(vlxbu_v_d, uint8_t,  uint64_t, idx_d, ldbu_d, clearq)
566 GEN_VEXT_LD_INDEX(vlxhu_v_h, uint16_t, uint16_t, idx_h, ldhu_h, clearh)
567 GEN_VEXT_LD_INDEX(vlxhu_v_w, uint16_t, uint32_t, idx_w, ldhu_w, clearl)
568 GEN_VEXT_LD_INDEX(vlxhu_v_d, uint16_t, uint64_t, idx_d, ldhu_d, clearq)
569 GEN_VEXT_LD_INDEX(vlxwu_v_w, uint32_t, uint32_t, idx_w, ldwu_w, clearl)
570 GEN_VEXT_LD_INDEX(vlxwu_v_d, uint32_t, uint64_t, idx_d, ldwu_d, clearq)
571 
572 #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\
573 void HELPER(NAME)(void *vd, void *v0, target_ulong base,         \
574                   void *vs2, CPURISCVState *env, uint32_t desc)  \
575 {                                                                \
576     vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN,      \
577                     STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\
578                     GETPC(), MMU_DATA_STORE);                    \
579 }
580 
581 GEN_VEXT_ST_INDEX(vsxb_v_b, int8_t,  int8_t,  idx_b, stb_b)
582 GEN_VEXT_ST_INDEX(vsxb_v_h, int8_t,  int16_t, idx_h, stb_h)
583 GEN_VEXT_ST_INDEX(vsxb_v_w, int8_t,  int32_t, idx_w, stb_w)
584 GEN_VEXT_ST_INDEX(vsxb_v_d, int8_t,  int64_t, idx_d, stb_d)
585 GEN_VEXT_ST_INDEX(vsxh_v_h, int16_t, int16_t, idx_h, sth_h)
586 GEN_VEXT_ST_INDEX(vsxh_v_w, int16_t, int32_t, idx_w, sth_w)
587 GEN_VEXT_ST_INDEX(vsxh_v_d, int16_t, int64_t, idx_d, sth_d)
588 GEN_VEXT_ST_INDEX(vsxw_v_w, int32_t, int32_t, idx_w, stw_w)
589 GEN_VEXT_ST_INDEX(vsxw_v_d, int32_t, int64_t, idx_d, stw_d)
590 GEN_VEXT_ST_INDEX(vsxe_v_b, int8_t,  int8_t,  idx_b, ste_b)
591 GEN_VEXT_ST_INDEX(vsxe_v_h, int16_t, int16_t, idx_h, ste_h)
592 GEN_VEXT_ST_INDEX(vsxe_v_w, int32_t, int32_t, idx_w, ste_w)
593 GEN_VEXT_ST_INDEX(vsxe_v_d, int64_t, int64_t, idx_d, ste_d)
594 
595 /*
596  *** unit-stride fault-only-fisrt load instructions
597  */
598 static inline void
599 vext_ldff(void *vd, void *v0, target_ulong base,
600           CPURISCVState *env, uint32_t desc,
601           vext_ldst_elem_fn *ldst_elem,
602           clear_fn *clear_elem,
603           uint32_t esz, uint32_t msz, uintptr_t ra)
604 {
605     void *host;
606     uint32_t i, k, vl = 0;
607     uint32_t mlen = vext_mlen(desc);
608     uint32_t nf = vext_nf(desc);
609     uint32_t vm = vext_vm(desc);
610     uint32_t vlmax = vext_maxsz(desc) / esz;
611     target_ulong addr, offset, remain;
612 
613     /* probe every access*/
614     for (i = 0; i < env->vl; i++) {
615         if (!vm && !vext_elem_mask(v0, mlen, i)) {
616             continue;
617         }
618         addr = base + nf * i * msz;
619         if (i == 0) {
620             probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
621         } else {
622             /* if it triggers an exception, no need to check watchpoint */
623             remain = nf * msz;
624             while (remain > 0) {
625                 offset = -(addr | TARGET_PAGE_MASK);
626                 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
627                                          cpu_mmu_index(env, false));
628                 if (host) {
629 #ifdef CONFIG_USER_ONLY
630                     if (page_check_range(addr, nf * msz, PAGE_READ) < 0) {
631                         vl = i;
632                         goto ProbeSuccess;
633                     }
634 #else
635                     probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
636 #endif
637                 } else {
638                     vl = i;
639                     goto ProbeSuccess;
640                 }
641                 if (remain <=  offset) {
642                     break;
643                 }
644                 remain -= offset;
645                 addr += offset;
646             }
647         }
648     }
649 ProbeSuccess:
650     /* load bytes from guest memory */
651     if (vl != 0) {
652         env->vl = vl;
653     }
654     for (i = 0; i < env->vl; i++) {
655         k = 0;
656         if (!vm && !vext_elem_mask(v0, mlen, i)) {
657             continue;
658         }
659         while (k < nf) {
660             target_ulong addr = base + (i * nf + k) * msz;
661             ldst_elem(env, addr, i + k * vlmax, vd, ra);
662             k++;
663         }
664     }
665     /* clear tail elements */
666     if (vl != 0) {
667         return;
668     }
669     for (k = 0; k < nf; k++) {
670         clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
671     }
672 }
673 
674 #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN)     \
675 void HELPER(NAME)(void *vd, void *v0, target_ulong base,         \
676                   CPURISCVState *env, uint32_t desc)             \
677 {                                                                \
678     vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN,        \
679               sizeof(ETYPE), sizeof(MTYPE), GETPC());            \
680 }
681 
682 GEN_VEXT_LDFF(vlbff_v_b,  int8_t,   int8_t,   ldb_b,  clearb)
683 GEN_VEXT_LDFF(vlbff_v_h,  int8_t,   int16_t,  ldb_h,  clearh)
684 GEN_VEXT_LDFF(vlbff_v_w,  int8_t,   int32_t,  ldb_w,  clearl)
685 GEN_VEXT_LDFF(vlbff_v_d,  int8_t,   int64_t,  ldb_d,  clearq)
686 GEN_VEXT_LDFF(vlhff_v_h,  int16_t,  int16_t,  ldh_h,  clearh)
687 GEN_VEXT_LDFF(vlhff_v_w,  int16_t,  int32_t,  ldh_w,  clearl)
688 GEN_VEXT_LDFF(vlhff_v_d,  int16_t,  int64_t,  ldh_d,  clearq)
689 GEN_VEXT_LDFF(vlwff_v_w,  int32_t,  int32_t,  ldw_w,  clearl)
690 GEN_VEXT_LDFF(vlwff_v_d,  int32_t,  int64_t,  ldw_d,  clearq)
691 GEN_VEXT_LDFF(vleff_v_b,  int8_t,   int8_t,   lde_b,  clearb)
692 GEN_VEXT_LDFF(vleff_v_h,  int16_t,  int16_t,  lde_h,  clearh)
693 GEN_VEXT_LDFF(vleff_v_w,  int32_t,  int32_t,  lde_w,  clearl)
694 GEN_VEXT_LDFF(vleff_v_d,  int64_t,  int64_t,  lde_d,  clearq)
695 GEN_VEXT_LDFF(vlbuff_v_b, uint8_t,  uint8_t,  ldbu_b, clearb)
696 GEN_VEXT_LDFF(vlbuff_v_h, uint8_t,  uint16_t, ldbu_h, clearh)
697 GEN_VEXT_LDFF(vlbuff_v_w, uint8_t,  uint32_t, ldbu_w, clearl)
698 GEN_VEXT_LDFF(vlbuff_v_d, uint8_t,  uint64_t, ldbu_d, clearq)
699 GEN_VEXT_LDFF(vlhuff_v_h, uint16_t, uint16_t, ldhu_h, clearh)
700 GEN_VEXT_LDFF(vlhuff_v_w, uint16_t, uint32_t, ldhu_w, clearl)
701 GEN_VEXT_LDFF(vlhuff_v_d, uint16_t, uint64_t, ldhu_d, clearq)
702 GEN_VEXT_LDFF(vlwuff_v_w, uint32_t, uint32_t, ldwu_w, clearl)
703 GEN_VEXT_LDFF(vlwuff_v_d, uint32_t, uint64_t, ldwu_d, clearq)
704 
705 /*
706  *** Vector AMO Operations (Zvamo)
707  */
708 typedef void vext_amo_noatomic_fn(void *vs3, target_ulong addr,
709                                   uint32_t wd, uint32_t idx, CPURISCVState *env,
710                                   uintptr_t retaddr);
711 
712 /* no atomic opreation for vector atomic insructions */
713 #define DO_SWAP(N, M) (M)
714 #define DO_AND(N, M)  (N & M)
715 #define DO_XOR(N, M)  (N ^ M)
716 #define DO_OR(N, M)   (N | M)
717 #define DO_ADD(N, M)  (N + M)
718 
719 #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \
720 static void                                                     \
721 vext_##NAME##_noatomic_op(void *vs3, target_ulong addr,         \
722                           uint32_t wd, uint32_t idx,            \
723                           CPURISCVState *env, uintptr_t retaddr)\
724 {                                                               \
725     typedef int##ESZ##_t ETYPE;                                 \
726     typedef int##MSZ##_t MTYPE;                                 \
727     typedef uint##MSZ##_t UMTYPE __attribute__((unused));       \
728     ETYPE *pe3 = (ETYPE *)vs3 + H(idx);                         \
729     MTYPE  a = cpu_ld##SUF##_data(env, addr), b = *pe3;         \
730                                                                 \
731     cpu_st##SUF##_data(env, addr, DO_OP(a, b));                 \
732     if (wd) {                                                   \
733         *pe3 = a;                                               \
734     }                                                           \
735 }
736 
737 /* Signed min/max */
738 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
739 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
740 
741 /* Unsigned min/max */
742 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
743 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
744 
745 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w, 32, 32, H4, DO_SWAP, l)
746 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w,  32, 32, H4, DO_ADD,  l)
747 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w,  32, 32, H4, DO_XOR,  l)
748 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w,  32, 32, H4, DO_AND,  l)
749 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w,   32, 32, H4, DO_OR,   l)
750 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w,  32, 32, H4, DO_MIN,  l)
751 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w,  32, 32, H4, DO_MAX,  l)
752 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w, 32, 32, H4, DO_MINU, l)
753 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w, 32, 32, H4, DO_MAXU, l)
754 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d, 64, 32, H8, DO_SWAP, l)
755 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d, 64, 64, H8, DO_SWAP, q)
756 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d,  64, 32, H8, DO_ADD,  l)
757 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d,  64, 64, H8, DO_ADD,  q)
758 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d,  64, 32, H8, DO_XOR,  l)
759 GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d,  64, 64, H8, DO_XOR,  q)
760 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d,  64, 32, H8, DO_AND,  l)
761 GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d,  64, 64, H8, DO_AND,  q)
762 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d,   64, 32, H8, DO_OR,   l)
763 GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d,   64, 64, H8, DO_OR,   q)
764 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d,  64, 32, H8, DO_MIN,  l)
765 GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d,  64, 64, H8, DO_MIN,  q)
766 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d,  64, 32, H8, DO_MAX,  l)
767 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d,  64, 64, H8, DO_MAX,  q)
768 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d, 64, 32, H8, DO_MINU, l)
769 GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d, 64, 64, H8, DO_MINU, q)
770 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d, 64, 32, H8, DO_MAXU, l)
771 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d, 64, 64, H8, DO_MAXU, q)
772 
773 static inline void
774 vext_amo_noatomic(void *vs3, void *v0, target_ulong base,
775                   void *vs2, CPURISCVState *env, uint32_t desc,
776                   vext_get_index_addr get_index_addr,
777                   vext_amo_noatomic_fn *noatomic_op,
778                   clear_fn *clear_elem,
779                   uint32_t esz, uint32_t msz, uintptr_t ra)
780 {
781     uint32_t i;
782     target_long addr;
783     uint32_t wd = vext_wd(desc);
784     uint32_t vm = vext_vm(desc);
785     uint32_t mlen = vext_mlen(desc);
786     uint32_t vlmax = vext_maxsz(desc) / esz;
787 
788     for (i = 0; i < env->vl; i++) {
789         if (!vm && !vext_elem_mask(v0, mlen, i)) {
790             continue;
791         }
792         probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_LOAD);
793         probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_STORE);
794     }
795     for (i = 0; i < env->vl; i++) {
796         if (!vm && !vext_elem_mask(v0, mlen, i)) {
797             continue;
798         }
799         addr = get_index_addr(base, i, vs2);
800         noatomic_op(vs3, addr, wd, i, env, ra);
801     }
802     clear_elem(vs3, env->vl, env->vl * esz, vlmax * esz);
803 }
804 
805 #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN)    \
806 void HELPER(NAME)(void *vs3, void *v0, target_ulong base,       \
807                   void *vs2, CPURISCVState *env, uint32_t desc) \
808 {                                                               \
809     vext_amo_noatomic(vs3, v0, base, vs2, env, desc,            \
810                       INDEX_FN, vext_##NAME##_noatomic_op,      \
811                       CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE),   \
812                       GETPC());                                 \
813 }
814 
815 GEN_VEXT_AMO(vamoswapw_v_d, int32_t,  int64_t,  idx_d, clearq)
816 GEN_VEXT_AMO(vamoswapd_v_d, int64_t,  int64_t,  idx_d, clearq)
817 GEN_VEXT_AMO(vamoaddw_v_d,  int32_t,  int64_t,  idx_d, clearq)
818 GEN_VEXT_AMO(vamoaddd_v_d,  int64_t,  int64_t,  idx_d, clearq)
819 GEN_VEXT_AMO(vamoxorw_v_d,  int32_t,  int64_t,  idx_d, clearq)
820 GEN_VEXT_AMO(vamoxord_v_d,  int64_t,  int64_t,  idx_d, clearq)
821 GEN_VEXT_AMO(vamoandw_v_d,  int32_t,  int64_t,  idx_d, clearq)
822 GEN_VEXT_AMO(vamoandd_v_d,  int64_t,  int64_t,  idx_d, clearq)
823 GEN_VEXT_AMO(vamoorw_v_d,   int32_t,  int64_t,  idx_d, clearq)
824 GEN_VEXT_AMO(vamoord_v_d,   int64_t,  int64_t,  idx_d, clearq)
825 GEN_VEXT_AMO(vamominw_v_d,  int32_t,  int64_t,  idx_d, clearq)
826 GEN_VEXT_AMO(vamomind_v_d,  int64_t,  int64_t,  idx_d, clearq)
827 GEN_VEXT_AMO(vamomaxw_v_d,  int32_t,  int64_t,  idx_d, clearq)
828 GEN_VEXT_AMO(vamomaxd_v_d,  int64_t,  int64_t,  idx_d, clearq)
829 GEN_VEXT_AMO(vamominuw_v_d, uint32_t, uint64_t, idx_d, clearq)
830 GEN_VEXT_AMO(vamominud_v_d, uint64_t, uint64_t, idx_d, clearq)
831 GEN_VEXT_AMO(vamomaxuw_v_d, uint32_t, uint64_t, idx_d, clearq)
832 GEN_VEXT_AMO(vamomaxud_v_d, uint64_t, uint64_t, idx_d, clearq)
833 GEN_VEXT_AMO(vamoswapw_v_w, int32_t,  int32_t,  idx_w, clearl)
834 GEN_VEXT_AMO(vamoaddw_v_w,  int32_t,  int32_t,  idx_w, clearl)
835 GEN_VEXT_AMO(vamoxorw_v_w,  int32_t,  int32_t,  idx_w, clearl)
836 GEN_VEXT_AMO(vamoandw_v_w,  int32_t,  int32_t,  idx_w, clearl)
837 GEN_VEXT_AMO(vamoorw_v_w,   int32_t,  int32_t,  idx_w, clearl)
838 GEN_VEXT_AMO(vamominw_v_w,  int32_t,  int32_t,  idx_w, clearl)
839 GEN_VEXT_AMO(vamomaxw_v_w,  int32_t,  int32_t,  idx_w, clearl)
840 GEN_VEXT_AMO(vamominuw_v_w, uint32_t, uint32_t, idx_w, clearl)
841 GEN_VEXT_AMO(vamomaxuw_v_w, uint32_t, uint32_t, idx_w, clearl)
842 
843 /*
844  *** Vector Integer Arithmetic Instructions
845  */
846 
847 /* expand macro args before macro */
848 #define RVVCALL(macro, ...)  macro(__VA_ARGS__)
849 
850 /* (TD, T1, T2, TX1, TX2) */
851 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
852 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
853 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
854 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
855 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
856 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
857 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
858 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
859 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
860 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
861 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
862 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
863 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
864 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
865 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
866 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
867 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
868 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
869 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
870 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
871 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
872 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
873 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
874 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
875 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
876 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
877 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
878 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
879 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
880 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
881 
882 /* operation of two vector elements */
883 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
884 
885 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)    \
886 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)    \
887 {                                                               \
888     TX1 s1 = *((T1 *)vs1 + HS1(i));                             \
889     TX2 s2 = *((T2 *)vs2 + HS2(i));                             \
890     *((TD *)vd + HD(i)) = OP(s2, s1);                           \
891 }
892 #define DO_SUB(N, M) (N - M)
893 #define DO_RSUB(N, M) (M - N)
894 
895 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
896 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
897 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
898 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
899 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
900 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
901 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
902 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
903 
904 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
905                        CPURISCVState *env, uint32_t desc,
906                        uint32_t esz, uint32_t dsz,
907                        opivv2_fn *fn, clear_fn *clearfn)
908 {
909     uint32_t vlmax = vext_maxsz(desc) / esz;
910     uint32_t mlen = vext_mlen(desc);
911     uint32_t vm = vext_vm(desc);
912     uint32_t vl = env->vl;
913     uint32_t i;
914 
915     for (i = 0; i < vl; i++) {
916         if (!vm && !vext_elem_mask(v0, mlen, i)) {
917             continue;
918         }
919         fn(vd, vs1, vs2, i);
920     }
921     clearfn(vd, vl, vl * dsz,  vlmax * dsz);
922 }
923 
924 /* generate the helpers for OPIVV */
925 #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN)             \
926 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
927                   void *vs2, CPURISCVState *env,          \
928                   uint32_t desc)                          \
929 {                                                         \
930     do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ,     \
931                do_##NAME, CLEAR_FN);                      \
932 }
933 
934 GEN_VEXT_VV(vadd_vv_b, 1, 1, clearb)
935 GEN_VEXT_VV(vadd_vv_h, 2, 2, clearh)
936 GEN_VEXT_VV(vadd_vv_w, 4, 4, clearl)
937 GEN_VEXT_VV(vadd_vv_d, 8, 8, clearq)
938 GEN_VEXT_VV(vsub_vv_b, 1, 1, clearb)
939 GEN_VEXT_VV(vsub_vv_h, 2, 2, clearh)
940 GEN_VEXT_VV(vsub_vv_w, 4, 4, clearl)
941 GEN_VEXT_VV(vsub_vv_d, 8, 8, clearq)
942 
943 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
944 
945 /*
946  * (T1)s1 gives the real operator type.
