1 /* 2 * RISC-V Vector Extension Helpers for QEMU. 3 * 4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "exec/memop.h" 22 #include "exec/exec-all.h" 23 #include "exec/helper-proto.h" 24 #include "tcg/tcg-gvec-desc.h" 25 #include "internals.h" 26 #include <math.h> 27 28 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1, 29 target_ulong s2) 30 { 31 int vlmax, vl; 32 RISCVCPU *cpu = env_archcpu(env); 33 uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW); 34 uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV); 35 bool vill = FIELD_EX64(s2, VTYPE, VILL); 36 target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED); 37 38 if ((sew > cpu->cfg.elen) || vill || (ediv != 0) || (reserved != 0)) { 39 /* only set vill bit. */ 40 env->vtype = FIELD_DP64(0, VTYPE, VILL, 1); 41 env->vl = 0; 42 env->vstart = 0; 43 return 0; 44 } 45 46 vlmax = vext_get_vlmax(cpu, s2); 47 if (s1 <= vlmax) { 48 vl = s1; 49 } else { 50 vl = vlmax; 51 } 52 env->vl = vl; 53 env->vtype = s2; 54 env->vstart = 0; 55 return vl; 56 } 57 58 /* 59 * Note that vector data is stored in host-endian 64-bit chunks, 60 * so addressing units smaller than that needs a host-endian fixup. 61 */ 62 #ifdef HOST_WORDS_BIGENDIAN 63 #define H1(x) ((x) ^ 7) 64 #define H1_2(x) ((x) ^ 6) 65 #define H1_4(x) ((x) ^ 4) 66 #define H2(x) ((x) ^ 3) 67 #define H4(x) ((x) ^ 1) 68 #define H8(x) ((x)) 69 #else 70 #define H1(x) (x) 71 #define H1_2(x) (x) 72 #define H1_4(x) (x) 73 #define H2(x) (x) 74 #define H4(x) (x) 75 #define H8(x) (x) 76 #endif 77 78 static inline uint32_t vext_nf(uint32_t desc) 79 { 80 return FIELD_EX32(simd_data(desc), VDATA, NF); 81 } 82 83 static inline uint32_t vext_mlen(uint32_t desc) 84 { 85 return FIELD_EX32(simd_data(desc), VDATA, MLEN); 86 } 87 88 static inline uint32_t vext_vm(uint32_t desc) 89 { 90 return FIELD_EX32(simd_data(desc), VDATA, VM); 91 } 92 93 static inline uint32_t vext_lmul(uint32_t desc) 94 { 95 return FIELD_EX32(simd_data(desc), VDATA, LMUL); 96 } 97 98 static uint32_t vext_wd(uint32_t desc) 99 { 100 return (simd_data(desc) >> 11) & 0x1; 101 } 102 103 /* 104 * Get vector group length in bytes. Its range is [64, 2048]. 105 * 106 * As simd_desc support at most 256, the max vlen is 512 bits. 107 * So vlen in bytes is encoded as maxsz. 108 */ 109 static inline uint32_t vext_maxsz(uint32_t desc) 110 { 111 return simd_maxsz(desc) << vext_lmul(desc); 112 } 113 114 /* 115 * This function checks watchpoint before real load operation. 116 * 117 * In softmmu mode, the TLB API probe_access is enough for watchpoint check. 118 * In user mode, there is no watchpoint support now. 119 * 120 * It will trigger an exception if there is no mapping in TLB 121 * and page table walk can't fill the TLB entry. Then the guest 122 * software can return here after process the exception or never return. 123 */ 124 static void probe_pages(CPURISCVState *env, target_ulong addr, 125 target_ulong len, uintptr_t ra, 126 MMUAccessType access_type) 127 { 128 target_ulong pagelen = -(addr | TARGET_PAGE_MASK); 129 target_ulong curlen = MIN(pagelen, len); 130 131 probe_access(env, addr, curlen, access_type, 132 cpu_mmu_index(env, false), ra); 133 if (len > curlen) { 134 addr += curlen; 135 curlen = len - curlen; 136 probe_access(env, addr, curlen, access_type, 137 cpu_mmu_index(env, false), ra); 138 } 139 } 140 141 #ifdef HOST_WORDS_BIGENDIAN 142 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot) 143 { 144 /* 145 * Split the remaining range to two parts. 146 * The first part is in the last uint64_t unit. 147 * The second part start from the next uint64_t unit. 148 */ 149 int part1 = 0, part2 = tot - cnt; 150 if (cnt % 8) { 151 part1 = 8 - (cnt % 8); 152 part2 = tot - cnt - part1; 153 memset((void *)((uintptr_t)tail & ~(7ULL)), 0, part1); 154 memset((void *)(((uintptr_t)tail + 8) & ~(7ULL)), 0, part2); 155 } else { 156 memset(tail, 0, part2); 157 } 158 } 159 #else 160 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot) 161 { 162 memset(tail, 0, tot - cnt); 163 } 164 #endif 165 166 static void clearb(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) 167 { 168 int8_t *cur = ((int8_t *)vd + H1(idx)); 169 vext_clear(cur, cnt, tot); 170 } 171 172 static void clearh(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) 173 { 174 int16_t *cur = ((int16_t *)vd + H2(idx)); 175 vext_clear(cur, cnt, tot); 176 } 177 178 static void clearl(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) 179 { 180 int32_t *cur = ((int32_t *)vd + H4(idx)); 181 vext_clear(cur, cnt, tot); 182 } 183 184 static void clearq(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot) 185 { 186 int64_t *cur = (int64_t *)vd + idx; 187 vext_clear(cur, cnt, tot); 188 } 189 190 static inline void vext_set_elem_mask(void *v0, int mlen, int index, 191 uint8_t value) 192 { 193 int idx = (index * mlen) / 64; 194 int pos = (index * mlen) % 64; 195 uint64_t old = ((uint64_t *)v0)[idx]; 196 ((uint64_t *)v0)[idx] = deposit64(old, pos, mlen, value); 197 } 198 199 static inline int vext_elem_mask(void *v0, int mlen, int index) 200 { 201 int idx = (index * mlen) / 64; 202 int pos = (index * mlen) % 64; 203 return (((uint64_t *)v0)[idx] >> pos) & 1; 204 } 205 206 /* elements operations for load and store */ 207 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr, 208 uint32_t idx, void *vd, uintptr_t retaddr); 209 typedef void clear_fn(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot); 210 211 #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \ 212 static void NAME(CPURISCVState *env, abi_ptr addr, \ 213 uint32_t idx, void *vd, uintptr_t retaddr)\ 214 { \ 215 MTYPE data; \ 216 ETYPE *cur = ((ETYPE *)vd + H(idx)); \ 217 data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \ 218 *cur = data; \ 219 } \ 220 221 GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb) 222 GEN_VEXT_LD_ELEM(ldb_h, int8_t, int16_t, H2, ldsb) 223 GEN_VEXT_LD_ELEM(ldb_w, int8_t, int32_t, H4, ldsb) 224 GEN_VEXT_LD_ELEM(ldb_d, int8_t, int64_t, H8, ldsb) 225 GEN_VEXT_LD_ELEM(ldh_h, int16_t, int16_t, H2, ldsw) 226 GEN_VEXT_LD_ELEM(ldh_w, int16_t, int32_t, H4, ldsw) 227 GEN_VEXT_LD_ELEM(ldh_d, int16_t, int64_t, H8, ldsw) 228 GEN_VEXT_LD_ELEM(ldw_w, int32_t, int32_t, H4, ldl) 229 GEN_VEXT_LD_ELEM(ldw_d, int32_t, int64_t, H8, ldl) 230 GEN_VEXT_LD_ELEM(lde_b, int8_t, int8_t, H1, ldsb) 231 GEN_VEXT_LD_ELEM(lde_h, int16_t, int16_t, H2, ldsw) 232 GEN_VEXT_LD_ELEM(lde_w, int32_t, int32_t, H4, ldl) 233 GEN_VEXT_LD_ELEM(lde_d, int64_t, int64_t, H8, ldq) 234 GEN_VEXT_LD_ELEM(ldbu_b, uint8_t, uint8_t, H1, ldub) 235 GEN_VEXT_LD_ELEM(ldbu_h, uint8_t, uint16_t, H2, ldub) 236 GEN_VEXT_LD_ELEM(ldbu_w, uint8_t, uint32_t, H4, ldub) 237 GEN_VEXT_LD_ELEM(ldbu_d, uint8_t, uint64_t, H8, ldub) 238 GEN_VEXT_LD_ELEM(ldhu_h, uint16_t, uint16_t, H2, lduw) 239 GEN_VEXT_LD_ELEM(ldhu_w, uint16_t, uint32_t, H4, lduw) 240 GEN_VEXT_LD_ELEM(ldhu_d, uint16_t, uint64_t, H8, lduw) 241 GEN_VEXT_LD_ELEM(ldwu_w, uint32_t, uint32_t, H4, ldl) 242 GEN_VEXT_LD_ELEM(ldwu_d, uint32_t, uint64_t, H8, ldl) 243 244 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \ 245 static void NAME(CPURISCVState *env, abi_ptr addr, \ 246 uint32_t idx, void *vd, uintptr_t retaddr)\ 247 { \ 248 ETYPE data = *((ETYPE *)vd + H(idx)); \ 249 cpu_##STSUF##_data_ra(env, addr, data, retaddr); \ 250 } 251 252 GEN_VEXT_ST_ELEM(stb_b, int8_t, H1, stb) 253 GEN_VEXT_ST_ELEM(stb_h, int16_t, H2, stb) 254 GEN_VEXT_ST_ELEM(stb_w, int32_t, H4, stb) 255 GEN_VEXT_ST_ELEM(stb_d, int64_t, H8, stb) 256 GEN_VEXT_ST_ELEM(sth_h, int16_t, H2, stw) 257 GEN_VEXT_ST_ELEM(sth_w, int32_t, H4, stw) 258 GEN_VEXT_ST_ELEM(sth_d, int64_t, H8, stw) 259 GEN_VEXT_ST_ELEM(stw_w, int32_t, H4, stl) 260 GEN_VEXT_ST_ELEM(stw_d, int64_t, H8, stl) 261 GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb) 262 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw) 263 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl) 264 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq) 265 266 /* 267 *** stride: access vector element from strided memory 268 */ 269 static void 270 vext_ldst_stride(void *vd, void *v0, target_ulong base, 271 target_ulong stride, CPURISCVState *env, 272 uint32_t desc, uint32_t vm, 273 vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem, 274 uint32_t esz, uint32_t msz, uintptr_t ra, 275 MMUAccessType access_type) 276 { 277 uint32_t i, k; 278 uint32_t nf = vext_nf(desc); 279 uint32_t mlen = vext_mlen(desc); 280 uint32_t vlmax = vext_maxsz(desc) / esz; 281 282 /* probe every access*/ 283 for (i = 0; i < env->vl; i++) { 284 if (!vm && !vext_elem_mask(v0, mlen, i)) { 285 continue; 286 } 287 probe_pages(env, base + stride * i, nf * msz, ra, access_type); 288 } 289 /* do real access */ 290 for (i = 0; i < env->vl; i++) { 291 k = 0; 292 if (!vm && !vext_elem_mask(v0, mlen, i)) { 293 continue; 294 } 295 while (k < nf) { 296 target_ulong addr = base + stride * i + k * msz; 297 ldst_elem(env, addr, i + k * vlmax, vd, ra); 298 k++; 299 } 300 } 301 /* clear tail elements */ 302 if (clear_elem) { 303 for (k = 0; k < nf; k++) { 304 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); 305 } 306 } 307 } 308 309 #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \ 310 void HELPER(NAME)(void *vd, void * v0, target_ulong base, \ 311 target_ulong stride, CPURISCVState *env, \ 312 uint32_t desc) \ 313 { \ 314 uint32_t vm = vext_vm(desc); \ 315 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \ 316 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ 317 GETPC(), MMU_DATA_LOAD); \ 318 } 319 320 GEN_VEXT_LD_STRIDE(vlsb_v_b, int8_t, int8_t, ldb_b, clearb) 321 GEN_VEXT_LD_STRIDE(vlsb_v_h, int8_t, int16_t, ldb_h, clearh) 322 GEN_VEXT_LD_STRIDE(vlsb_v_w, int8_t, int32_t, ldb_w, clearl) 323 GEN_VEXT_LD_STRIDE(vlsb_v_d, int8_t, int64_t, ldb_d, clearq) 324 GEN_VEXT_LD_STRIDE(vlsh_v_h, int16_t, int16_t, ldh_h, clearh) 325 GEN_VEXT_LD_STRIDE(vlsh_v_w, int16_t, int32_t, ldh_w, clearl) 326 GEN_VEXT_LD_STRIDE(vlsh_v_d, int16_t, int64_t, ldh_d, clearq) 327 GEN_VEXT_LD_STRIDE(vlsw_v_w, int32_t, int32_t, ldw_w, clearl) 328 GEN_VEXT_LD_STRIDE(vlsw_v_d, int32_t, int64_t, ldw_d, clearq) 329 GEN_VEXT_LD_STRIDE(vlse_v_b, int8_t, int8_t, lde_b, clearb) 330 GEN_VEXT_LD_STRIDE(vlse_v_h, int16_t, int16_t, lde_h, clearh) 331 GEN_VEXT_LD_STRIDE(vlse_v_w, int32_t, int32_t, lde_w, clearl) 332 GEN_VEXT_LD_STRIDE(vlse_v_d, int64_t, int64_t, lde_d, clearq) 333 GEN_VEXT_LD_STRIDE(vlsbu_v_b, uint8_t, uint8_t, ldbu_b, clearb) 334 GEN_VEXT_LD_STRIDE(vlsbu_v_h, uint8_t, uint16_t, ldbu_h, clearh) 335 GEN_VEXT_LD_STRIDE(vlsbu_v_w, uint8_t, uint32_t, ldbu_w, clearl) 336 GEN_VEXT_LD_STRIDE(vlsbu_v_d, uint8_t, uint64_t, ldbu_d, clearq) 337 GEN_VEXT_LD_STRIDE(vlshu_v_h, uint16_t, uint16_t, ldhu_h, clearh) 338 GEN_VEXT_LD_STRIDE(vlshu_v_w, uint16_t, uint32_t, ldhu_w, clearl) 339 GEN_VEXT_LD_STRIDE(vlshu_v_d, uint16_t, uint64_t, ldhu_d, clearq) 340 GEN_VEXT_LD_STRIDE(vlswu_v_w, uint32_t, uint32_t, ldwu_w, clearl) 341 GEN_VEXT_LD_STRIDE(vlswu_v_d, uint32_t, uint64_t, ldwu_d, clearq) 342 343 #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \ 344 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ 345 target_ulong stride, CPURISCVState *env, \ 346 uint32_t desc) \ 347 { \ 348 uint32_t vm = vext_vm(desc); \ 349 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \ 350 NULL, sizeof(ETYPE), sizeof(MTYPE), \ 351 GETPC(), MMU_DATA_STORE); \ 352 } 353 354 GEN_VEXT_ST_STRIDE(vssb_v_b, int8_t, int8_t, stb_b) 355 GEN_VEXT_ST_STRIDE(vssb_v_h, int8_t, int16_t, stb_h) 356 GEN_VEXT_ST_STRIDE(vssb_v_w, int8_t, int32_t, stb_w) 357 GEN_VEXT_ST_STRIDE(vssb_v_d, int8_t, int64_t, stb_d) 358 GEN_VEXT_ST_STRIDE(vssh_v_h, int16_t, int16_t, sth_h) 359 GEN_VEXT_ST_STRIDE(vssh_v_w, int16_t, int32_t, sth_w) 360 GEN_VEXT_ST_STRIDE(vssh_v_d, int16_t, int64_t, sth_d) 361 GEN_VEXT_ST_STRIDE(vssw_v_w, int32_t, int32_t, stw_w) 362 GEN_VEXT_ST_STRIDE(vssw_v_d, int32_t, int64_t, stw_d) 363 GEN_VEXT_ST_STRIDE(vsse_v_b, int8_t, int8_t, ste_b) 364 GEN_VEXT_ST_STRIDE(vsse_v_h, int16_t, int16_t, ste_h) 365 GEN_VEXT_ST_STRIDE(vsse_v_w, int32_t, int32_t, ste_w) 366 GEN_VEXT_ST_STRIDE(vsse_v_d, int64_t, int64_t, ste_d) 367 368 /* 369 *** unit-stride: access elements stored contiguously in memory 370 */ 371 372 /* unmasked unit-stride load and store operation*/ 373 static void 374 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc, 375 vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem, 376 uint32_t esz, uint32_t msz, uintptr_t ra, 377 MMUAccessType access_type) 378 { 379 uint32_t i, k; 380 uint32_t nf = vext_nf(desc); 381 uint32_t vlmax = vext_maxsz(desc) / esz; 382 383 /* probe every access */ 384 probe_pages(env, base, env->vl * nf * msz, ra, access_type); 385 /* load bytes from guest memory */ 386 for (i = 0; i < env->vl; i++) { 387 k = 0; 388 while (k < nf) { 389 target_ulong addr = base + (i * nf + k) * msz; 390 ldst_elem(env, addr, i + k * vlmax, vd, ra); 391 k++; 392 } 393 } 394 /* clear tail elements */ 395 if (clear_elem) { 396 for (k = 0; k < nf; k++) { 397 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); 398 } 399 } 400 } 401 402 /* 403 * masked unit-stride load and store operation will be a special case of stride, 404 * stride = NF * sizeof (MTYPE) 405 */ 406 407 #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \ 408 