xref: /openbmc/qemu/target/riscv/vector_helper.c (revision 8a4b5257)
1 /*
2  * RISC-V Vector Extension Helpers for QEMU.
3  *
4  * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/host-utils.h"
21 #include "cpu.h"
22 #include "exec/memop.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "fpu/softfloat.h"
26 #include "tcg/tcg-gvec-desc.h"
27 #include "internals.h"
28 #include <math.h>
29 
30 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
31                             target_ulong s2)
32 {
33     int vlmax, vl;
34     RISCVCPU *cpu = env_archcpu(env);
35     uint64_t lmul = FIELD_EX64(s2, VTYPE, VLMUL);
36     uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
37     uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
38     bool vill = FIELD_EX64(s2, VTYPE, VILL);
39     target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
40 
41     if (lmul & 4) {
42         /* Fractional LMUL. */
43         if (lmul == 4 ||
44             cpu->cfg.elen >> (8 - lmul) < sew) {
45             vill = true;
46         }
47     }
48 
49     if ((sew > cpu->cfg.elen)
50         || vill
51         || (ediv != 0)
52         || (reserved != 0)) {
53         /* only set vill bit. */
54         env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
55         env->vl = 0;
56         env->vstart = 0;
57         return 0;
58     }
59 
60     vlmax = vext_get_vlmax(cpu, s2);
61     if (s1 <= vlmax) {
62         vl = s1;
63     } else {
64         vl = vlmax;
65     }
66     env->vl = vl;
67     env->vtype = s2;
68     env->vstart = 0;
69     return vl;
70 }
71 
72 /*
73  * Note that vector data is stored in host-endian 64-bit chunks,
74  * so addressing units smaller than that needs a host-endian fixup.
75  */
76 #ifdef HOST_WORDS_BIGENDIAN
77 #define H1(x)   ((x) ^ 7)
78 #define H1_2(x) ((x) ^ 6)
79 #define H1_4(x) ((x) ^ 4)
80 #define H2(x)   ((x) ^ 3)
81 #define H4(x)   ((x) ^ 1)
82 #define H8(x)   ((x))
83 #else
84 #define H1(x)   (x)
85 #define H1_2(x) (x)
86 #define H1_4(x) (x)
87 #define H2(x)   (x)
88 #define H4(x)   (x)
89 #define H8(x)   (x)
90 #endif
91 
92 static inline uint32_t vext_nf(uint32_t desc)
93 {
94     return FIELD_EX32(simd_data(desc), VDATA, NF);
95 }
96 
97 static inline uint32_t vext_vm(uint32_t desc)
98 {
99     return FIELD_EX32(simd_data(desc), VDATA, VM);
100 }
101 
102 /*
103  * Encode LMUL to lmul as following:
104  *     LMUL    vlmul    lmul
105  *      1       000       0
106  *      2       001       1
107  *      4       010       2
108  *      8       011       3
109  *      -       100       -
110  *     1/8      101      -3
111  *     1/4      110      -2
112  *     1/2      111      -1
113  */
114 static inline int32_t vext_lmul(uint32_t desc)
115 {
116     return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
117 }
118 
119 /*
120  * Get the maximum number of elements can be operated.
121  *
122  * esz: log2 of element size in bytes.
123  */
124 static inline uint32_t vext_max_elems(uint32_t desc, uint32_t esz)
125 {
126     /*
127      * As simd_desc support at most 2048 bytes, the max vlen is 1024 bits.
128      * so vlen in bytes (vlenb) is encoded as maxsz.
129      */
130     uint32_t vlenb = simd_maxsz(desc);
131 
132     /* Return VLMAX */
133     int scale = vext_lmul(desc) - esz;
134     return scale < 0 ? vlenb >> -scale : vlenb << scale;
135 }
136 
137 /*
138  * This function checks watchpoint before real load operation.
139  *
140  * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
141  * In user mode, there is no watchpoint support now.
142  *
143  * It will trigger an exception if there is no mapping in TLB
144  * and page table walk can't fill the TLB entry. Then the guest
145  * software can return here after process the exception or never return.
146  */
147 static void probe_pages(CPURISCVState *env, target_ulong addr,
148                         target_ulong len, uintptr_t ra,
149                         MMUAccessType access_type)
150 {
151     target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
152     target_ulong curlen = MIN(pagelen, len);
153 
154     probe_access(env, addr, curlen, access_type,
155                  cpu_mmu_index(env, false), ra);
156     if (len > curlen) {
157         addr += curlen;
158         curlen = len - curlen;
159         probe_access(env, addr, curlen, access_type,
160                      cpu_mmu_index(env, false), ra);
161     }
162 }
163 
164 static inline void vext_set_elem_mask(void *v0, int index,
165                                       uint8_t value)
166 {
167     int idx = index / 64;
168     int pos = index % 64;
169     uint64_t old = ((uint64_t *)v0)[idx];
170     ((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value);
171 }
172 
173 /*
174  * Earlier designs (pre-0.9) had a varying number of bits
175  * per mask value (MLEN). In the 0.9 design, MLEN=1.
176  * (Section 4.5)
177  */
178 static inline int vext_elem_mask(void *v0, int index)
179 {
180     int idx = index / 64;
181     int pos = index  % 64;
182     return (((uint64_t *)v0)[idx] >> pos) & 1;
183 }
184 
185 /* elements operations for load and store */
186 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
187                                uint32_t idx, void *vd, uintptr_t retaddr);
188 
189 #define GEN_VEXT_LD_ELEM(NAME, ETYPE, H, LDSUF)            \
190 static void NAME(CPURISCVState *env, abi_ptr addr,         \
191                  uint32_t idx, void *vd, uintptr_t retaddr)\
192 {                                                          \
193     ETYPE *cur = ((ETYPE *)vd + H(idx));                   \
194     *cur = cpu_##LDSUF##_data_ra(env, addr, retaddr);      \
195 }                                                          \
196 
197 GEN_VEXT_LD_ELEM(lde_b, int8_t,  H1, ldsb)
198 GEN_VEXT_LD_ELEM(lde_h, int16_t, H2, ldsw)
199 GEN_VEXT_LD_ELEM(lde_w, int32_t, H4, ldl)
200 GEN_VEXT_LD_ELEM(lde_d, int64_t, H8, ldq)
201 
202 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF)            \
203 static void NAME(CPURISCVState *env, abi_ptr addr,         \
204                  uint32_t idx, void *vd, uintptr_t retaddr)\
205 {                                                          \
206     ETYPE data = *((ETYPE *)vd + H(idx));                  \
207     cpu_##STSUF##_data_ra(env, addr, data, retaddr);       \
208 }
209 
210 GEN_VEXT_ST_ELEM(ste_b, int8_t,  H1, stb)
211 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
212 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
213 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
214 
215 /*
216  *** stride: access vector element from strided memory
217  */
218 static void
219 vext_ldst_stride(void *vd, void *v0, target_ulong base,
220                  target_ulong stride, CPURISCVState *env,
221                  uint32_t desc, uint32_t vm,
222                  vext_ldst_elem_fn *ldst_elem,
223                  uint32_t esz, uintptr_t ra, MMUAccessType access_type)
224 {
225     uint32_t i, k;
226     uint32_t nf = vext_nf(desc);
227     uint32_t max_elems = vext_max_elems(desc, esz);
228 
229     /* probe every access*/
230     for (i = 0; i < env->vl; i++) {
231         if (!vm && !vext_elem_mask(v0, i)) {
232             continue;
233         }
234         probe_pages(env, base + stride * i, nf << esz, ra, access_type);
235     }
236     /* do real access */
237     for (i = 0; i < env->vl; i++) {
238         k = 0;
239         if (!vm && !vext_elem_mask(v0, i)) {
240             continue;
241         }
242         while (k < nf) {
243             target_ulong addr = base + stride * i + (k << esz);
244             ldst_elem(env, addr, i + k * max_elems, vd, ra);
245             k++;
246         }
247     }
248 }
249 
250 #define GEN_VEXT_LD_STRIDE(NAME, ETYPE, LOAD_FN)                        \
251 void HELPER(NAME)(void *vd, void * v0, target_ulong base,               \
252                   target_ulong stride, CPURISCVState *env,              \
253                   uint32_t desc)                                        \
254 {                                                                       \
255     uint32_t vm = vext_vm(desc);                                        \
256     vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN,      \
257                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD);      \
258 }
259 
260 GEN_VEXT_LD_STRIDE(vlse8_v,  int8_t,  lde_b)
261 GEN_VEXT_LD_STRIDE(vlse16_v, int16_t, lde_h)
262 GEN_VEXT_LD_STRIDE(vlse32_v, int32_t, lde_w)
263 GEN_VEXT_LD_STRIDE(vlse64_v, int64_t, lde_d)
264 
265 #define GEN_VEXT_ST_STRIDE(NAME, ETYPE, STORE_FN)                       \
266 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
267                   target_ulong stride, CPURISCVState *env,              \
268                   uint32_t desc)                                        \
269 {                                                                       \
270     uint32_t vm = vext_vm(desc);                                        \
271     vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN,     \
272                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE);     \
273 }
274 
275 GEN_VEXT_ST_STRIDE(vsse8_v,  int8_t,  ste_b)
276 GEN_VEXT_ST_STRIDE(vsse16_v, int16_t, ste_h)
277 GEN_VEXT_ST_STRIDE(vsse32_v, int32_t, ste_w)
278 GEN_VEXT_ST_STRIDE(vsse64_v, int64_t, ste_d)
279 
280 /*