947  * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
948  */
949 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
950 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
951 {                                                                   \
952     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
953     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1);                      \
954 }
955 
956 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
957 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
958 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
959 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
960 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
961 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
962 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
963 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
964 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
965 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
966 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
967 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
968 
969 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
970                        CPURISCVState *env, uint32_t desc,
971                        uint32_t esz, uint32_t dsz,
972                        opivx2_fn fn, clear_fn *clearfn)
973 {
974     uint32_t vlmax = vext_maxsz(desc) / esz;
975     uint32_t mlen = vext_mlen(desc);
976     uint32_t vm = vext_vm(desc);
977     uint32_t vl = env->vl;
978     uint32_t i;
979 
980     for (i = 0; i < vl; i++) {
981         if (!vm && !vext_elem_mask(v0, mlen, i)) {
982             continue;
983         }
984         fn(vd, s1, vs2, i);
985     }
986     clearfn(vd, vl, vl * dsz,  vlmax * dsz);
987 }
988 
989 /* generate the helpers for OPIVX */
990 #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN)             \
991 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
992                   void *vs2, CPURISCVState *env,          \
993                   uint32_t desc)                          \
994 {                                                         \
995     do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ,      \
996                do_##NAME, CLEAR_FN);                      \
997 }
998 
999 GEN_VEXT_VX(vadd_vx_b, 1, 1, clearb)
1000 GEN_VEXT_VX(vadd_vx_h, 2, 2, clearh)
1001 GEN_VEXT_VX(vadd_vx_w, 4, 4, clearl)
1002 GEN_VEXT_VX(vadd_vx_d, 8, 8, clearq)
1003 GEN_VEXT_VX(vsub_vx_b, 1, 1, clearb)
1004 GEN_VEXT_VX(vsub_vx_h, 2, 2, clearh)
1005 GEN_VEXT_VX(vsub_vx_w, 4, 4, clearl)
1006 GEN_VEXT_VX(vsub_vx_d, 8, 8, clearq)
1007 GEN_VEXT_VX(vrsub_vx_b, 1, 1, clearb)
1008 GEN_VEXT_VX(vrsub_vx_h, 2, 2, clearh)
1009 GEN_VEXT_VX(vrsub_vx_w, 4, 4, clearl)
1010 GEN_VEXT_VX(vrsub_vx_d, 8, 8, clearq)
1011 
1012 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
1013 {
1014     intptr_t oprsz = simd_oprsz(desc);
1015     intptr_t i;
1016 
1017     for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1018         *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
1019     }
1020 }
1021 
1022 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
1023 {
1024     intptr_t oprsz = simd_oprsz(desc);
1025     intptr_t i;
1026 
1027     for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1028         *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
1029     }
1030 }
1031 
1032 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
1033 {
1034     intptr_t oprsz = simd_oprsz(desc);
1035     intptr_t i;
1036 
1037     for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1038         *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
1039     }
1040 }
1041 
1042 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
1043 {
1044     intptr_t oprsz = simd_oprsz(desc);
1045     intptr_t i;
1046 
1047     for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1048         *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
1049     }
1050 }
1051 
1052 /* Vector Widening Integer Add/Subtract */
1053 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
1054 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
1055 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
1056 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
1057 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
1058 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
1059 #define WOP_WUUU_B  uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
1060 #define WOP_WUUU_H  uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
1061 #define WOP_WUUU_W  uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
1062 #define WOP_WSSS_B  int16_t, int8_t, int16_t, int16_t, int16_t
1063 #define WOP_WSSS_H  int32_t, int16_t, int32_t, int32_t, int32_t
1064 #define WOP_WSSS_W  int64_t, int32_t, int64_t, int64_t, int64_t
1065 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
1066 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
1067 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
1068 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
1069 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
1070 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
1071 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
1072 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
1073 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
1074 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
1075 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
1076 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
1077 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
1078 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
1079 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
1080 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
1081 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
1082 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
1083 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
1084 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
1085 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
1086 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
1087 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
1088 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
1089 GEN_VEXT_VV(vwaddu_vv_b, 1, 2, clearh)
1090 GEN_VEXT_VV(vwaddu_vv_h, 2, 4, clearl)
1091 GEN_VEXT_VV(vwaddu_vv_w, 4, 8, clearq)
1092 GEN_VEXT_VV(vwsubu_vv_b, 1, 2, clearh)
1093 GEN_VEXT_VV(vwsubu_vv_h, 2, 4, clearl)
1094 GEN_VEXT_VV(vwsubu_vv_w, 4, 8, clearq)
1095 GEN_VEXT_VV(vwadd_vv_b, 1, 2, clearh)
1096 GEN_VEXT_VV(vwadd_vv_h, 2, 4, clearl)
1097 GEN_VEXT_VV(vwadd_vv_w, 4, 8, clearq)
1098 GEN_VEXT_VV(vwsub_vv_b, 1, 2, clearh)
1099 GEN_VEXT_VV(vwsub_vv_h, 2, 4, clearl)
1100 GEN_VEXT_VV(vwsub_vv_w, 4, 8, clearq)
1101 GEN_VEXT_VV(vwaddu_wv_b, 1, 2, clearh)
1102 GEN_VEXT_VV(vwaddu_wv_h, 2, 4, clearl)
1103 GEN_VEXT_VV(vwaddu_wv_w, 4, 8, clearq)
1104 GEN_VEXT_VV(vwsubu_wv_b, 1, 2, clearh)
1105 GEN_VEXT_VV(vwsubu_wv_h, 2, 4, clearl)
1106 GEN_VEXT_VV(vwsubu_wv_w, 4, 8, clearq)
1107 GEN_VEXT_VV(vwadd_wv_b, 1, 2, clearh)
1108 GEN_VEXT_VV(vwadd_wv_h, 2, 4, clearl)
1109 GEN_VEXT_VV(vwadd_wv_w, 4, 8, clearq)
1110 GEN_VEXT_VV(vwsub_wv_b, 1, 2, clearh)
1111 GEN_VEXT_VV(vwsub_wv_h, 2, 4, clearl)
1112 GEN_VEXT_VV(vwsub_wv_w, 4, 8, clearq)
1113 
1114 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
1115 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
1116 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
1117 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
1118 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
1119 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
1120 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
1121 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
1122 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
1123 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
1124 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
1125 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
1126 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
1127 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
1128 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
1129 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
1130 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
1131 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
1132 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
1133 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
1134 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
1135 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
1136 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
1137 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
1138 GEN_VEXT_VX(vwaddu_vx_b, 1, 2, clearh)
1139 GEN_VEXT_VX(vwaddu_vx_h, 2, 4, clearl)
1140 GEN_VEXT_VX(vwaddu_vx_w, 4, 8, clearq)
1141 GEN_VEXT_VX(vwsubu_vx_b, 1, 2, clearh)
1142 GEN_VEXT_VX(vwsubu_vx_h, 2, 4, clearl)
1143 GEN_VEXT_VX(vwsubu_vx_w, 4, 8, clearq)
1144 GEN_VEXT_VX(vwadd_vx_b, 1, 2, clearh)
1145 GEN_VEXT_VX(vwadd_vx_h, 2, 4, clearl)
1146 GEN_VEXT_VX(vwadd_vx_w, 4, 8, clearq)
1147 GEN_VEXT_VX(vwsub_vx_b, 1, 2, clearh)
1148 GEN_VEXT_VX(vwsub_vx_h, 2, 4, clearl)
1149 GEN_VEXT_VX(vwsub_vx_w, 4, 8, clearq)
1150 GEN_VEXT_VX(vwaddu_wx_b, 1, 2, clearh)
1151 GEN_VEXT_VX(vwaddu_wx_h, 2, 4, clearl)
1152 GEN_VEXT_VX(vwaddu_wx_w, 4, 8, clearq)
1153 GEN_VEXT_VX(vwsubu_wx_b, 1, 2, clearh)
1154 GEN_VEXT_VX(vwsubu_wx_h, 2, 4, clearl)
1155 GEN_VEXT_VX(vwsubu_wx_w, 4, 8, clearq)
1156 GEN_VEXT_VX(vwadd_wx_b, 1, 2, clearh)
1157 GEN_VEXT_VX(vwadd_wx_h, 2, 4, clearl)
1158 GEN_VEXT_VX(vwadd_wx_w, 4, 8, clearq)
1159 GEN_VEXT_VX(vwsub_wx_b, 1, 2, clearh)
1160 GEN_VEXT_VX(vwsub_wx_h, 2, 4, clearl)
1161 GEN_VEXT_VX(vwsub_wx_w, 4, 8, clearq)
1162 
1163 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
1164 #define DO_VADC(N, M, C) (N + M + C)
1165 #define DO_VSBC(N, M, C) (N - M - C)
1166 
1167 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN)    \
1168 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
1169                   CPURISCVState *env, uint32_t desc)          \
1170 {                                                             \
1171     uint32_t mlen = vext_mlen(desc);                          \
1172     uint32_t vl = env->vl;                                    \
1173     uint32_t esz = sizeof(ETYPE);                             \
1174     uint32_t vlmax = vext_maxsz(desc) / esz;                  \
1175     uint32_t i;                                               \
1176                                                               \
1177     for (i = 0; i < vl; i++) {                                \
1178         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1179         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1180         uint8_t carry = vext_elem_mask(v0, mlen, i);          \
1181                                                               \
1182         *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry);         \
1183     }                                                         \
1184     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                  \
1185 }
1186 
1187 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t,  H1, DO_VADC, clearb)
1188 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC, clearh)
1189 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC, clearl)
1190 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC, clearq)
1191 
1192 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t,  H1, DO_VSBC, clearb)
1193 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC, clearh)
1194 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC, clearl)
1195 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC, clearq)
1196 
1197 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN)               \
1198 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,        \
1199                   CPURISCVState *env, uint32_t desc)                     \
1200 {                                                                        \
1201     uint32_t mlen = vext_mlen(desc);                                     \
1202     uint32_t vl = env->vl;                                               \
1203     uint32_t esz = sizeof(ETYPE);                                        \
1204     uint32_t vlmax = vext_maxsz(desc) / esz;                             \
1205     uint32_t i;                                                          \
1206                                                                          \
1207     for (i = 0; i < vl; i++) {                                           \
1208         ETYPE s2 = *((ETYPE *)vs2 + H(i));                               \
1209         uint8_t carry = vext_elem_mask(v0, mlen, i);                     \
1210                                                                          \
1211         *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
1212     }                                                                    \
1213     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                             \
1214 }
1215 
1216 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t,  H1, DO_VADC, clearb)
1217 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC, clearh)
1218 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC, clearl)
1219 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC, clearq)
1220 
1221 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t,  H1, DO_VSBC, clearb)
1222 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC, clearh)
1223 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC, clearl)
1224 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC, clearq)
1225 
1226 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N :           \
1227                           (__typeof(N))(N + M) < N)
1228 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
1229 
1230 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP)             \
1231 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
1232                   CPURISCVState *env, uint32_t desc)          \
1233 {                                                             \
1234     uint32_t mlen = vext_mlen(desc);                          \
1235     uint32_t vl = env->vl;                                    \
1236     uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE);        \
1237     uint32_t i;                                               \
1238                                                               \
1239     for (i = 0; i < vl; i++) {                                \
1240         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1241         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1242         uint8_t carry = vext_elem_mask(v0, mlen, i);          \
1243                                                               \
1244         vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\
1245     }                                                         \
1246     for (; i < vlmax; i++) {                                  \
1247         vext_set_elem_mask(vd, mlen, i, 0);                   \
1248     }                                                         \
1249 }
1250 
1251 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t,  H1, DO_MADC)
1252 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
1253 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
1254 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
1255 
1256 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t,  H1, DO_MSBC)
1257 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
1258 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
1259 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
1260 
1261 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP)               \
1262 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,          \
1263                   void *vs2, CPURISCVState *env, uint32_t desc) \
1264 {                                                               \
1265     uint32_t mlen = vext_mlen(desc);                            \
1266     uint32_t vl = env->vl;                                      \
1267     uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE);          \
1268     uint32_t i;                                                 \
1269                                                                 \
1270     for (i = 0; i < vl; i++) {                                  \
1271         ETYPE s2 = *((ETYPE *)vs2 + H(i));                      \
1272         uint8_t carry = vext_elem_mask(v0, mlen, i);            \
1273                                                                 \
1274         vext_set_elem_mask(vd, mlen, i,                         \
1275                 DO_OP(s2, (ETYPE)(target_long)s1, carry));      \
1276     }                                                           \
1277     for (; i < vlmax; i++) {                                    \
1278         vext_set_elem_mask(vd, mlen, i, 0);                     \
1279     }                                                           \
1280 }
1281 
1282 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t,  H1, DO_MADC)
1283 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
1284 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
1285 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
1286 
1287 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t,  H1, DO_MSBC)
1288 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
1289 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
1290 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
1291 
1292 /* Vector Bitwise Logical Instructions */
1293 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
1294 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
1295 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
1296 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
1297 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
1298 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
1299 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
1300 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
1301 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
1302 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
1303 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
1304 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
1305 GEN_VEXT_VV(vand_vv_b, 1, 1, clearb)
1306 GEN_VEXT_VV(vand_vv_h, 2, 2, clearh)
1307 GEN_VEXT_VV(vand_vv_w, 4, 4, clearl)
1308 GEN_VEXT_VV(vand_vv_d, 8, 8, clearq)
1309 GEN_VEXT_VV(vor_vv_b, 1, 1, clearb)
1310 GEN_VEXT_VV(vor_vv_h, 2, 2, clearh)
1311 GEN_VEXT_VV(vor_vv_w, 4, 4, clearl)
1312 GEN_VEXT_VV(vor_vv_d, 8, 8, clearq)
1313 GEN_VEXT_VV(vxor_vv_b, 1, 1, clearb)
1314 GEN_VEXT_VV(vxor_vv_h, 2, 2, clearh)
1315 GEN_VEXT_VV(vxor_vv_w, 4, 4, clearl)
1316 GEN_VEXT_VV(vxor_vv_d, 8, 8, clearq)
1317 
1318 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
1319 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
1320 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
1321 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
1322 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
1323 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
1324 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
1325 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
1326 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
1327 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
1328 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
1329 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
1330 GEN_VEXT_VX(vand_vx_b, 1, 1, clearb)
1331 GEN_VEXT_VX(vand_vx_h, 2, 2, clearh)
1332 GEN_VEXT_VX(vand_vx_w, 4, 4, clearl)
1333 GEN_VEXT_VX(vand_vx_d, 8, 8, clearq)
1334 GEN_VEXT_VX(vor_vx_b, 1, 1, clearb)
1335 GEN_VEXT_VX(vor_vx_h, 2, 2, clearh)
1336 GEN_VEXT_VX(vor_vx_w, 4, 4, clearl)
1337 GEN_VEXT_VX(vor_vx_d, 8, 8, clearq)
1338 GEN_VEXT_VX(vxor_vx_b, 1, 1, clearb)
1339 GEN_VEXT_VX(vxor_vx_h, 2, 2, clearh)
1340 GEN_VEXT_VX(vxor_vx_w, 4, 4, clearl)
1341 GEN_VEXT_VX(vxor_vx_d, 8, 8, clearq)
1342 
1343 /* Vector Single-Width Bit Shift Instructions */
1344 #define DO_SLL(N, M)  (N << (M))
1345 #define DO_SRL(N, M)  (N >> (M))
1346 
1347 /* generate the helpers for shift instructions with two vector operators */
1348 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN)   \
1349 void HELPER(NAME)(void *vd, void *v0, void *vs1,                          \
1350                   void *vs2, CPURISCVState *env, uint32_t desc)           \
1351 {                                                                         \
1352     uint32_t mlen = vext_mlen(desc);                                      \
1353     uint32_t vm = vext_vm(desc);                                          \
1354     uint32_t vl = env->vl;                                                \
1355     uint32_t esz = sizeof(TS1);                                           \
1356     uint32_t vlmax = vext_maxsz(desc) / esz;                              \
1357     uint32_t i;                                                           \
1358                                                                           \
1359     for (i = 0; i < vl; i++) {                                            \
1360         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
1361             continue;                                                     \
1362         }                                                                 \
1363         TS1 s1 = *((TS1 *)vs1 + HS1(i));                                  \
1364         TS2 s2 = *((TS2 *)vs2 + HS2(i));                                  \
1365         *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK);                        \
1366     }                                                                     \
1367     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                              \
1368 }
1369 
1370 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t,  uint8_t, H1, H1, DO_SLL, 0x7, clearb)
1371 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf, clearh)
1372 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f, clearl)
1373 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f, clearq)
1374 
1375 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb)
1376 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh)
1377 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl)
1378 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq)
1379 
1380 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t,  int8_t, H1, H1, DO_SRL, 0x7, clearb)
1381 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh)
1382 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl)
1383 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq)
1384 
1385 /* generate the helpers for shift instructions with one vector and one scalar */
1386 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \
1387 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,                \
1388         void *vs2, CPURISCVState *env, uint32_t desc)                 \
1389 {                                                                     \
1390     uint32_t mlen = vext_mlen(desc);                                  \
1391     uint32_t vm = vext_vm(desc);                                      \
1392     uint32_t vl = env->vl;                                            \
1393     uint32_t esz = sizeof(TD);                                        \
1394     uint32_t vlmax = vext_maxsz(desc) / esz;                          \
1395     uint32_t i;                                                       \
1396                                                                       \
1397     for (i = 0; i < vl; i++) {                                        \
1398         if (!vm && !vext_elem_mask(v0, mlen, i)) {                    \
1399             continue;                                                 \
1400         }                                                             \
1401         TS2 s2 = *((TS2 *)vs2 + HS2(i));                              \
1402         *((TD *)vd + HD(i)) = OP(s2, s1 & MASK);                      \
1403     }                                                                 \
1404     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                          \
1405 }
1406 
1407 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7, clearb)
1408 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf, clearh)
1409 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f, clearl)
1410 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f, clearq)
1411 
1412 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb)
1413 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh)
1414 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl)
1415 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq)
1416 
1417 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb)
1418 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh)
1419 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl)
1420 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq)
1421 
1422 /* Vector Narrowing Integer Right Shift Instructions */
1423 GEN_VEXT_SHIFT_VV(vnsrl_vv_b, uint8_t,  uint16_t, H1, H2, DO_SRL, 0xf, clearb)
1424 GEN_VEXT_SHIFT_VV(vnsrl_vv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh)
1425 GEN_VEXT_SHIFT_VV(vnsrl_vv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl)
1426 GEN_VEXT_SHIFT_VV(vnsra_vv_b, uint8_t,  int16_t, H1, H2, DO_SRL, 0xf, clearb)
1427 GEN_VEXT_SHIFT_VV(vnsra_vv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh)
1428 GEN_VEXT_SHIFT_VV(vnsra_vv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl)
1429 GEN_VEXT_SHIFT_VX(vnsrl_vx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb)
1430 GEN_VEXT_SHIFT_VX(vnsrl_vx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh)
1431 GEN_VEXT_SHIFT_VX(vnsrl_vx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl)
1432 GEN_VEXT_SHIFT_VX(vnsra_vx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb)
1433 GEN_VEXT_SHIFT_VX(vnsra_vx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh)
1434 GEN_VEXT_SHIFT_VX(vnsra_vx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl)
1435 
1436 /* Vector Integer Comparison Instructions */
1437 #define DO_MSEQ(N, M) (N == M)
1438 #define DO_MSNE(N, M) (N != M)
1439 #define DO_MSLT(N, M) (N < M)
1440 #define DO_MSLE(N, M) (N <= M)
1441 #define DO_MSGT(N, M) (N > M)
1442 
1443 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP)                \
1444 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
1445                   CPURISCVState *env, uint32_t desc)          \
1446 {                                                             \
1447     uint32_t mlen = vext_mlen(desc);                          \
1448     uint32_t vm = vext_vm(desc);                              \
1449     uint32_t vl = env->vl;                                    \
1450     uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE);        \
1451     uint32_t i;                                               \
1452                                                               \
1453     for (i = 0; i < vl; i++) {                                \
1454         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1455         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1456         if (!vm && !vext_elem_mask(v0, mlen, i)) {            \
1457             continue;                                         \
1458         }                                                     \
1459         vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1));       \
1460     }                                                         \
1461     for (; i < vlmax; i++) {                                  \
1462         vext_set_elem_mask(vd, mlen, i, 0);                   \
1463     }                                                         \
1464 }
1465 
1466 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t,  H1, DO_MSEQ)
1467 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
1468 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
1469 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
1470 
1471 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t,  H1, DO_MSNE)
1472 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
1473 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
1474 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
1475 
1476 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t,  H1, DO_MSLT)
1477 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
1478 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
1479 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
1480 
1481 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t,  H1, DO_MSLT)
1482 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
1483 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
1484 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
1485 
1486 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t,  H1, DO_MSLE)
1487 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
1488 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
1489 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
1490 
1491 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t,  H1, DO_MSLE)
1492 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
1493 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
1494 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
1495 
1496 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP)                      \
1497 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,   \
1498                   CPURISCVState *env, uint32_t desc)                \
1499 {                                                                   \
1500     uint32_t mlen = vext_mlen(desc);                                \
1501     uint32_t vm = vext_vm(desc);                                    \
1502     uint32_t vl = env->vl;                                          \
1503     uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE);              \
1504     uint32_t i;                                                     \
1505                                                                     \
1506     for (i = 0; i < vl; i++) {                                      \
1507         ETYPE s2 = *((ETYPE *)vs2 + H(i));                          \
1508         if (!vm && !vext_elem_mask(v0, mlen, i)) {                  \
1509             continue;                                               \
1510         }                                                           \