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \ 409 CPURISCVState *env, uint32_t desc) \ 410 { \ 411 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \ 412 vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \ 413 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ 414 GETPC(), MMU_DATA_LOAD); \ 415 } \ 416 \ 417 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ 418 CPURISCVState *env, uint32_t desc) \ 419 { \ 420 vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \ 421 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \ 422 } 423 424 GEN_VEXT_LD_US(vlb_v_b, int8_t, int8_t, ldb_b, clearb) 425 GEN_VEXT_LD_US(vlb_v_h, int8_t, int16_t, ldb_h, clearh) 426 GEN_VEXT_LD_US(vlb_v_w, int8_t, int32_t, ldb_w, clearl) 427 GEN_VEXT_LD_US(vlb_v_d, int8_t, int64_t, ldb_d, clearq) 428 GEN_VEXT_LD_US(vlh_v_h, int16_t, int16_t, ldh_h, clearh) 429 GEN_VEXT_LD_US(vlh_v_w, int16_t, int32_t, ldh_w, clearl) 430 GEN_VEXT_LD_US(vlh_v_d, int16_t, int64_t, ldh_d, clearq) 431 GEN_VEXT_LD_US(vlw_v_w, int32_t, int32_t, ldw_w, clearl) 432 GEN_VEXT_LD_US(vlw_v_d, int32_t, int64_t, ldw_d, clearq) 433 GEN_VEXT_LD_US(vle_v_b, int8_t, int8_t, lde_b, clearb) 434 GEN_VEXT_LD_US(vle_v_h, int16_t, int16_t, lde_h, clearh) 435 GEN_VEXT_LD_US(vle_v_w, int32_t, int32_t, lde_w, clearl) 436 GEN_VEXT_LD_US(vle_v_d, int64_t, int64_t, lde_d, clearq) 437 GEN_VEXT_LD_US(vlbu_v_b, uint8_t, uint8_t, ldbu_b, clearb) 438 GEN_VEXT_LD_US(vlbu_v_h, uint8_t, uint16_t, ldbu_h, clearh) 439 GEN_VEXT_LD_US(vlbu_v_w, uint8_t, uint32_t, ldbu_w, clearl) 440 GEN_VEXT_LD_US(vlbu_v_d, uint8_t, uint64_t, ldbu_d, clearq) 441 GEN_VEXT_LD_US(vlhu_v_h, uint16_t, uint16_t, ldhu_h, clearh) 442 GEN_VEXT_LD_US(vlhu_v_w, uint16_t, uint32_t, ldhu_w, clearl) 443 GEN_VEXT_LD_US(vlhu_v_d, uint16_t, uint64_t, ldhu_d, clearq) 444 GEN_VEXT_LD_US(vlwu_v_w, uint32_t, uint32_t, ldwu_w, clearl) 445 GEN_VEXT_LD_US(vlwu_v_d, uint32_t, uint64_t, ldwu_d, clearq) 446 447 #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \ 448 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \ 449 CPURISCVState *env, uint32_t desc) \ 450 { \ 451 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \ 452 vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \ 453 NULL, sizeof(ETYPE), sizeof(MTYPE), \ 454 GETPC(), MMU_DATA_STORE); \ 455 } \ 456 \ 457 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ 458 CPURISCVState *env, uint32_t desc) \ 459 { \ 460 vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \ 461 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\ 462 } 463 464 GEN_VEXT_ST_US(vsb_v_b, int8_t, int8_t , stb_b) 465 GEN_VEXT_ST_US(vsb_v_h, int8_t, int16_t, stb_h) 466 GEN_VEXT_ST_US(vsb_v_w, int8_t, int32_t, stb_w) 467 GEN_VEXT_ST_US(vsb_v_d, int8_t, int64_t, stb_d) 468 GEN_VEXT_ST_US(vsh_v_h, int16_t, int16_t, sth_h) 469 GEN_VEXT_ST_US(vsh_v_w, int16_t, int32_t, sth_w) 470 GEN_VEXT_ST_US(vsh_v_d, int16_t, int64_t, sth_d) 471 GEN_VEXT_ST_US(vsw_v_w, int32_t, int32_t, stw_w) 472 GEN_VEXT_ST_US(vsw_v_d, int32_t, int64_t, stw_d) 473 GEN_VEXT_ST_US(vse_v_b, int8_t, int8_t , ste_b) 474 GEN_VEXT_ST_US(vse_v_h, int16_t, int16_t, ste_h) 475 GEN_VEXT_ST_US(vse_v_w, int32_t, int32_t, ste_w) 476 GEN_VEXT_ST_US(vse_v_d, int64_t, int64_t, ste_d) 477 478 /* 479 *** index: access vector element from indexed memory 480 */ 481 typedef target_ulong vext_get_index_addr(target_ulong base, 482 uint32_t idx, void *vs2); 483 484 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \ 485 static target_ulong NAME(target_ulong base, \ 486 uint32_t idx, void *vs2) \ 487 { \ 488 return (base + *((ETYPE *)vs2 + H(idx))); \ 489 } 490 491 GEN_VEXT_GET_INDEX_ADDR(idx_b, int8_t, H1) 492 GEN_VEXT_GET_INDEX_ADDR(idx_h, int16_t, H2) 493 GEN_VEXT_GET_INDEX_ADDR(idx_w, int32_t, H4) 494 GEN_VEXT_GET_INDEX_ADDR(idx_d, int64_t, H8) 495 496 static inline void 497 vext_ldst_index(void *vd, void *v0, target_ulong base, 498 void *vs2, CPURISCVState *env, uint32_t desc, 499 vext_get_index_addr get_index_addr, 500 vext_ldst_elem_fn *ldst_elem, 501 clear_fn *clear_elem, 502 uint32_t esz, uint32_t msz, uintptr_t ra, 503 MMUAccessType access_type) 504 { 505 uint32_t i, k; 506 uint32_t nf = vext_nf(desc); 507 uint32_t vm = vext_vm(desc); 508 uint32_t mlen = vext_mlen(desc); 509 uint32_t vlmax = vext_maxsz(desc) / esz; 510 511 /* probe every access*/ 512 for (i = 0; i < env->vl; i++) { 513 if (!vm && !vext_elem_mask(v0, mlen, i)) { 514 continue; 515 } 516 probe_pages(env, get_index_addr(base, i, vs2), nf * msz, ra, 517 access_type); 518 } 519 /* load bytes from guest memory */ 520 for (i = 0; i < env->vl; i++) { 521 k = 0; 522 if (!vm && !vext_elem_mask(v0, mlen, i)) { 523 continue; 524 } 525 while (k < nf) { 526 abi_ptr addr = get_index_addr(base, i, vs2) + k * msz; 527 ldst_elem(env, addr, i + k * vlmax, vd, ra); 528 k++; 529 } 530 } 531 /* clear tail elements */ 532 if (clear_elem) { 533 for (k = 0; k < nf; k++) { 534 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); 535 } 536 } 537 } 538 539 #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \ 540 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ 541 void *vs2, CPURISCVState *env, uint32_t desc) \ 542 { \ 543 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \ 544 LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ 545 GETPC(), MMU_DATA_LOAD); \ 546 } 547 548 GEN_VEXT_LD_INDEX(vlxb_v_b, int8_t, int8_t, idx_b, ldb_b, clearb) 549 GEN_VEXT_LD_INDEX(vlxb_v_h, int8_t, int16_t, idx_h, ldb_h, clearh) 550 GEN_VEXT_LD_INDEX(vlxb_v_w, int8_t, int32_t, idx_w, ldb_w, clearl) 551 GEN_VEXT_LD_INDEX(vlxb_v_d, int8_t, int64_t, idx_d, ldb_d, clearq) 552 GEN_VEXT_LD_INDEX(vlxh_v_h, int16_t, int16_t, idx_h, ldh_h, clearh) 553 GEN_VEXT_LD_INDEX(vlxh_v_w, int16_t, int32_t, idx_w, ldh_w, clearl) 554 GEN_VEXT_LD_INDEX(vlxh_v_d, int16_t, int64_t, idx_d, ldh_d, clearq) 555 GEN_VEXT_LD_INDEX(vlxw_v_w, int32_t, int32_t, idx_w, ldw_w, clearl) 556 GEN_VEXT_LD_INDEX(vlxw_v_d, int32_t, int64_t, idx_d, ldw_d, clearq) 557 GEN_VEXT_LD_INDEX(vlxe_v_b, int8_t, int8_t, idx_b, lde_b, clearb) 558 GEN_VEXT_LD_INDEX(vlxe_v_h, int16_t, int16_t, idx_h, lde_h, clearh) 559 GEN_VEXT_LD_INDEX(vlxe_v_w, int32_t, int32_t, idx_w, lde_w, clearl) 560 GEN_VEXT_LD_INDEX(vlxe_v_d, int64_t, int64_t, idx_d, lde_d, clearq) 561 GEN_VEXT_LD_INDEX(vlxbu_v_b, uint8_t, uint8_t, idx_b, ldbu_b, clearb) 562 GEN_VEXT_LD_INDEX(vlxbu_v_h, uint8_t, uint16_t, idx_h, ldbu_h, clearh) 563 GEN_VEXT_LD_INDEX(vlxbu_v_w, uint8_t, uint32_t, idx_w, ldbu_w, clearl) 564 GEN_VEXT_LD_INDEX(vlxbu_v_d, uint8_t, uint64_t, idx_d, ldbu_d, clearq) 565 GEN_VEXT_LD_INDEX(vlxhu_v_h, uint16_t, uint16_t, idx_h, ldhu_h, clearh) 566 GEN_VEXT_LD_INDEX(vlxhu_v_w, uint16_t, uint32_t, idx_w, ldhu_w, clearl) 567 GEN_VEXT_LD_INDEX(vlxhu_v_d, uint16_t, uint64_t, idx_d, ldhu_d, clearq) 568 GEN_VEXT_LD_INDEX(vlxwu_v_w, uint32_t, uint32_t, idx_w, ldwu_w, clearl) 569 GEN_VEXT_LD_INDEX(vlxwu_v_d, uint32_t, uint64_t, idx_d, ldwu_d, clearq) 570 571 #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\ 572 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ 573 void *vs2, CPURISCVState *env, uint32_t desc) \ 574 { \ 575 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \ 576 STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\ 577 GETPC(), MMU_DATA_STORE); \ 578 } 579 580 GEN_VEXT_ST_INDEX(vsxb_v_b, int8_t, int8_t, idx_b, stb_b) 581 GEN_VEXT_ST_INDEX(vsxb_v_h, int8_t, int16_t, idx_h, stb_h) 582 GEN_VEXT_ST_INDEX(vsxb_v_w, int8_t, int32_t, idx_w, stb_w) 583 GEN_VEXT_ST_INDEX(vsxb_v_d, int8_t, int64_t, idx_d, stb_d) 584 GEN_VEXT_ST_INDEX(vsxh_v_h, int16_t, int16_t, idx_h, sth_h) 585 GEN_VEXT_ST_INDEX(vsxh_v_w, int16_t, int32_t, idx_w, sth_w) 586 GEN_VEXT_ST_INDEX(vsxh_v_d, int16_t, int64_t, idx_d, sth_d) 587 GEN_VEXT_ST_INDEX(vsxw_v_w, int32_t, int32_t, idx_w, stw_w) 588 GEN_VEXT_ST_INDEX(vsxw_v_d, int32_t, int64_t, idx_d, stw_d) 589 GEN_VEXT_ST_INDEX(vsxe_v_b, int8_t, int8_t, idx_b, ste_b) 590 GEN_VEXT_ST_INDEX(vsxe_v_h, int16_t, int16_t, idx_h, ste_h) 591 GEN_VEXT_ST_INDEX(vsxe_v_w, int32_t, int32_t, idx_w, ste_w) 592 GEN_VEXT_ST_INDEX(vsxe_v_d, int64_t, int64_t, idx_d, ste_d) 593 594 /* 595 *** unit-stride fault-only-fisrt load instructions 596 */ 597 static inline void 598 vext_ldff(void *vd, void *v0, target_ulong base, 599 CPURISCVState *env, uint32_t desc, 600 vext_ldst_elem_fn *ldst_elem, 601 clear_fn *clear_elem, 602 uint32_t esz, uint32_t msz, uintptr_t ra) 603 { 604 void *host; 605 uint32_t i, k, vl = 0; 606 uint32_t mlen = vext_mlen(desc); 607 uint32_t nf = vext_nf(desc); 608 uint32_t vm = vext_vm(desc); 609 uint32_t vlmax = vext_maxsz(desc) / esz; 610 target_ulong addr, offset, remain; 611 612 /* probe every access*/ 613 for (i = 0; i < env->vl; i++) { 614 if (!vm && !vext_elem_mask(v0, mlen, i)) { 615 continue; 616 } 617 addr = base + nf * i * msz; 618 if (i == 0) { 619 probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD); 620 } else { 621 /* if it triggers an exception, no need to check watchpoint */ 622 remain = nf * msz; 623 while (remain > 0) { 624 offset = -(addr | TARGET_PAGE_MASK); 625 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, 626 cpu_mmu_index(env, false)); 627 if (host) { 628 #ifdef CONFIG_USER_ONLY 629 if (page_check_range(addr, nf * msz, PAGE_READ) < 0) { 630 vl = i; 631 goto ProbeSuccess; 632 } 633 #else 634 probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD); 635 #endif 636 } else { 637 vl = i; 638 goto ProbeSuccess; 639 } 640 if (remain <= offset) { 641 break; 642 } 643 remain -= offset; 644 addr += offset; 645 } 646 } 647 } 648 ProbeSuccess: 649 /* load bytes from guest memory */ 650 if (vl != 0) { 651 env->vl = vl; 652 } 653 for (i = 0; i < env->vl; i++) { 654 k = 0; 655 if (!vm && !vext_elem_mask(v0, mlen, i)) { 656 continue; 657 } 658 while (k < nf) { 659 target_ulong addr = base + (i * nf + k) * msz; 660 ldst_elem(env, addr, i + k * vlmax, vd, ra); 661 k++; 662 } 663 } 664 /* clear tail elements */ 665 if (vl != 0) { 666 return; 667 } 668 for (k = 0; k < nf; k++) { 669 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz); 670 } 671 } 672 673 #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \ 674 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \ 675 CPURISCVState *env, uint32_t desc) \ 676 { \ 677 vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \ 678 sizeof(ETYPE), sizeof(MTYPE), GETPC()); \ 679 } 680 681 GEN_VEXT_LDFF(vlbff_v_b, int8_t, int8_t, ldb_b, clearb) 682 GEN_VEXT_LDFF(vlbff_v_h, int8_t, int16_t, ldb_h, clearh) 683 GEN_VEXT_LDFF(vlbff_v_w, int8_t, int32_t, ldb_w, clearl) 684 GEN_VEXT_LDFF(vlbff_v_d, int8_t, int64_t, ldb_d, clearq) 685 GEN_VEXT_LDFF(vlhff_v_h, int16_t, int16_t, ldh_h, clearh) 686 GEN_VEXT_LDFF(vlhff_v_w, int16_t, int32_t, ldh_w, clearl) 687 GEN_VEXT_LDFF(vlhff_v_d, int16_t, int64_t, ldh_d, clearq) 688 GEN_VEXT_LDFF(vlwff_v_w, int32_t, int32_t, ldw_w, clearl) 689 GEN_VEXT_LDFF(vlwff_v_d, int32_t, int64_t, ldw_d, clearq) 690 GEN_VEXT_LDFF(vleff_v_b, int8_t, int8_t, lde_b, clearb) 691 GEN_VEXT_LDFF(vleff_v_h, int16_t, int16_t, lde_h, clearh) 692 GEN_VEXT_LDFF(vleff_v_w, int32_t, int32_t, lde_w, clearl) 693 GEN_VEXT_LDFF(vleff_v_d, int64_t, int64_t, lde_d, clearq) 694 GEN_VEXT_LDFF(vlbuff_v_b, uint8_t, uint8_t, ldbu_b, clearb) 695 GEN_VEXT_LDFF(vlbuff_v_h, uint8_t, uint16_t, ldbu_h, clearh) 696 GEN_VEXT_LDFF(vlbuff_v_w, uint8_t, uint32_t, ldbu_w, clearl) 697 GEN_VEXT_LDFF(vlbuff_v_d, uint8_t, uint64_t, ldbu_d, clearq) 698 GEN_VEXT_LDFF(vlhuff_v_h, uint16_t, uint16_t, ldhu_h, clearh) 699 GEN_VEXT_LDFF(vlhuff_v_w, uint16_t, uint32_t, ldhu_w, clearl) 700 GEN_VEXT_LDFF(vlhuff_v_d, uint16_t, uint64_t, ldhu_d, clearq) 701 GEN_VEXT_LDFF(vlwuff_v_w, uint32_t, uint32_t, ldwu_w, clearl) 702 GEN_VEXT_LDFF(vlwuff_v_d, uint32_t, uint64_t, ldwu_d, clearq) 703 704 /* 705 *** Vector AMO Operations (Zvamo) 706 */ 707 typedef void vext_amo_noatomic_fn(void *vs3, target_ulong addr, 708 uint32_t wd, uint32_t idx, CPURISCVState *env, 709 uintptr_t retaddr); 710 711 /* no atomic opreation for vector atomic insructions */ 712 #define DO_SWAP(N, M) (M) 713 #define DO_AND(N, M) (N & M) 714 #define DO_XOR(N, M) (N ^ M) 715 #define DO_OR(N, M) (N | M) 716 #define DO_ADD(N, M) (N + M) 717 718 #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \ 719 static void \ 720 vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \ 721 uint32_t wd, uint32_t idx, \ 722 CPURISCVState *env, uintptr_t retaddr)\ 723 { \ 724 typedef int##ESZ##_t ETYPE; \ 725 typedef int##MSZ##_t MTYPE; \ 726 typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \ 727 ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \ 728 MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \ 729 \ 730 cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \ 731 if (wd) { \ 732 *pe3 = a; \ 733 } \ 734 } 735 736 /* Signed min/max */ 737 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) 738 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) 739 740 /* Unsigned min/max */ 741 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M) 742 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M) 743 744 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w, 32, 32, H4, DO_SWAP, l) 745 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w, 32, 32, H4, DO_ADD, l) 746 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w, 32, 32, H4, DO_XOR, l) 747 