281  *** unit-stride: access elements stored contiguously in memory
282  */
283 
284 /* unmasked unit-stride load and store operation*/
285 static void
286 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
287              vext_ldst_elem_fn *ldst_elem,
288              uint32_t esz, uintptr_t ra, MMUAccessType access_type)
289 {
290     uint32_t i, k;
291     uint32_t nf = vext_nf(desc);
292     uint32_t max_elems = vext_max_elems(desc, esz);
293 
294     /* probe every access */
295     probe_pages(env, base, env->vl * (nf << esz), ra, access_type);
296     /* load bytes from guest memory */
297     for (i = 0; i < env->vl; i++) {
298         k = 0;
299         while (k < nf) {
300             target_ulong addr = base + ((i * nf + k) << esz);
301             ldst_elem(env, addr, i + k * max_elems, vd, ra);
302             k++;
303         }
304     }
305 }
306 
307 /*
308  * masked unit-stride load and store operation will be a special case of stride,
309  * stride = NF * sizeof (MTYPE)
310  */
311 
312 #define GEN_VEXT_LD_US(NAME, ETYPE, LOAD_FN)                            \
313 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base,         \
314                          CPURISCVState *env, uint32_t desc)             \
315 {                                                                       \
316     uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE));             \
317     vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN,   \
318                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD);      \
319 }                                                                       \
320                                                                         \
321 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
322                   CPURISCVState *env, uint32_t desc)                    \
323 {                                                                       \
324     vext_ldst_us(vd, base, env, desc, LOAD_FN,                          \
325                  ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD);          \
326 }
327 
328 GEN_VEXT_LD_US(vle8_v,  int8_t,  lde_b)
329 GEN_VEXT_LD_US(vle16_v, int16_t, lde_h)
330 GEN_VEXT_LD_US(vle32_v, int32_t, lde_w)
331 GEN_VEXT_LD_US(vle64_v, int64_t, lde_d)
332 
333 #define GEN_VEXT_ST_US(NAME, ETYPE, STORE_FN)                           \
334 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base,         \
335                          CPURISCVState *env, uint32_t desc)             \
336 {                                                                       \
337     uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE));             \
338     vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN,  \
339                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE);     \
340 }                                                                       \
341                                                                         \
342 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
343                   CPURISCVState *env, uint32_t desc)                    \
344 {                                                                       \
345     vext_ldst_us(vd, base, env, desc, STORE_FN,                         \
346                  ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE);         \
347 }
348 
349 GEN_VEXT_ST_US(vse8_v,  int8_t,  ste_b)
350 GEN_VEXT_ST_US(vse16_v, int16_t, ste_h)
351 GEN_VEXT_ST_US(vse32_v, int32_t, ste_w)
352 GEN_VEXT_ST_US(vse64_v, int64_t, ste_d)
353 
354 /*
355  *** index: access vector element from indexed memory
356  */
357 typedef target_ulong vext_get_index_addr(target_ulong base,
358         uint32_t idx, void *vs2);
359 
360 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H)        \
361 static target_ulong NAME(target_ulong base,            \
362                          uint32_t idx, void *vs2)      \
363 {                                                      \
364     return (base + *((ETYPE *)vs2 + H(idx)));          \
365 }
366 
367 GEN_VEXT_GET_INDEX_ADDR(idx_b, uint8_t,  H1)
368 GEN_VEXT_GET_INDEX_ADDR(idx_h, uint16_t, H2)
369 GEN_VEXT_GET_INDEX_ADDR(idx_w, uint32_t, H4)
370 GEN_VEXT_GET_INDEX_ADDR(idx_d, uint64_t, H8)
371 
372 static inline void
373 vext_ldst_index(void *vd, void *v0, target_ulong base,
374                 void *vs2, CPURISCVState *env, uint32_t desc,
375                 vext_get_index_addr get_index_addr,
376                 vext_ldst_elem_fn *ldst_elem,
377                 uint32_t esz, uintptr_t ra, MMUAccessType access_type)
378 {
379     uint32_t i, k;
380     uint32_t nf = vext_nf(desc);
381     uint32_t vm = vext_vm(desc);
382     uint32_t max_elems = vext_max_elems(desc, esz);
383 
384     /* probe every access*/
385     for (i = 0; i < env->vl; i++) {
386         if (!vm && !vext_elem_mask(v0, i)) {
387             continue;
388         }
389         probe_pages(env, get_index_addr(base, i, vs2), nf << esz, ra,
390                     access_type);
391     }
392     /* load bytes from guest memory */
393     for (i = 0; i < env->vl; i++) {
394         k = 0;
395         if (!vm && !vext_elem_mask(v0, i)) {
396             continue;
397         }
398         while (k < nf) {
399             abi_ptr addr = get_index_addr(base, i, vs2) + (k << esz);
400             ldst_elem(env, addr, i + k * max_elems, vd, ra);
401             k++;
402         }
403     }
404 }
405 
406 #define GEN_VEXT_LD_INDEX(NAME, ETYPE, INDEX_FN, LOAD_FN)                  \
407 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                   \
408                   void *vs2, CPURISCVState *env, uint32_t desc)            \
409 {                                                                          \
410     vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN,                \
411                     LOAD_FN, ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
412 }
413 
414 GEN_VEXT_LD_INDEX(vlxei8_8_v,   int8_t,  idx_b, lde_b)
415 GEN_VEXT_LD_INDEX(vlxei8_16_v,  int16_t, idx_b, lde_h)
416 GEN_VEXT_LD_INDEX(vlxei8_32_v,  int32_t, idx_b, lde_w)
417 GEN_VEXT_LD_INDEX(vlxei8_64_v,  int64_t, idx_b, lde_d)
418 GEN_VEXT_LD_INDEX(vlxei16_8_v,  int8_t,  idx_h, lde_b)
419 GEN_VEXT_LD_INDEX(vlxei16_16_v, int16_t, idx_h, lde_h)
420 GEN_VEXT_LD_INDEX(vlxei16_32_v, int32_t, idx_h, lde_w)
421 GEN_VEXT_LD_INDEX(vlxei16_64_v, int64_t, idx_h, lde_d)
422 GEN_VEXT_LD_INDEX(vlxei32_8_v,  int8_t,  idx_w, lde_b)
423 GEN_VEXT_LD_INDEX(vlxei32_16_v, int16_t, idx_w, lde_h)
424 GEN_VEXT_LD_INDEX(vlxei32_32_v, int32_t, idx_w, lde_w)
425 GEN_VEXT_LD_INDEX(vlxei32_64_v, int64_t, idx_w, lde_d)
426 GEN_VEXT_LD_INDEX(vlxei64_8_v,  int8_t,  idx_d, lde_b)
427 GEN_VEXT_LD_INDEX(vlxei64_16_v, int16_t, idx_d, lde_h)
428 GEN_VEXT_LD_INDEX(vlxei64_32_v, int32_t, idx_d, lde_w)
429 GEN_VEXT_LD_INDEX(vlxei64_64_v, int64_t, idx_d, lde_d)
430 
431 #define GEN_VEXT_ST_INDEX(NAME, ETYPE, INDEX_FN, STORE_FN)       \
432 void HELPER(NAME)(void *vd, void *v0, target_ulong base,         \
433                   void *vs2, CPURISCVState *env, uint32_t desc)  \
434 {                                                                \
435     vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN,      \
436                     STORE_FN, ctzl(sizeof(ETYPE)),               \
437                     GETPC(), MMU_DATA_STORE);                    \
438 }
439 
440 GEN_VEXT_ST_INDEX(vsxei8_8_v,   int8_t,  idx_b, ste_b)
441 GEN_VEXT_ST_INDEX(vsxei8_16_v,  int16_t, idx_b, ste_h)
442 GEN_VEXT_ST_INDEX(vsxei8_32_v,  int32_t, idx_b, ste_w)
443 GEN_VEXT_ST_INDEX(vsxei8_64_v,  int64_t, idx_b, ste_d)
444 GEN_VEXT_ST_INDEX(vsxei16_8_v,  int8_t,  idx_h, ste_b)
445 GEN_VEXT_ST_INDEX(vsxei16_16_v, int16_t, idx_h, ste_h)
446 GEN_VEXT_ST_INDEX(vsxei16_32_v, int32_t, idx_h, ste_w)
447 GEN_VEXT_ST_INDEX(vsxei16_64_v, int64_t, idx_h, ste_d)
448 GEN_VEXT_ST_INDEX(vsxei32_8_v,  int8_t,  idx_w, ste_b)
449 GEN_VEXT_ST_INDEX(vsxei32_16_v, int16_t, idx_w, ste_h)
450 GEN_VEXT_ST_INDEX(vsxei32_32_v, int32_t, idx_w, ste_w)
451 GEN_VEXT_ST_INDEX(vsxei32_64_v, int64_t, idx_w, ste_d)
452 GEN_VEXT_ST_INDEX(vsxei64_8_v,  int8_t,  idx_d, ste_b)
453 GEN_VEXT_ST_INDEX(vsxei64_16_v, int16_t, idx_d, ste_h)
454 GEN_VEXT_ST_INDEX(vsxei64_32_v, int32_t, idx_d, ste_w)
455 GEN_VEXT_ST_INDEX(vsxei64_64_v, int64_t, idx_d, ste_d)
456 
457 /*
458  *** unit-stride fault-only-fisrt load instructions
459  */
460 static inline void
461 vext_ldff(void *vd, void *v0, target_ulong base,
462           CPURISCVState *env, uint32_t desc,
463           vext_ldst_elem_fn *ldst_elem,
464           uint32_t esz, uintptr_t ra)
465 {
466     void *host;
467     uint32_t i, k, vl = 0;
468     uint32_t nf = vext_nf(desc);
469     uint32_t vm = vext_vm(desc);
470     uint32_t max_elems = vext_max_elems(desc, esz);
471     target_ulong addr, offset, remain;
472 
473     /* probe every access*/
474     for (i = 0; i < env->vl; i++) {
475         if (!vm && !vext_elem_mask(v0, i)) {
476             continue;
477         }
478         addr = base + i * (nf << esz);
479         if (i == 0) {
480             probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
481         } else {
482             /* if it triggers an exception, no need to check watchpoint */
483             remain = nf << esz;
484             while (remain > 0) {
485                 offset = -(addr | TARGET_PAGE_MASK);