1511         vext_set_elem_mask(vd, mlen, i,                             \
1512                 DO_OP(s2, (ETYPE)(target_long)s1));                 \
1513     }                                                               \
1514     for (; i < vlmax; i++) {                                        \
1515         vext_set_elem_mask(vd, mlen, i, 0);                         \
1516     }                                                               \
1517 }
1518 
1519 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t,  H1, DO_MSEQ)
1520 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
1521 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
1522 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
1523 
1524 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t,  H1, DO_MSNE)
1525 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
1526 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
1527 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
1528 
1529 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t,  H1, DO_MSLT)
1530 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
1531 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
1532 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
1533 
1534 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t,  H1, DO_MSLT)
1535 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
1536 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
1537 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
1538 
1539 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t,  H1, DO_MSLE)
1540 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
1541 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
1542 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
1543 
1544 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t,  H1, DO_MSLE)
1545 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
1546 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
1547 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
1548 
1549 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t,  H1, DO_MSGT)
1550 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
1551 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
1552 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
1553 
1554 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t,  H1, DO_MSGT)
1555 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
1556 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
1557 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
1558 
1559 /* Vector Integer Min/Max Instructions */
1560 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
1561 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
1562 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
1563 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
1564 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
1565 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
1566 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
1567 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
1568 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
1569 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
1570 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
1571 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
1572 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
1573 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
1574 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
1575 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
1576 GEN_VEXT_VV(vminu_vv_b, 1, 1, clearb)
1577 GEN_VEXT_VV(vminu_vv_h, 2, 2, clearh)
1578 GEN_VEXT_VV(vminu_vv_w, 4, 4, clearl)
1579 GEN_VEXT_VV(vminu_vv_d, 8, 8, clearq)
1580 GEN_VEXT_VV(vmin_vv_b, 1, 1, clearb)
1581 GEN_VEXT_VV(vmin_vv_h, 2, 2, clearh)
1582 GEN_VEXT_VV(vmin_vv_w, 4, 4, clearl)
1583 GEN_VEXT_VV(vmin_vv_d, 8, 8, clearq)
1584 GEN_VEXT_VV(vmaxu_vv_b, 1, 1, clearb)
1585 GEN_VEXT_VV(vmaxu_vv_h, 2, 2, clearh)
1586 GEN_VEXT_VV(vmaxu_vv_w, 4, 4, clearl)
1587 GEN_VEXT_VV(vmaxu_vv_d, 8, 8, clearq)
1588 GEN_VEXT_VV(vmax_vv_b, 1, 1, clearb)
1589 GEN_VEXT_VV(vmax_vv_h, 2, 2, clearh)
1590 GEN_VEXT_VV(vmax_vv_w, 4, 4, clearl)
1591 GEN_VEXT_VV(vmax_vv_d, 8, 8, clearq)
1592 
1593 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
1594 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
1595 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
1596 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
1597 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
1598 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
1599 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
1600 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
1601 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
1602 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
1603 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
1604 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
1605 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
1606 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
1607 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
1608 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
1609 GEN_VEXT_VX(vminu_vx_b, 1, 1, clearb)
1610 GEN_VEXT_VX(vminu_vx_h, 2, 2, clearh)
1611 GEN_VEXT_VX(vminu_vx_w, 4, 4, clearl)
1612 GEN_VEXT_VX(vminu_vx_d, 8, 8, clearq)
1613 GEN_VEXT_VX(vmin_vx_b, 1, 1, clearb)
1614 GEN_VEXT_VX(vmin_vx_h, 2, 2, clearh)
1615 GEN_VEXT_VX(vmin_vx_w, 4, 4, clearl)
1616 GEN_VEXT_VX(vmin_vx_d, 8, 8, clearq)
1617 GEN_VEXT_VX(vmaxu_vx_b, 1, 1, clearb)
1618 GEN_VEXT_VX(vmaxu_vx_h, 2, 2, clearh)
1619 GEN_VEXT_VX(vmaxu_vx_w, 4, 4, clearl)
1620 GEN_VEXT_VX(vmaxu_vx_d, 8, 8,  clearq)
1621 GEN_VEXT_VX(vmax_vx_b, 1, 1, clearb)
1622 GEN_VEXT_VX(vmax_vx_h, 2, 2, clearh)
1623 GEN_VEXT_VX(vmax_vx_w, 4, 4, clearl)
1624 GEN_VEXT_VX(vmax_vx_d, 8, 8, clearq)
1625 
1626 /* Vector Single-Width Integer Multiply Instructions */
1627 #define DO_MUL(N, M) (N * M)
1628 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
1629 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
1630 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
1631 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
1632 GEN_VEXT_VV(vmul_vv_b, 1, 1, clearb)
1633 GEN_VEXT_VV(vmul_vv_h, 2, 2, clearh)
1634 GEN_VEXT_VV(vmul_vv_w, 4, 4, clearl)
1635 GEN_VEXT_VV(vmul_vv_d, 8, 8, clearq)
1636 
1637 static int8_t do_mulh_b(int8_t s2, int8_t s1)
1638 {
1639     return (int16_t)s2 * (int16_t)s1 >> 8;
1640 }
1641 
1642 static int16_t do_mulh_h(int16_t s2, int16_t s1)
1643 {
1644     return (int32_t)s2 * (int32_t)s1 >> 16;
1645 }
1646 
1647 static int32_t do_mulh_w(int32_t s2, int32_t s1)
1648 {
1649     return (int64_t)s2 * (int64_t)s1 >> 32;
1650 }
1651 
1652 static int64_t do_mulh_d(int64_t s2, int64_t s1)
1653 {
1654     uint64_t hi_64, lo_64;
1655 
1656     muls64(&lo_64, &hi_64, s1, s2);
1657     return hi_64;
1658 }
1659 
1660 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
1661 {
1662     return (uint16_t)s2 * (uint16_t)s1 >> 8;
1663 }
1664 
1665 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
1666 {
1667     return (uint32_t)s2 * (uint32_t)s1 >> 16;
1668 }
1669 
1670 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
1671 {
1672     return (uint64_t)s2 * (uint64_t)s1 >> 32;
1673 }
1674 
1675 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
1676 {
1677     uint64_t hi_64, lo_64;
1678 
1679     mulu64(&lo_64, &hi_64, s2, s1);
1680     return hi_64;
1681 }
1682 
1683 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
1684 {
1685     return (int16_t)s2 * (uint16_t)s1 >> 8;
1686 }
1687 
1688 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
1689 {
1690     return (int32_t)s2 * (uint32_t)s1 >> 16;
1691 }
1692 
1693 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
1694 {
1695     return (int64_t)s2 * (uint64_t)s1 >> 32;
1696 }
1697 
1698 /*
1699  * Let  A = signed operand,
1700  *      B = unsigned operand
1701  *      P = mulu64(A, B), unsigned product
1702  *
1703  * LET  X = 2 ** 64  - A, 2's complement of A
1704  *      SP = signed product
1705  * THEN
1706  *      IF A < 0
1707  *          SP = -X * B
1708  *             = -(2 ** 64 - A) * B
1709  *             = A * B - 2 ** 64 * B
1710  *             = P - 2 ** 64 * B
1711  *      ELSE
1712  *          SP = P
1713  * THEN
1714  *      HI_P -= (A < 0 ? B : 0)
1715  */
1716 
1717 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
1718 {
1719     uint64_t hi_64, lo_64;
1720 
1721     mulu64(&lo_64, &hi_64, s2, s1);
1722 
1723     hi_64 -= s2 < 0 ? s1 : 0;
1724     return hi_64;
1725 }
1726 
1727 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
1728 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
1729 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
1730 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
1731 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
1732 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
1733 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
1734 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
1735 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
1736 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
1737 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
1738 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
1739 GEN_VEXT_VV(vmulh_vv_b, 1, 1, clearb)
1740 GEN_VEXT_VV(vmulh_vv_h, 2, 2, clearh)
1741 GEN_VEXT_VV(vmulh_vv_w, 4, 4, clearl)
1742 GEN_VEXT_VV(vmulh_vv_d, 8, 8, clearq)
1743 GEN_VEXT_VV(vmulhu_vv_b, 1, 1, clearb)
1744 GEN_VEXT_VV(vmulhu_vv_h, 2, 2, clearh)
1745 GEN_VEXT_VV(vmulhu_vv_w, 4, 4, clearl)
1746 GEN_VEXT_VV(vmulhu_vv_d, 8, 8, clearq)
1747 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1, clearb)
1748 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2, clearh)
1749 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4, clearl)
1750 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8, clearq)
1751 
1752 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
1753 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
1754 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
1755 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
1756 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
1757 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
1758 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
1759 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
1760 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
1761 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
1762 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
1763 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
1764 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
1765 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
1766 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
1767 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
1768 GEN_VEXT_VX(vmul_vx_b, 1, 1, clearb)
1769 GEN_VEXT_VX(vmul_vx_h, 2, 2, clearh)
1770 GEN_VEXT_VX(vmul_vx_w, 4, 4, clearl)
1771 GEN_VEXT_VX(vmul_vx_d, 8, 8, clearq)
1772 GEN_VEXT_VX(vmulh_vx_b, 1, 1, clearb)
1773 GEN_VEXT_VX(vmulh_vx_h, 2, 2, clearh)
1774 GEN_VEXT_VX(vmulh_vx_w, 4, 4, clearl)
1775 GEN_VEXT_VX(vmulh_vx_d, 8, 8, clearq)
1776 GEN_VEXT_VX(vmulhu_vx_b, 1, 1, clearb)
1777 GEN_VEXT_VX(vmulhu_vx_h, 2, 2, clearh)
1778 GEN_VEXT_VX(vmulhu_vx_w, 4, 4, clearl)
1779 GEN_VEXT_VX(vmulhu_vx_d, 8, 8, clearq)
1780 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1, clearb)
1781 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2, clearh)
1782 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4, clearl)
1783 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8, clearq)
1784 
1785 /* Vector Integer Divide Instructions */
1786 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1787 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1788 #define DO_DIV(N, M)  (unlikely(M == 0) ? (__typeof(N))(-1) :\
1789         unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1790 #define DO_REM(N, M)  (unlikely(M == 0) ? N :\
1791         unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1792 
1793 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
1794 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
1795 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
1796 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
1797 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
1798 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
1799 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
1800 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
1801 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
1802 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
1803 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
1804 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
1805 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
1806 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
1807 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
1808 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
1809 GEN_VEXT_VV(vdivu_vv_b, 1, 1, clearb)
1810 GEN_VEXT_VV(vdivu_vv_h, 2, 2, clearh)
1811 GEN_VEXT_VV(vdivu_vv_w, 4, 4, clearl)
1812 GEN_VEXT_VV(vdivu_vv_d, 8, 8, clearq)
1813 GEN_VEXT_VV(vdiv_vv_b, 1, 1, clearb)
1814 GEN_VEXT_VV(vdiv_vv_h, 2, 2, clearh)
1815 GEN_VEXT_VV(vdiv_vv_w, 4, 4, clearl)
1816 GEN_VEXT_VV(vdiv_vv_d, 8, 8, clearq)
1817 GEN_VEXT_VV(vremu_vv_b, 1, 1, clearb)
1818 GEN_VEXT_VV(vremu_vv_h, 2, 2, clearh)
1819 GEN_VEXT_VV(vremu_vv_w, 4, 4, clearl)
1820 GEN_VEXT_VV(vremu_vv_d, 8, 8, clearq)
1821 GEN_VEXT_VV(vrem_vv_b, 1, 1, clearb)
1822 GEN_VEXT_VV(vrem_vv_h, 2, 2, clearh)
1823 GEN_VEXT_VV(vrem_vv_w, 4, 4, clearl)
1824 GEN_VEXT_VV(vrem_vv_d, 8, 8, clearq)
1825 
1826 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
1827 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
1828 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
1829 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
1830 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
1831 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
1832 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
1833 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
1834 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
1835 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
1836 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
1837 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
1838 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
1839 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
1840 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
1841 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
1842 GEN_VEXT_VX(vdivu_vx_b, 1, 1, clearb)
1843 GEN_VEXT_VX(vdivu_vx_h, 2, 2, clearh)
1844 GEN_VEXT_VX(vdivu_vx_w, 4, 4, clearl)
1845 GEN_VEXT_VX(vdivu_vx_d, 8, 8, clearq)
1846 GEN_VEXT_VX(vdiv_vx_b, 1, 1, clearb)
1847 GEN_VEXT_VX(vdiv_vx_h, 2, 2, clearh)
1848 GEN_VEXT_VX(vdiv_vx_w, 4, 4, clearl)
1849 GEN_VEXT_VX(vdiv_vx_d, 8, 8, clearq)
1850 GEN_VEXT_VX(vremu_vx_b, 1, 1, clearb)
1851 GEN_VEXT_VX(vremu_vx_h, 2, 2, clearh)
1852 GEN_VEXT_VX(vremu_vx_w, 4, 4, clearl)
1853 GEN_VEXT_VX(vremu_vx_d, 8, 8, clearq)
1854 GEN_VEXT_VX(vrem_vx_b, 1, 1, clearb)
1855 GEN_VEXT_VX(vrem_vx_h, 2, 2, clearh)
1856 GEN_VEXT_VX(vrem_vx_w, 4, 4, clearl)
1857 GEN_VEXT_VX(vrem_vx_d, 8, 8, clearq)
1858 
1859 /* Vector Widening Integer Multiply Instructions */
1860 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
1861 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
1862 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
1863 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
1864 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
1865 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
1866 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
1867 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
1868 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
1869 GEN_VEXT_VV(vwmul_vv_b, 1, 2, clearh)
1870 GEN_VEXT_VV(vwmul_vv_h, 2, 4, clearl)
1871 GEN_VEXT_VV(vwmul_vv_w, 4, 8, clearq)
1872 GEN_VEXT_VV(vwmulu_vv_b, 1, 2, clearh)
1873 GEN_VEXT_VV(vwmulu_vv_h, 2, 4, clearl)
1874 GEN_VEXT_VV(vwmulu_vv_w, 4, 8, clearq)
1875 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2, clearh)
1876 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4, clearl)
1877 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8, clearq)
1878 
1879 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
1880 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
1881 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
1882 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
1883 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
1884 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
1885 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
1886 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
1887 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
1888 GEN_VEXT_VX(vwmul_vx_b, 1, 2, clearh)
1889 GEN_VEXT_VX(vwmul_vx_h, 2, 4, clearl)
1890 GEN_VEXT_VX(vwmul_vx_w, 4, 8, clearq)
1891 GEN_VEXT_VX(vwmulu_vx_b, 1, 2, clearh)
1892 GEN_VEXT_VX(vwmulu_vx_h, 2, 4, clearl)
1893 GEN_VEXT_VX(vwmulu_vx_w, 4, 8, clearq)
1894 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2, clearh)
1895 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4, clearl)
1896 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8, clearq)
1897 
1898 /* Vector Single-Width Integer Multiply-Add Instructions */
1899 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)   \
1900 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)       \
1901 {                                                                  \
1902     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
1903     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
1904     TD d = *((TD *)vd + HD(i));                                    \
1905     *((TD *)vd + HD(i)) = OP(s2, s1, d);                           \
1906 }
1907 
1908 #define DO_MACC(N, M, D) (M * N + D)
1909 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1910 #define DO_MADD(N, M, D) (M * D + N)
1911 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1912 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
1913 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
1914 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
1915 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
1916 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
1917 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
1918 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
1919 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
1920 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
1921 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
1922 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
1923 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
1924 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
1925 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
1926 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
1927 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
1928 GEN_VEXT_VV(vmacc_vv_b, 1, 1, clearb)
1929 GEN_VEXT_VV(vmacc_vv_h, 2, 2, clearh)
1930 GEN_VEXT_VV(vmacc_vv_w, 4, 4, clearl)
1931 GEN_VEXT_VV(vmacc_vv_d, 8, 8, clearq)
1932 GEN_VEXT_VV(vnmsac_vv_b, 1, 1, clearb)
1933 GEN_VEXT_VV(vnmsac_vv_h, 2, 2, clearh)
1934 GEN_VEXT_VV(vnmsac_vv_w, 4, 4, clearl)
1935 GEN_VEXT_VV(vnmsac_vv_d, 8, 8, clearq)
1936 GEN_VEXT_VV(vmadd_vv_b, 1, 1, clearb)
1937 GEN_VEXT_VV(vmadd_vv_h, 2, 2, clearh)
1938 GEN_VEXT_VV(vmadd_vv_w, 4, 4, clearl)
1939 GEN_VEXT_VV(vmadd_vv_d, 8, 8, clearq)
1940 GEN_VEXT_VV(vnmsub_vv_b, 1, 1, clearb)
1941 GEN_VEXT_VV(vnmsub_vv_h, 2, 2, clearh)
1942 GEN_VEXT_VV(vnmsub_vv_w, 4, 4, clearl)
1943 GEN_VEXT_VV(vnmsub_vv_d, 8, 8, clearq)
1944 
1945 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
1946 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
1947 {                                                                   \
1948     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1949     TD d = *((TD *)vd + HD(i));                                     \
1950     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d);                   \
1951 }
1952 
1953 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
1954 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
1955 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
1956 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
1957 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
1958 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
1959 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
1960 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
1961 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
1962 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
1963 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
1964 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
1965 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
1966 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
1967 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
1968 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
1969 GEN_VEXT_VX(vmacc_vx_b, 1, 1, clearb)
1970 GEN_VEXT_VX(vmacc_vx_h, 2, 2, clearh)
1971 GEN_VEXT_VX(vmacc_vx_w, 4, 4, clearl)
1972 GEN_VEXT_VX(vmacc_vx_d, 8, 8, clearq)
1973 GEN_VEXT_VX(vnmsac_vx_b, 1, 1, clearb)
1974 GEN_VEXT_VX(vnmsac_vx_h, 2, 2, clearh)
1975 GEN_VEXT_VX(vnmsac_vx_w, 4, 4, clearl)
1976 GEN_VEXT_VX(vnmsac_vx_d, 8, 8, clearq)
1977 GEN_VEXT_VX(vmadd_vx_b, 1, 1, clearb)
1978 GEN_VEXT_VX(vmadd_vx_h, 2, 2, clearh)
1979 GEN_VEXT_VX(vmadd_vx_w, 4, 4, clearl)
1980 GEN_VEXT_VX(vmadd_vx_d, 8, 8, clearq)
1981 GEN_VEXT_VX(vnmsub_vx_b, 1, 1, clearb)
1982 GEN_VEXT_VX(vnmsub_vx_h, 2, 2, clearh)
1983 GEN_VEXT_VX(vnmsub_vx_w, 4, 4, clearl)
1984 GEN_VEXT_VX(vnmsub_vx_d, 8, 8, clearq)
1985 
1986 /* Vector Widening Integer Multiply-Add Instructions */
1987 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
1988 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
1989 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
1990 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
1991 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
1992 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
1993 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
1994 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
1995 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
1996 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2, clearh)
1997 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4, clearl)
1998 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8, clearq)
1999 GEN_VEXT_VV(vwmacc_vv_b, 1, 2, clearh)
2000 GEN_VEXT_VV(vwmacc_vv_h, 2, 4, clearl)
2001 GEN_VEXT_VV(vwmacc_vv_w, 4, 8, clearq)
2002 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2, clearh)
2003 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4, clearl)
2004 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8, clearq)
2005 
2006 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
2007 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
2008 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
2009 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
2010 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
2011 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
2012 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
2013 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
2014 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
2015 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
2016 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
2017 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
2018 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2, clearh)
2019 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4, clearl)
2020 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8, clearq)
2021 GEN_VEXT_VX(vwmacc_vx_b, 1, 2, clearh)
2022 GEN_VEXT_VX(vwmacc_vx_h, 2, 4, clearl)
2023 GEN_VEXT_VX(vwmacc_vx_w, 4, 8, clearq)
2024 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2, clearh)
2025 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4, clearl)
2026 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8, clearq)
2027 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2, clearh)
2028 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4, clearl)
2029 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8, clearq)
2030 
2031 /* Vector Integer Merge and Move Instructions */
2032 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H, CLEAR_FN)                    \
2033 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env,           \
2034                   uint32_t desc)                                     \
2035 {                                                                    \
2036     uint32_t vl = env->vl;                                           \
2037     uint32_t esz = sizeof(ETYPE);                                    \
2038     uint32_t vlmax = vext_maxsz(desc) / esz;                         \
2039     uint32_t i;                                                      \
2040                                                                      \
2041     for (i = 0; i < vl; i++) {                                       \
2042         ETYPE s1 = *((ETYPE *)vs1 + H(i));                           \
2043         *((ETYPE *)vd + H(i)) = s1;                                  \
2044     }                                                                \
2045     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                         \
2046 }
2047 
2048 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t,  H1, clearb)
2049 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2, clearh)
2050 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4, clearl)
2051 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8, clearq)
2052 
2053 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H, CLEAR_FN)                    \
2054 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env,         \
2055                   uint32_t desc)                                     \
2056 {                                                                    \
2057     uint32_t vl = env->vl;                                           \
2058     uint32_t esz = sizeof(ETYPE);                                    \
2059     uint32_t vlmax = vext_maxsz(desc) / esz;                         \
2060     uint32_t i;                                                      \
2061                                                                      \
2062     for (i = 0; i < vl; i++) {                                       \
2063         *((ETYPE *)vd + H(i)) = (ETYPE)s1;                           \
2064     }                                                                \
2065     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                         \
2066 }
2067 
2068 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t,  H1, clearb)
2069 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2, clearh)
2070 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4, clearl)
2071 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8, clearq)
2072 
2073 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H, CLEAR_FN)                 \
2074 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,          \
2075                   CPURISCVState *env, uint32_t desc)                 \
2076 {                                                                    \
2077     uint32_t mlen = vext_mlen(desc);                                 \
2078     uint32_t vl = env->vl;                                           \
2079     uint32_t esz = sizeof(ETYPE);                                    \
2080     uint32_t vlmax = vext_maxsz(desc) / esz;                         \
2081     uint32_t i;                                                      \
2082                                                                      \
2083     for (i = 0; i < vl; i++) {                                       \
2084         ETYPE *vt = (!vext_elem_mask(v0, mlen, i) ? vs2 : vs1);      \
2085         *((ETYPE *)vd + H(i)) = *(vt + H(i));                        \
2086     }                                                                \
2087     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                         \
2088 }
2089 
2090 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t,  H1, clearb)
2091 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2, clearh)
2092 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4, clearl)
2093 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8, clearq)
2094 
2095 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H, CLEAR_FN)                 \
2096 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,               \
2097                   void *vs2, CPURISCVState *env, uint32_t desc)      \
2098 {                                                                    \
2099     uint32_t mlen = vext_mlen(desc);                                 \
2100     uint32_t vl = env->vl;                                           \
2101     uint32_t esz = sizeof(ETYPE);                                    \
2102     uint32_t vlmax = vext_maxsz(desc) / esz;                         \
2103     uint32_t i;                                                      \
2104                                                                      \
2105     for (i = 0; i < vl; i++) {                                       \
2106         ETYPE s2 = *((ETYPE *)vs2 + H(i));                           \
2107         ETYPE d = (!vext_elem_mask(v0, mlen, i) ? s2 :               \
2108                    (ETYPE)(target_long)s1);                          \
2109         *((ETYPE *)vd + H(i)) = d;                                   \
2110     }                                                                \
2111     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                         \
2112 }
2113 
2114 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t,  H1, clearb)
2115 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2, clearh)
2116 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4, clearl)
2117 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8, clearq)
2118 
2119 /*
2120  *** Vector Fixed-Point Arithmetic Instructions
2121  */
2122 
2123 /* Vector Single-Width Saturating Add and Subtract */
2124 
2125 /*
2126  * As fixed point instructions probably have round mode and saturation,
2127  * define common macros for fixed point here.