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w, 32, 32, H4, DO_AND, l) 748 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w, 32, 32, H4, DO_OR, l) 749 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w, 32, 32, H4, DO_MIN, l) 750 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w, 32, 32, H4, DO_MAX, l) 751 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w, 32, 32, H4, DO_MINU, l) 752 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w, 32, 32, H4, DO_MAXU, l) 753 #ifdef TARGET_RISCV64 754 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d, 64, 32, H8, DO_SWAP, l) 755 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d, 64, 64, H8, DO_SWAP, q) 756 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d, 64, 32, H8, DO_ADD, l) 757 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d, 64, 64, H8, DO_ADD, q) 758 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d, 64, 32, H8, DO_XOR, l) 759 GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d, 64, 64, H8, DO_XOR, q) 760 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d, 64, 32, H8, DO_AND, l) 761 GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d, 64, 64, H8, DO_AND, q) 762 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d, 64, 32, H8, DO_OR, l) 763 GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d, 64, 64, H8, DO_OR, q) 764 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d, 64, 32, H8, DO_MIN, l) 765 GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d, 64, 64, H8, DO_MIN, q) 766 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d, 64, 32, H8, DO_MAX, l) 767 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d, 64, 64, H8, DO_MAX, q) 768 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d, 64, 32, H8, DO_MINU, l) 769 GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d, 64, 64, H8, DO_MINU, q) 770 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d, 64, 32, H8, DO_MAXU, l) 771 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d, 64, 64, H8, DO_MAXU, q) 772 #endif 773 774 static inline void 775 vext_amo_noatomic(void *vs3, void *v0, target_ulong base, 776 void *vs2, CPURISCVState *env, uint32_t desc, 777 vext_get_index_addr get_index_addr, 778 vext_amo_noatomic_fn *noatomic_op, 779 clear_fn *clear_elem, 780 uint32_t esz, uint32_t msz, uintptr_t ra) 781 { 782 uint32_t i; 783 target_long addr; 784 uint32_t wd = vext_wd(desc); 785 uint32_t vm = vext_vm(desc); 786 uint32_t mlen = vext_mlen(desc); 787 uint32_t vlmax = vext_maxsz(desc) / esz; 788 789 for (i = 0; i < env->vl; i++) { 790 if (!vm && !vext_elem_mask(v0, mlen, i)) { 791 continue; 792 } 793 probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_LOAD); 794 probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_STORE); 795 } 796 for (i = 0; i < env->vl; i++) { 797 if (!vm && !vext_elem_mask(v0, mlen, i)) { 798 continue; 799 } 800 addr = get_index_addr(base, i, vs2); 801 noatomic_op(vs3, addr, wd, i, env, ra); 802 } 803 clear_elem(vs3, env->vl, env->vl * esz, vlmax * esz); 804 } 805 806 #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \ 807 void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \ 808 void *vs2, CPURISCVState *env, uint32_t desc) \ 809 { \ 810 vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \ 811 INDEX_FN, vext_##NAME##_noatomic_op, \ 812 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \ 813 GETPC()); \ 814 } 815 816 #ifdef TARGET_RISCV64 817 GEN_VEXT_AMO(vamoswapw_v_d, int32_t, int64_t, idx_d, clearq) 818 GEN_VEXT_AMO(vamoswapd_v_d, int64_t, int64_t, idx_d, clearq) 819 GEN_VEXT_AMO(vamoaddw_v_d, int32_t, int64_t, idx_d, clearq) 820 GEN_VEXT_AMO(vamoaddd_v_d, int64_t, int64_t, idx_d, clearq) 821 GEN_VEXT_AMO(vamoxorw_v_d, int32_t, int64_t, idx_d, clearq) 822 GEN_VEXT_AMO(vamoxord_v_d, int64_t, int64_t, idx_d, clearq) 823 GEN_VEXT_AMO(vamoandw_v_d, int32_t, int64_t, idx_d, clearq) 824 GEN_VEXT_AMO(vamoandd_v_d, int64_t, int64_t, idx_d, clearq) 825 GEN_VEXT_AMO(vamoorw_v_d, int32_t, int64_t, idx_d, clearq) 826 GEN_VEXT_AMO(vamoord_v_d, int64_t, int64_t, idx_d, clearq) 827 GEN_VEXT_AMO(vamominw_v_d, int32_t, int64_t, idx_d, clearq) 828 GEN_VEXT_AMO(vamomind_v_d, int64_t, int64_t, idx_d, clearq) 829 GEN_VEXT_AMO(vamomaxw_v_d, int32_t, int64_t, idx_d, clearq) 830 GEN_VEXT_AMO(vamomaxd_v_d, int64_t, int64_t, idx_d, clearq) 831 GEN_VEXT_AMO(vamominuw_v_d, uint32_t, uint64_t, idx_d, clearq) 832 GEN_VEXT_AMO(vamominud_v_d, uint64_t, uint64_t, idx_d, clearq) 833 GEN_VEXT_AMO(vamomaxuw_v_d, uint32_t, uint64_t, idx_d, clearq) 834 GEN_VEXT_AMO(vamomaxud_v_d, uint64_t, uint64_t, idx_d, clearq) 835 #endif 836 GEN_VEXT_AMO(vamoswapw_v_w, int32_t, int32_t, idx_w, clearl) 837 GEN_VEXT_AMO(vamoaddw_v_w, int32_t, int32_t, idx_w, clearl) 838 GEN_VEXT_AMO(vamoxorw_v_w, int32_t, int32_t, idx_w, clearl) 839 GEN_VEXT_AMO(vamoandw_v_w, int32_t, int32_t, idx_w, clearl) 840 GEN_VEXT_AMO(vamoorw_v_w, int32_t, int32_t, idx_w, clearl) 841 GEN_VEXT_AMO(vamominw_v_w, int32_t, int32_t, idx_w, clearl) 842 GEN_VEXT_AMO(vamomaxw_v_w, int32_t, int32_t, idx_w, clearl) 843 GEN_VEXT_AMO(vamominuw_v_w, uint32_t, uint32_t, idx_w, clearl) 844 GEN_VEXT_AMO(vamomaxuw_v_w, uint32_t, uint32_t, idx_w, clearl) 845 846 /* 847 *** Vector Integer Arithmetic Instructions 848 */ 849 850 /* expand macro args before macro */ 851 #define RVVCALL(macro, ...) macro(__VA_ARGS__) 852 853 /* (TD, T1, T2, TX1, TX2) */ 854 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t 855 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t 856 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t 857 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t 858 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t 859 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t 860 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t 861 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t 862 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t 863 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t 864 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t 865 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t 866 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t 867 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t 868 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t 869 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t 870 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t 871 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t 872 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t 873 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t 874 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t 875 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t 876 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t 877 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t 878 879 /* operation of two vector elements */ 880 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i); 881 882 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ 883 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ 884 { \ 885 TX1 s1 = *((T1 *)vs1 + HS1(i)); \ 886 TX2 s2 = *((T2 *)vs2 + HS2(i)); \ 887 *((TD *)vd + HD(i)) = OP(s2, s1); \ 888 } 889 #define DO_SUB(N, M) (N - M) 890 #define DO_RSUB(N, M) (M - N) 891 892 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD) 893 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD) 894 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD) 895 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD) 896 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB) 897 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB) 898 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB) 899 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB) 900 901 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2, 902 CPURISCVState *env, uint32_t desc, 903 uint32_t esz, uint32_t dsz, 904 opivv2_fn *fn, clear_fn *clearfn) 905 { 906 uint32_t vlmax = vext_maxsz(desc) / esz; 907 uint32_t mlen = vext_mlen(desc); 908 uint32_t vm = vext_vm(desc); 909 uint32_t vl = env->vl; 910 uint32_t i; 911 912 for (i = 0; i < vl; i++) { 913 if (!vm && !vext_elem_mask(v0, mlen, i)) { 914 continue; 915 } 916 fn(vd, vs1, vs2, i); 917 } 918 clearfn(vd, vl, vl * dsz, vlmax * dsz); 919 } 920 921 /* generate the helpers for OPIVV */ 922 #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN) \ 923 void HELPER(NAME)(void *vd, void *v0, void *vs1, \ 924 void *vs2, CPURISCVState *env, \ 925 uint32_t desc) \ 926 { \ 927 do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \ 928 do_##NAME, CLEAR_FN); \ 929 } 930 931 GEN_VEXT_VV(vadd_vv_b, 1, 1, clearb) 932 GEN_VEXT_VV(vadd_vv_h, 2, 2, clearh) 933 GEN_VEXT_VV(vadd_vv_w, 4, 4, clearl) 934 GEN_VEXT_VV(vadd_vv_d, 8, 8, clearq) 935 GEN_VEXT_VV(vsub_vv_b, 1, 1, clearb) 936 GEN_VEXT_VV(vsub_vv_h, 2, 2, clearh) 937 GEN_VEXT_VV(vsub_vv_w, 4, 4, clearl) 938 GEN_VEXT_VV(vsub_vv_d, 8, 8, clearq) 939 940 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i); 941 942 /* 943 * (T1)s1 gives the real operator type. 944 * (TX1)(T1)s1 expands the operator type of widen or narrow operations. 945 */ 946 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ 947 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ 948 { \ 949 TX2 s2 = *((T2 *)vs2 + HS2(i)); \ 950 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \ 951 } 952 953 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD) 954 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD) 955 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD) 956 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD) 957 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB) 958 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB) 959 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB) 960 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB) 961 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB) 962 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB) 963 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB) 964 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB) 965 966 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2, 967 CPURISCVState *env, uint32_t desc, 968 uint32_t esz, uint32_t dsz, 969 opivx2_fn fn, clear_fn *clearfn) 970 { 971 uint32_t vlmax = vext_maxsz(desc) / esz; 972 uint32_t mlen = vext_mlen(desc); 973 uint32_t vm = vext_vm(desc); 974 uint32_t vl = env->vl; 975 uint32_t i; 976 977 for (i = 0; i < vl; i++) { 978 if (!vm && !vext_elem_mask(v0, mlen, i)) { 979 continue; 980 } 981 fn(vd, s1, vs2, i); 982 } 983 clearfn(vd, vl, vl * dsz, vlmax * dsz); 984 } 985 986 /* generate the helpers for OPIVX */ 987 #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN) \ 988 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ 989 void *vs2, CPURISCVState *env, \ 990 uint32_t desc) \ 991 { \ 992 do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \ 993 do_##NAME, CLEAR_FN); \ 994 } 995 996 GEN_VEXT_VX(vadd_vx_b, 1, 1, clearb) 997 GEN_VEXT_VX(vadd_vx_h, 2, 2, clearh) 998 GEN_VEXT_VX(vadd_vx_w, 4, 4, clearl) 999 GEN_VEXT_VX(vadd_vx_d, 8, 8, clearq) 1000 GEN_VEXT_VX(vsub_vx_b, 1, 1, clearb) 1001 GEN_VEXT_VX(vsub_vx_h, 2, 2, clearh) 1002 GEN_VEXT_VX(vsub_vx_w, 4, 4, clearl) 1003 GEN_VEXT_VX(vsub_vx_d, 8, 8, clearq) 1004 GEN_VEXT_VX(vrsub_vx_b, 1, 1, clearb) 1005 GEN_VEXT_VX(vrsub_vx_h, 2, 2, clearh) 1006 GEN_VEXT_VX(vrsub_vx_w, 4, 4, clearl) 1007 GEN_VEXT_VX(vrsub_vx_d, 8, 8, clearq) 1008 1009 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc) 1010 { 1011 intptr_t oprsz = simd_oprsz(desc); 1012 intptr_t i; 1013 1014 for (i = 0; i < oprsz; i += sizeof(uint8_t)) { 1015 *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i); 1016 } 1017 } 1018 1019 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc) 1020 { 1021 intptr_t oprsz = simd_oprsz(desc); 1022 intptr_t i; 1023 1024 for (i = 0; i < oprsz; i += sizeof(uint16_t)) { 1025 *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i); 1026 } 1027 } 1028 1029 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc) 1030 { 1031 intptr_t oprsz = simd_oprsz(desc); 1032 intptr_t i; 1033 1034 for (i = 0; i < oprsz; i += sizeof(uint32_t)) { 1035 *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i); 1036 } 1037 } 1038 1039 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc) 1040 { 1041 intptr_t oprsz = simd_oprsz(desc); 1042 intptr_t i; 1043 1044 for (i = 0; i < oprsz; i += sizeof(uint64_t)) { 1045 *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i); 1046 } 1047 } 1048 1049 /* Vector Widening Integer Add/Subtract */ 1050 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t 1051 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t 1052 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t 1053 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t 1054 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t 1055 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t 1056 #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t 1057 #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t 1058 #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t 1059 #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t 1060 #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t 1061 #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t 1062 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD) 