486                 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
487                                          cpu_mmu_index(env, false));
488                 if (host) {
489 #ifdef CONFIG_USER_ONLY
490                     if (page_check_range(addr, nf << esz, PAGE_READ) < 0) {
491                         vl = i;
492                         goto ProbeSuccess;
493                     }
494 #else
495                     probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
496 #endif
497                 } else {
498                     vl = i;
499                     goto ProbeSuccess;
500                 }
501                 if (remain <=  offset) {
502                     break;
503                 }
504                 remain -= offset;
505                 addr += offset;
506             }
507         }
508     }
509 ProbeSuccess:
510     /* load bytes from guest memory */
511     if (vl != 0) {
512         env->vl = vl;
513     }
514     for (i = 0; i < env->vl; i++) {
515         k = 0;
516         if (!vm && !vext_elem_mask(v0, i)) {
517             continue;
518         }
519         while (k < nf) {
520             target_ulong addr = base + ((i * nf + k) << esz);
521             ldst_elem(env, addr, i + k * max_elems, vd, ra);
522             k++;
523         }
524     }
525 }
526 
527 #define GEN_VEXT_LDFF(NAME, ETYPE, LOAD_FN)               \
528 void HELPER(NAME)(void *vd, void *v0, target_ulong base,  \
529                   CPURISCVState *env, uint32_t desc)      \
530 {                                                         \
531     vext_ldff(vd, v0, base, env, desc, LOAD_FN,           \
532               ctzl(sizeof(ETYPE)), GETPC());              \
533 }
534 
535 GEN_VEXT_LDFF(vle8ff_v,  int8_t,  lde_b)
536 GEN_VEXT_LDFF(vle16ff_v, int16_t, lde_h)
537 GEN_VEXT_LDFF(vle32ff_v, int32_t, lde_w)
538 GEN_VEXT_LDFF(vle64ff_v, int64_t, lde_d)
539 
540 #define DO_SWAP(N, M) (M)
541 #define DO_AND(N, M)  (N & M)
542 #define DO_XOR(N, M)  (N ^ M)
543 #define DO_OR(N, M)   (N | M)
544 #define DO_ADD(N, M)  (N + M)
545 
546 /* Signed min/max */
547 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
548 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
549 
550 /* Unsigned min/max */
551 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
552 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
553 
554 /*
555  *** load and store whole register instructions
556  */
557 static void
558 vext_ldst_whole(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
559                 vext_ldst_elem_fn *ldst_elem, uint32_t esz, uintptr_t ra,
560                 MMUAccessType access_type)
561 {
562     uint32_t i, k;
563     uint32_t nf = vext_nf(desc);
564     uint32_t vlenb = env_archcpu(env)->cfg.vlen >> 3;
565     uint32_t max_elems = vlenb >> esz;
566 
567     /* probe every access */
568     probe_pages(env, base, vlenb * nf, ra, access_type);
569 
570     /* load bytes from guest memory */
571     for (k = 0; k < nf; k++) {
572         for (i = 0; i < max_elems; i++) {
573             target_ulong addr = base + ((i + k * max_elems) << esz);
574             ldst_elem(env, addr, i + k * max_elems, vd, ra);
575         }
576     }
577 }
578 
579 #define GEN_VEXT_LD_WHOLE(NAME, ETYPE, LOAD_FN)      \
580 void HELPER(NAME)(void *vd, target_ulong base,       \
581                   CPURISCVState *env, uint32_t desc) \
582 {                                                    \
583     vext_ldst_whole(vd, base, env, desc, LOAD_FN,    \
584                     ctzl(sizeof(ETYPE)), GETPC(),    \
585                     MMU_DATA_LOAD);                  \
586 }
587 
588 GEN_VEXT_LD_WHOLE(vl1re8_v,  int8_t,  lde_b)
589 GEN_VEXT_LD_WHOLE(vl1re16_v, int16_t, lde_h)
590 GEN_VEXT_LD_WHOLE(vl1re32_v, int32_t, lde_w)
591 GEN_VEXT_LD_WHOLE(vl1re64_v, int64_t, lde_d)
592 GEN_VEXT_LD_WHOLE(vl2re8_v,  int8_t,  lde_b)
593 GEN_VEXT_LD_WHOLE(vl2re16_v, int16_t, lde_h)
594 GEN_VEXT_LD_WHOLE(vl2re32_v, int32_t, lde_w)
595 GEN_VEXT_LD_WHOLE(vl2re64_v, int64_t, lde_d)
596 GEN_VEXT_LD_WHOLE(vl4re8_v,  int8_t,  lde_b)
597 GEN_VEXT_LD_WHOLE(vl4re16_v, int16_t, lde_h)
598 GEN_VEXT_LD_WHOLE(vl4re32_v, int32_t, lde_w)
599 GEN_VEXT_LD_WHOLE(vl4re64_v, int64_t, lde_d)
600 GEN_VEXT_LD_WHOLE(vl8re8_v,  int8_t,  lde_b)
601 GEN_VEXT_LD_WHOLE(vl8re16_v, int16_t, lde_h)
602 GEN_VEXT_LD_WHOLE(vl8re32_v, int32_t, lde_w)
603 GEN_VEXT_LD_WHOLE(vl8re64_v, int64_t, lde_d)
604 
605 #define GEN_VEXT_ST_WHOLE(NAME, ETYPE, STORE_FN)     \
606 void HELPER(NAME)(void *vd, target_ulong base,       \
607                   CPURISCVState *env, uint32_t desc) \
608 {                                                    \
609     vext_ldst_whole(vd, base, env, desc, STORE_FN,   \
610                     ctzl(sizeof(ETYPE)), GETPC(),    \
611                     MMU_DATA_STORE);                 \
612 }
613 
614 GEN_VEXT_ST_WHOLE(vs1r_v, int8_t, ste_b)
615 GEN_VEXT_ST_WHOLE(vs2r_v, int8_t, ste_b)
616 GEN_VEXT_ST_WHOLE(vs4r_v, int8_t, ste_b)
617 GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
618 
619 /*
620  *** Vector Integer Arithmetic Instructions
621  */
622 
623 /* expand macro args before macro */
624 #define RVVCALL(macro, ...)  macro(__VA_ARGS__)
625 
626 /* (TD, T1, T2, TX1, TX2) */
627 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
628 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
629 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
630 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
631 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
632 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
633 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
634 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
635 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
636 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
637 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
638 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
639 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
640 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
641 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
642 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
643 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
644 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
645 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
646 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
647 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
648 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
649 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
650 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
651 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
652 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
653 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
654 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
655 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
656 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
657 
658 /* operation of two vector elements */
659 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
660 
661 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)    \
662 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)    \
663 {                                                               \
664     TX1 s1 = *((T1 *)vs1 + HS1(i));                             \
665     TX2 s2 = *((T2 *)vs2 + HS2(i));                             \
666     *((TD *)vd + HD(i)) = OP(s2, s1);                           \
667 }
668 #define DO_SUB(N, M) (N - M)
669 #define DO_RSUB(N, M) (M - N)
670 
671 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
672 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
673 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
674 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
675 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
676 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
677 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
678 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
679 
680 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
681                        CPURISCVState *env, uint32_t desc,
682                        uint32_t esz, uint32_t dsz,
683                        opivv2_fn *fn)
684 {
685     uint32_t vm = vext_vm(desc);
686     uint32_t vl = env->vl;
687     uint32_t i;
688 
689     for (i = 0; i < vl; i++) {
690         if (!vm && !vext_elem_mask(v0, i)) {
691             continue;
692         }
693         fn(vd, vs1, vs2, i);
694     }
695 }
696 
697 /* generate the helpers for OPIVV */
698 #define GEN_VEXT_VV(NAME, ESZ, DSZ)                       \
699 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
700                   void *vs2, CPURISCVState *env,          \
701                   uint32_t desc)                          \
702 {                                                         \
703     do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ,     \
704                do_##NAME);                                \
705 }
706 
707 GEN_VEXT_VV(vadd_vv_b, 1, 1)
708 GEN_VEXT_VV(vadd_vv_h, 2, 2)
709 GEN_VEXT_VV(vadd_vv_w, 4, 4)
710 GEN_VEXT_VV(vadd_vv_d, 8, 8)
711 GEN_VEXT_VV(vsub_vv_b, 1, 1)
712 GEN_VEXT_VV(vsub_vv_h, 2, 2)
713 GEN_VEXT_VV(vsub_vv_w, 4, 4)
714 GEN_VEXT_VV(vsub_vv_d, 8, 8)
715 
716 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
717 
718 /*
719  * (T1)s1 gives the real operator type.