2128  */
2129 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
2130                           CPURISCVState *env, int vxrm);
2131 
2132 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)     \
2133 static inline void                                                  \
2134 do_##NAME(void *vd, void *vs1, void *vs2, int i,                    \
2135           CPURISCVState *env, int vxrm)                             \
2136 {                                                                   \
2137     TX1 s1 = *((T1 *)vs1 + HS1(i));                                 \
2138     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
2139     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1);                    \
2140 }
2141 
2142 static inline void
2143 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
2144              CPURISCVState *env,
2145              uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm,
2146              opivv2_rm_fn *fn)
2147 {
2148     for (uint32_t i = 0; i < vl; i++) {
2149         if (!vm && !vext_elem_mask(v0, mlen, i)) {
2150             continue;
2151         }
2152         fn(vd, vs1, vs2, i, env, vxrm);
2153     }
2154 }
2155 
2156 static inline void
2157 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
2158              CPURISCVState *env,
2159              uint32_t desc, uint32_t esz, uint32_t dsz,
2160              opivv2_rm_fn *fn, clear_fn *clearfn)
2161 {
2162     uint32_t vlmax = vext_maxsz(desc) / esz;
2163     uint32_t mlen = vext_mlen(desc);
2164     uint32_t vm = vext_vm(desc);
2165     uint32_t vl = env->vl;
2166 
2167     switch (env->vxrm) {
2168     case 0: /* rnu */
2169         vext_vv_rm_1(vd, v0, vs1, vs2,
2170                      env, vl, vm, mlen, 0, fn);
2171         break;
2172     case 1: /* rne */
2173         vext_vv_rm_1(vd, v0, vs1, vs2,
2174                      env, vl, vm, mlen, 1, fn);
2175         break;
2176     case 2: /* rdn */
2177         vext_vv_rm_1(vd, v0, vs1, vs2,
2178                      env, vl, vm, mlen, 2, fn);
2179         break;
2180     default: /* rod */
2181         vext_vv_rm_1(vd, v0, vs1, vs2,
2182                      env, vl, vm, mlen, 3, fn);
2183         break;
2184     }
2185 
2186     clearfn(vd, vl, vl * dsz,  vlmax * dsz);
2187 }
2188 
2189 /* generate helpers for fixed point instructions with OPIVV format */
2190 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ, CLEAR_FN)                \
2191 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,     \
2192                   CPURISCVState *env, uint32_t desc)            \
2193 {                                                               \
2194     vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ,         \
2195                  do_##NAME, CLEAR_FN);                          \
2196 }
2197 
2198 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2199 {
2200     uint8_t res = a + b;
2201     if (res < a) {
2202         res = UINT8_MAX;
2203         env->vxsat = 0x1;
2204     }
2205     return res;
2206 }
2207 
2208 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
2209                                uint16_t b)
2210 {
2211     uint16_t res = a + b;
2212     if (res < a) {
2213         res = UINT16_MAX;
2214         env->vxsat = 0x1;
2215     }
2216     return res;
2217 }
2218 
2219 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
2220                                uint32_t b)
2221 {
2222     uint32_t res = a + b;
2223     if (res < a) {
2224         res = UINT32_MAX;
2225         env->vxsat = 0x1;
2226     }
2227     return res;
2228 }
2229 
2230 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
2231                                uint64_t b)
2232 {
2233     uint64_t res = a + b;
2234     if (res < a) {
2235         res = UINT64_MAX;
2236         env->vxsat = 0x1;
2237     }
2238     return res;
2239 }
2240 
2241 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
2242 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
2243 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
2244 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
2245 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1, clearb)
2246 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2, clearh)
2247 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4, clearl)
2248 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8, clearq)
2249 
2250 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
2251                           CPURISCVState *env, int vxrm);
2252 
2253 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)          \
2254 static inline void                                                  \
2255 do_##NAME(void *vd, target_long s1, void *vs2, int i,               \
2256           CPURISCVState *env, int vxrm)                             \
2257 {                                                                   \
2258     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
2259     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1);           \
2260 }
2261 
2262 static inline void
2263 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
2264              CPURISCVState *env,
2265              uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm,
2266              opivx2_rm_fn *fn)
2267 {
2268     for (uint32_t i = 0; i < vl; i++) {
2269         if (!vm && !vext_elem_mask(v0, mlen, i)) {
2270             continue;
2271         }
2272         fn(vd, s1, vs2, i, env, vxrm);
2273     }
2274 }
2275 
2276 static inline void
2277 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
2278              CPURISCVState *env,
2279              uint32_t desc, uint32_t esz, uint32_t dsz,
2280              opivx2_rm_fn *fn, clear_fn *clearfn)
2281 {
2282     uint32_t vlmax = vext_maxsz(desc) / esz;
2283     uint32_t mlen = vext_mlen(desc);
2284     uint32_t vm = vext_vm(desc);
2285     uint32_t vl = env->vl;
2286 
2287     switch (env->vxrm) {
2288     case 0: /* rnu */
2289         vext_vx_rm_1(vd, v0, s1, vs2,
2290                      env, vl, vm, mlen, 0, fn);
2291         break;
2292     case 1: /* rne */
2293         vext_vx_rm_1(vd, v0, s1, vs2,
2294                      env, vl, vm, mlen, 1, fn);
2295         break;
2296     case 2: /* rdn */
2297         vext_vx_rm_1(vd, v0, s1, vs2,
2298                      env, vl, vm, mlen, 2, fn);
2299         break;
2300     default: /* rod */
2301         vext_vx_rm_1(vd, v0, s1, vs2,
2302                      env, vl, vm, mlen, 3, fn);
2303         break;
2304     }
2305 
2306     clearfn(vd, vl, vl * dsz,  vlmax * dsz);
2307 }
2308 
2309 /* generate helpers for fixed point instructions with OPIVX format */
2310 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ, CLEAR_FN)          \
2311 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
2312         void *vs2, CPURISCVState *env, uint32_t desc)     \
2313 {                                                         \
2314     vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ,    \
2315                  do_##NAME, CLEAR_FN);                    \
2316 }
2317 
2318 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
2319 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
2320 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
2321 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
2322 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1, clearb)
2323 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2, clearh)
2324 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4, clearl)
2325 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8, clearq)
2326 
2327 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2328 {
2329     int8_t res = a + b;
2330     if ((res ^ a) & (res ^ b) & INT8_MIN) {
2331         res = a > 0 ? INT8_MAX : INT8_MIN;
2332         env->vxsat = 0x1;
2333     }
2334     return res;
2335 }
2336 
2337 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2338 {
2339     int16_t res = a + b;
2340     if ((res ^ a) & (res ^ b) & INT16_MIN) {
2341         res = a > 0 ? INT16_MAX : INT16_MIN;
2342         env->vxsat = 0x1;
2343     }
2344     return res;
2345 }
2346 
2347 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2348 {
2349     int32_t res = a + b;
2350     if ((res ^ a) & (res ^ b) & INT32_MIN) {
2351         res = a > 0 ? INT32_MAX : INT32_MIN;
2352         env->vxsat = 0x1;
2353     }
2354     return res;
2355 }
2356 
2357 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2358 {
2359     int64_t res = a + b;
2360     if ((res ^ a) & (res ^ b) & INT64_MIN) {
2361         res = a > 0 ? INT64_MAX : INT64_MIN;
2362         env->vxsat = 0x1;
2363     }
2364     return res;
2365 }
2366 
2367 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
2368 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
2369 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
2370 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
2371 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1, clearb)
2372 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2, clearh)
2373 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4, clearl)
2374 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8, clearq)
2375 
2376 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
2377 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
2378 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
2379 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
2380 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1, clearb)
2381 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2, clearh)
2382 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4, clearl)
2383 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8, clearq)
2384 
2385 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2386 {
2387     uint8_t res = a - b;
2388     if (res > a) {
2389         res = 0;
2390         env->vxsat = 0x1;
2391     }
2392     return res;
2393 }
2394 
2395 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
2396                                uint16_t b)
2397 {
2398     uint16_t res = a - b;
2399     if (res > a) {
2400         res = 0;
2401         env->vxsat = 0x1;
2402     }
2403     return res;
2404 }
2405 
2406 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
2407                                uint32_t b)
2408 {
2409     uint32_t res = a - b;
2410     if (res > a) {
2411         res = 0;
2412         env->vxsat = 0x1;
2413     }
2414     return res;
2415 }
2416 
2417 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
2418                                uint64_t b)
2419 {
2420     uint64_t res = a - b;
2421     if (res > a) {
2422         res = 0;
2423         env->vxsat = 0x1;
2424     }
2425     return res;
2426 }
2427 
2428 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
2429 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
2430 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
2431 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
2432 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1, clearb)
2433 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2, clearh)
2434 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4, clearl)
2435 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8, clearq)
2436 
2437 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
2438 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
2439 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
2440 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
2441 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1, clearb)
2442 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2, clearh)
2443 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4, clearl)
2444 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8, clearq)
2445 
2446 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2447 {
2448     int8_t res = a - b;
2449     if ((res ^ a) & (a ^ b) & INT8_MIN) {
2450         res = a >= 0 ? INT8_MAX : INT8_MIN;
2451         env->vxsat = 0x1;
2452     }
2453     return res;
2454 }
2455 
2456 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2457 {
2458     int16_t res = a - b;
2459     if ((res ^ a) & (a ^ b) & INT16_MIN) {
2460         res = a >= 0 ? INT16_MAX : INT16_MIN;
2461         env->vxsat = 0x1;
2462     }
2463     return res;
2464 }
2465 
2466 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2467 {
2468     int32_t res = a - b;
2469     if ((res ^ a) & (a ^ b) & INT32_MIN) {
2470         res = a >= 0 ? INT32_MAX : INT32_MIN;
2471         env->vxsat = 0x1;
2472     }
2473     return res;
2474 }
2475 
2476 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2477 {
2478     int64_t res = a - b;
2479     if ((res ^ a) & (a ^ b) & INT64_MIN) {
2480         res = a >= 0 ? INT64_MAX : INT64_MIN;
2481         env->vxsat = 0x1;
2482     }
2483     return res;
2484 }
2485 
2486 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
2487 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
2488 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
2489 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
2490 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1, clearb)
2491 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2, clearh)
2492 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4, clearl)
2493 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8, clearq)
2494 
2495 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
2496 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
2497 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
2498 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
2499 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1, clearb)
2500 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2, clearh)
2501 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4, clearl)
2502 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8, clearq)
2503 
2504 /* Vector Single-Width Averaging Add and Subtract */
2505 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
2506 {
2507     uint8_t d = extract64(v, shift, 1);
2508     uint8_t d1;
2509     uint64_t D1, D2;
2510 
2511     if (shift == 0 || shift > 64) {
2512         return 0;
2513     }
2514 
2515     d1 = extract64(v, shift - 1, 1);
2516     D1 = extract64(v, 0, shift);
2517     if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
2518         return d1;
2519     } else if (vxrm == 1) { /* round-to-nearest-even */
2520         if (shift > 1) {
2521             D2 = extract64(v, 0, shift - 1);
2522             return d1 & ((D2 != 0) | d);
2523         } else {
2524             return d1 & d;
2525         }
2526     } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2527         return !d & (D1 != 0);
2528     }
2529     return 0; /* round-down (truncate) */
2530 }
2531 
2532 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2533 {
2534     int64_t res = (int64_t)a + b;
2535     uint8_t round = get_round(vxrm, res, 1);
2536 
2537     return (res >> 1) + round;
2538 }
2539 
2540 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2541 {
2542     int64_t res = a + b;
2543     uint8_t round = get_round(vxrm, res, 1);
2544     int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
2545 
2546     /* With signed overflow, bit 64 is inverse of bit 63. */
2547     return ((res >> 1) ^ over) + round;
2548 }
2549 
2550 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
2551 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
2552 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
2553 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
2554 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1, clearb)
2555 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2, clearh)
2556 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4, clearl)
2557 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8, clearq)
2558 
2559 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
2560 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
2561 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
2562 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
2563 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1, clearb)
2564 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2, clearh)
2565 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4, clearl)
2566 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8, clearq)
2567 
2568 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2569 {
2570     int64_t res = (int64_t)a - b;
2571     uint8_t round = get_round(vxrm, res, 1);
2572 
2573     return (res >> 1) + round;
2574 }
2575 
2576 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2577 {
2578     int64_t res = (int64_t)a - b;
2579     uint8_t round = get_round(vxrm, res, 1);
2580     int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
2581 
2582     /* With signed overflow, bit 64 is inverse of bit 63. */
2583     return ((res >> 1) ^ over) + round;
2584 }
2585 
2586 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
2587 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
2588 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
2589 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
2590 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1, clearb)
2591 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2, clearh)
2592 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4, clearl)
2593 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8, clearq)
2594 
2595 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
2596 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
2597 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
2598 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
2599 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1, clearb)
2600 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2, clearh)
2601 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4, clearl)
2602 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8, clearq)
2603 
2604 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2605 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2606 {
2607     uint8_t round;
2608     int16_t res;
2609 
2610     res = (int16_t)a * (int16_t)b;
2611     round = get_round(vxrm, res, 7);
2612     res   = (res >> 7) + round;
2613 
2614     if (res > INT8_MAX) {
2615         env->vxsat = 0x1;
2616         return INT8_MAX;
2617     } else if (res < INT8_MIN) {
2618         env->vxsat = 0x1;
2619         return INT8_MIN;
2620     } else {
2621         return res;
2622     }
2623 }
2624 
2625 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2626 {
2627     uint8_t round;
2628     int32_t res;
2629 
2630     res = (int32_t)a * (int32_t)b;
2631     round = get_round(vxrm, res, 15);
2632     res   = (res >> 15) + round;
2633 
2634     if (res > INT16_MAX) {
2635         env->vxsat = 0x1;
2636         return INT16_MAX;
2637     } else if (res < INT16_MIN) {
2638         env->vxsat = 0x1;
2639         return INT16_MIN;
2640     } else {
2641         return res;
2642     }
2643 }
2644 
2645 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2646 {
2647     uint8_t round;
2648     int64_t res;
2649 
2650     res = (int64_t)a * (int64_t)b;
2651     round = get_round(vxrm, res, 31);
2652     res   = (res >> 31) + round;
2653 
2654     if (res > INT32_MAX) {
2655         env->vxsat = 0x1;
2656         return INT32_MAX;
2657     } else if (res < INT32_MIN) {
2658         env->vxsat = 0x1;
2659         return INT32_MIN;
2660     } else {
2661         return res;
2662     }
2663 }
2664 
2665 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2666 {
2667     uint8_t round;
2668     uint64_t hi_64, lo_64;
2669     int64_t res;
2670 
2671     if (a == INT64_MIN && b == INT64_MIN) {
2672         env->vxsat = 1;
2673         return INT64_MAX;
2674     }
2675 
2676     muls64(&lo_64, &hi_64, a, b);
2677     round = get_round(vxrm, lo_64, 63);
2678     /*
2679      * Cannot overflow, as there are always
2680      * 2 sign bits after multiply.