1063 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD) 1064 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD) 1065 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB) 1066 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB) 1067 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB) 1068 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD) 1069 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD) 1070 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD) 1071 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB) 1072 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB) 1073 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB) 1074 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD) 1075 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD) 1076 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD) 1077 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB) 1078 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB) 1079 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB) 1080 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD) 1081 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD) 1082 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD) 1083 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB) 1084 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB) 1085 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB) 1086 GEN_VEXT_VV(vwaddu_vv_b, 1, 2, clearh) 1087 GEN_VEXT_VV(vwaddu_vv_h, 2, 4, clearl) 1088 GEN_VEXT_VV(vwaddu_vv_w, 4, 8, clearq) 1089 GEN_VEXT_VV(vwsubu_vv_b, 1, 2, clearh) 1090 GEN_VEXT_VV(vwsubu_vv_h, 2, 4, clearl) 1091 GEN_VEXT_VV(vwsubu_vv_w, 4, 8, clearq) 1092 GEN_VEXT_VV(vwadd_vv_b, 1, 2, clearh) 1093 GEN_VEXT_VV(vwadd_vv_h, 2, 4, clearl) 1094 GEN_VEXT_VV(vwadd_vv_w, 4, 8, clearq) 1095 GEN_VEXT_VV(vwsub_vv_b, 1, 2, clearh) 1096 GEN_VEXT_VV(vwsub_vv_h, 2, 4, clearl) 1097 GEN_VEXT_VV(vwsub_vv_w, 4, 8, clearq) 1098 GEN_VEXT_VV(vwaddu_wv_b, 1, 2, clearh) 1099 GEN_VEXT_VV(vwaddu_wv_h, 2, 4, clearl) 1100 GEN_VEXT_VV(vwaddu_wv_w, 4, 8, clearq) 1101 GEN_VEXT_VV(vwsubu_wv_b, 1, 2, clearh) 1102 GEN_VEXT_VV(vwsubu_wv_h, 2, 4, clearl) 1103 GEN_VEXT_VV(vwsubu_wv_w, 4, 8, clearq) 1104 GEN_VEXT_VV(vwadd_wv_b, 1, 2, clearh) 1105 GEN_VEXT_VV(vwadd_wv_h, 2, 4, clearl) 1106 GEN_VEXT_VV(vwadd_wv_w, 4, 8, clearq) 1107 GEN_VEXT_VV(vwsub_wv_b, 1, 2, clearh) 1108 GEN_VEXT_VV(vwsub_wv_h, 2, 4, clearl) 1109 GEN_VEXT_VV(vwsub_wv_w, 4, 8, clearq) 1110 1111 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD) 1112 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD) 1113 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD) 1114 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB) 1115 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB) 1116 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB) 1117 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD) 1118 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD) 1119 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD) 1120 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB) 1121 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB) 1122 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB) 1123 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD) 1124 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD) 1125 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD) 1126 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB) 1127 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB) 1128 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB) 1129 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD) 1130 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD) 1131 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD) 1132 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB) 1133 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB) 1134 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB) 1135 GEN_VEXT_VX(vwaddu_vx_b, 1, 2, clearh) 1136 GEN_VEXT_VX(vwaddu_vx_h, 2, 4, clearl) 1137 GEN_VEXT_VX(vwaddu_vx_w, 4, 8, clearq) 1138 GEN_VEXT_VX(vwsubu_vx_b, 1, 2, clearh) 1139 GEN_VEXT_VX(vwsubu_vx_h, 2, 4, clearl) 1140 GEN_VEXT_VX(vwsubu_vx_w, 4, 8, clearq) 1141 GEN_VEXT_VX(vwadd_vx_b, 1, 2, clearh) 1142 GEN_VEXT_VX(vwadd_vx_h, 2, 4, clearl) 1143 GEN_VEXT_VX(vwadd_vx_w, 4, 8, clearq) 1144 GEN_VEXT_VX(vwsub_vx_b, 1, 2, clearh) 1145 GEN_VEXT_VX(vwsub_vx_h, 2, 4, clearl) 1146 GEN_VEXT_VX(vwsub_vx_w, 4, 8, clearq) 1147 GEN_VEXT_VX(vwaddu_wx_b, 1, 2, clearh) 1148 GEN_VEXT_VX(vwaddu_wx_h, 2, 4, clearl) 1149 GEN_VEXT_VX(vwaddu_wx_w, 4, 8, clearq) 1150 GEN_VEXT_VX(vwsubu_wx_b, 1, 2, clearh) 1151 GEN_VEXT_VX(vwsubu_wx_h, 2, 4, clearl) 1152 GEN_VEXT_VX(vwsubu_wx_w, 4, 8, clearq) 1153 GEN_VEXT_VX(vwadd_wx_b, 1, 2, clearh) 1154 GEN_VEXT_VX(vwadd_wx_h, 2, 4, clearl) 1155 GEN_VEXT_VX(vwadd_wx_w, 4, 8, clearq) 1156 GEN_VEXT_VX(vwsub_wx_b, 1, 2, clearh) 1157 GEN_VEXT_VX(vwsub_wx_h, 2, 4, clearl) 1158 GEN_VEXT_VX(vwsub_wx_w, 4, 8, clearq) 1159 1160 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1161 #define DO_VADC(N, M, C) (N + M + C) 1162 #define DO_VSBC(N, M, C) (N - M - C) 1163 1164 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \ 1165 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ 1166 CPURISCVState *env, uint32_t desc) \ 1167 { \ 1168 uint32_t mlen = vext_mlen(desc); \ 1169 uint32_t vl = env->vl; \ 1170 uint32_t esz = sizeof(ETYPE); \ 1171 uint32_t vlmax = vext_maxsz(desc) / esz; \ 1172 uint32_t i; \ 1173 \ 1174 for (i = 0; i < vl; i++) { \ 1175 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ 1176 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 1177 uint8_t carry = vext_elem_mask(v0, mlen, i); \ 1178 \ 1179 *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \ 1180 } \ 1181 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 1182 } 1183 1184 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC, clearb) 1185 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC, clearh) 1186 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC, clearl) 1187 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC, clearq) 1188 1189 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC, clearb) 1190 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC, clearh) 1191 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC, clearl) 1192 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC, clearq) 1193 1194 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \ 1195 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ 1196 CPURISCVState *env, uint32_t desc) \ 1197 { \ 1198 uint32_t mlen = vext_mlen(desc); \ 1199 uint32_t vl = env->vl; \ 1200 uint32_t esz = sizeof(ETYPE); \ 1201 uint32_t vlmax = vext_maxsz(desc) / esz; \ 1202 uint32_t i; \ 1203 \ 1204 for (i = 0; i < vl; i++) { \ 1205 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 1206 uint8_t carry = vext_elem_mask(v0, mlen, i); \ 1207 \ 1208 *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\ 1209 } \ 1210 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 1211 } 1212 1213 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC, clearb) 1214 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC, clearh) 1215 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC, clearl) 1216 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC, clearq) 1217 1218 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC, clearb) 1219 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC, clearh) 1220 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC, clearl) 1221 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC, clearq) 1222 1223 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \ 1224 (__typeof(N))(N + M) < N) 1225 #define DO_MSBC(N, M, C) (C ? N <= M : N < M) 1226 1227 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \ 1228 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ 1229 CPURISCVState *env, uint32_t desc) \ 1230 { \ 1231 uint32_t mlen = vext_mlen(desc); \ 1232 uint32_t vl = env->vl; \ 1233 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ 1234 uint32_t i; \ 1235 \ 1236 for (i = 0; i < vl; i++) { \ 1237 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ 1238 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 1239 uint8_t carry = vext_elem_mask(v0, mlen, i); \ 1240 \ 1241 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\ 1242 } \ 1243 for (; i < vlmax; i++) { \ 1244 vext_set_elem_mask(vd, mlen, i, 0); \ 1245 } \ 1246 } 1247 1248 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC) 1249 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC) 1250 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC) 1251 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC) 1252 1253 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC) 1254 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC) 1255 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC) 1256 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC) 1257 1258 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \ 1259 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ 1260 void *vs2, CPURISCVState *env, uint32_t desc) \ 1261 { \ 1262 uint32_t mlen = vext_mlen(desc); \ 1263 uint32_t vl = env->vl; \ 1264 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ 1265 uint32_t i; \ 1266 \ 1267 for (i = 0; i < vl; i++) { \ 1268 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 1269 uint8_t carry = vext_elem_mask(v0, mlen, i); \ 1270 \ 1271 vext_set_elem_mask(vd, mlen, i, \ 1272 DO_OP(s2, (ETYPE)(target_long)s1, carry)); \ 1273 } \ 1274 for (; i < vlmax; i++) { \ 1275 vext_set_elem_mask(vd, mlen, i, 0); \ 1276 } \ 1277 } 1278 1279 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC) 1280 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC) 1281 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC) 1282 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC) 1283 1284 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC) 1285 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC) 1286 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC) 1287 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC) 1288 1289 /* Vector Bitwise Logical Instructions */ 1290 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND) 1291 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND) 1292 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND) 1293 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND) 1294 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR) 1295 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR) 1296 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR) 1297 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR) 1298 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR) 1299 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR) 1300 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR) 1301 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR) 1302 GEN_VEXT_VV(vand_vv_b, 1, 1, clearb) 1303 GEN_VEXT_VV(vand_vv_h, 2, 2, clearh) 1304 GEN_VEXT_VV(vand_vv_w, 4, 4, clearl) 1305 GEN_VEXT_VV(vand_vv_d, 8, 8, clearq) 1306 GEN_VEXT_VV(vor_vv_b, 1, 1, clearb) 1307 GEN_VEXT_VV(vor_vv_h, 2, 2, clearh) 1308 GEN_VEXT_VV(vor_vv_w, 4, 4, clearl) 1309 GEN_VEXT_VV(vor_vv_d, 8, 8, clearq) 1310 GEN_VEXT_VV(vxor_vv_b, 1, 1, clearb) 1311 GEN_VEXT_VV(vxor_vv_h, 2, 2, clearh) 1312 GEN_VEXT_VV(vxor_vv_w, 4, 4, clearl) 1313 GEN_VEXT_VV(vxor_vv_d, 8, 8, clearq) 1314 1315 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND) 1316 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND) 1317 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND) 1318 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND) 1319 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR) 1320 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR) 1321 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR) 1322 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR) 1323 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR) 1324 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR) 1325 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR) 1326 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR) 1327 GEN_VEXT_VX(vand_vx_b, 1, 1, clearb) 1328 GEN_VEXT_VX(vand_vx_h, 2, 2, clearh) 1329 GEN_VEXT_VX(vand_vx_w, 4, 4, clearl) 1330 GEN_VEXT_VX(vand_vx_d, 8, 8, clearq) 1331 GEN_VEXT_VX(vor_vx_b, 1, 1, clearb) 1332 GEN_VEXT_VX(vor_vx_h, 2, 2, clearh) 1333 GEN_VEXT_VX(vor_vx_w, 4, 4, clearl) 1334 GEN_VEXT_VX(vor_vx_d, 8, 8, clearq) 1335 GEN_VEXT_VX(vxor_vx_b, 1, 1, clearb) 1336 GEN_VEXT_VX(vxor_vx_h, 2, 2, clearh) 1337 GEN_VEXT_VX(vxor_vx_w, 4, 4, clearl) 1338 GEN_VEXT_VX(vxor_vx_d, 8, 8, clearq) 1339 1340 /* Vector Single-Width Bit Shift Instructions */ 1341 #define DO_SLL(N, M) (N << (M)) 1342 #define DO_SRL(N, M) (N >> (M)) 1343 1344 /* generate the helpers for shift instructions with two vector operators */ 1345 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN) \ 1346 void HELPER(NAME)(void *vd, void *v0, void *vs1, \ 1347 void *vs2, CPURISCVState *env, uint32_t desc) \ 1348 { \ 1349 uint32_t mlen = vext_mlen(desc); \ 1350 uint32_t vm = vext_vm(desc); \ 1351 uint32_t vl = env->vl; \ 1352 uint32_t esz = sizeof(TS1); \ 1353 uint32_t vlmax = vext_maxsz(desc) / esz; \ 1354 uint32_t i; \ 1355 \ 1356 for (i = 0; i < vl; i++) { \ 1357 if (!vm && !vext_elem_mask(v0, mlen, i)) { \ 1358 continue; \ 1359 } \ 1360 TS1 s1 = *((TS1 *)vs1 + HS1(i)); \ 1361 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ 1362 *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \ 1363 } \ 1364 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 1365 } 1366 1367 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7, clearb) 1368 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf, clearh) 1369 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f, clearl) 1370 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f, clearq) 1371 1372 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb) 1373 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh) 1374 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl) 1375 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq) 1376 1377 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb) 1378 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh) 1379 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl) 1380 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq) 1381 1382 /* generate the helpers for shift instructions with one vector and one scalar */ 1383 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \ 1384 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ 1385 void *vs2, CPURISCVState *env, uint32_t desc) \ 1386 { \ 1387 uint32_t mlen = vext_mlen(desc); \ 1388 uint32_t vm = vext_vm(desc); \ 1389 uint32_t vl = env->vl; \ 1390 uint32_t esz = sizeof(TD); \ 1391 uint32_t vlmax = vext_maxsz(desc) / esz; \ 1392 uint32_t i; \ 1393 \ 1394 for (i = 0; i < vl; i++) { \ 1395 if (!vm && !vext_elem_mask(v0, mlen, i)) { \ 1396 continue; \ 1397 } \ 1398 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \ 1399 *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \ 1400 } \ 1401 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 1402 } 1403 1404 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7, clearb) 1405 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf, clearh) 1406 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f, clearl) 1407 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f, clearq) 1408 1409 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb) 1410 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh) 1411 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl) 1412 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq) 1413 1414 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb) 1415 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh) 1416 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl) 1417 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq) 1418 1419 /* Vector Narrowing Integer Right Shift Instructions */ 1420 GEN_VEXT_SHIFT_VV(vnsrl_vv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb) 1421 GEN_VEXT_SHIFT_VV(vnsrl_vv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh) 1422 GEN_VEXT_SHIFT_VV(vnsrl_vv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl) 1423 GEN_VEXT_SHIFT_VV(vnsra_vv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb) 1424 GEN_VEXT_SHIFT_VV(vnsra_vv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh) 1425 GEN_VEXT_SHIFT_VV(vnsra_vv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl) 1426 GEN_VEXT_SHIFT_VX(vnsrl_vx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb) 1427 GEN_VEXT_SHIFT_VX(vnsrl_vx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh) 1428 GEN_VEXT_SHIFT_VX(vnsrl_vx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl) 1429 GEN_VEXT_SHIFT_VX(vnsra_vx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb) 1430 GEN_VEXT_SHIFT_VX(vnsra_vx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh) 1431 GEN_VEXT_SHIFT_VX(vnsra_vx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl) 1432 1433 /* Vector Integer Comparison Instructions */ 1434 #define DO_MSEQ(N, M) (N == M) 1435 #define DO_MSNE(N, M) (N != M) 1436 #define DO_MSLT(N, M) (N < M) 1437 #define DO_MSLE(N, M) (N <= M) 1438 #define DO_MSGT(N, M) (N > M) 1439 1440 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \ 1441 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ 1442 CPURISCVState *env, uint32_t desc) \ 1443 { \ 1444 uint32_t mlen = vext_mlen(desc); \ 1445 uint32_t vm = vext_vm(desc); \ 1446 uint32_t vl = env->vl; \ 1447 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ 1448 uint32_t i; \ 1449 \ 1450 for (i = 0; i < vl; i++) { \ 1451 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ 1452 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 1453 if (!vm && !vext_elem_mask(v0, mlen, i)) { \ 1454 continue; \ 1455 } \ 1456 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1)); \ 1457 } \ 1458 for (; i < vlmax; i++) { \ 1459 vext_set_elem_mask(vd, mlen, i, 0); \ 1460 } \ 1461 } 1462 1463 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ) 1464 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ) 1465 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ) 1466 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ) 1467 1468 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE) 1469 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE) 1470 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE) 1471 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE) 1472 1473 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT) 1474 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT) 1475 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT) 1476 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT) 1477 1478 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT) 1479 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT) 1480 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT) 1481 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT) 1482 1483 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE) 1484 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE) 1485 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE) 1486 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE) 1487 1488 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE) 1489 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE) 1490 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE) 1491 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE) 1492 1493 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \ 1494 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \ 1495 CPURISCVState *env, uint32_t desc) \ 1496 { \ 1497 uint32_t mlen = vext_mlen(desc); \ 1498 uint32_t vm = vext_vm(desc); \ 1499 uint32_t vl = env->vl; \ 1500 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \ 1501 uint32_t i; \ 1502 \ 1503 for (i = 0; i < vl; i++) { \ 1504 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 1505 if (!vm && !vext_elem_mask(v0, mlen, i)) { \ 1506 continue; \ 1507 } \ 1508 vext_set_elem_mask(vd, mlen, i, \ 1509 DO_OP(s2, (ETYPE)(target_long)s1)); \ 1510 } \ 1511 for (; i < vlmax; i++) { \ 1512 vext_set_elem_mask(vd, mlen, i, 0); \ 1513 } \ 1514 } 1515 1516 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ) 1517 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ) 1518 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ) 1519 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ) 1520 1521 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE) 1522 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE) 1523 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE) 1524 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE) 1525 1526 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT) 1527 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT) 1528 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT) 1529 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT) 1530 1531 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT) 1532 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT) 1533 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT) 1534 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT) 1535 1536 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE) 1537 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE) 1538 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE) 1539 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE) 1540 1541 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE) 1542 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE) 1543 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE) 1544 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE) 1545 1546 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT) 1547 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT) 1548 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT) 1549 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT) 1550 1551 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT) 1552 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT) 1553 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT) 1554 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT) 1555 1556 /* Vector Integer Min/Max Instructions */ 1557 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN) 1558 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN) 1559 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN) 1560 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN) 1561 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN) 1562 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN) 1563 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN) 1564 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN) 1565 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX) 1566 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX) 1567 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX) 1568 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX) 1569 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX) 1570 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX) 1571 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX) 1572 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX) 1573 GEN_VEXT_VV(vminu_vv_b, 1, 1, clearb) 1574 GEN_VEXT_VV(vminu_vv_h, 2, 2, clearh) 1575 GEN_VEXT_VV(vminu_vv_w, 4, 4, clearl) 1576 GEN_VEXT_VV(vminu_vv_d, 8, 8, clearq) 1577 GEN_VEXT_VV(vmin_vv_b, 1, 1, clearb) 1578 GEN_VEXT_VV(vmin_vv_h, 2, 2, clearh) 1579 GEN_VEXT_VV(vmin_vv_w, 4, 4, clearl) 1580 GEN_VEXT_VV(vmin_vv_d, 8, 8, clearq) 1581 GEN_VEXT_VV(vmaxu_vv_b, 1, 1, clearb) 1582 GEN_VEXT_VV(vmaxu_vv_h, 2, 2, clearh) 1583 GEN_VEXT_VV(vmaxu_vv_w, 4, 4, clearl) 1584 GEN_VEXT_VV(vmaxu_vv_d, 8, 8, clearq) 1585 GEN_VEXT_VV(vmax_vv_b, 1, 1, clearb) 1586 GEN_VEXT_VV(vmax_vv_h, 2, 2, clearh) 1587 GEN_VEXT_VV(vmax_vv_w, 4, 4, clearl) 1588 GEN_VEXT_VV(vmax_vv_d, 8, 8, clearq) 1589 1590 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN) 1591 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN) 1592 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN) 1593 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN) 1594 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN) 1595 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN) 1596 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN) 1597 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN) 1598 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX) 1599 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX) 1600 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX) 1601 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX) 1602 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX) 1603 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX) 1604 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX) 1605 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX) 1606 GEN_VEXT_VX(vminu_vx_b, 1, 1, clearb) 1607 GEN_VEXT_VX(vminu_vx_h, 2, 2, clearh) 1608 GEN_VEXT_VX(vminu_vx_w, 4, 4, clearl) 1609 GEN_VEXT_VX(vminu_vx_d, 8, 8, clearq) 1610 GEN_VEXT_VX(vmin_vx_b, 1, 1, clearb) 1611 GEN_VEXT_VX(vmin_vx_h, 2, 2, clearh) 1612 GEN_VEXT_VX(vmin_vx_w, 4, 4, clearl) 1613 GEN_VEXT_VX(vmin_vx_d, 8, 8, clearq) 1614 GEN_VEXT_VX(vmaxu_vx_b, 1, 1, clearb) 1615 GEN_VEXT_VX(vmaxu_vx_h, 2, 2, clearh) 1616 GEN_VEXT_VX(vmaxu_vx_w, 4, 4, clearl) 1617 GEN_VEXT_VX(vmaxu_vx_d, 8, 8, clearq) 1618 GEN_VEXT_VX(vmax_vx_b, 1, 1, clearb) 1619 GEN_VEXT_VX(vmax_vx_h, 2, 2, clearh) 1620 GEN_VEXT_VX(vmax_vx_w, 4, 4, clearl) 1621 GEN_VEXT_VX(vmax_vx_d, 8, 8, clearq) 1622 1623 /* Vector Single-Width Integer Multiply Instructions */ 1624 #define DO_MUL(N, M) (N * M) 1625 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL) 1626 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL) 1627 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL) 1628 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL) 1629 GEN_VEXT_VV(vmul_vv_b, 1, 1, clearb) 1630 GEN_VEXT_VV(vmul_vv_h, 2, 2, clearh) 1631 GEN_VEXT_VV(vmul_vv_w, 4, 4, clearl) 1632 GEN_VEXT_VV(vmul_vv_d, 8, 8, clearq) 1633 1634 static int8_t do_mulh_b(int8_t s2, int8_t s1) 1635 { 1636 return (int16_t)s2 * (int16_t)s1 >> 8; 1637 } 1638 1639 static int16_t do_mulh_h(int16_t s2, int16_t s1) 1640 { 1641 return (int32_t)s2 * (int32_t)s1 >> 16; 1642 } 1643 1644 static int32_t do_mulh_w(int32_t s2, int32_t s1) 1645 { 1646 return (int64_t)s2 * (int64_t)s1 >> 32; 1647 } 1648 1649 static int64_t do_mulh_d(int64_t s2, int64_t s1) 