720  * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
721  */
722 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
723 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
724 {                                                                   \
725     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
726     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1);                      \
727 }
728 
729 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
730 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
731 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
732 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
733 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
734 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
735 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
736 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
737 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
738 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
739 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
740 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
741 
742 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
743                        CPURISCVState *env, uint32_t desc,
744                        uint32_t esz, uint32_t dsz,
745                        opivx2_fn fn)
746 {
747     uint32_t vm = vext_vm(desc);
748     uint32_t vl = env->vl;
749     uint32_t i;
750 
751     for (i = 0; i < vl; i++) {
752         if (!vm && !vext_elem_mask(v0, i)) {
753             continue;
754         }
755         fn(vd, s1, vs2, i);
756     }
757 }
758 
759 /* generate the helpers for OPIVX */
760 #define GEN_VEXT_VX(NAME, ESZ, DSZ)                       \
761 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
762                   void *vs2, CPURISCVState *env,          \
763                   uint32_t desc)                          \
764 {                                                         \
765     do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ,      \
766                do_##NAME);                                \
767 }
768 
769 GEN_VEXT_VX(vadd_vx_b, 1, 1)
770 GEN_VEXT_VX(vadd_vx_h, 2, 2)
771 GEN_VEXT_VX(vadd_vx_w, 4, 4)
772 GEN_VEXT_VX(vadd_vx_d, 8, 8)
773 GEN_VEXT_VX(vsub_vx_b, 1, 1)
774 GEN_VEXT_VX(vsub_vx_h, 2, 2)
775 GEN_VEXT_VX(vsub_vx_w, 4, 4)
776 GEN_VEXT_VX(vsub_vx_d, 8, 8)
777 GEN_VEXT_VX(vrsub_vx_b, 1, 1)
778 GEN_VEXT_VX(vrsub_vx_h, 2, 2)
779 GEN_VEXT_VX(vrsub_vx_w, 4, 4)
780 GEN_VEXT_VX(vrsub_vx_d, 8, 8)
781 
782 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
783 {
784     intptr_t oprsz = simd_oprsz(desc);
785     intptr_t i;
786 
787     for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
788         *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
789     }
790 }
791 
792 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
793 {
794     intptr_t oprsz = simd_oprsz(desc);
795     intptr_t i;
796 
797     for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
798         *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
799     }
800 }
801 
802 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
803 {
804     intptr_t oprsz = simd_oprsz(desc);
805     intptr_t i;
806 
807     for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
808         *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
809     }
810 }
811 
812 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
813 {
814     intptr_t oprsz = simd_oprsz(desc);
815     intptr_t i;
816 
817     for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
818         *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
819     }
820 }
821 
822 /* Vector Widening Integer Add/Subtract */
823 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
824 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
825 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
826 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
827 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
828 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
829 #define WOP_WUUU_B  uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
830 #define WOP_WUUU_H  uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
831 #define WOP_WUUU_W  uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
832 #define WOP_WSSS_B  int16_t, int8_t, int16_t, int16_t, int16_t
833 #define WOP_WSSS_H  int32_t, int16_t, int32_t, int32_t, int32_t
834 #define WOP_WSSS_W  int64_t, int32_t, int64_t, int64_t, int64_t
835 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
836 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
837 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
838 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
839 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
840 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
841 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
842 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
843 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
844 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
845 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
846 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
847 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
848 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
849 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
850 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
851 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
852 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
853 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
854 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
855 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
856 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
857 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
858 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
859 GEN_VEXT_VV(vwaddu_vv_b, 1, 2)
860 GEN_VEXT_VV(vwaddu_vv_h, 2, 4)
861 GEN_VEXT_VV(vwaddu_vv_w, 4, 8)
862 GEN_VEXT_VV(vwsubu_vv_b, 1, 2)
863 GEN_VEXT_VV(vwsubu_vv_h, 2, 4)
864 GEN_VEXT_VV(vwsubu_vv_w, 4, 8)
865 GEN_VEXT_VV(vwadd_vv_b, 1, 2)
866 GEN_VEXT_VV(vwadd_vv_h, 2, 4)
867 GEN_VEXT_VV(vwadd_vv_w, 4, 8)
868 GEN_VEXT_VV(vwsub_vv_b, 1, 2)
869 GEN_VEXT_VV(vwsub_vv_h, 2, 4)
870 GEN_VEXT_VV(vwsub_vv_w, 4, 8)
871 GEN_VEXT_VV(vwaddu_wv_b, 1, 2)
872 GEN_VEXT_VV(vwaddu_wv_h, 2, 4)
873 GEN_VEXT_VV(vwaddu_wv_w, 4, 8)
874 GEN_VEXT_VV(vwsubu_wv_b, 1, 2)
875 GEN_VEXT_VV(vwsubu_wv_h, 2, 4)
876 GEN_VEXT_VV(vwsubu_wv_w, 4, 8)
877 GEN_VEXT_VV(vwadd_wv_b, 1, 2)
878 GEN_VEXT_VV(vwadd_wv_h, 2, 4)
879 GEN_VEXT_VV(vwadd_wv_w, 4, 8)
880 GEN_VEXT_VV(vwsub_wv_b, 1, 2)
881 GEN_VEXT_VV(vwsub_wv_h, 2, 4)
882 GEN_VEXT_VV(vwsub_wv_w, 4, 8)
883 
884 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
885 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
886 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
887 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
888 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
889 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
890 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
891 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
892 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
893 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
894 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
895 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
896 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
897 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
898 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
899 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
900 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
901 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
902 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
903 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
904 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
905 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
906 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
907 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
908 GEN_VEXT_VX(vwaddu_vx_b, 1, 2)
909 GEN_VEXT_VX(vwaddu_vx_h, 2, 4)
910 GEN_VEXT_VX(vwaddu_vx_w, 4, 8)
911 GEN_VEXT_VX(vwsubu_vx_b, 1, 2)
912 GEN_VEXT_VX(vwsubu_vx_h, 2, 4)
913 GEN_VEXT_VX(vwsubu_vx_w, 4, 8)
914 GEN_VEXT_VX(vwadd_vx_b, 1, 2)
915 GEN_VEXT_VX(vwadd_vx_h, 2, 4)
916 GEN_VEXT_VX(vwadd_vx_w, 4, 8)
917 GEN_VEXT_VX(vwsub_vx_b, 1, 2)
918 GEN_VEXT_VX(vwsub_vx_h, 2, 4)
919 GEN_VEXT_VX(vwsub_vx_w, 4, 8)
920 GEN_VEXT_VX(vwaddu_wx_b, 1, 2)
921 GEN_VEXT_VX(vwaddu_wx_h, 2, 4)
922 GEN_VEXT_VX(vwaddu_wx_w, 4, 8)
923 GEN_VEXT_VX(vwsubu_wx_b, 1, 2)
924 GEN_VEXT_VX(vwsubu_wx_h, 2, 4)
925 GEN_VEXT_VX(vwsubu_wx_w, 4, 8)
926 GEN_VEXT_VX(vwadd_wx_b, 1, 2)
927 GEN_VEXT_VX(vwadd_wx_h, 2, 4)
928 GEN_VEXT_VX(vwadd_wx_w, 4, 8)
929 GEN_VEXT_VX(vwsub_wx_b, 1, 2)
930 GEN_VEXT_VX(vwsub_wx_h, 2, 4)
931 GEN_VEXT_VX(vwsub_wx_w, 4, 8)
932 
933 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
934 #define DO_VADC(N, M, C) (N + M + C)
935 #define DO_VSBC(N, M, C) (N - M - C)
936 
937 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP)              \
938 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
939                   CPURISCVState *env, uint32_t desc)          \
940 {                                                             \
941     uint32_t vl = env->vl;                                    \
942     uint32_t i;                                               \
943                                                               \
944     for (i = 0; i < vl; i++) {                                \
945         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
946         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
947         ETYPE carry = vext_elem_mask(v0, i);                  \
948                                                               \
949         *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry);         \
950     }                                                         \
951 }
952 
953 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t,  H1, DO_VADC)
954 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC)
955 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC)
956 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC)
957 
958 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t,  H1, DO_VSBC)
959 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC)
960 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC)
961 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC)
962 
963 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP)                         \
964 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,        \
965                   CPURISCVState *env, uint32_t desc)                     \
966 {                                                                        \
967     uint32_t vl = env->vl;                                               \
968     uint32_t i;                                                          \
969                                                                          \
970     for (i = 0; i < vl; i++) {                                           \
971         ETYPE s2 = *((ETYPE *)vs2 + H(i));                               \
972         ETYPE carry = vext_elem_mask(v0, i);                             \
973                                                                          \
974         *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
975     }                                                                    \
976 }
977 
978 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t,  H1, DO_VADC)
979 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC)
980 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC)
981 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC)
982 
983 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t,  H1, DO_VSBC)
984 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC)
985 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC)
986 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC)