2681      */
2682     res = (hi_64 << 1) | (lo_64 >> 63);
2683     if (round) {
2684         if (res == INT64_MAX) {
2685             env->vxsat = 1;
2686         } else {
2687             res += 1;
2688         }
2689     }
2690     return res;
2691 }
2692 
2693 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
2694 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
2695 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
2696 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
2697 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1, clearb)
2698 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2, clearh)
2699 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4, clearl)
2700 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8, clearq)
2701 
2702 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
2703 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
2704 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
2705 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
2706 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1, clearb)
2707 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2, clearh)
2708 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4, clearl)
2709 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8, clearq)
2710 
2711 /* Vector Widening Saturating Scaled Multiply-Add */
2712 static inline uint16_t
2713 vwsmaccu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b,
2714           uint16_t c)
2715 {
2716     uint8_t round;
2717     uint16_t res = (uint16_t)a * b;
2718 
2719     round = get_round(vxrm, res, 4);
2720     res   = (res >> 4) + round;
2721     return saddu16(env, vxrm, c, res);
2722 }
2723 
2724 static inline uint32_t
2725 vwsmaccu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b,
2726            uint32_t c)
2727 {
2728     uint8_t round;
2729     uint32_t res = (uint32_t)a * b;
2730 
2731     round = get_round(vxrm, res, 8);
2732     res   = (res >> 8) + round;
2733     return saddu32(env, vxrm, c, res);
2734 }
2735 
2736 static inline uint64_t
2737 vwsmaccu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b,
2738            uint64_t c)
2739 {
2740     uint8_t round;
2741     uint64_t res = (uint64_t)a * b;
2742 
2743     round = get_round(vxrm, res, 16);
2744     res   = (res >> 16) + round;
2745     return saddu64(env, vxrm, c, res);
2746 }
2747 
2748 #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)    \
2749 static inline void                                                 \
2750 do_##NAME(void *vd, void *vs1, void *vs2, int i,                   \
2751           CPURISCVState *env, int vxrm)                            \
2752 {                                                                  \
2753     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
2754     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
2755     TD d = *((TD *)vd + HD(i));                                    \
2756     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d);                \
2757 }
2758 
2759 RVVCALL(OPIVV3_RM, vwsmaccu_vv_b, WOP_UUU_B, H2, H1, H1, vwsmaccu8)
2760 RVVCALL(OPIVV3_RM, vwsmaccu_vv_h, WOP_UUU_H, H4, H2, H2, vwsmaccu16)
2761 RVVCALL(OPIVV3_RM, vwsmaccu_vv_w, WOP_UUU_W, H8, H4, H4, vwsmaccu32)
2762 GEN_VEXT_VV_RM(vwsmaccu_vv_b, 1, 2, clearh)
2763 GEN_VEXT_VV_RM(vwsmaccu_vv_h, 2, 4, clearl)
2764 GEN_VEXT_VV_RM(vwsmaccu_vv_w, 4, 8, clearq)
2765 
2766 #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)         \
2767 static inline void                                                 \
2768 do_##NAME(void *vd, target_long s1, void *vs2, int i,              \
2769           CPURISCVState *env, int vxrm)                            \
2770 {                                                                  \
2771     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
2772     TD d = *((TD *)vd + HD(i));                                    \
2773     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d);       \
2774 }
2775 
2776 RVVCALL(OPIVX3_RM, vwsmaccu_vx_b, WOP_UUU_B, H2, H1, vwsmaccu8)
2777 RVVCALL(OPIVX3_RM, vwsmaccu_vx_h, WOP_UUU_H, H4, H2, vwsmaccu16)
2778 RVVCALL(OPIVX3_RM, vwsmaccu_vx_w, WOP_UUU_W, H8, H4, vwsmaccu32)
2779 GEN_VEXT_VX_RM(vwsmaccu_vx_b, 1, 2, clearh)
2780 GEN_VEXT_VX_RM(vwsmaccu_vx_h, 2, 4, clearl)
2781 GEN_VEXT_VX_RM(vwsmaccu_vx_w, 4, 8, clearq)
2782 
2783 static inline int16_t
2784 vwsmacc8(CPURISCVState *env, int vxrm, int8_t a, int8_t b, int16_t c)
2785 {
2786     uint8_t round;
2787     int16_t res = (int16_t)a * b;
2788 
2789     round = get_round(vxrm, res, 4);
2790     res   = (res >> 4) + round;
2791     return sadd16(env, vxrm, c, res);
2792 }
2793 
2794 static inline int32_t
2795 vwsmacc16(CPURISCVState *env, int vxrm, int16_t a, int16_t b, int32_t c)
2796 {
2797     uint8_t round;
2798     int32_t res = (int32_t)a * b;
2799 
2800     round = get_round(vxrm, res, 8);
2801     res   = (res >> 8) + round;
2802     return sadd32(env, vxrm, c, res);
2803 
2804 }
2805 
2806 static inline int64_t
2807 vwsmacc32(CPURISCVState *env, int vxrm, int32_t a, int32_t b, int64_t c)
2808 {
2809     uint8_t round;
2810     int64_t res = (int64_t)a * b;
2811 
2812     round = get_round(vxrm, res, 16);
2813     res   = (res >> 16) + round;
2814     return sadd64(env, vxrm, c, res);
2815 }
2816 
2817 RVVCALL(OPIVV3_RM, vwsmacc_vv_b, WOP_SSS_B, H2, H1, H1, vwsmacc8)
2818 RVVCALL(OPIVV3_RM, vwsmacc_vv_h, WOP_SSS_H, H4, H2, H2, vwsmacc16)
2819 RVVCALL(OPIVV3_RM, vwsmacc_vv_w, WOP_SSS_W, H8, H4, H4, vwsmacc32)
2820 GEN_VEXT_VV_RM(vwsmacc_vv_b, 1, 2, clearh)
2821 GEN_VEXT_VV_RM(vwsmacc_vv_h, 2, 4, clearl)
2822 GEN_VEXT_VV_RM(vwsmacc_vv_w, 4, 8, clearq)
2823 RVVCALL(OPIVX3_RM, vwsmacc_vx_b, WOP_SSS_B, H2, H1, vwsmacc8)
2824 RVVCALL(OPIVX3_RM, vwsmacc_vx_h, WOP_SSS_H, H4, H2, vwsmacc16)
2825 RVVCALL(OPIVX3_RM, vwsmacc_vx_w, WOP_SSS_W, H8, H4, vwsmacc32)
2826 GEN_VEXT_VX_RM(vwsmacc_vx_b, 1, 2, clearh)
2827 GEN_VEXT_VX_RM(vwsmacc_vx_h, 2, 4, clearl)
2828 GEN_VEXT_VX_RM(vwsmacc_vx_w, 4, 8, clearq)
2829 
2830 static inline int16_t
2831 vwsmaccsu8(CPURISCVState *env, int vxrm, uint8_t a, int8_t b, int16_t c)
2832 {
2833     uint8_t round;
2834     int16_t res = a * (int16_t)b;
2835 
2836     round = get_round(vxrm, res, 4);
2837     res   = (res >> 4) + round;
2838     return ssub16(env, vxrm, c, res);
2839 }
2840 
2841 static inline int32_t
2842 vwsmaccsu16(CPURISCVState *env, int vxrm, uint16_t a, int16_t b, uint32_t c)
2843 {
2844     uint8_t round;
2845     int32_t res = a * (int32_t)b;
2846 
2847     round = get_round(vxrm, res, 8);
2848     res   = (res >> 8) + round;
2849     return ssub32(env, vxrm, c, res);
2850 }
2851 
2852 static inline int64_t
2853 vwsmaccsu32(CPURISCVState *env, int vxrm, uint32_t a, int32_t b, int64_t c)
2854 {
2855     uint8_t round;
2856     int64_t res = a * (int64_t)b;
2857 
2858     round = get_round(vxrm, res, 16);
2859     res   = (res >> 16) + round;
2860     return ssub64(env, vxrm, c, res);
2861 }
2862 
2863 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, vwsmaccsu8)
2864 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, vwsmaccsu16)
2865 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, vwsmaccsu32)
2866 GEN_VEXT_VV_RM(vwsmaccsu_vv_b, 1, 2, clearh)
2867 GEN_VEXT_VV_RM(vwsmaccsu_vv_h, 2, 4, clearl)
2868 GEN_VEXT_VV_RM(vwsmaccsu_vv_w, 4, 8, clearq)
2869 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_b, WOP_SSU_B, H2, H1, vwsmaccsu8)
2870 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_h, WOP_SSU_H, H4, H2, vwsmaccsu16)
2871 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_w, WOP_SSU_W, H8, H4, vwsmaccsu32)
2872 GEN_VEXT_VX_RM(vwsmaccsu_vx_b, 1, 2, clearh)
2873 GEN_VEXT_VX_RM(vwsmaccsu_vx_h, 2, 4, clearl)
2874 GEN_VEXT_VX_RM(vwsmaccsu_vx_w, 4, 8, clearq)
2875 
2876 static inline int16_t
2877 vwsmaccus8(CPURISCVState *env, int vxrm, int8_t a, uint8_t b, int16_t c)
2878 {
2879     uint8_t round;
2880     int16_t res = (int16_t)a * b;
2881 
2882     round = get_round(vxrm, res, 4);
2883     res   = (res >> 4) + round;
2884     return ssub16(env, vxrm, c, res);
2885 }
2886 
2887 static inline int32_t
2888 vwsmaccus16(CPURISCVState *env, int vxrm, int16_t a, uint16_t b, int32_t c)
2889 {
2890     uint8_t round;
2891     int32_t res = (int32_t)a * b;
2892 
2893     round = get_round(vxrm, res, 8);
2894     res   = (res >> 8) + round;
2895     return ssub32(env, vxrm, c, res);
2896 }
2897 
2898 static inline int64_t
2899 vwsmaccus32(CPURISCVState *env, int vxrm, int32_t a, uint32_t b, int64_t c)
2900 {
2901     uint8_t round;
2902     int64_t res = (int64_t)a * b;
2903 
2904     round = get_round(vxrm, res, 16);
2905     res   = (res >> 16) + round;
2906     return ssub64(env, vxrm, c, res);
2907 }
2908 
2909 RVVCALL(OPIVX3_RM, vwsmaccus_vx_b, WOP_SUS_B, H2, H1, vwsmaccus8)
2910 RVVCALL(OPIVX3_RM, vwsmaccus_vx_h, WOP_SUS_H, H4, H2, vwsmaccus16)
2911 RVVCALL(OPIVX3_RM, vwsmaccus_vx_w, WOP_SUS_W, H8, H4, vwsmaccus32)
2912 GEN_VEXT_VX_RM(vwsmaccus_vx_b, 1, 2, clearh)
2913 GEN_VEXT_VX_RM(vwsmaccus_vx_h, 2, 4, clearl)
2914 GEN_VEXT_VX_RM(vwsmaccus_vx_w, 4, 8, clearq)
2915 
2916 /* Vector Single-Width Scaling Shift Instructions */
2917 static inline uint8_t
2918 vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2919 {
2920     uint8_t round, shift = b & 0x7;
2921     uint8_t res;
2922 
2923     round = get_round(vxrm, a, shift);
2924     res   = (a >> shift)  + round;
2925     return res;
2926 }
2927 static inline uint16_t
2928 vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
2929 {
2930     uint8_t round, shift = b & 0xf;
2931     uint16_t res;
2932 
2933     round = get_round(vxrm, a, shift);
2934     res   = (a >> shift)  + round;
2935     return res;
2936 }
2937 static inline uint32_t
2938 vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
2939 {
2940     uint8_t round, shift = b & 0x1f;
2941     uint32_t res;
2942 
2943     round = get_round(vxrm, a, shift);
2944     res   = (a >> shift)  + round;
2945     return res;
2946 }
2947 static inline uint64_t
2948 vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
2949 {
2950     uint8_t round, shift = b & 0x3f;
2951     uint64_t res;
2952 
2953     round = get_round(vxrm, a, shift);
2954     res   = (a >> shift)  + round;
2955     return res;
2956 }
2957 RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
2958 RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
2959 RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
2960 RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
2961 GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1, clearb)
2962 GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2, clearh)
2963 GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4, clearl)
2964 GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8, clearq)
2965 
2966 RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
2967 RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
2968 RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
2969 RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
2970 GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1, clearb)
2971 GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2, clearh)
2972 GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4, clearl)
2973 GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8, clearq)
2974 
2975 static inline int8_t
2976 vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2977 {
2978     uint8_t round, shift = b & 0x7;
2979     int8_t res;
2980 
2981     round = get_round(vxrm, a, shift);
2982     res   = (a >> shift)  + round;
2983     return res;
2984 }
2985 static inline int16_t
2986 vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2987 {
2988     uint8_t round, shift = b & 0xf;
2989     int16_t res;
2990 
2991     round = get_round(vxrm, a, shift);
2992     res   = (a >> shift)  + round;
2993     return res;
2994 }
2995 static inline int32_t
2996 vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2997 {
2998     uint8_t round, shift = b & 0x1f;
2999     int32_t res;
3000 
3001     round = get_round(vxrm, a, shift);
3002     res   = (a >> shift)  + round;
3003     return res;
3004 }
3005 static inline int64_t
3006 vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
3007 {
3008     uint8_t round, shift = b & 0x3f;
3009     int64_t res;
3010 
3011     round = get_round(vxrm, a, shift);
3012     res   = (a >> shift)  + round;
3013     return res;
3014 }
3015 
3016 RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
3017 RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
3018 RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
3019 RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
3020 GEN_VEXT_VV_RM(vssra_vv_b, 1, 1, clearb)
3021 GEN_VEXT_VV_RM(vssra_vv_h, 2, 2, clearh)
3022 GEN_VEXT_VV_RM(vssra_vv_w, 4, 4, clearl)
3023 GEN_VEXT_VV_RM(vssra_vv_d, 8, 8, clearq)
3024 
3025 RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
3026 RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
3027 RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
3028 RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
3029 GEN_VEXT_VX_RM(vssra_vx_b, 1, 1, clearb)
3030 GEN_VEXT_VX_RM(vssra_vx_h, 2, 2, clearh)
3031 GEN_VEXT_VX_RM(vssra_vx_w, 4, 4, clearl)
3032 GEN_VEXT_VX_RM(vssra_vx_d, 8, 8, clearq)
3033 
3034 /* Vector Narrowing Fixed-Point Clip Instructions */
3035 static inline int8_t
3036 vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
3037 {
3038     uint8_t round, shift = b & 0xf;
3039     int16_t res;
3040 
3041     round = get_round(vxrm, a, shift);
3042     res   = (a >> shift)  + round;
3043     if (res > INT8_MAX) {
3044         env->vxsat = 0x1;
3045         return INT8_MAX;
3046     } else if (res < INT8_MIN) {
3047         env->vxsat = 0x1;
3048         return INT8_MIN;
3049     } else {
3050         return res;
3051     }
3052 }
3053 
3054 static inline int16_t
3055 vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
3056 {
3057     uint8_t round, shift = b & 0x1f;
3058     int32_t res;
3059 
3060     round = get_round(vxrm, a, shift);
3061     res   = (a >> shift)  + round;
3062     if (res > INT16_MAX) {
3063         env->vxsat = 0x1;
3064         return INT16_MAX;
3065     } else if (res < INT16_MIN) {
3066         env->vxsat = 0x1;
3067         return INT16_MIN;
3068     } else {
3069         return res;
3070     }
3071 }
3072 
3073 static inline int32_t
3074 vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
3075 {
3076     uint8_t round, shift = b & 0x3f;
3077     int64_t res;
3078 
3079     round = get_round(vxrm, a, shift);
3080     res   = (a >> shift)  + round;
3081     if (res > INT32_MAX) {
3082         env->vxsat = 0x1;
3083         return INT32_MAX;
3084     } else if (res < INT32_MIN) {
3085         env->vxsat = 0x1;
3086         return INT32_MIN;
3087     } else {
3088         return res;
3089     }
3090 }
3091 
3092 RVVCALL(OPIVV2_RM, vnclip_vv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
3093 RVVCALL(OPIVV2_RM, vnclip_vv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
3094 RVVCALL(OPIVV2_RM, vnclip_vv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
3095 GEN_VEXT_VV_RM(vnclip_vv_b, 1, 1, clearb)
3096 GEN_VEXT_VV_RM(vnclip_vv_h, 2, 2, clearh)
3097 GEN_VEXT_VV_RM(vnclip_vv_w, 4, 4, clearl)
3098 
3099 RVVCALL(OPIVX2_RM, vnclip_vx_b, NOP_SSS_B, H1, H2, vnclip8)
3100 RVVCALL(OPIVX2_RM, vnclip_vx_h, NOP_SSS_H, H2, H4, vnclip16)
3101 RVVCALL(OPIVX2_RM, vnclip_vx_w, NOP_SSS_W, H4, H8, vnclip32)
3102 GEN_VEXT_VX_RM(vnclip_vx_b, 1, 1, clearb)
3103 GEN_VEXT_VX_RM(vnclip_vx_h, 2, 2, clearh)
3104 GEN_VEXT_VX_RM(vnclip_vx_w, 4, 4, clearl)
3105 
3106 static inline uint8_t
3107 vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
3108 {
3109     uint8_t round, shift = b & 0xf;
3110     uint16_t res;
3111 
3112     round = get_round(vxrm, a, shift);
3113     res   = (a >> shift)  + round;
3114     if (res > UINT8_MAX) {
3115         env->vxsat = 0x1;
3116         return UINT8_MAX;
3117     } else {
3118         return res;
3119     }
3120 }
3121 
3122 static inline uint16_t
3123 vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
3124 {
3125     uint8_t round, shift = b & 0x1f;
3126     uint32_t res;
3127 
3128     round = get_round(vxrm, a, shift);
3129     res   = (a >> shift)  + round;
3130     if (res > UINT16_MAX) {
3131         env->vxsat = 0x1;
3132         return UINT16_MAX;
3133     } else {
3134         return res;
3135     }
3136 }
3137 
3138 static inline uint32_t
3139 vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
3140 {
3141     uint8_t round, shift = b & 0x3f;
3142     int64_t res;
3143 
3144     round = get_round(vxrm, a, shift);
3145     res   = (a >> shift)  + round;
3146     if (res > UINT32_MAX) {
3147         env->vxsat = 0x1;
3148         return UINT32_MAX;
3149     } else {
3150         return res;
3151     }
3152 }
3153 
3154 RVVCALL(OPIVV2_RM, vnclipu_vv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
3155 RVVCALL(OPIVV2_RM, vnclipu_vv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
3156 RVVCALL(OPIVV2_RM, vnclipu_vv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
3157 GEN_VEXT_VV_RM(vnclipu_vv_b, 1, 1, clearb)
3158 GEN_VEXT_VV_RM(vnclipu_vv_h, 2, 2, clearh)
3159 GEN_VEXT_VV_RM(vnclipu_vv_w, 4, 4, clearl)
3160 
3161 RVVCALL(OPIVX2_RM, vnclipu_vx_b, NOP_UUU_B, H1, H2, vnclipu8)
3162 RVVCALL(OPIVX2_RM, vnclipu_vx_h, NOP_UUU_H, H2, H4, vnclipu16)
3163 RVVCALL(OPIVX2_RM, vnclipu_vx_w, NOP_UUU_W, H4, H8, vnclipu32)
3164 GEN_VEXT_VX_RM(vnclipu_vx_b, 1, 1, clearb)
3165 GEN_VEXT_VX_RM(vnclipu_vx_h, 2, 2, clearh)
3166 GEN_VEXT_VX_RM(vnclipu_vx_w, 4, 4, clearl)
3167 
3168 /*
3169  *** Vector Float Point Arithmetic Instructions
3170  */
3171 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
3172 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)   \
3173 static void do_##NAME(void *vd, void *vs1, void *vs2, int i,   \
3174                       CPURISCVState *env)                      \
3175 {                                                              \
3176     TX1 s1 = *((T1 *)vs1 + HS1(i));                            \
3177     TX2 s2 = *((T2 *)vs2 + HS2(i));                            \
3178     *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status);         \
3179 }
3180 
3181 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ, CLEAR_FN)         \
3182 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
3183                   void *vs2, CPURISCVState *env,          \
3184                   uint32_t desc)                          \
3185 {                                                         \
3186     uint32_t vlmax = vext_maxsz(desc) / ESZ;              \
3187     uint32_t mlen = vext_mlen(desc);                      \
3188     uint32_t vm = vext_vm(desc);                          \
3189     uint32_t vl = env->vl;                                \
3190     uint32_t i;                                           \
3191                                                           \
3192     for (i = 0; i < vl; i++) {                            \
3193         if (!vm && !vext_elem_mask(v0, mlen, i)) {        \
3194             continue;                                     \
3195         }                                                 \
3196         do_##NAME(vd, vs1, vs2, i, env);                  \
3197     }                                                     \
3198     CLEAR_FN(vd, vl, vl * DSZ,  vlmax * DSZ);             \
3199 }
3200 
3201 RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
3202 RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
3203 RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
3204 GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2, clearh)
3205 GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4, clearl)
3206 GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8, clearq)
3207 
3208 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)        \
3209 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3210                       CPURISCVState *env)                      \
3211 {                                                              \
3212     TX2 s2 = *((T2 *)vs2 + HS2(i));                            \
3213     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
3214 }
3215 
3216 #define GEN_VEXT_VF(NAME, ESZ, DSZ, CLEAR_FN)             \
3217 void HELPER(NAME)(void *vd, void *v0, uint64_t s1,        \
3218                   void *vs2, CPURISCVState *env,          \
3219                   uint32_t desc)                          \
3220 {                                                         \
3221     uint32_t vlmax = vext_maxsz(desc) / ESZ;              \
3222     uint32_t mlen = vext_mlen(desc);                      \
3223     uint32_t vm = vext_vm(desc);                          \
3224     uint32_t vl = env->vl;                                \
3225     uint32_t i;                                           \
3226                                                           \
3227     for (i = 0; i < vl; i++) {                            \
3228         if (!vm && !vext_elem_mask(v0, mlen, i)) {        \
3229             continue;                                     \
3230         }                                                 \
3231         do_##NAME(vd, s1, vs2, i, env);                   \
3232     }                                                     \
3233     CLEAR_FN(vd, vl, vl * DSZ,  vlmax * DSZ);             \
3234 }
3235 
3236 RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
3237 RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
3238 RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
3239 GEN_VEXT_VF(vfadd_vf_h, 2, 2, clearh)
3240 GEN_VEXT_VF(vfadd_vf_w, 4, 4, clearl)
3241 GEN_VEXT_VF(vfadd_vf_d, 8, 8, clearq)
3242 
3243 RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
3244 RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
3245 RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
3246 GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2, clearh)
3247 GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4, clearl)
3248 GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8, clearq)
3249 RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
3250 RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
3251 RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
3252 GEN_VEXT_VF(vfsub_vf_h, 2, 2, clearh)
3253 GEN_VEXT_VF(vfsub_vf_w, 4, 4, clearl)
3254 GEN_VEXT_VF(vfsub_vf_d, 8, 8, clearq)
3255 
3256 static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
3257 {
3258     return float16_sub(b, a, s);