1650 { 1651 uint64_t hi_64, lo_64; 1652 1653 muls64(&lo_64, &hi_64, s1, s2); 1654 return hi_64; 1655 } 1656 1657 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1) 1658 { 1659 return (uint16_t)s2 * (uint16_t)s1 >> 8; 1660 } 1661 1662 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1) 1663 { 1664 return (uint32_t)s2 * (uint32_t)s1 >> 16; 1665 } 1666 1667 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1) 1668 { 1669 return (uint64_t)s2 * (uint64_t)s1 >> 32; 1670 } 1671 1672 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1) 1673 { 1674 uint64_t hi_64, lo_64; 1675 1676 mulu64(&lo_64, &hi_64, s2, s1); 1677 return hi_64; 1678 } 1679 1680 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1) 1681 { 1682 return (int16_t)s2 * (uint16_t)s1 >> 8; 1683 } 1684 1685 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1) 1686 { 1687 return (int32_t)s2 * (uint32_t)s1 >> 16; 1688 } 1689 1690 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1) 1691 { 1692 return (int64_t)s2 * (uint64_t)s1 >> 32; 1693 } 1694 1695 /* 1696 * Let A = signed operand, 1697 * B = unsigned operand 1698 * P = mulu64(A, B), unsigned product 1699 * 1700 * LET X = 2 ** 64 - A, 2's complement of A 1701 * SP = signed product 1702 * THEN 1703 * IF A < 0 1704 * SP = -X * B 1705 * = -(2 ** 64 - A) * B 1706 * = A * B - 2 ** 64 * B 1707 * = P - 2 ** 64 * B 1708 * ELSE 1709 * SP = P 1710 * THEN 1711 * HI_P -= (A < 0 ? B : 0) 1712 */ 1713 1714 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1) 1715 { 1716 uint64_t hi_64, lo_64; 1717 1718 mulu64(&lo_64, &hi_64, s2, s1); 1719 1720 hi_64 -= s2 < 0 ? s1 : 0; 1721 return hi_64; 1722 } 1723 1724 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b) 1725 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h) 1726 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w) 1727 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d) 1728 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b) 1729 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h) 1730 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w) 1731 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d) 1732 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b) 1733 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h) 1734 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w) 1735 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d) 1736 GEN_VEXT_VV(vmulh_vv_b, 1, 1, clearb) 1737 GEN_VEXT_VV(vmulh_vv_h, 2, 2, clearh) 1738 GEN_VEXT_VV(vmulh_vv_w, 4, 4, clearl) 1739 GEN_VEXT_VV(vmulh_vv_d, 8, 8, clearq) 1740 GEN_VEXT_VV(vmulhu_vv_b, 1, 1, clearb) 1741 GEN_VEXT_VV(vmulhu_vv_h, 2, 2, clearh) 1742 GEN_VEXT_VV(vmulhu_vv_w, 4, 4, clearl) 1743 GEN_VEXT_VV(vmulhu_vv_d, 8, 8, clearq) 1744 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1, clearb) 1745 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2, clearh) 1746 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4, clearl) 1747 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8, clearq) 1748 1749 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL) 1750 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL) 1751 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL) 1752 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL) 1753 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b) 1754 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h) 1755 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w) 1756 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d) 1757 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b) 1758 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h) 1759 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w) 1760 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d) 1761 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b) 1762 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h) 1763 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w) 1764 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d) 1765 GEN_VEXT_VX(vmul_vx_b, 1, 1, clearb) 1766 GEN_VEXT_VX(vmul_vx_h, 2, 2, clearh) 1767 GEN_VEXT_VX(vmul_vx_w, 4, 4, clearl) 1768 GEN_VEXT_VX(vmul_vx_d, 8, 8, clearq) 1769 GEN_VEXT_VX(vmulh_vx_b, 1, 1, clearb) 1770 GEN_VEXT_VX(vmulh_vx_h, 2, 2, clearh) 1771 GEN_VEXT_VX(vmulh_vx_w, 4, 4, clearl) 1772 GEN_VEXT_VX(vmulh_vx_d, 8, 8, clearq) 1773 GEN_VEXT_VX(vmulhu_vx_b, 1, 1, clearb) 1774 GEN_VEXT_VX(vmulhu_vx_h, 2, 2, clearh) 1775 GEN_VEXT_VX(vmulhu_vx_w, 4, 4, clearl) 1776 GEN_VEXT_VX(vmulhu_vx_d, 8, 8, clearq) 1777 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1, clearb) 1778 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2, clearh) 1779 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4, clearl) 1780 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8, clearq) 1781 1782 /* Vector Integer Divide Instructions */ 1783 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M) 1784 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M) 1785 #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\ 1786 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M) 1787 #define DO_REM(N, M) (unlikely(M == 0) ? N :\ 1788 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M) 1789 1790 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU) 1791 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU) 1792 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU) 1793 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU) 1794 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV) 1795 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV) 1796 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV) 1797 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV) 1798 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU) 1799 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU) 1800 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU) 1801 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU) 1802 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM) 1803 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM) 1804 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM) 1805 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM) 1806 GEN_VEXT_VV(vdivu_vv_b, 1, 1, clearb) 1807 GEN_VEXT_VV(vdivu_vv_h, 2, 2, clearh) 1808 GEN_VEXT_VV(vdivu_vv_w, 4, 4, clearl) 1809 GEN_VEXT_VV(vdivu_vv_d, 8, 8, clearq) 1810 GEN_VEXT_VV(vdiv_vv_b, 1, 1, clearb) 1811 GEN_VEXT_VV(vdiv_vv_h, 2, 2, clearh) 1812 GEN_VEXT_VV(vdiv_vv_w, 4, 4, clearl) 1813 GEN_VEXT_VV(vdiv_vv_d, 8, 8, clearq) 1814 GEN_VEXT_VV(vremu_vv_b, 1, 1, clearb) 1815 GEN_VEXT_VV(vremu_vv_h, 2, 2, clearh) 1816 GEN_VEXT_VV(vremu_vv_w, 4, 4, clearl) 1817 GEN_VEXT_VV(vremu_vv_d, 8, 8, clearq) 1818 GEN_VEXT_VV(vrem_vv_b, 1, 1, clearb) 1819 GEN_VEXT_VV(vrem_vv_h, 2, 2, clearh) 1820 GEN_VEXT_VV(vrem_vv_w, 4, 4, clearl) 1821 GEN_VEXT_VV(vrem_vv_d, 8, 8, clearq) 1822 1823 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU) 1824 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU) 1825 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU) 1826 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU) 1827 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV) 1828 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV) 1829 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV) 1830 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV) 1831 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU) 1832 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU) 1833 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU) 1834 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU) 1835 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM) 1836 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM) 1837 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM) 1838 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM) 1839 GEN_VEXT_VX(vdivu_vx_b, 1, 1, clearb) 1840 GEN_VEXT_VX(vdivu_vx_h, 2, 2, clearh) 1841 GEN_VEXT_VX(vdivu_vx_w, 4, 4, clearl) 1842 GEN_VEXT_VX(vdivu_vx_d, 8, 8, clearq) 1843 GEN_VEXT_VX(vdiv_vx_b, 1, 1, clearb) 1844 GEN_VEXT_VX(vdiv_vx_h, 2, 2, clearh) 1845 GEN_VEXT_VX(vdiv_vx_w, 4, 4, clearl) 1846 GEN_VEXT_VX(vdiv_vx_d, 8, 8, clearq) 1847 GEN_VEXT_VX(vremu_vx_b, 1, 1, clearb) 1848 GEN_VEXT_VX(vremu_vx_h, 2, 2, clearh) 1849 GEN_VEXT_VX(vremu_vx_w, 4, 4, clearl) 1850 GEN_VEXT_VX(vremu_vx_d, 8, 8, clearq) 1851 GEN_VEXT_VX(vrem_vx_b, 1, 1, clearb) 1852 GEN_VEXT_VX(vrem_vx_h, 2, 2, clearh) 1853 GEN_VEXT_VX(vrem_vx_w, 4, 4, clearl) 1854 GEN_VEXT_VX(vrem_vx_d, 8, 8, clearq) 1855 1856 /* Vector Widening Integer Multiply Instructions */ 1857 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL) 1858 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL) 1859 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL) 1860 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL) 1861 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL) 1862 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL) 1863 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL) 1864 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL) 1865 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL) 1866 GEN_VEXT_VV(vwmul_vv_b, 1, 2, clearh) 1867 GEN_VEXT_VV(vwmul_vv_h, 2, 4, clearl) 1868 GEN_VEXT_VV(vwmul_vv_w, 4, 8, clearq) 1869 GEN_VEXT_VV(vwmulu_vv_b, 1, 2, clearh) 1870 GEN_VEXT_VV(vwmulu_vv_h, 2, 4, clearl) 1871 GEN_VEXT_VV(vwmulu_vv_w, 4, 8, clearq) 1872 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2, clearh) 1873 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4, clearl) 1874 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8, clearq) 1875 1876 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL) 1877 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL) 1878 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL) 1879 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL) 1880 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL) 1881 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL) 1882 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL) 1883 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL) 1884 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL) 1885 GEN_VEXT_VX(vwmul_vx_b, 1, 2, clearh) 1886 GEN_VEXT_VX(vwmul_vx_h, 2, 4, clearl) 1887 GEN_VEXT_VX(vwmul_vx_w, 4, 8, clearq) 1888 GEN_VEXT_VX(vwmulu_vx_b, 1, 2, clearh) 1889 GEN_VEXT_VX(vwmulu_vx_h, 2, 4, clearl) 1890 GEN_VEXT_VX(vwmulu_vx_w, 4, 8, clearq) 1891 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2, clearh) 1892 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4, clearl) 1893 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8, clearq) 1894 1895 /* Vector Single-Width Integer Multiply-Add Instructions */ 1896 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ 1897 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \ 1898 { \ 1899 TX1 s1 = *((T1 *)vs1 + HS1(i)); \ 1900 TX2 s2 = *((T2 *)vs2 + HS2(i)); \ 1901 TD d = *((TD *)vd + HD(i)); \ 1902 *((TD *)vd + HD(i)) = OP(s2, s1, d); \ 1903 } 1904 1905 #define DO_MACC(N, M, D) (M * N + D) 1906 #define DO_NMSAC(N, M, D) (-(M * N) + D) 1907 #define DO_MADD(N, M, D) (M * D + N) 1908 #define DO_NMSUB(N, M, D) (-(M * D) + N) 1909 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC) 1910 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC) 1911 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC) 1912 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC) 1913 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC) 1914 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC) 1915 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC) 1916 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC) 1917 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD) 1918 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD) 1919 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD) 1920 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD) 1921 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB) 1922 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB) 1923 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB) 1924 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB) 1925 GEN_VEXT_VV(vmacc_vv_b, 1, 1, clearb) 1926 GEN_VEXT_VV(vmacc_vv_h, 2, 2, clearh) 1927 GEN_VEXT_VV(vmacc_vv_w, 4, 4, clearl) 1928 GEN_VEXT_VV(vmacc_vv_d, 8, 8, clearq) 1929 GEN_VEXT_VV(vnmsac_vv_b, 1, 1, clearb) 1930 GEN_VEXT_VV(vnmsac_vv_h, 2, 2, clearh) 1931 GEN_VEXT_VV(vnmsac_vv_w, 4, 4, clearl) 1932 GEN_VEXT_VV(vnmsac_vv_d, 8, 8, clearq) 1933 GEN_VEXT_VV(vmadd_vv_b, 1, 1, clearb) 1934 GEN_VEXT_VV(vmadd_vv_h, 2, 2, clearh) 1935 GEN_VEXT_VV(vmadd_vv_w, 4, 4, clearl) 1936 GEN_VEXT_VV(vmadd_vv_d, 8, 8, clearq) 1937 GEN_VEXT_VV(vnmsub_vv_b, 1, 1, clearb) 1938 GEN_VEXT_VV(vnmsub_vv_h, 2, 2, clearh) 1939 GEN_VEXT_VV(vnmsub_vv_w, 4, 4, clearl) 1940 GEN_VEXT_VV(vnmsub_vv_d, 8, 8, clearq) 1941 1942 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ 1943 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \ 1944 { \ 1945 TX2 s2 = *((T2 *)vs2 + HS2(i)); \ 1946 TD d = *((TD *)vd + HD(i)); \ 1947 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \ 1948 } 1949 1950 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC) 1951 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC) 1952 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC) 