987 
988 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N :           \
989                           (__typeof(N))(N + M) < N)
990 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
991 
992 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP)             \
993 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
994                   CPURISCVState *env, uint32_t desc)          \
995 {                                                             \
996     uint32_t vl = env->vl;                                    \
997     uint32_t vm = vext_vm(desc);                              \
998     uint32_t i;                                               \
999                                                               \
1000     for (i = 0; i < vl; i++) {                                \
1001         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1002         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1003         ETYPE carry = !vm && vext_elem_mask(v0, i);           \
1004         vext_set_elem_mask(vd, i, DO_OP(s2, s1, carry));      \
1005     }                                                         \
1006 }
1007 
1008 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t,  H1, DO_MADC)
1009 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
1010 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
1011 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
1012 
1013 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t,  H1, DO_MSBC)
1014 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
1015 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
1016 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
1017 
1018 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP)               \
1019 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,          \
1020                   void *vs2, CPURISCVState *env, uint32_t desc) \
1021 {                                                               \
1022     uint32_t vl = env->vl;                                      \
1023     uint32_t vm = vext_vm(desc);                                \
1024     uint32_t i;                                                 \
1025                                                                 \
1026     for (i = 0; i < vl; i++) {                                  \
1027         ETYPE s2 = *((ETYPE *)vs2 + H(i));                      \
1028         ETYPE carry = !vm && vext_elem_mask(v0, i);             \
1029         vext_set_elem_mask(vd, i,                               \
1030                 DO_OP(s2, (ETYPE)(target_long)s1, carry));      \
1031     }                                                           \
1032 }
1033 
1034 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t,  H1, DO_MADC)
1035 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
1036 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
1037 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
1038 
1039 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t,  H1, DO_MSBC)
1040 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
1041 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
1042 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
1043 
1044 /* Vector Bitwise Logical Instructions */
1045 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
1046 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
1047 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
1048 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
1049 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
1050 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
1051 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
1052 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
1053 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
1054 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
1055 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
1056 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
1057 GEN_VEXT_VV(vand_vv_b, 1, 1)
1058 GEN_VEXT_VV(vand_vv_h, 2, 2)
1059 GEN_VEXT_VV(vand_vv_w, 4, 4)
1060 GEN_VEXT_VV(vand_vv_d, 8, 8)
1061 GEN_VEXT_VV(vor_vv_b, 1, 1)
1062 GEN_VEXT_VV(vor_vv_h, 2, 2)
1063 GEN_VEXT_VV(vor_vv_w, 4, 4)
1064 GEN_VEXT_VV(vor_vv_d, 8, 8)
1065 GEN_VEXT_VV(vxor_vv_b, 1, 1)
1066 GEN_VEXT_VV(vxor_vv_h, 2, 2)
1067 GEN_VEXT_VV(vxor_vv_w, 4, 4)
1068 GEN_VEXT_VV(vxor_vv_d, 8, 8)
1069 
1070 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
1071 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
1072 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
1073 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
1074 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
1075 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
1076 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
1077 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
1078 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
1079 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
1080 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
1081 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
1082 GEN_VEXT_VX(vand_vx_b, 1, 1)
1083 GEN_VEXT_VX(vand_vx_h, 2, 2)
1084 GEN_VEXT_VX(vand_vx_w, 4, 4)
1085 GEN_VEXT_VX(vand_vx_d, 8, 8)
1086 GEN_VEXT_VX(vor_vx_b, 1, 1)
1087 GEN_VEXT_VX(vor_vx_h, 2, 2)
1088 GEN_VEXT_VX(vor_vx_w, 4, 4)
1089 GEN_VEXT_VX(vor_vx_d, 8, 8)
1090 GEN_VEXT_VX(vxor_vx_b, 1, 1)
1091 GEN_VEXT_VX(vxor_vx_h, 2, 2)
1092 GEN_VEXT_VX(vxor_vx_w, 4, 4)
1093 GEN_VEXT_VX(vxor_vx_d, 8, 8)
1094 
1095 /* Vector Single-Width Bit Shift Instructions */
1096 #define DO_SLL(N, M)  (N << (M))
1097 #define DO_SRL(N, M)  (N >> (M))
1098 
1099 /* generate the helpers for shift instructions with two vector operators */
1100 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK)             \
1101 void HELPER(NAME)(void *vd, void *v0, void *vs1,                          \
1102                   void *vs2, CPURISCVState *env, uint32_t desc)           \
1103 {                                                                         \
1104     uint32_t vm = vext_vm(desc);                                          \
1105     uint32_t vl = env->vl;                                                \
1106     uint32_t i;                                                           \
1107                                                                           \
1108     for (i = 0; i < vl; i++) {                                            \
1109         if (!vm && !vext_elem_mask(v0, i)) {                              \
1110             continue;                                                     \
1111         }                                                                 \
1112         TS1 s1 = *((TS1 *)vs1 + HS1(i));                                  \
1113         TS2 s2 = *((TS2 *)vs2 + HS2(i));                                  \
1114         *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK);                        \
1115     }                                                                     \
1116 }
1117 
1118 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t,  uint8_t, H1, H1, DO_SLL, 0x7)
1119 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf)
1120 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f)
1121 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f)
1122 
1123 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
1124 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
1125 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
1126 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
1127 
1128 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t,  int8_t, H1, H1, DO_SRL, 0x7)
1129 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf)
1130 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f)
1131 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f)
1132 
1133 /* generate the helpers for shift instructions with one vector and one scalar */
1134 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK) \
1135 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,      \
1136         void *vs2, CPURISCVState *env, uint32_t desc)       \
1137 {                                                           \
1138     uint32_t vm = vext_vm(desc);                            \
1139     uint32_t vl = env->vl;                                  \
1140     uint32_t i;                                             \
1141                                                             \
1142     for (i = 0; i < vl; i++) {                              \
1143         if (!vm && !vext_elem_mask(v0, i)) {                \
1144             continue;                                       \
1145         }                                                   \
1146         TS2 s2 = *((TS2 *)vs2 + HS2(i));                    \
1147         *((TD *)vd + HD(i)) = OP(s2, s1 & MASK);            \
1148     }                                                       \
1149 }
1150 
1151 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7)
1152 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf)
1153 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f)
1154 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f)
1155 
1156 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
1157 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
1158 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
1159 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
1160 
1161 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7)
1162 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf)
1163 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f)
1164 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f)
1165 
1166 /* Vector Narrowing Integer Right Shift Instructions */
1167 GEN_VEXT_SHIFT_VV(vnsrl_wv_b, uint8_t,  uint16_t, H1, H2, DO_SRL, 0xf)
1168 GEN_VEXT_SHIFT_VV(vnsrl_wv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
1169 GEN_VEXT_SHIFT_VV(vnsrl_wv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
1170 GEN_VEXT_SHIFT_VV(vnsra_wv_b, uint8_t,  int16_t, H1, H2, DO_SRL, 0xf)
1171 GEN_VEXT_SHIFT_VV(vnsra_wv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f)
1172 GEN_VEXT_SHIFT_VV(vnsra_wv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f)
1173 GEN_VEXT_SHIFT_VX(vnsrl_wx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf)
1174 GEN_VEXT_SHIFT_VX(vnsrl_wx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
1175 GEN_VEXT_SHIFT_VX(vnsrl_wx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
1176 GEN_VEXT_SHIFT_VX(vnsra_wx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf)
1177 GEN_VEXT_SHIFT_VX(vnsra_wx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f)
1178 GEN_VEXT_SHIFT_VX(vnsra_wx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f)
1179 
1180 /* Vector Integer Comparison Instructions */
1181 #define DO_MSEQ(N, M) (N == M)
1182 #define DO_MSNE(N, M) (N != M)
1183 #define DO_MSLT(N, M) (N < M)
1184 #define DO_MSLE(N, M) (N <= M)
1185 #define DO_MSGT(N, M) (N > M)
1186 
1187 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP)                \
1188 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
1189                   CPURISCVState *env, uint32_t desc)          \
1190 {                                                             \
1191     uint32_t vm = vext_vm(desc);                              \
1192     uint32_t vl = env->vl;                                    \
1193     uint32_t i;                                               \
1194                                                               \
1195     for (i = 0; i < vl; i++) {                                \
1196         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1197         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1198         if (!vm && !vext_elem_mask(v0, i)) {                  \
1199             continue;                                         \
1200         }                                                     \
1201         vext_set_elem_mask(vd, i, DO_OP(s2, s1));             \
1202     }                                                         \
1203 }
1204 