3259 }
3260 
3261 static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
3262 {
3263     return float32_sub(b, a, s);
3264 }
3265 
3266 static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
3267 {
3268     return float64_sub(b, a, s);
3269 }
3270 
3271 RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
3272 RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
3273 RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
3274 GEN_VEXT_VF(vfrsub_vf_h, 2, 2, clearh)
3275 GEN_VEXT_VF(vfrsub_vf_w, 4, 4, clearl)
3276 GEN_VEXT_VF(vfrsub_vf_d, 8, 8, clearq)
3277 
3278 /* Vector Widening Floating-Point Add/Subtract Instructions */
3279 static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
3280 {
3281     return float32_add(float16_to_float32(a, true, s),
3282             float16_to_float32(b, true, s), s);
3283 }
3284 
3285 static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
3286 {
3287     return float64_add(float32_to_float64(a, s),
3288             float32_to_float64(b, s), s);
3289 
3290 }
3291 
3292 RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
3293 RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
3294 GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4, clearl)
3295 GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8, clearq)
3296 RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
3297 RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
3298 GEN_VEXT_VF(vfwadd_vf_h, 2, 4, clearl)
3299 GEN_VEXT_VF(vfwadd_vf_w, 4, 8, clearq)
3300 
3301 static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
3302 {
3303     return float32_sub(float16_to_float32(a, true, s),
3304             float16_to_float32(b, true, s), s);
3305 }
3306 
3307 static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
3308 {
3309     return float64_sub(float32_to_float64(a, s),
3310             float32_to_float64(b, s), s);
3311 
3312 }
3313 
3314 RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
3315 RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
3316 GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4, clearl)
3317 GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8, clearq)
3318 RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
3319 RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
3320 GEN_VEXT_VF(vfwsub_vf_h, 2, 4, clearl)
3321 GEN_VEXT_VF(vfwsub_vf_w, 4, 8, clearq)
3322 
3323 static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
3324 {
3325     return float32_add(a, float16_to_float32(b, true, s), s);
3326 }
3327 
3328 static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
3329 {
3330     return float64_add(a, float32_to_float64(b, s), s);
3331 }
3332 
3333 RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
3334 RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
3335 GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4, clearl)
3336 GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8, clearq)
3337 RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
3338 RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
3339 GEN_VEXT_VF(vfwadd_wf_h, 2, 4, clearl)
3340 GEN_VEXT_VF(vfwadd_wf_w, 4, 8, clearq)
3341 
3342 static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
3343 {
3344     return float32_sub(a, float16_to_float32(b, true, s), s);
3345 }
3346 
3347 static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
3348 {
3349     return float64_sub(a, float32_to_float64(b, s), s);
3350 }
3351 
3352 RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
3353 RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
3354 GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4, clearl)
3355 GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8, clearq)
3356 RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
3357 RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
3358 GEN_VEXT_VF(vfwsub_wf_h, 2, 4, clearl)
3359 GEN_VEXT_VF(vfwsub_wf_w, 4, 8, clearq)
3360 
3361 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
3362 RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
3363 RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
3364 RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
3365 GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2, clearh)
3366 GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4, clearl)
3367 GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8, clearq)
3368 RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
3369 RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
3370 RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
3371 GEN_VEXT_VF(vfmul_vf_h, 2, 2, clearh)
3372 GEN_VEXT_VF(vfmul_vf_w, 4, 4, clearl)
3373 GEN_VEXT_VF(vfmul_vf_d, 8, 8, clearq)
3374 
3375 RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
3376 RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
3377 RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
3378 GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2, clearh)
3379 GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4, clearl)
3380 GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8, clearq)
3381 RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
3382 RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
3383 RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
3384 GEN_VEXT_VF(vfdiv_vf_h, 2, 2, clearh)
3385 GEN_VEXT_VF(vfdiv_vf_w, 4, 4, clearl)
3386 GEN_VEXT_VF(vfdiv_vf_d, 8, 8, clearq)
3387 
3388 static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
3389 {
3390     return float16_div(b, a, s);
3391 }
3392 
3393 static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
3394 {
3395     return float32_div(b, a, s);
3396 }
3397 
3398 static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
3399 {
3400     return float64_div(b, a, s);
3401 }
3402 
3403 RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
3404 RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
3405 RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
3406 GEN_VEXT_VF(vfrdiv_vf_h, 2, 2, clearh)
3407 GEN_VEXT_VF(vfrdiv_vf_w, 4, 4, clearl)
3408 GEN_VEXT_VF(vfrdiv_vf_d, 8, 8, clearq)
3409 
3410 /* Vector Widening Floating-Point Multiply */
3411 static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
3412 {
3413     return float32_mul(float16_to_float32(a, true, s),
3414             float16_to_float32(b, true, s), s);
3415 }
3416 
3417 static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
3418 {
3419     return float64_mul(float32_to_float64(a, s),
3420             float32_to_float64(b, s), s);
3421 
3422 }
3423 RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
3424 RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
3425 GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4, clearl)
3426 GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8, clearq)
3427 RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
3428 RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
3429 GEN_VEXT_VF(vfwmul_vf_h, 2, 4, clearl)
3430 GEN_VEXT_VF(vfwmul_vf_w, 4, 8, clearq)
3431 
3432 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3433 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)       \
3434 static void do_##NAME(void *vd, void *vs1, void *vs2, int i,       \
3435         CPURISCVState *env)                                        \
3436 {                                                                  \
3437     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
3438     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
3439     TD d = *((TD *)vd + HD(i));                                    \
3440     *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status);          \
3441 }
3442 
3443 static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3444 {
3445     return float16_muladd(a, b, d, 0, s);
3446 }
3447 
3448 static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3449 {
3450     return float32_muladd(a, b, d, 0, s);
3451 }
3452 
3453 static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3454 {
3455     return float64_muladd(a, b, d, 0, s);
3456 }
3457 
3458 RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
3459 RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
3460 RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
3461 GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2, clearh)
3462 GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4, clearl)
3463 GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8, clearq)
3464 
3465 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)           \
3466 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i,    \
3467         CPURISCVState *env)                                       \
3468 {                                                                 \
3469     TX2 s2 = *((T2 *)vs2 + HS2(i));                               \
3470     TD d = *((TD *)vd + HD(i));                                   \
3471     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3472 }
3473 
3474 RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
3475 RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
3476 RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
3477 GEN_VEXT_VF(vfmacc_vf_h, 2, 2, clearh)
3478 GEN_VEXT_VF(vfmacc_vf_w, 4, 4, clearl)
3479 GEN_VEXT_VF(vfmacc_vf_d, 8, 8, clearq)
3480 
3481 static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3482 {
3483     return float16_muladd(a, b, d,
3484             float_muladd_negate_c | float_muladd_negate_product, s);
3485 }
3486 
3487 static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3488 {
3489     return float32_muladd(a, b, d,
3490             float_muladd_negate_c | float_muladd_negate_product, s);
3491 }
3492 
3493 static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3494 {
3495     return float64_muladd(a, b, d,
3496             float_muladd_negate_c | float_muladd_negate_product, s);
3497 }
3498 
3499 RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
3500 RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
3501 RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
3502 GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2, clearh)
3503 GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4, clearl)
3504 GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8, clearq)
3505 RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
3506 RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
3507 RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
3508 GEN_VEXT_VF(vfnmacc_vf_h, 2, 2, clearh)
3509 GEN_VEXT_VF(vfnmacc_vf_w, 4, 4, clearl)
3510 GEN_VEXT_VF(vfnmacc_vf_d, 8, 8, clearq)
3511 
3512 static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3513 {
3514     return float16_muladd(a, b, d, float_muladd_negate_c, s);
3515 }
3516 
3517 static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3518 {
3519     return float32_muladd(a, b, d, float_muladd_negate_c, s);
3520 }
3521 
3522 static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3523 {
3524     return float64_muladd(a, b, d, float_muladd_negate_c, s);
3525 }
3526 
3527 RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
3528 RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
3529 RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
3530 GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2, clearh)
3531 GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4, clearl)
3532 GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8, clearq)
3533 RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
3534 RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
3535 RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
3536 GEN_VEXT_VF(vfmsac_vf_h, 2, 2, clearh)
3537 GEN_VEXT_VF(vfmsac_vf_w, 4, 4, clearl)
3538 GEN_VEXT_VF(vfmsac_vf_d, 8, 8, clearq)
3539 
3540 static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3541 {
3542     return float16_muladd(a, b, d, float_muladd_negate_product, s);
3543 }
3544 
3545 static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3546 {
3547     return float32_muladd(a, b, d, float_muladd_negate_product, s);
3548 }
3549 
3550 static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3551 {
3552     return float64_muladd(a, b, d, float_muladd_negate_product, s);
3553 }
3554 
3555 RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
3556 RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
3557 RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
3558 GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2, clearh)
3559 GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4, clearl)
3560 GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8, clearq)
3561 RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
3562 RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
3563 RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
3564 GEN_VEXT_VF(vfnmsac_vf_h, 2, 2, clearh)
3565 GEN_VEXT_VF(vfnmsac_vf_w, 4, 4, clearl)
3566 GEN_VEXT_VF(vfnmsac_vf_d, 8, 8, clearq)
3567 
3568 static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3569 {
3570     return float16_muladd(d, b, a, 0, s);
3571 }
3572 
3573 static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3574 {
3575     return float32_muladd(d, b, a, 0, s);
3576 }
3577 
3578 static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3579 {
3580     return float64_muladd(d, b, a, 0, s);
3581 }
3582 
3583 RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
3584 RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
3585 RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
3586 GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2, clearh)
3587 GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4, clearl)
3588 GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8, clearq)
3589 RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
3590 RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
3591 RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
3592 GEN_VEXT_VF(vfmadd_vf_h, 2, 2, clearh)
3593 GEN_VEXT_VF(vfmadd_vf_w, 4, 4, clearl)
3594 GEN_VEXT_VF(vfmadd_vf_d, 8, 8, clearq)
3595 
3596 static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3597 {
3598     return float16_muladd(d, b, a,
3599             float_muladd_negate_c | float_muladd_negate_product, s);
3600 }
3601 
3602 static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3603 {
3604     return float32_muladd(d, b, a,
3605             float_muladd_negate_c | float_muladd_negate_product, s);
3606 }
3607 
3608 static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3609 {
3610     return float64_muladd(d, b, a,
3611             float_muladd_negate_c | float_muladd_negate_product, s);
3612 }
3613 
3614 RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
3615 RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
3616 RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
3617 GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2, clearh)
3618 GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4, clearl)
3619 GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8, clearq)
3620 RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
3621 RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
3622 RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
3623 GEN_VEXT_VF(vfnmadd_vf_h, 2, 2, clearh)
3624 GEN_VEXT_VF(vfnmadd_vf_w, 4, 4, clearl)
3625 GEN_VEXT_VF(vfnmadd_vf_d, 8, 8, clearq)
3626 
3627 static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3628 {
3629     return float16_muladd(d, b, a, float_muladd_negate_c, s);
3630 }
3631 
3632 static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3633 {
3634     return float32_muladd(d, b, a, float_muladd_negate_c, s);
3635 }
3636 
3637 static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3638 {
3639     return float64_muladd(d, b, a, float_muladd_negate_c, s);
3640 }
3641 
3642 RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
3643 RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
3644 RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
3645 GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2, clearh)
3646 GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4, clearl)
3647 GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8, clearq)
3648 RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
3649 RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
3650 RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
3651 GEN_VEXT_VF(vfmsub_vf_h, 2, 2, clearh)
3652 GEN_VEXT_VF(vfmsub_vf_w, 4, 4, clearl)
3653 GEN_VEXT_VF(vfmsub_vf_d, 8, 8, clearq)
3654 
3655 static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3656 {
3657     return float16_muladd(d, b, a, float_muladd_negate_product, s);
3658 }
3659 
3660 static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3661 {
3662     return float32_muladd(d, b, a, float_muladd_negate_product, s);
3663 }
3664 
3665 static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3666 {
3667     return float64_muladd(d, b, a, float_muladd_negate_product, s);
3668 }
3669 
3670 RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
3671 RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
3672 RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
3673 GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2, clearh)
3674 GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4, clearl)
3675 GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8, clearq)
3676 RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
3677 RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
3678 RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
3679 GEN_VEXT_VF(vfnmsub_vf_h, 2, 2, clearh)
3680 GEN_VEXT_VF(vfnmsub_vf_w, 4, 4, clearl)
3681 GEN_VEXT_VF(vfnmsub_vf_d, 8, 8, clearq)
3682 
3683 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3684 static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3685 {
3686     return float32_muladd(float16_to_float32(a, true, s),
3687                         float16_to_float32(b, true, s), d, 0, s);
3688 }
3689 
3690 static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3691 {
3692     return float64_muladd(float32_to_float64(a, s),
3693                         float32_to_float64(b, s), d, 0, s);
3694 }
3695 
3696 RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
3697 RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
3698 GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4, clearl)
3699 GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8, clearq)
3700 RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
3701 RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
3702 GEN_VEXT_VF(vfwmacc_vf_h, 2, 4, clearl)
3703 GEN_VEXT_VF(vfwmacc_vf_w, 4, 8, clearq)
3704 
3705 static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3706 {
3707     return float32_muladd(float16_to_float32(a, true, s),
3708                         float16_to_float32(b, true, s), d,
3709                         float_muladd_negate_c | float_muladd_negate_product, s);
3710 }
3711 
3712 static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3713 {
3714     return float64_muladd(float32_to_float64(a, s),
3715                         float32_to_float64(b, s), d,
3716                         float_muladd_negate_c | float_muladd_negate_product, s);
3717 }
3718 
3719 RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
3720 RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
3721 GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4, clearl)
3722 GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8, clearq)
3723 RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
3724 RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
3725 GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4, clearl)
3726 GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8, clearq)
3727 
3728 static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3729 {
3730     return float32_muladd(float16_to_float32(a, true, s),
3731                         float16_to_float32(b, true, s), d,
3732                         float_muladd_negate_c, s);
3733 }
3734 
3735 static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3736 {
3737     return float64_muladd(float32_to_float64(a, s),
3738                         float32_to_float64(b, s), d,
3739                         float_muladd_negate_c, s);
3740 }
3741 
3742 RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
3743 RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
3744 GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4, clearl)
3745 GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8, clearq)
3746 RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
3747 RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
3748 GEN_VEXT_VF(vfwmsac_vf_h, 2, 4, clearl)
3749 GEN_VEXT_VF(vfwmsac_vf_w, 4, 8, clearq)
3750 
3751 static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3752 {
3753     return float32_muladd(float16_to_float32(a, true, s),
3754                         float16_to_float32(b, true, s), d,
3755                         float_muladd_negate_product, s);
3756 }
3757 
3758 static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3759 {
3760     return float64_muladd(float32_to_float64(a, s),
3761                         float32_to_float64(b, s), d,
3762                         float_muladd_negate_product, s);
3763 }
3764 
3765 RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
3766 RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
3767 GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4, clearl)
3768 GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8, clearq)
3769 RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
3770 RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
3771 GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4, clearl)
3772 GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8, clearq)
3773 
3774 /* Vector Floating-Point Square-Root Instruction */
3775 /* (TD, T2, TX2) */
3776 #define OP_UU_H uint16_t, uint16_t, uint16_t
3777 #define OP_UU_W uint32_t, uint32_t, uint32_t
3778 #define OP_UU_D uint64_t, uint64_t, uint64_t
3779 
3780 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP)        \
3781 static void do_##NAME(void *vd, void *vs2, int i,      \
3782         CPURISCVState *env)                            \
3783 {                                                      \
3784     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
3785     *((TD *)vd + HD(i)) = OP(s2, &env->fp_status);     \
3786 }
3787 
3788 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ, CLEAR_FN)       \
3789 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