1953 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC) 1954 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC) 1955 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC) 1956 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC) 1957 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC) 1958 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD) 1959 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD) 1960 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD) 1961 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD) 1962 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB) 1963 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB) 1964 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB) 1965 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB) 1966 GEN_VEXT_VX(vmacc_vx_b, 1, 1, clearb) 1967 GEN_VEXT_VX(vmacc_vx_h, 2, 2, clearh) 1968 GEN_VEXT_VX(vmacc_vx_w, 4, 4, clearl) 1969 GEN_VEXT_VX(vmacc_vx_d, 8, 8, clearq) 1970 GEN_VEXT_VX(vnmsac_vx_b, 1, 1, clearb) 1971 GEN_VEXT_VX(vnmsac_vx_h, 2, 2, clearh) 1972 GEN_VEXT_VX(vnmsac_vx_w, 4, 4, clearl) 1973 GEN_VEXT_VX(vnmsac_vx_d, 8, 8, clearq) 1974 GEN_VEXT_VX(vmadd_vx_b, 1, 1, clearb) 1975 GEN_VEXT_VX(vmadd_vx_h, 2, 2, clearh) 1976 GEN_VEXT_VX(vmadd_vx_w, 4, 4, clearl) 1977 GEN_VEXT_VX(vmadd_vx_d, 8, 8, clearq) 1978 GEN_VEXT_VX(vnmsub_vx_b, 1, 1, clearb) 1979 GEN_VEXT_VX(vnmsub_vx_h, 2, 2, clearh) 1980 GEN_VEXT_VX(vnmsub_vx_w, 4, 4, clearl) 1981 GEN_VEXT_VX(vnmsub_vx_d, 8, 8, clearq) 1982 1983 /* Vector Widening Integer Multiply-Add Instructions */ 1984 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC) 1985 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC) 1986 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC) 1987 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC) 1988 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC) 1989 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC) 1990 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC) 1991 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC) 1992 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC) 1993 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2, clearh) 1994 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4, clearl) 1995 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8, clearq) 1996 GEN_VEXT_VV(vwmacc_vv_b, 1, 2, clearh) 1997 GEN_VEXT_VV(vwmacc_vv_h, 2, 4, clearl) 1998 GEN_VEXT_VV(vwmacc_vv_w, 4, 8, clearq) 1999 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2, clearh) 2000 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4, clearl) 2001 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8, clearq) 2002 2003 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC) 2004 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC) 2005 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC) 2006 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC) 2007 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC) 2008 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC) 2009 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC) 2010 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC) 2011 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC) 2012 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC) 2013 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC) 2014 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC) 2015 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2, clearh) 2016 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4, clearl) 2017 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8, clearq) 2018 GEN_VEXT_VX(vwmacc_vx_b, 1, 2, clearh) 2019 GEN_VEXT_VX(vwmacc_vx_h, 2, 4, clearl) 2020 GEN_VEXT_VX(vwmacc_vx_w, 4, 8, clearq) 2021 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2, clearh) 2022 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4, clearl) 2023 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8, clearq) 2024 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2, clearh) 2025 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4, clearl) 2026 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8, clearq) 2027 2028 /* Vector Integer Merge and Move Instructions */ 2029 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H, CLEAR_FN) \ 2030 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \ 2031 uint32_t desc) \ 2032 { \ 2033 uint32_t vl = env->vl; \ 2034 uint32_t esz = sizeof(ETYPE); \ 2035 uint32_t vlmax = vext_maxsz(desc) / esz; \ 2036 uint32_t i; \ 2037 \ 2038 for (i = 0; i < vl; i++) { \ 2039 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \ 2040 *((ETYPE *)vd + H(i)) = s1; \ 2041 } \ 2042 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 2043 } 2044 2045 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1, clearb) 2046 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2, clearh) 2047 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4, clearl) 2048 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8, clearq) 2049 2050 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H, CLEAR_FN) \ 2051 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \ 2052 uint32_t desc) \ 2053 { \ 2054 uint32_t vl = env->vl; \ 2055 uint32_t esz = sizeof(ETYPE); \ 2056 uint32_t vlmax = vext_maxsz(desc) / esz; \ 2057 uint32_t i; \ 2058 \ 2059 for (i = 0; i < vl; i++) { \ 2060 *((ETYPE *)vd + H(i)) = (ETYPE)s1; \ 2061 } \ 2062 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 2063 } 2064 2065 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1, clearb) 2066 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2, clearh) 2067 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4, clearl) 2068 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8, clearq) 2069 2070 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H, CLEAR_FN) \ 2071 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ 2072 CPURISCVState *env, uint32_t desc) \ 2073 { \ 2074 uint32_t mlen = vext_mlen(desc); \ 2075 uint32_t vl = env->vl; \ 2076 uint32_t esz = sizeof(ETYPE); \ 2077 uint32_t vlmax = vext_maxsz(desc) / esz; \ 2078 uint32_t i; \ 2079 \ 2080 for (i = 0; i < vl; i++) { \ 2081 ETYPE *vt = (!vext_elem_mask(v0, mlen, i) ? vs2 : vs1); \ 2082 *((ETYPE *)vd + H(i)) = *(vt + H(i)); \ 2083 } \ 2084 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 2085 } 2086 2087 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1, clearb) 2088 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2, clearh) 2089 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4, clearl) 2090 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8, clearq) 2091 2092 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H, CLEAR_FN) \ 2093 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ 2094 void *vs2, CPURISCVState *env, uint32_t desc) \ 2095 { \ 2096 uint32_t mlen = vext_mlen(desc); \ 2097 uint32_t vl = env->vl; \ 2098 uint32_t esz = sizeof(ETYPE); \ 2099 uint32_t vlmax = vext_maxsz(desc) / esz; \ 2100 uint32_t i; \ 2101 \ 2102 for (i = 0; i < vl; i++) { \ 2103 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \ 2104 ETYPE d = (!vext_elem_mask(v0, mlen, i) ? s2 : \ 2105 (ETYPE)(target_long)s1); \ 2106 *((ETYPE *)vd + H(i)) = d; \ 2107 } \ 2108 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \ 2109 } 2110 2111 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1, clearb) 2112 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2, clearh) 2113 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4, clearl) 2114 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8, clearq) 2115 2116 /* 2117 *** Vector Fixed-Point Arithmetic Instructions 2118 */ 2119 2120 /* Vector Single-Width Saturating Add and Subtract */ 2121 2122 /* 2123 * As fixed point instructions probably have round mode and saturation, 2124 * define common macros for fixed point here. 2125 */ 2126 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i, 2127 CPURISCVState *env, int vxrm); 2128 2129 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \ 2130 static inline void \ 2131 do_##NAME(void *vd, void *vs1, void *vs2, int i, \ 2132 CPURISCVState *env, int vxrm) \ 2133 { \ 2134 TX1 s1 = *((T1 *)vs1 + HS1(i)); \ 2135 TX2 s2 = *((T2 *)vs2 + HS2(i)); \ 2136 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \ 2137 } 2138 2139 static inline void 2140 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2, 2141 CPURISCVState *env, 2142 uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm, 2143 opivv2_rm_fn *fn) 2144 { 2145 for (uint32_t i = 0; i < vl; i++) { 2146 if (!vm && !vext_elem_mask(v0, mlen, i)) { 2147 continue; 2148 } 2149 fn(vd, vs1, vs2, i, env, vxrm); 2150 } 2151 } 2152 2153 static inline void 2154 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2, 2155 CPURISCVState *env, 2156 uint32_t desc, uint32_t esz, uint32_t dsz, 2157 opivv2_rm_fn *fn, clear_fn *clearfn) 2158 { 2159 uint32_t vlmax = vext_maxsz(desc) / esz; 2160 uint32_t mlen = vext_mlen(desc); 2161 uint32_t vm = vext_vm(desc); 2162 uint32_t vl = env->vl; 2163 2164 switch (env->vxrm) { 2165 case 0: /* rnu */ 2166 vext_vv_rm_1(vd, v0, vs1, vs2, 2167 env, vl, vm, mlen, 0, fn); 2168 break; 2169 case 1: /* rne */ 2170 vext_vv_rm_1(vd, v0, vs1, vs2, 2171 env, vl, vm, mlen, 1, fn); 2172 break; 2173 case 2: /* rdn */ 2174 vext_vv_rm_1(vd, v0, vs1, vs2, 2175 env, vl, vm, mlen, 2, fn); 2176 break; 2177 default: /* rod */ 2178 vext_vv_rm_1(vd, v0, vs1, vs2, 2179 env, vl, vm, mlen, 3, fn); 2180 break; 2181 } 2182 2183 clearfn(vd, vl, vl * dsz, vlmax * dsz); 2184 } 2185 2186 /* generate helpers for fixed point instructions with OPIVV format */ 2187 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ, CLEAR_FN) \ 2188 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \ 2189 CPURISCVState *env, uint32_t desc) \ 2190 { \ 2191 vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \ 2192 do_##NAME, CLEAR_FN); \ 2193 } 2194 2195 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) 2196 { 2197 uint8_t res = a + b; 2198 if (res < a) { 2199 res = UINT8_MAX; 2200 env->vxsat = 0x1; 2201 } 2202 return res; 2203 } 2204 2205 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a, 2206 uint16_t b) 2207 { 2208 uint16_t res = a + b; 2209 if (res < a) { 2210 res = UINT16_MAX; 2211 env->vxsat = 0x1; 2212 } 2213 return res; 2214 } 2215 2216 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a, 2217 uint32_t b) 2218 { 2219 uint32_t res = a + b; 2220 if (res < a) { 2221 res = UINT32_MAX; 2222 env->vxsat = 0x1; 2223 } 2224 return res; 2225 } 2226 2227 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a, 2228 uint64_t b) 2229 { 2230 uint64_t res = a + b; 2231 if (res < a) { 2232 res = UINT64_MAX; 2233 env->vxsat = 0x1; 2234 } 2235 return res; 2236 } 2237 2238 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8) 2239 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16) 2240 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32) 2241 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64) 2242 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1, clearb) 2243 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2, clearh) 2244 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4, clearl) 2245 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8, clearq) 2246 2247 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i, 2248 CPURISCVState *env, int vxrm); 2249 2250 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \ 2251 static inline void \ 2252 do_##NAME(void *vd, target_long s1, void *vs2, int i, \ 2253 CPURISCVState *env, int vxrm) \ 2254 { \ 2255 TX2 s2 = *((T2 *)vs2 + HS2(i)); \ 2256 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \ 2257 } 2258 2259 static inline void 2260 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2, 2261 CPURISCVState *env, 2262 uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm, 2263 opivx2_rm_fn *fn) 2264 { 2265 for (uint32_t i = 0; i < vl; i++) { 2266 if (!vm && !vext_elem_mask(v0, mlen, i)) { 2267 continue; 2268 } 2269 fn(vd, s1, vs2, i, env, vxrm); 2270 } 2271 } 2272 2273 static inline void 2274 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2, 2275 CPURISCVState *env, 2276 uint32_t desc, uint32_t esz, uint32_t dsz, 2277 opivx2_rm_fn *fn, clear_fn *clearfn) 2278 { 2279 uint32_t vlmax = vext_maxsz(desc) / esz; 2280 uint32_t mlen = vext_mlen(desc); 2281 uint32_t vm = vext_vm(desc); 2282 uint32_t vl = env->vl; 2283 2284 switch (env->vxrm) { 2285 case 0: /* rnu */ 2286 vext_vx_rm_1(vd, v0, s1, vs2, 2287 env, vl, vm, mlen, 0, fn); 2288 break; 2289 case 1: /* rne */ 2290 vext_vx_rm_1(vd, v0, s1, vs2, 2291 env, vl, vm, mlen, 1, fn); 2292 break; 2293 case 2: /* rdn */ 2294 vext_vx_rm_1(vd, v0, s1, vs2, 2295 env, vl, vm, mlen, 2, fn); 2296 break; 2297 default: /* rod */ 2298 vext_vx_rm_1(vd, v0, s1, vs2, 2299 env, vl, vm, mlen, 3, fn); 2300 break; 2301 } 2302 2303 clearfn(vd, vl, vl * dsz, vlmax * dsz); 2304 } 2305 2306 /* generate helpers for fixed point instructions with OPIVX format */ 2307 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ, CLEAR_FN) \ 2308 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \ 2309 void *vs2, CPURISCVState *env, uint32_t desc) \ 2310 { \ 2311 vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \ 2312 do_##NAME, CLEAR_FN); \ 2313 } 2314 2315 