1205 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t,  H1, DO_MSEQ)
1206 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
1207 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
1208 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
1209 
1210 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t,  H1, DO_MSNE)
1211 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
1212 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
1213 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
1214 
1215 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t,  H1, DO_MSLT)
1216 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
1217 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
1218 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
1219 
1220 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t,  H1, DO_MSLT)
1221 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
1222 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
1223 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
1224 
1225 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t,  H1, DO_MSLE)
1226 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
1227 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
1228 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
1229 
1230 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t,  H1, DO_MSLE)
1231 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
1232 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
1233 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
1234 
1235 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP)                      \
1236 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,   \
1237                   CPURISCVState *env, uint32_t desc)                \
1238 {                                                                   \
1239     uint32_t vm = vext_vm(desc);                                    \
1240     uint32_t vl = env->vl;                                          \
1241     uint32_t i;                                                     \
1242                                                                     \
1243     for (i = 0; i < vl; i++) {                                      \
1244         ETYPE s2 = *((ETYPE *)vs2 + H(i));                          \
1245         if (!vm && !vext_elem_mask(v0, i)) {                        \
1246             continue;                                               \
1247         }                                                           \
1248         vext_set_elem_mask(vd, i,                                   \
1249                 DO_OP(s2, (ETYPE)(target_long)s1));                 \
1250     }                                                               \
1251 }
1252 
1253 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t,  H1, DO_MSEQ)
1254 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
1255 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
1256 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
1257 
1258 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t,  H1, DO_MSNE)
1259 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
1260 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
1261 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
1262 
1263 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t,  H1, DO_MSLT)
1264 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
1265 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
1266 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
1267 
1268 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t,  H1, DO_MSLT)
1269 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
1270 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
1271 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
1272 
1273 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t,  H1, DO_MSLE)
1274 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
1275 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
1276 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
1277 
1278 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t,  H1, DO_MSLE)
1279 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
1280 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
1281 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
1282 
1283 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t,  H1, DO_MSGT)
1284 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
1285 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
1286 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
1287 
1288 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t,  H1, DO_MSGT)
1289 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
1290 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
1291 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
1292 
1293 /* Vector Integer Min/Max Instructions */
1294 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
1295 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
1296 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
1297 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
1298 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
1299 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
1300 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
1301 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
1302 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
1303 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
1304 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
1305 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
1306 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
1307 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
1308 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
1309 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
1310 GEN_VEXT_VV(vminu_vv_b, 1, 1)
1311 GEN_VEXT_VV(vminu_vv_h, 2, 2)
1312 GEN_VEXT_VV(vminu_vv_w, 4, 4)
1313 GEN_VEXT_VV(vminu_vv_d, 8, 8)
1314 GEN_VEXT_VV(vmin_vv_b, 1, 1)
1315 GEN_VEXT_VV(vmin_vv_h, 2, 2)
1316 GEN_VEXT_VV(vmin_vv_w, 4, 4)
1317 GEN_VEXT_VV(vmin_vv_d, 8, 8)
1318 GEN_VEXT_VV(vmaxu_vv_b, 1, 1)
1319 GEN_VEXT_VV(vmaxu_vv_h, 2, 2)
1320 GEN_VEXT_VV(vmaxu_vv_w, 4, 4)
1321 GEN_VEXT_VV(vmaxu_vv_d, 8, 8)
1322 GEN_VEXT_VV(vmax_vv_b, 1, 1)
1323 GEN_VEXT_VV(vmax_vv_h, 2, 2)
1324 GEN_VEXT_VV(vmax_vv_w, 4, 4)
1325 GEN_VEXT_VV(vmax_vv_d, 8, 8)
1326 
1327 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
1328 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
1329 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
1330 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
1331 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
1332 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
1333 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
1334 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
1335 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
1336 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
1337 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
1338 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
1339 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
1340 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
1341 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
1342 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
1343 GEN_VEXT_VX(vminu_vx_b, 1, 1)
1344 GEN_VEXT_VX(vminu_vx_h, 2, 2)
1345 GEN_VEXT_VX(vminu_vx_w, 4, 4)
1346 GEN_VEXT_VX(vminu_vx_d, 8, 8)
1347 GEN_VEXT_VX(vmin_vx_b, 1, 1)
1348 GEN_VEXT_VX(vmin_vx_h, 2, 2)
1349 GEN_VEXT_VX(vmin_vx_w, 4, 4)
1350 GEN_VEXT_VX(vmin_vx_d, 8, 8)
1351 GEN_VEXT_VX(vmaxu_vx_b, 1, 1)
1352 GEN_VEXT_VX(vmaxu_vx_h, 2, 2)
1353 GEN_VEXT_VX(vmaxu_vx_w, 4, 4)
1354 GEN_VEXT_VX(vmaxu_vx_d, 8, 8)
1355 GEN_VEXT_VX(vmax_vx_b, 1, 1)
1356 GEN_VEXT_VX(vmax_vx_h, 2, 2)
1357 GEN_VEXT_VX(vmax_vx_w, 4, 4)
1358 GEN_VEXT_VX(vmax_vx_d, 8, 8)
1359 
1360 /* Vector Single-Width Integer Multiply Instructions */
1361 #define DO_MUL(N, M) (N * M)
1362 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
1363 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
1364 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
1365 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
1366 GEN_VEXT_VV(vmul_vv_b, 1, 1)
1367 GEN_VEXT_VV(vmul_vv_h, 2, 2)
1368 GEN_VEXT_VV(vmul_vv_w, 4, 4)
1369 GEN_VEXT_VV(vmul_vv_d, 8, 8)
1370 
1371 static int8_t do_mulh_b(int8_t s2, int8_t s1)
1372 {
1373     return (int16_t)s2 * (int16_t)s1 >> 8;
1374 }
1375 
1376 static int16_t do_mulh_h(int16_t s2, int16_t s1)
1377 {
1378     return (int32_t)s2 * (int32_t)s1 >> 16;
1379 }
1380 
1381 static int32_t do_mulh_w(int32_t s2, int32_t s1)
1382 {
1383     return (int64_t)s2 * (int64_t)s1 >> 32;
1384 }
1385 
1386 static int64_t do_mulh_d(int64_t s2, int64_t s1)
1387 {
1388     uint64_t hi_64, lo_64;
1389 
1390     muls64(&lo_64, &hi_64, s1, s2);
1391     return hi_64;
1392 }
1393 
1394 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
1395 {
1396     return (uint16_t)s2 * (uint16_t)s1 >> 8;
1397 }
1398 
1399 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
1400 {
1401     return (uint32_t)s2 * (uint32_t)s1 >> 16;
1402 }
1403 
1404 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
1405 {
1406     return (uint64_t)s2 * (uint64_t)s1 >> 32;
1407 }
1408 
1409 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
1410 {
1411     uint64_t hi_64, lo_64;
1412 
1413     mulu64(&lo_64, &hi_64, s2, s1);
1414     return hi_64;
1415 }
1416 
1417 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
1418 {
1419     return (int16_t)s2 * (uint16_t)s1 >> 8;
1420 }
1421 
1422 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
1423 {
1424     return (int32_t)s2 * (uint32_t)s1 >> 16;
1425 }
1426 
1427 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
1428 {
1429     return (int64_t)s2 * (uint64_t)s1 >> 32;
1430 }
1431 
1432 /*
1433  * Let  A = signed operand,
1434  *      B = unsigned operand
1435  *      P = mulu64(A, B), unsigned product
1436  *
1437  * LET  X = 2 ** 64  - A, 2's complement of A
1438  *      SP = signed product
1439  * THEN
1440  *      IF A < 0
1441  *          SP = -X * B
1442  *             = -(2 ** 64 - A) * B
1443  *             = A * B - 2 ** 64 * B
1444  *             = P - 2 ** 64 * B
1445  *      ELSE
1446  *          SP = P
1447  * THEN
1448  *      HI_P -= (A < 0 ? B : 0)
1449  */
1450 
1451 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
1452 {
1453     uint64_t hi_64, lo_64;
1454 
1455     mulu64(&lo_64, &hi_64, s2, s1);
1456 
1457     hi_64 -= s2 < 0 ? s1 : 0;
1458     return hi_64;
1459 }
1460 
1461 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
1462 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
1463 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
1464 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
1465 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
1466 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
1467 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
1468 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
1469 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
1470 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
1471 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
1472 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
1473 GEN_VEXT_VV(vmulh_vv_b, 1, 1)
1474 GEN_VEXT_VV(vmulh_vv_h, 2, 2)
1475 GEN_VEXT_VV(vmulh_vv_w, 4, 4)
1476 GEN_VEXT_VV(vmulh_vv_d, 8, 8)
1477 GEN_VEXT_VV(vmulhu_vv_b, 1, 1)
1478 GEN_VEXT_VV(vmulhu_vv_h, 2, 2)
1479 GEN_VEXT_VV(vmulhu_vv_w, 4, 4)
1480 GEN_VEXT_VV(vmulhu_vv_d, 8, 8)
1481 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1)
1482 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2)
1483 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4)
1484 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8)
1485 
1486 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
1487 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
1488 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
1489 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
1490 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