3790         CPURISCVState *env, uint32_t desc)             \
3791 {                                                      \
3792     uint32_t vlmax = vext_maxsz(desc) / ESZ;           \
3793     uint32_t mlen = vext_mlen(desc);                   \
3794     uint32_t vm = vext_vm(desc);                       \
3795     uint32_t vl = env->vl;                             \
3796     uint32_t i;                                        \
3797                                                        \
3798     if (vl == 0) {                                     \
3799         return;                                        \
3800     }                                                  \
3801     for (i = 0; i < vl; i++) {                         \
3802         if (!vm && !vext_elem_mask(v0, mlen, i)) {     \
3803             continue;                                  \
3804         }                                              \
3805         do_##NAME(vd, vs2, i, env);                    \
3806     }                                                  \
3807     CLEAR_FN(vd, vl, vl * DSZ,  vlmax * DSZ);          \
3808 }
3809 
3810 RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
3811 RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
3812 RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
3813 GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2, clearh)
3814 GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4, clearl)
3815 GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8, clearq)
3816 
3817 /* Vector Floating-Point MIN/MAX Instructions */
3818 RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minnum)
3819 RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minnum)
3820 RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minnum)
3821 GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2, clearh)
3822 GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4, clearl)
3823 GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8, clearq)
3824 RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minnum)
3825 RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minnum)
3826 RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minnum)
3827 GEN_VEXT_VF(vfmin_vf_h, 2, 2, clearh)
3828 GEN_VEXT_VF(vfmin_vf_w, 4, 4, clearl)
3829 GEN_VEXT_VF(vfmin_vf_d, 8, 8, clearq)
3830 
3831 RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maxnum)
3832 RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maxnum)
3833 RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maxnum)
3834 GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2, clearh)
3835 GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4, clearl)
3836 GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8, clearq)
3837 RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maxnum)
3838 RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maxnum)
3839 RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maxnum)
3840 GEN_VEXT_VF(vfmax_vf_h, 2, 2, clearh)
3841 GEN_VEXT_VF(vfmax_vf_w, 4, 4, clearl)
3842 GEN_VEXT_VF(vfmax_vf_d, 8, 8, clearq)
3843 
3844 /* Vector Floating-Point Sign-Injection Instructions */
3845 static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
3846 {
3847     return deposit64(b, 0, 15, a);
3848 }
3849 
3850 static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
3851 {
3852     return deposit64(b, 0, 31, a);
3853 }
3854 
3855 static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
3856 {
3857     return deposit64(b, 0, 63, a);
3858 }
3859 
3860 RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
3861 RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
3862 RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
3863 GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2, clearh)
3864 GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4, clearl)
3865 GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8, clearq)
3866 RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
3867 RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
3868 RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
3869 GEN_VEXT_VF(vfsgnj_vf_h, 2, 2, clearh)
3870 GEN_VEXT_VF(vfsgnj_vf_w, 4, 4, clearl)
3871 GEN_VEXT_VF(vfsgnj_vf_d, 8, 8, clearq)
3872 
3873 static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
3874 {
3875     return deposit64(~b, 0, 15, a);
3876 }
3877 
3878 static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
3879 {
3880     return deposit64(~b, 0, 31, a);
3881 }
3882 
3883 static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
3884 {
3885     return deposit64(~b, 0, 63, a);
3886 }
3887 
3888 RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
3889 RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
3890 RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
3891 GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2, clearh)
3892 GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4, clearl)
3893 GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8, clearq)
3894 RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
3895 RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
3896 RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
3897 GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2, clearh)
3898 GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4, clearl)
3899 GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8, clearq)
3900 
3901 static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
3902 {
3903     return deposit64(b ^ a, 0, 15, a);
3904 }
3905 
3906 static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
3907 {
3908     return deposit64(b ^ a, 0, 31, a);
3909 }
3910 
3911 static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
3912 {
3913     return deposit64(b ^ a, 0, 63, a);
3914 }
3915 
3916 RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
3917 RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
3918 RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
3919 GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2, clearh)
3920 GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4, clearl)
3921 GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8, clearq)
3922 RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
3923 RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
3924 RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
3925 GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2, clearh)
3926 GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4, clearl)
3927 GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8, clearq)
3928 
3929 /* Vector Floating-Point Compare Instructions */
3930 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP)            \
3931 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
3932                   CPURISCVState *env, uint32_t desc)          \
3933 {                                                             \
3934     uint32_t mlen = vext_mlen(desc);                          \
3935     uint32_t vm = vext_vm(desc);                              \
3936     uint32_t vl = env->vl;                                    \
3937     uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE);        \
3938     uint32_t i;                                               \
3939                                                               \
3940     for (i = 0; i < vl; i++) {                                \
3941         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
3942         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
3943         if (!vm && !vext_elem_mask(v0, mlen, i)) {            \
3944             continue;                                         \
3945         }                                                     \
3946         vext_set_elem_mask(vd, mlen, i,                       \
3947                            DO_OP(s2, s1, &env->fp_status));   \
3948     }                                                         \
3949     for (; i < vlmax; i++) {                                  \
3950         vext_set_elem_mask(vd, mlen, i, 0);                   \
3951     }                                                         \
3952 }
3953 
3954 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
3955 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
3956 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
3957 
3958 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP)                      \
3959 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2,       \
3960                   CPURISCVState *env, uint32_t desc)                \
3961 {                                                                   \
3962     uint32_t mlen = vext_mlen(desc);                                \
3963     uint32_t vm = vext_vm(desc);                                    \
3964     uint32_t vl = env->vl;                                          \
3965     uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE);              \
3966     uint32_t i;                                                     \
3967                                                                     \
3968     for (i = 0; i < vl; i++) {                                      \
3969         ETYPE s2 = *((ETYPE *)vs2 + H(i));                          \
3970         if (!vm && !vext_elem_mask(v0, mlen, i)) {                  \
3971             continue;                                               \
3972         }                                                           \
3973         vext_set_elem_mask(vd, mlen, i,                             \
3974                            DO_OP(s2, (ETYPE)s1, &env->fp_status));  \
3975     }                                                               \
3976     for (; i < vlmax; i++) {                                        \
3977         vext_set_elem_mask(vd, mlen, i, 0);                         \
3978     }                                                               \
3979 }
3980 
3981 GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
3982 GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
3983 GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
3984 
3985 static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
3986 {
3987     FloatRelation compare = float16_compare_quiet(a, b, s);
3988     return compare != float_relation_equal;
3989 }
3990 
3991 static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
3992 {
3993     FloatRelation compare = float32_compare_quiet(a, b, s);
3994     return compare != float_relation_equal;
3995 }
3996 
3997 static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
3998 {
3999     FloatRelation compare = float64_compare_quiet(a, b, s);
4000     return compare != float_relation_equal;
4001 }
4002 
4003 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
4004 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
4005 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
4006 GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
4007 GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
4008 GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
4009 
4010 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
4011 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
4012 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
4013 GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
4014 GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
4015 GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
4016 
4017 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
4018 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
4019 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
4020 GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
4021 GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
4022 GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
4023 
4024 static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
4025 {
4026     FloatRelation compare = float16_compare(a, b, s);
4027     return compare == float_relation_greater;
4028 }
4029 
4030 static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
4031 {
4032     FloatRelation compare = float32_compare(a, b, s);
4033     return compare == float_relation_greater;
4034 }
4035 
4036 static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
4037 {
4038     FloatRelation compare = float64_compare(a, b, s);
4039     return compare == float_relation_greater;
4040 }
4041 
4042 GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
4043 GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
4044 GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
4045 
4046 static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
4047 {
4048     FloatRelation compare = float16_compare(a, b, s);
4049     return compare == float_relation_greater ||
4050            compare == float_relation_equal;
4051 }
4052 
4053 static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
4054 {
4055     FloatRelation compare = float32_compare(a, b, s);
4056     return compare == float_relation_greater ||
4057            compare == float_relation_equal;
4058 }
4059 
4060 static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
4061 {
4062     FloatRelation compare = float64_compare(a, b, s);
4063     return compare == float_relation_greater ||
4064            compare == float_relation_equal;
4065 }
4066 
4067 GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
4068 GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
4069 GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
4070 
4071 GEN_VEXT_CMP_VV_ENV(vmford_vv_h, uint16_t, H2, !float16_unordered_quiet)
4072 GEN_VEXT_CMP_VV_ENV(vmford_vv_w, uint32_t, H4, !float32_unordered_quiet)
4073 GEN_VEXT_CMP_VV_ENV(vmford_vv_d, uint64_t, H8, !float64_unordered_quiet)
4074 GEN_VEXT_CMP_VF(vmford_vf_h, uint16_t, H2, !float16_unordered_quiet)
4075 GEN_VEXT_CMP_VF(vmford_vf_w, uint32_t, H4, !float32_unordered_quiet)
4076 GEN_VEXT_CMP_VF(vmford_vf_d, uint64_t, H8, !float64_unordered_quiet)
4077 
4078 /* Vector Floating-Point Classify Instruction */
4079 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP)         \
4080 static void do_##NAME(void *vd, void *vs2, int i)      \
4081 {                                                      \
4082     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
4083     *((TD *)vd + HD(i)) = OP(s2);                      \
4084 }
4085 
4086 #define GEN_VEXT_V(NAME, ESZ, DSZ, CLEAR_FN)           \
4087 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
4088                   CPURISCVState *env, uint32_t desc)   \
4089 {                                                      \
4090     uint32_t vlmax = vext_maxsz(desc) / ESZ;           \
4091     uint32_t mlen = vext_mlen(desc);                   \
4092     uint32_t vm = vext_vm(desc);                       \
4093     uint32_t vl = env->vl;                             \
4094     uint32_t i;                                        \
4095                                                        \
4096     for (i = 0; i < vl; i++) {                         \
4097         if (!vm && !vext_elem_mask(v0, mlen, i)) {     \
4098             continue;                                  \
4099         }                                              \
4100         do_##NAME(vd, vs2, i);                         \
4101     }                                                  \
4102     CLEAR_FN(vd, vl, vl * DSZ,  vlmax * DSZ);          \
4103 }
4104 
4105 target_ulong fclass_h(uint64_t frs1)
4106 {
4107     float16 f = frs1;
4108     bool sign = float16_is_neg(f);
4109 
4110     if (float16_is_infinity(f)) {
4111         return sign ? 1 << 0 : 1 << 7;
4112     } else if (float16_is_zero(f)) {
4113         return sign ? 1 << 3 : 1 << 4;
4114     } else if (float16_is_zero_or_denormal(f)) {
4115         return sign ? 1 << 2 : 1 << 5;
4116     } else if (float16_is_any_nan(f)) {
4117         float_status s = { }; /* for snan_bit_is_one */
4118         return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4119     } else {
4120         return sign ? 1 << 1 : 1 << 6;
4121     }
4122 }
4123 
4124 target_ulong fclass_s(uint64_t frs1)
4125 {
4126     float32 f = frs1;
4127     bool sign = float32_is_neg(f);
4128 
4129     if (float32_is_infinity(f)) {
4130         return sign ? 1 << 0 : 1 << 7;
4131     } else if (float32_is_zero(f)) {
4132         return sign ? 1 << 3 : 1 << 4;
4133     } else if (float32_is_zero_or_denormal(f)) {
4134         return sign ? 1 << 2 : 1 << 5;
4135     } else if (float32_is_any_nan(f)) {
4136         float_status s = { }; /* for snan_bit_is_one */
4137         return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4138     } else {
4139         return sign ? 1 << 1 : 1 << 6;
4140     }
4141 }
4142 
4143 target_ulong fclass_d(uint64_t frs1)
4144 {
4145     float64 f = frs1;
4146     bool sign = float64_is_neg(f);
4147 
4148     if (float64_is_infinity(f)) {
4149         return sign ? 1 << 0 : 1 << 7;
4150     } else if (float64_is_zero(f)) {
4151         return sign ? 1 << 3 : 1 << 4;
4152     } else if (float64_is_zero_or_denormal(f)) {
4153         return sign ? 1 << 2 : 1 << 5;
4154     } else if (float64_is_any_nan(f)) {
4155         float_status s = { }; /* for snan_bit_is_one */
4156         return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4157     } else {
4158         return sign ? 1 << 1 : 1 << 6;
4159     }
4160 }
4161 
4162 RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
4163 RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
4164 RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
4165 GEN_VEXT_V(vfclass_v_h, 2, 2, clearh)
4166 GEN_VEXT_V(vfclass_v_w, 4, 4, clearl)
4167 GEN_VEXT_V(vfclass_v_d, 8, 8, clearq)
4168 
4169 /* Vector Floating-Point Merge Instruction */
4170 #define GEN_VFMERGE_VF(NAME, ETYPE, H, CLEAR_FN)              \
4171 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
4172                   CPURISCVState *env, uint32_t desc)          \
4173 {                                                             \
4174     uint32_t mlen = vext_mlen(desc);                          \
4175     uint32_t vm = vext_vm(desc);                              \
4176     uint32_t vl = env->vl;                                    \
4177     uint32_t esz = sizeof(ETYPE);                             \
4178     uint32_t vlmax = vext_maxsz(desc) / esz;                  \
4179     uint32_t i;                                               \
4180                                                               \
4181     for (i = 0; i < vl; i++) {                                \
4182         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
4183         *((ETYPE *)vd + H(i))                                 \
4184           = (!vm && !vext_elem_mask(v0, mlen, i) ? s2 : s1);  \
4185     }                                                         \
4186     CLEAR_FN(vd, vl, vl * esz, vlmax * esz);                  \
4187 }
4188 
4189 GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2, clearh)
4190 GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4, clearl)
4191 GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8, clearq)
4192 
4193 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
4194 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4195 RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
4196 RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
4197 RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
4198 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2, clearh)
4199 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4, clearl)
4200 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8, clearq)
4201 
4202 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
4203 RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
4204 RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
4205 RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
4206 GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2, clearh)
4207 GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4, clearl)
4208 GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8, clearq)
4209 
4210 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
4211 RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
4212 RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
4213 RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
4214 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2, clearh)
4215 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4, clearl)
4216 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8, clearq)
4217 
4218 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
4219 RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
4220 RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
4221 RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
4222 GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2, clearh)
4223 GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4, clearl)
4224 GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8, clearq)
4225 
4226 /* Widening Floating-Point/Integer Type-Convert Instructions */
4227 /* (TD, T2, TX2) */
4228 #define WOP_UU_H uint32_t, uint16_t, uint16_t
4229 #define WOP_UU_W uint64_t, uint32_t, uint32_t
4230 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
4231 RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
4232 RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
4233 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4, clearl)
4234 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8, clearq)
4235 
4236 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
4237 RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
4238 RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
4239 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4, clearl)
4240 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8, clearq)
4241 
4242 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
4243 RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
4244 RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
4245 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4, clearl)
4246 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8, clearq)
4247 
4248 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
4249 RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
4250 RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
4251 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4, clearl)
4252 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8, clearq)
4253 
4254 /*
4255  * vfwcvt.f.f.v vd, vs2, vm #
4256  * Convert single-width float to double-width float.