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8) 2316 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16) 2317 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32) 2318 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64) 2319 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1, clearb) 2320 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2, clearh) 2321 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4, clearl) 2322 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8, clearq) 2323 2324 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) 2325 { 2326 int8_t res = a + b; 2327 if ((res ^ a) & (res ^ b) & INT8_MIN) { 2328 res = a > 0 ? INT8_MAX : INT8_MIN; 2329 env->vxsat = 0x1; 2330 } 2331 return res; 2332 } 2333 2334 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) 2335 { 2336 int16_t res = a + b; 2337 if ((res ^ a) & (res ^ b) & INT16_MIN) { 2338 res = a > 0 ? INT16_MAX : INT16_MIN; 2339 env->vxsat = 0x1; 2340 } 2341 return res; 2342 } 2343 2344 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) 2345 { 2346 int32_t res = a + b; 2347 if ((res ^ a) & (res ^ b) & INT32_MIN) { 2348 res = a > 0 ? INT32_MAX : INT32_MIN; 2349 env->vxsat = 0x1; 2350 } 2351 return res; 2352 } 2353 2354 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) 2355 { 2356 int64_t res = a + b; 2357 if ((res ^ a) & (res ^ b) & INT64_MIN) { 2358 res = a > 0 ? INT64_MAX : INT64_MIN; 2359 env->vxsat = 0x1; 2360 } 2361 return res; 2362 } 2363 2364 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8) 2365 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16) 2366 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32) 2367 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64) 2368 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1, clearb) 2369 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2, clearh) 2370 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4, clearl) 2371 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8, clearq) 2372 2373 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8) 2374 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16) 2375 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32) 2376 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64) 2377 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1, clearb) 2378 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2, clearh) 2379 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4, clearl) 2380 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8, clearq) 2381 2382 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b) 2383 { 2384 uint8_t res = a - b; 2385 if (res > a) { 2386 res = 0; 2387 env->vxsat = 0x1; 2388 } 2389 return res; 2390 } 2391 2392 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a, 2393 uint16_t b) 2394 { 2395 uint16_t res = a - b; 2396 if (res > a) { 2397 res = 0; 2398 env->vxsat = 0x1; 2399 } 2400 return res; 2401 } 2402 2403 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a, 2404 uint32_t b) 2405 { 2406 uint32_t res = a - b; 2407 if (res > a) { 2408 res = 0; 2409 env->vxsat = 0x1; 2410 } 2411 return res; 2412 } 2413 2414 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a, 2415 uint64_t b) 2416 { 2417 uint64_t res = a - b; 2418 if (res > a) { 2419 res = 0; 2420 env->vxsat = 0x1; 2421 } 2422 return res; 2423 } 2424 2425 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8) 2426 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16) 2427 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32) 2428 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64) 2429 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1, clearb) 2430 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2, clearh) 2431 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4, clearl) 2432 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8, clearq) 2433 2434 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8) 2435 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16) 2436 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32) 2437 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64) 2438 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1, clearb) 2439 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2, clearh) 2440 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4, clearl) 2441 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8, clearq) 2442 2443 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) 2444 { 2445 int8_t res = a - b; 2446 if ((res ^ a) & (a ^ b) & INT8_MIN) { 2447 res = a > 0 ? INT8_MAX : INT8_MIN; 2448 env->vxsat = 0x1; 2449 } 2450 return res; 2451 } 2452 2453 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) 2454 { 2455 int16_t res = a - b; 2456 if ((res ^ a) & (a ^ b) & INT16_MIN) { 2457 res = a > 0 ? INT16_MAX : INT16_MIN; 2458 env->vxsat = 0x1; 2459 } 2460 return res; 2461 } 2462 2463 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) 2464 { 2465 int32_t res = a - b; 2466 if ((res ^ a) & (a ^ b) & INT32_MIN) { 2467 res = a > 0 ? INT32_MAX : INT32_MIN; 2468 env->vxsat = 0x1; 2469 } 2470 return res; 2471 } 2472 2473 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) 2474 { 2475 int64_t res = a - b; 2476 if ((res ^ a) & (a ^ b) & INT64_MIN) { 2477 res = a > 0 ? INT64_MAX : INT64_MIN; 2478 env->vxsat = 0x1; 2479 } 2480 return res; 2481 } 2482 2483 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8) 2484 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16) 2485 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32) 2486 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64) 2487 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1, clearb) 2488 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2, clearh) 2489 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4, clearl) 2490 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8, clearq) 2491 2492 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8) 2493 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16) 2494 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32) 2495 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64) 2496 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1, clearb) 2497 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2, clearh) 2498 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4, clearl) 2499 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8, clearq) 2500 2501 /* Vector Single-Width Averaging Add and Subtract */ 2502 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift) 2503 { 2504 uint8_t d = extract64(v, shift, 1); 2505 uint8_t d1; 2506 uint64_t D1, D2; 2507 2508 if (shift == 0 || shift > 64) { 2509 return 0; 2510 } 2511 2512 d1 = extract64(v, shift - 1, 1); 2513 D1 = extract64(v, 0, shift); 2514 if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */ 2515 return d1; 2516 } else if (vxrm == 1) { /* round-to-nearest-even */ 2517 if (shift > 1) { 2518 D2 = extract64(v, 0, shift - 1); 2519 return d1 & ((D2 != 0) | d); 2520 } else { 2521 return d1 & d; 2522 } 2523 } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */ 2524 return !d & (D1 != 0); 2525 } 2526 return 0; /* round-down (truncate) */ 2527 } 2528 2529 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) 2530 { 2531 int64_t res = (int64_t)a + b; 2532 uint8_t round = get_round(vxrm, res, 1); 2533 2534 return (res >> 1) + round; 2535 } 2536 2537 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) 2538 { 2539 int64_t res = a + b; 2540 uint8_t round = get_round(vxrm, res, 1); 2541 int64_t over = (res ^ a) & (res ^ b) & INT64_MIN; 2542 2543 /* With signed overflow, bit 64 is inverse of bit 63. */ 2544 return ((res >> 1) ^ over) + round; 2545 } 2546 2547 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32) 2548 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32) 2549 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32) 2550 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64) 2551 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1, clearb) 2552 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2, clearh) 2553 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4, clearl) 2554 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8, clearq) 2555 2556 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32) 2557 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32) 2558 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32) 2559 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64) 2560 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1, clearb) 2561 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2, clearh) 2562 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4, clearl) 2563 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8, clearq) 2564 2565 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) 2566 { 2567 int64_t res = (int64_t)a - b; 2568 uint8_t round = get_round(vxrm, res, 1); 2569 2570 return (res >> 1) + round; 2571 } 2572 2573 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) 2574 { 2575 int64_t res = (int64_t)a - b; 2576 uint8_t round = get_round(vxrm, res, 1); 2577 int64_t over = (res ^ a) & (a ^ b) & INT64_MIN; 2578 2579 /* With signed overflow, bit 64 is inverse of bit 63. */ 2580 return ((res >> 1) ^ over) + round; 2581 } 2582 2583 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32) 2584 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32) 2585 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32) 2586 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64) 2587 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1, clearb) 2588 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2, clearh) 2589 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4, clearl) 2590 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8, clearq) 2591 2592 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32) 2593 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32) 2594 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32) 2595 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64) 2596 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1, clearb) 2597 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2, clearh) 2598 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4, clearl) 2599 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8, clearq) 2600 2601 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2602 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b) 2603 { 2604 uint8_t round; 2605 int16_t res; 2606 2607 res = (int16_t)a * (int16_t)b; 2608 round = get_round(vxrm, res, 7); 2609 res = (res >> 7) + round; 2610 2611 if (res > INT8_MAX) { 2612 env->vxsat = 0x1; 2613 return INT8_MAX; 2614 } else if (res < INT8_MIN) { 2615 env->vxsat = 0x1; 2616 return INT8_MIN; 2617 } else { 2618 return res; 2619 } 2620 } 2621 2622 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b) 2623 { 2624 uint8_t round; 2625 int32_t res; 2626 2627 res = (int32_t)a * (int32_t)b; 2628 round = get_round(vxrm, res, 15); 2629 res = (res >> 15) + round; 2630 2631 if (res > INT16_MAX) { 2632 env->vxsat = 0x1; 2633 return INT16_MAX; 2634 } else if (res < INT16_MIN) { 2635 env->vxsat = 0x1; 2636 return INT16_MIN; 2637 } else { 2638 return res; 2639 } 2640 } 2641 2642 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b) 2643 { 2644 uint8_t round; 2645 int64_t res; 2646 2647 res = (int64_t)a * (int64_t)b; 2648 round = get_round(vxrm, res, 31); 2649 res = (res >> 31) + round; 2650 2651 if (res > INT32_MAX) { 2652 env->vxsat = 0x1; 2653 return INT32_MAX; 2654 } else if (res < INT32_MIN) { 2655 env->vxsat = 0x1; 2656 return INT32_MIN; 2657 } else { 2658 return res; 2659 } 2660 } 2661 2662 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b) 2663 { 2664 uint8_t round; 2665 uint64_t hi_64, lo_64; 2666 int64_t res; 2667 2668 if (a == INT64_MIN && b == INT64_MIN) { 2669 env->vxsat = 1; 2670 return INT64_MAX; 2671 } 2672 2673 muls64(&lo_64, &hi_64, a, b); 2674 round = get_round(vxrm, lo_64, 63); 2675 /* 2676 * Cannot overflow, as there are always 2677 * 2 sign bits after multiply. 2678 */ 2679 res = (hi_64 << 1) | (lo_64 >> 63); 2680 if (round) { 2681 if (res == INT64_MAX) { 2682 env->vxsat = 1; 2683 } else { 2684 res += 1; 2685 } 2686 } 2687 return res; 2688 } 2689 2690 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8) 2691 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16) 2692 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32) 2693 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64) 2694 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1, clearb) 2695 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2, clearh) 2696 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4, clearl) 2697 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8, clearq) 2698 2699 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8) 2700 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16) 2701 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32) 2702 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64) 2703 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1, clearb) 2704 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2, clearh) 2705 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4, clearl) 2706 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8, clearq) 2707