1491 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
1492 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
1493 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
1494 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
1495 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
1496 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
1497 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
1498 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
1499 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
1500 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
1501 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
1502 GEN_VEXT_VX(vmul_vx_b, 1, 1)
1503 GEN_VEXT_VX(vmul_vx_h, 2, 2)
1504 GEN_VEXT_VX(vmul_vx_w, 4, 4)
1505 GEN_VEXT_VX(vmul_vx_d, 8, 8)
1506 GEN_VEXT_VX(vmulh_vx_b, 1, 1)
1507 GEN_VEXT_VX(vmulh_vx_h, 2, 2)
1508 GEN_VEXT_VX(vmulh_vx_w, 4, 4)
1509 GEN_VEXT_VX(vmulh_vx_d, 8, 8)
1510 GEN_VEXT_VX(vmulhu_vx_b, 1, 1)
1511 GEN_VEXT_VX(vmulhu_vx_h, 2, 2)
1512 GEN_VEXT_VX(vmulhu_vx_w, 4, 4)
1513 GEN_VEXT_VX(vmulhu_vx_d, 8, 8)
1514 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1)
1515 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2)
1516 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4)
1517 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8)
1518 
1519 /* Vector Integer Divide Instructions */
1520 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1521 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1522 #define DO_DIV(N, M)  (unlikely(M == 0) ? (__typeof(N))(-1) :\
1523         unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1524 #define DO_REM(N, M)  (unlikely(M == 0) ? N :\
1525         unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1526 
1527 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
1528 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
1529 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
1530 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
1531 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
1532 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
1533 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
1534 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
1535 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
1536 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
1537 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
1538 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
1539 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
1540 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
1541 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
1542 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
1543 GEN_VEXT_VV(vdivu_vv_b, 1, 1)
1544 GEN_VEXT_VV(vdivu_vv_h, 2, 2)
1545 GEN_VEXT_VV(vdivu_vv_w, 4, 4)
1546 GEN_VEXT_VV(vdivu_vv_d, 8, 8)
1547 GEN_VEXT_VV(vdiv_vv_b, 1, 1)
1548 GEN_VEXT_VV(vdiv_vv_h, 2, 2)
1549 GEN_VEXT_VV(vdiv_vv_w, 4, 4)
1550 GEN_VEXT_VV(vdiv_vv_d, 8, 8)
1551 GEN_VEXT_VV(vremu_vv_b, 1, 1)
1552 GEN_VEXT_VV(vremu_vv_h, 2, 2)
1553 GEN_VEXT_VV(vremu_vv_w, 4, 4)
1554 GEN_VEXT_VV(vremu_vv_d, 8, 8)
1555 GEN_VEXT_VV(vrem_vv_b, 1, 1)
1556 GEN_VEXT_VV(vrem_vv_h, 2, 2)
1557 GEN_VEXT_VV(vrem_vv_w, 4, 4)
1558 GEN_VEXT_VV(vrem_vv_d, 8, 8)
1559 
1560 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
1561 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
1562 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
1563 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
1564 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
1565 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
1566 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
1567 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
1568 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
1569 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
1570 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
1571 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
1572 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
1573 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
1574 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
1575 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
1576 GEN_VEXT_VX(vdivu_vx_b, 1, 1)
1577 GEN_VEXT_VX(vdivu_vx_h, 2, 2)
1578 GEN_VEXT_VX(vdivu_vx_w, 4, 4)
1579 GEN_VEXT_VX(vdivu_vx_d, 8, 8)
1580 GEN_VEXT_VX(vdiv_vx_b, 1, 1)
1581 GEN_VEXT_VX(vdiv_vx_h, 2, 2)
1582 GEN_VEXT_VX(vdiv_vx_w, 4, 4)
1583 GEN_VEXT_VX(vdiv_vx_d, 8, 8)
1584 GEN_VEXT_VX(vremu_vx_b, 1, 1)
1585 GEN_VEXT_VX(vremu_vx_h, 2, 2)
1586 GEN_VEXT_VX(vremu_vx_w, 4, 4)
1587 GEN_VEXT_VX(vremu_vx_d, 8, 8)
1588 GEN_VEXT_VX(vrem_vx_b, 1, 1)
1589 GEN_VEXT_VX(vrem_vx_h, 2, 2)
1590 GEN_VEXT_VX(vrem_vx_w, 4, 4)
1591 GEN_VEXT_VX(vrem_vx_d, 8, 8)
1592 
1593 /* Vector Widening Integer Multiply Instructions */
1594 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
1595 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
1596 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
1597 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
1598 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
1599 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
1600 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
1601 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
1602 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
1603 GEN_VEXT_VV(vwmul_vv_b, 1, 2)
1604 GEN_VEXT_VV(vwmul_vv_h, 2, 4)
1605 GEN_VEXT_VV(vwmul_vv_w, 4, 8)
1606 GEN_VEXT_VV(vwmulu_vv_b, 1, 2)
1607 GEN_VEXT_VV(vwmulu_vv_h, 2, 4)
1608 GEN_VEXT_VV(vwmulu_vv_w, 4, 8)
1609 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2)
1610 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4)
1611 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8)
1612 
1613 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
1614 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
1615 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
1616 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
1617 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
1618 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
1619 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
1620 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
1621 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
1622 GEN_VEXT_VX(vwmul_vx_b, 1, 2)
1623 GEN_VEXT_VX(vwmul_vx_h, 2, 4)
1624 GEN_VEXT_VX(vwmul_vx_w, 4, 8)
1625 GEN_VEXT_VX(vwmulu_vx_b, 1, 2)
1626 GEN_VEXT_VX(vwmulu_vx_h, 2, 4)
1627 GEN_VEXT_VX(vwmulu_vx_w, 4, 8)
1628 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2)
1629 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4)
1630 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8)
1631 
1632 /* Vector Single-Width Integer Multiply-Add Instructions */
1633 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)   \
1634 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)       \
1635 {                                                                  \
1636     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
1637     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
1638     TD d = *((TD *)vd + HD(i));                                    \
1639     *((TD *)vd + HD(i)) = OP(s2, s1, d);                           \
1640 }
1641 
1642 #define DO_MACC(N, M, D) (M * N + D)
1643 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1644 #define DO_MADD(N, M, D) (M * D + N)
1645 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1646 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
1647 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
1648 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
1649 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
1650 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
1651 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
1652 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
1653 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
1654 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
1655 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
1656 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
1657 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
1658 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
1659 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
1660 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
1661 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
1662 GEN_VEXT_VV(vmacc_vv_b, 1, 1)
1663 GEN_VEXT_VV(vmacc_vv_h, 2, 2)
1664 GEN_VEXT_VV(vmacc_vv_w, 4, 4)
1665 GEN_VEXT_VV(vmacc_vv_d, 8, 8)
1666 GEN_VEXT_VV(vnmsac_vv_b, 1, 1)
1667 GEN_VEXT_VV(vnmsac_vv_h, 2, 2)
1668 GEN_VEXT_VV(vnmsac_vv_w, 4, 4)
1669 GEN_VEXT_VV(vnmsac_vv_d, 8, 8)
1670 GEN_VEXT_VV(vmadd_vv_b, 1, 1)
1671 GEN_VEXT_VV(vmadd_vv_h, 2, 2)
1672 GEN_VEXT_VV(vmadd_vv_w, 4, 4)
1673 GEN_VEXT_VV(vmadd_vv_d, 8, 8)
1674 GEN_VEXT_VV(vnmsub_vv_b, 1, 1)
1675 GEN_VEXT_VV(vnmsub_vv_h, 2, 2)
1676 GEN_VEXT_VV(vnmsub_vv_w, 4, 4)
1677 GEN_VEXT_VV(vnmsub_vv_d, 8, 8)
1678 
1679 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
1680 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
1681 {                                                                   \
1682     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1683     TD d = *((TD *)vd + HD(i));                                     \
1684     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d);                   \
1685 }
1686 
1687 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
1688 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
1689 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
1690 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
1691 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
1692 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
1693 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
1694 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
1695 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
1696 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
1697 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
1698 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
1699 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
1700 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
1701 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
1702 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
1703 GEN_VEXT_VX(vmacc_vx_b, 1, 1)
1704 GEN_VEXT_VX(vmacc_vx_h, 2, 2)
1705 GEN_VEXT_VX(vmacc_vx_w, 4, 4)
1706 GEN_VEXT_VX(vmacc_vx_d, 8, 8)
1707 GEN_VEXT_VX(vnmsac_vx_b, 1, 1)
1708 GEN_VEXT_VX(vnmsac_vx_h, 2, 2)
1709 GEN_VEXT_VX(vnmsac_vx_w, 4, 4)
1710 GEN_VEXT_VX(vnmsac_vx_d, 8, 8)
1711 GEN_VEXT_VX(vmadd_vx_b, 1, 1)
1712 GEN_VEXT_VX(vmadd_vx_h, 2, 2)
1713 GEN_VEXT_VX(vmadd_vx_w, 4, 4)
1714 GEN_VEXT_VX(vmadd_vx_d, 8, 8)
1715 GEN_VEXT_VX(vnmsub_vx_b, 1, 1)
1716 GEN_VEXT_VX(vnmsub_vx_h, 2, 2)
1717 GEN_VEXT_VX(vnmsub_vx_w, 4, 4)
1718 GEN_VEXT_VX(vnmsub_vx_d, 8, 8)
1719 
1720 /* Vector Widening Integer Multiply-Add Instructions */
1721 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
1722 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
1723 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
1724 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
1725 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
1726 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
1727 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
1728 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
1729 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
1730 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2)
1731 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4)
1732 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8)
1733 GEN_VEXT_VV(vwmacc_vv_b, 1, 2)
1734 GEN_VEXT_VV(vwmacc_vv_h, 2, 4)
1735 GEN_VEXT_VV(vwmacc_vv_w, 4, 8)
1736 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2)
1737 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4)
1738 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8)
1739 
1740 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
1741 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
1742 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