4257  */
4258 static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
4259 {
4260     return float16_to_float32(a, true, s);
4261 }
4262 
4263 RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
4264 RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
4265 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4, clearl)
4266 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8, clearq)
4267 
4268 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
4269 /* (TD, T2, TX2) */
4270 #define NOP_UU_H uint16_t, uint32_t, uint32_t
4271 #define NOP_UU_W uint32_t, uint64_t, uint64_t
4272 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4273 RVVCALL(OPFVV1, vfncvt_xu_f_v_h, NOP_UU_H, H2, H4, float32_to_uint16)
4274 RVVCALL(OPFVV1, vfncvt_xu_f_v_w, NOP_UU_W, H4, H8, float64_to_uint32)
4275 GEN_VEXT_V_ENV(vfncvt_xu_f_v_h, 2, 2, clearh)
4276 GEN_VEXT_V_ENV(vfncvt_xu_f_v_w, 4, 4, clearl)
4277 
4278 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
4279 RVVCALL(OPFVV1, vfncvt_x_f_v_h, NOP_UU_H, H2, H4, float32_to_int16)
4280 RVVCALL(OPFVV1, vfncvt_x_f_v_w, NOP_UU_W, H4, H8, float64_to_int32)
4281 GEN_VEXT_V_ENV(vfncvt_x_f_v_h, 2, 2, clearh)
4282 GEN_VEXT_V_ENV(vfncvt_x_f_v_w, 4, 4, clearl)
4283 
4284 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
4285 RVVCALL(OPFVV1, vfncvt_f_xu_v_h, NOP_UU_H, H2, H4, uint32_to_float16)
4286 RVVCALL(OPFVV1, vfncvt_f_xu_v_w, NOP_UU_W, H4, H8, uint64_to_float32)
4287 GEN_VEXT_V_ENV(vfncvt_f_xu_v_h, 2, 2, clearh)
4288 GEN_VEXT_V_ENV(vfncvt_f_xu_v_w, 4, 4, clearl)
4289 
4290 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
4291 RVVCALL(OPFVV1, vfncvt_f_x_v_h, NOP_UU_H, H2, H4, int32_to_float16)
4292 RVVCALL(OPFVV1, vfncvt_f_x_v_w, NOP_UU_W, H4, H8, int64_to_float32)
4293 GEN_VEXT_V_ENV(vfncvt_f_x_v_h, 2, 2, clearh)
4294 GEN_VEXT_V_ENV(vfncvt_f_x_v_w, 4, 4, clearl)
4295 
4296 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
4297 static uint16_t vfncvtffv16(uint32_t a, float_status *s)
4298 {
4299     return float32_to_float16(a, true, s);
4300 }
4301 
4302 RVVCALL(OPFVV1, vfncvt_f_f_v_h, NOP_UU_H, H2, H4, vfncvtffv16)
4303 RVVCALL(OPFVV1, vfncvt_f_f_v_w, NOP_UU_W, H4, H8, float64_to_float32)
4304 GEN_VEXT_V_ENV(vfncvt_f_f_v_h, 2, 2, clearh)
4305 GEN_VEXT_V_ENV(vfncvt_f_f_v_w, 4, 4, clearl)
4306 
4307 /*
4308  *** Vector Reduction Operations
4309  */
4310 /* Vector Single-Width Integer Reduction Instructions */
4311 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4312 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
4313         void *vs2, CPURISCVState *env, uint32_t desc)     \
4314 {                                                         \
4315     uint32_t mlen = vext_mlen(desc);                      \
4316     uint32_t vm = vext_vm(desc);                          \
4317     uint32_t vl = env->vl;                                \
4318     uint32_t i;                                           \
4319     uint32_t tot = env_archcpu(env)->cfg.vlen / 8;        \
4320     TD s1 =  *((TD *)vs1 + HD(0));                        \
4321                                                           \
4322     for (i = 0; i < vl; i++) {                            \
4323         TS2 s2 = *((TS2 *)vs2 + HS2(i));                  \
4324         if (!vm && !vext_elem_mask(v0, mlen, i)) {        \
4325             continue;                                     \
4326         }                                                 \
4327         s1 = OP(s1, (TD)s2);                              \
4328     }                                                     \
4329     *((TD *)vd + HD(0)) = s1;                             \
4330     CLEAR_FN(vd, 1, sizeof(TD), tot);                     \
4331 }
4332 
4333 /* vd[0] = sum(vs1[0], vs2[*]) */
4334 GEN_VEXT_RED(vredsum_vs_b, int8_t, int8_t, H1, H1, DO_ADD, clearb)
4335 GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD, clearh)
4336 GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD, clearl)
4337 GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD, clearq)
4338 
4339 /* vd[0] = maxu(vs1[0], vs2[*]) */
4340 GEN_VEXT_RED(vredmaxu_vs_b, uint8_t, uint8_t, H1, H1, DO_MAX, clearb)
4341 GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX, clearh)
4342 GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX, clearl)
4343 GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX, clearq)
4344 
4345 /* vd[0] = max(vs1[0], vs2[*]) */
4346 GEN_VEXT_RED(vredmax_vs_b, int8_t, int8_t, H1, H1, DO_MAX, clearb)
4347 GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX, clearh)
4348 GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX, clearl)
4349 GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX, clearq)
4350 
4351 /* vd[0] = minu(vs1[0], vs2[*]) */
4352 GEN_VEXT_RED(vredminu_vs_b, uint8_t, uint8_t, H1, H1, DO_MIN, clearb)
4353 GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN, clearh)
4354 GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN, clearl)
4355 GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN, clearq)
4356 
4357 /* vd[0] = min(vs1[0], vs2[*]) */
4358 GEN_VEXT_RED(vredmin_vs_b, int8_t, int8_t, H1, H1, DO_MIN, clearb)
4359 GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN, clearh)
4360 GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN, clearl)
4361 GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN, clearq)
4362 
4363 /* vd[0] = and(vs1[0], vs2[*]) */
4364 GEN_VEXT_RED(vredand_vs_b, int8_t, int8_t, H1, H1, DO_AND, clearb)
4365 GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND, clearh)
4366 GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND, clearl)
4367 GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND, clearq)
4368 
4369 /* vd[0] = or(vs1[0], vs2[*]) */
4370 GEN_VEXT_RED(vredor_vs_b, int8_t, int8_t, H1, H1, DO_OR, clearb)
4371 GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR, clearh)
4372 GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR, clearl)
4373 GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR, clearq)
4374 
4375 /* vd[0] = xor(vs1[0], vs2[*]) */
4376 GEN_VEXT_RED(vredxor_vs_b, int8_t, int8_t, H1, H1, DO_XOR, clearb)
4377 GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR, clearh)
4378 GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR, clearl)
4379 GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR, clearq)
4380 
4381 /* Vector Widening Integer Reduction Instructions */
4382 /* signed sum reduction into double-width accumulator */
4383 GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t, H2, H1, DO_ADD, clearh)
4384 GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD, clearl)
4385 GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD, clearq)
4386 
4387 /* Unsigned sum reduction into double-width accumulator */
4388 GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t, H2, H1, DO_ADD, clearh)
4389 GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD, clearl)
4390 GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD, clearq)
4391 
4392 /* Vector Single-Width Floating-Point Reduction Instructions */
4393 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4394 void HELPER(NAME)(void *vd, void *v0, void *vs1,           \
4395                   void *vs2, CPURISCVState *env,           \
4396                   uint32_t desc)                           \
4397 {                                                          \
4398     uint32_t mlen = vext_mlen(desc);                       \
4399     uint32_t vm = vext_vm(desc);                           \
4400     uint32_t vl = env->vl;                                 \
4401     uint32_t i;                                            \
4402     uint32_t tot = env_archcpu(env)->cfg.vlen / 8;         \
4403     TD s1 =  *((TD *)vs1 + HD(0));                         \
4404                                                            \
4405     for (i = 0; i < vl; i++) {                             \
4406         TS2 s2 = *((TS2 *)vs2 + HS2(i));                   \
4407         if (!vm && !vext_elem_mask(v0, mlen, i)) {         \
4408             continue;                                      \
4409         }                                                  \
4410         s1 = OP(s1, (TD)s2, &env->fp_status);              \
4411     }                                                      \
4412     *((TD *)vd + HD(0)) = s1;                              \
4413     CLEAR_FN(vd, 1, sizeof(TD), tot);                      \
4414 }
4415 
4416 /* Unordered sum */
4417 GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add, clearh)
4418 GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add, clearl)
4419 GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add, clearq)
4420 
4421 /* Maximum value */
4422 GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maxnum, clearh)
4423 GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maxnum, clearl)
4424 GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maxnum, clearq)
4425 
4426 /* Minimum value */
4427 GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minnum, clearh)
4428 GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minnum, clearl)
4429 GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minnum, clearq)
4430 
4431 /* Vector Widening Floating-Point Reduction Instructions */
4432 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
4433 void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
4434                             void *vs2, CPURISCVState *env, uint32_t desc)
4435 {
4436     uint32_t mlen = vext_mlen(desc);
4437     uint32_t vm = vext_vm(desc);
4438     uint32_t vl = env->vl;
4439     uint32_t i;
4440     uint32_t tot = env_archcpu(env)->cfg.vlen / 8;
4441     uint32_t s1 =  *((uint32_t *)vs1 + H4(0));
4442 
4443     for (i = 0; i < vl; i++) {
4444         uint16_t s2 = *((uint16_t *)vs2 + H2(i));
4445         if (!vm && !vext_elem_mask(v0, mlen, i)) {
4446             continue;
4447         }
4448         s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
4449                          &env->fp_status);
4450     }
4451     *((uint32_t *)vd + H4(0)) = s1;
4452     clearl(vd, 1, sizeof(uint32_t), tot);
4453 }
4454 
4455 void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
4456                             void *vs2, CPURISCVState *env, uint32_t desc)
4457 {
4458     uint32_t mlen = vext_mlen(desc);
4459     uint32_t vm = vext_vm(desc);
4460     uint32_t vl = env->vl;
4461     uint32_t i;
4462     uint32_t tot = env_archcpu(env)->cfg.vlen / 8;
4463     uint64_t s1 =  *((uint64_t *)vs1);
4464 
4465     for (i = 0; i < vl; i++) {
4466         uint32_t s2 = *((uint32_t *)vs2 + H4(i));
4467         if (!vm && !vext_elem_mask(v0, mlen, i)) {
4468             continue;
4469         }
4470         s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
4471                          &env->fp_status);
4472     }
4473     *((uint64_t *)vd) = s1;
4474     clearq(vd, 1, sizeof(uint64_t), tot);
4475 }
4476 
4477 /*
4478  *** Vector Mask Operations
4479  */
4480 /* Vector Mask-Register Logical Instructions */
4481 #define GEN_VEXT_MASK_VV(NAME, OP)                        \
4482 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
4483                   void *vs2, CPURISCVState *env,          \
4484                   uint32_t desc)                          \
4485 {                                                         \
4486     uint32_t mlen = vext_mlen(desc);                      \
4487     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;   \
4488     uint32_t vl = env->vl;                                \
4489     uint32_t i;                                           \
4490     int a, b;                                             \
4491                                                           \
4492     for (i = 0; i < vl; i++) {                            \
4493         a = vext_elem_mask(vs1, mlen, i);                 \
4494         b = vext_elem_mask(vs2, mlen, i);                 \
4495         vext_set_elem_mask(vd, mlen, i, OP(b, a));        \
4496     }                                                     \
4497     for (; i < vlmax; i++) {                              \
4498         vext_set_elem_mask(vd, mlen, i, 0);               \
4499     }                                                     \
4500 }
4501 
4502 #define DO_NAND(N, M)  (!(N & M))
4503 #define DO_ANDNOT(N, M)  (N & !M)
4504 #define DO_NOR(N, M)  (!(N | M))
4505 #define DO_ORNOT(N, M)  (N | !M)
4506 #define DO_XNOR(N, M)  (!(N ^ M))
4507 
4508 GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
4509 GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
4510 GEN_VEXT_MASK_VV(vmandnot_mm, DO_ANDNOT)
4511 GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
4512 GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
4513 GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
4514 GEN_VEXT_MASK_VV(vmornot_mm, DO_ORNOT)
4515 GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
4516 
4517 /* Vector mask population count vmpopc */
4518 target_ulong HELPER(vmpopc_m)(void *v0, void *vs2, CPURISCVState *env,
4519                               uint32_t desc)
4520 {
4521     target_ulong cnt = 0;
4522     uint32_t mlen = vext_mlen(desc);
4523     uint32_t vm = vext_vm(desc);
4524     uint32_t vl = env->vl;
4525     int i;
4526 
4527     for (i = 0; i < vl; i++) {
4528         if (vm || vext_elem_mask(v0, mlen, i)) {
4529             if (vext_elem_mask(vs2, mlen, i)) {
4530                 cnt++;
4531             }
4532         }
4533     }
4534     return cnt;
4535 }
4536 
4537 /* vmfirst find-first-set mask bit*/
4538 target_ulong HELPER(vmfirst_m)(void *v0, void *vs2, CPURISCVState *env,
4539                                uint32_t desc)
4540 {
4541     uint32_t mlen = vext_mlen(desc);
4542     uint32_t vm = vext_vm(desc);
4543     uint32_t vl = env->vl;
4544     int i;
4545 
4546     for (i = 0; i < vl; i++) {
4547         if (vm || vext_elem_mask(v0, mlen, i)) {
4548             if (vext_elem_mask(vs2, mlen, i)) {
4549                 return i;
4550             }
4551         }
4552     }
4553     return -1LL;
4554 }
4555 
4556 enum set_mask_type {
4557     ONLY_FIRST = 1,
4558     INCLUDE_FIRST,
4559     BEFORE_FIRST,
4560 };
4561 
4562 static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
4563                    uint32_t desc, enum set_mask_type type)
4564 {
4565     uint32_t mlen = vext_mlen(desc);
4566     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;
4567     uint32_t vm = vext_vm(desc);
4568     uint32_t vl = env->vl;
4569     int i;
4570     bool first_mask_bit = false;
4571 
4572     for (i = 0; i < vl; i++) {
4573         if (!vm && !vext_elem_mask(v0, mlen, i)) {
4574             continue;
4575         }
4576         /* write a zero to all following active elements */
4577         if (first_mask_bit) {
4578             vext_set_elem_mask(vd, mlen, i, 0);
4579             continue;
4580         }
4581         if (vext_elem_mask(vs2, mlen, i)) {
4582             first_mask_bit = true;
4583             if (type == BEFORE_FIRST) {
4584                 vext_set_elem_mask(vd, mlen, i, 0);
4585             } else {
4586                 vext_set_elem_mask(vd, mlen, i, 1);
4587             }
4588         } else {
4589             if (type == ONLY_FIRST) {
4590                 vext_set_elem_mask(vd, mlen, i, 0);
4591             } else {
4592                 vext_set_elem_mask(vd, mlen, i, 1);
4593             }
4594         }
4595     }
4596     for (; i < vlmax; i++) {
4597         vext_set_elem_mask(vd, mlen, i, 0);
4598     }
4599 }
4600 
4601 void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4602                      uint32_t desc)
4603 {
4604     vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
4605 }
4606 
4607 void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4608                      uint32_t desc)
4609 {
4610     vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
4611 }
4612 
4613 void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4614                      uint32_t desc)
4615 {
4616     vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
4617 }
4618 
4619 /* Vector Iota Instruction */
4620 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H, CLEAR_FN)                        \
4621 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env,      \
4622                   uint32_t desc)                                          \
4623 {                                                                         \
4624     uint32_t mlen = vext_mlen(desc);                                      \
4625     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4626     uint32_t vm = vext_vm(desc);                                          \
4627     uint32_t vl = env->vl;                                                \
4628     uint32_t sum = 0;                                                     \
4629     int i;                                                                \
4630                                                                           \
4631     for (i = 0; i < vl; i++) {                                            \
4632         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4633             continue;                                                     \
4634         }                                                                 \
4635         *((ETYPE *)vd + H(i)) = sum;                                      \
4636         if (vext_elem_mask(vs2, mlen, i)) {                               \
4637             sum++;                                                        \
4638         }                                                                 \
4639     }                                                                     \
4640     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4641 }
4642 
4643 GEN_VEXT_VIOTA_M(viota_m_b, uint8_t, H1, clearb)
4644 GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2, clearh)
4645 GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4, clearl)
4646 GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8, clearq)
4647 
4648 /* Vector Element Index Instruction */
4649 #define GEN_VEXT_VID_V(NAME, ETYPE, H, CLEAR_FN)                          \
4650 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc)  \
4651 {                                                                         \
4652     uint32_t mlen = vext_mlen(desc);                                      \
4653     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4654     uint32_t vm = vext_vm(desc);                                          \
4655     uint32_t vl = env->vl;                                                \
4656     int i;                                                                \
4657                                                                           \
4658     for (i = 0; i < vl; i++) {                                            \
4659         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4660             continue;                                                     \
4661         }                                                                 \
4662         *((ETYPE *)vd + H(i)) = i;                                        \
4663     }                                                                     \
4664     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4665 }
4666 
4667 GEN_VEXT_VID_V(vid_v_b, uint8_t, H1, clearb)
4668 GEN_VEXT_VID_V(vid_v_h, uint16_t, H2, clearh)
4669 GEN_VEXT_VID_V(vid_v_w, uint32_t, H4, clearl)
4670 GEN_VEXT_VID_V(vid_v_d, uint64_t, H8, clearq)
4671 
4672 /*
4673  *** Vector Permutation Instructions
4674  */
4675 
4676 /* Vector Slide Instructions */
4677 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H, CLEAR_FN)                    \
4678 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4679                   CPURISCVState *env, uint32_t desc)                      \
4680 {                                                                         \
4681     uint32_t mlen = vext_mlen(desc);                                      \
4682     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4683     uint32_t vm = vext_vm(desc);                                          \
4684     uint32_t vl = env->vl;                                                \
4685     target_ulong offset = s1, i;                                          \
4686                                                                           \
4687     for (i = offset; i < vl; i++) {                                       \
4688         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4689             continue;                                                     \
4690         }                                                                 \
4691         *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset));          \
4692     }                                                                     \
4693     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4694 }
4695 
4696 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4697 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t, H1, clearb)
4698 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2, clearh)
4699 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4, clearl)
4700 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8, clearq)
4701 
4702 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H, CLEAR_FN)                  \
4703 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4704                   CPURISCVState *env, uint32_t desc)                      \
4705 {                                                                         \
4706     uint32_t mlen = vext_mlen(desc);                                      \
4707     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4708     uint32_t vm = vext_vm(desc);                                          \
4709     uint32_t vl = env->vl;                                                \
4710     target_ulong offset = s1, i;                                          \
4711                                                                           \
4712     for (i = 0; i < vl; ++i) {                                            \
4713         target_ulong j = i + offset;                                      \
4714         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4715             continue;                                                     \
4716         }                                                                 \
4717         *((ETYPE *)vd + H(i)) = j >= vlmax ? 0 : *((ETYPE *)vs2 + H(j));  \
4718     }                                                                     \
4719     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4720 }
4721 
4722 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4723 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t, H1, clearb)
4724 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2, clearh)
4725 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4, clearl)
4726 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8, clearq)
4727 
4728 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ETYPE, H, CLEAR_FN)                   \
4729 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4730                   CPURISCVState *env, uint32_t desc)                      \
4731 {                                                                         \
4732     uint32_t mlen = vext_mlen(desc);                                      \
4733     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4734     uint32_t vm = vext_vm(desc);                                          \
4735     uint32_t vl = env->vl;                                                \
4736     uint32_t i;                                                           \
4737                                                                           \
4738     for (i = 0; i < vl; i++) {                                            \
4739         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4740             continue;                                                     \
4741         }                                                                 \
4742         if (i == 0) {                                                     \
4743             *((ETYPE *)vd + H(i)) = s1;                                   \
4744         } else {                                                          \
4745             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1));           \
4746         }                                                                 \
4747     }                                                                     \
4748     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4749 }
4750 
4751 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4752 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, uint8_t, H1, clearb)
4753 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, uint16_t, H2, clearh)
4754 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, uint32_t, H4, clearl)
4755 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, uint64_t, H8, clearq)
4756 
4757 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ETYPE, H, CLEAR_FN)                 \
4758 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4759                   CPURISCVState *env, uint32_t desc)                      \
4760 {                                                                         \
4761     uint32_t mlen = vext_mlen(desc);                                      \
4762     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4763     uint32_t vm = vext_vm(desc);                                          \
4764     uint32_t vl = env->vl;                                                \
4765     uint32_t i;                                                           \
4766                                                                           \
4767     for (i = 0; i < vl; i++) {                                            \
4768         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4769             continue;                                                     \
4770         }                                                                 \
4771         if (i == vl - 1) {                                                \
4772             *((ETYPE *)vd + H(i)) = s1;                                   \
4773         } else {                                                          \
4774             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1));           \
4775         }                                                                 \
4776     }                                                                     \
4777     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4778 }
4779 
4780 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4781 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, uint8_t, H1, clearb)
4782 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, uint16_t, H2, clearh)
4783 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, uint32_t, H4, clearl)
4784 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, uint64_t, H8, clearq)
4785 
4786 /* Vector Register Gather Instruction */
4787 #define GEN_VEXT_VRGATHER_VV(NAME, ETYPE, H, CLEAR_FN)                    \
4788 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,               \
4789                   CPURISCVState *env, uint32_t desc)                      \
4790 {                                                                         \
4791     uint32_t mlen = vext_mlen(desc);                                      \
4792     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4793     uint32_t vm = vext_vm(desc);                                          \
4794     uint32_t vl = env->vl;                                                \
4795     uint64_t index;                                                       \
4796     uint32_t i;                                                           \
4797                                                                           \
4798     for (i = 0; i < vl; i++) {                                            \
4799         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4800             continue;                                                     \
4801         }                                                                 \
4802         index = *((ETYPE *)vs1 + H(i));                                   \
4803         if (index >= vlmax) {                                             \
4804             *((ETYPE *)vd + H(i)) = 0;                                    \
4805         } else {                                                          \
4806             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index));           \
4807         }                                                                 \
4808     }                                                                     \
4809     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4810 }
4811 
4812 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4813 GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t, H1, clearb)
4814 GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, H2, clearh)
4815 GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, H4, clearl)
4816 GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, H8, clearq)
4817 
4818 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H, CLEAR_FN)                    \
4819 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4820                   CPURISCVState *env, uint32_t desc)                      \
4821 {                                                                         \
4822     uint32_t mlen = vext_mlen(desc);                                      \
4823     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4824     uint32_t vm = vext_vm(desc);                                          \
4825     uint32_t vl = env->vl;                                                \
4826     uint64_t index = s1;                                                  \
4827     uint32_t i;                                                           \
4828                                                                           \
4829     for (i = 0; i < vl; i++) {                                            \
4830         if (!vm && !vext_elem_mask(v0, mlen, i)) {                        \
4831             continue;                                                     \
4832         }                                                                 \
4833         if (index >= vlmax) {                                             \
4834             *((ETYPE *)vd + H(i)) = 0;                                    \
4835         } else {                                                          \
4836             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index));           \
4837         }                                                                 \
4838     }                                                                     \
4839     CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE));          \
4840 }
4841 
4842 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4843 GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t, H1, clearb)
4844 GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2, clearh)
4845 GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4, clearl)
4846 GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8, clearq)
4847 
4848 /* Vector Compress Instruction */
4849 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H, CLEAR_FN)                   \
4850 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,               \
4851                   CPURISCVState *env, uint32_t desc)                      \
4852 {                                                                         \
4853     uint32_t mlen = vext_mlen(desc);                                      \
4854     uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;                   \
4855     uint32_t vl = env->vl;                                                \
4856     uint32_t num = 0, i;                                                  \
4857                                                                           \
4858     for (i = 0; i < vl; i++) {                                            \
4859         if (!vext_elem_mask(vs1, mlen, i)) {                              \
4860             continue;                                                     \
4861         }                                                                 \
4862         *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i));                 \
4863         num++;                                                            \
4864     }                                                                     \
4865     CLEAR_FN(vd, num, num * sizeof(ETYPE), vlmax * sizeof(ETYPE));        \
4866 }
4867 
4868 /* Compress into vd elements of vs2 where vs1 is enabled */
4869 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t, H1, clearb)
4870 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2, clearh)
4871 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4, clearl)
4872 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8, clearq)
4873