1743 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
1744 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
1745 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
1746 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
1747 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
1748 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
1749 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
1750 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
1751 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
1752 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2)
1753 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4)
1754 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8)
1755 GEN_VEXT_VX(vwmacc_vx_b, 1, 2)
1756 GEN_VEXT_VX(vwmacc_vx_h, 2, 4)
1757 GEN_VEXT_VX(vwmacc_vx_w, 4, 8)
1758 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2)
1759 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4)
1760 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8)
1761 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2)
1762 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4)
1763 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8)
1764 
1765 /* Vector Integer Merge and Move Instructions */
1766 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H)                              \
1767 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env,           \
1768                   uint32_t desc)                                     \
1769 {                                                                    \
1770     uint32_t vl = env->vl;                                           \
1771     uint32_t i;                                                      \
1772                                                                      \
1773     for (i = 0; i < vl; i++) {                                       \
1774         ETYPE s1 = *((ETYPE *)vs1 + H(i));                           \
1775         *((ETYPE *)vd + H(i)) = s1;                                  \
1776     }                                                                \
1777 }
1778 
1779 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t,  H1)
1780 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2)
1781 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4)
1782 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8)
1783 
1784 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H)                              \
1785 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env,         \
1786                   uint32_t desc)                                     \
1787 {                                                                    \
1788     uint32_t vl = env->vl;                                           \
1789     uint32_t i;                                                      \
1790                                                                      \
1791     for (i = 0; i < vl; i++) {                                       \
1792         *((ETYPE *)vd + H(i)) = (ETYPE)s1;                           \
1793     }                                                                \
1794 }
1795 
1796 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t,  H1)
1797 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2)
1798 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4)
1799 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8)
1800 
1801 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H)                           \
1802 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,          \
1803                   CPURISCVState *env, uint32_t desc)                 \
1804 {                                                                    \
1805     uint32_t vl = env->vl;                                           \
1806     uint32_t i;                                                      \
1807                                                                      \
1808     for (i = 0; i < vl; i++) {                                       \
1809         ETYPE *vt = (!vext_elem_mask(v0, i) ? vs2 : vs1);            \
1810         *((ETYPE *)vd + H(i)) = *(vt + H(i));                        \
1811     }                                                                \
1812 }
1813 
1814 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t,  H1)
1815 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2)
1816 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4)
1817 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8)
1818 
1819 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H)                           \
1820 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,               \
1821                   void *vs2, CPURISCVState *env, uint32_t desc)      \
1822 {                                                                    \
1823     uint32_t vl = env->vl;                                           \
1824     uint32_t i;                                                      \
1825                                                                      \
1826     for (i = 0; i < vl; i++) {                                       \
1827         ETYPE s2 = *((ETYPE *)vs2 + H(i));                           \
1828         ETYPE d = (!vext_elem_mask(v0, i) ? s2 :                     \
1829                    (ETYPE)(target_long)s1);                          \
1830         *((ETYPE *)vd + H(i)) = d;                                   \
1831     }                                                                \
1832 }
1833 
1834 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t,  H1)
1835 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2)
1836 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4)
1837 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8)
1838 
1839 /*
1840  *** Vector Fixed-Point Arithmetic Instructions
1841  */
1842 
1843 /* Vector Single-Width Saturating Add and Subtract */
1844 
1845 /*
1846  * As fixed point instructions probably have round mode and saturation,
1847  * define common macros for fixed point here.
1848  */
1849 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
1850                           CPURISCVState *env, int vxrm);
1851 
1852 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)     \
1853 static inline void                                                  \
1854 do_##NAME(void *vd, void *vs1, void *vs2, int i,                    \
1855           CPURISCVState *env, int vxrm)                             \
1856 {                                                                   \
1857     TX1 s1 = *((T1 *)vs1 + HS1(i));                                 \
1858     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1859     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1);                    \
1860 }
1861 
1862 static inline void
1863 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
1864              CPURISCVState *env,
1865              uint32_t vl, uint32_t vm, int vxrm,
1866              opivv2_rm_fn *fn)
1867 {
1868     for (uint32_t i = 0; i < vl; i++) {
1869         if (!vm && !vext_elem_mask(v0, i)) {
1870             continue;
1871         }
1872         fn(vd, vs1, vs2, i, env, vxrm);
1873     }
1874 }
1875 
1876 static inline void
1877 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
1878              CPURISCVState *env,
1879              uint32_t desc, uint32_t esz, uint32_t dsz,
1880              opivv2_rm_fn *fn)
1881 {
1882     uint32_t vm = vext_vm(desc);
1883     uint32_t vl = env->vl;
1884 
1885     switch (env->vxrm) {
1886     case 0: /* rnu */
1887         vext_vv_rm_1(vd, v0, vs1, vs2,
1888                      env, vl, vm, 0, fn);
1889         break;
1890     case 1: /* rne */
1891         vext_vv_rm_1(vd, v0, vs1, vs2,
1892                      env, vl, vm, 1, fn);
1893         break;
1894     case 2: /* rdn */
1895         vext_vv_rm_1(vd, v0, vs1, vs2,
1896                      env, vl, vm, 2, fn);
1897         break;
1898     default: /* rod */
1899         vext_vv_rm_1(vd, v0, vs1, vs2,
1900                      env, vl, vm, 3, fn);
1901         break;
1902     }
1903 }
1904 
1905 /* generate helpers for fixed point instructions with OPIVV format */
1906 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ)                          \
1907 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,     \
1908                   CPURISCVState *env, uint32_t desc)            \
1909 {                                                               \
1910     vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ,         \
1911                  do_##NAME);                                    \
1912 }
1913 
1914 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
1915 {
1916     uint8_t res = a + b;
1917     if (res < a) {
1918         res = UINT8_MAX;
1919         env->vxsat = 0x1;
1920     }
1921     return res;
1922 }
1923 
1924 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
1925                                uint16_t b)
1926 {
1927     uint16_t res = a + b;
1928     if (res < a) {
1929         res = UINT16_MAX;
1930         env->vxsat = 0x1;
1931     }
1932     return res;
1933 }
1934 
1935 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
1936                                uint32_t b)
1937 {
1938     uint32_t res = a + b;
1939     if (res < a) {
1940         res = UINT32_MAX;
1941         env->vxsat = 0x1;
1942     }
1943     return res;
1944 }
1945 
1946 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
1947                                uint64_t b)
1948 {
1949     uint64_t res = a + b;
1950     if (res < a) {
1951         res = UINT64_MAX;
1952         env->vxsat = 0x1;
1953     }
1954     return res;
1955 }
1956 
1957 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
1958 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
1959 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
1960 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
1961 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1)
1962 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2)
1963 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4)
1964 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8)
1965 
1966 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
1967                           CPURISCVState *env, int vxrm);
1968 
1969 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)          \
1970 static inline void                                                  \
1971 do_##NAME(void *vd, target_long s1, void *vs2, int i,               \
1972           CPURISCVState *env, int vxrm)                             \
1973 {                                                                   \
1974     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1975     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1);           \
1976 }
1977 
1978 static inline void
1979 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
1980              CPURISCVState *env,
1981              uint32_t vl, uint32_t vm, int vxrm,
1982              opivx2_rm_fn *fn)
1983 {
1984     for (uint32_t i = 0; i < vl; i++) {
1985         if (!vm && !vext_elem_mask(v0, i)) {
1986             continue;
1987         }
1988         fn(vd, s1, vs2, i, env, vxrm);
1989     }
1990 }
1991 
1992 static inline void
1993 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
1994              CPURISCVState *env,
1995              uint32_t desc, uint32_t esz, uint32_t dsz,
1996              opivx2_rm_fn *fn)
1997 {
1998     uint32_t vm = vext_vm(desc);
1999     uint32_t vl = env->vl;
2000 
2001     switch (env->vxrm) {
2002     case 0: /* rnu */
2003         vext_vx_rm_1(vd, v0, s1, vs2,
2004                      env, vl, vm, 0, fn);
2005         break;
2006     case 1: /* rne */
2007         vext_vx_rm_1(vd, v0, s1, vs2,
2008                      env, vl, vm, 1, fn);
2009         break;
2010     case 2: /* rdn */
2011         vext_vx_rm_1(vd, v0, s1, vs2,
2012                      env, vl, vm, 2, fn);
2013         break;
2014     default: /* rod */
2015         vext_vx_rm_1(vd, v0, s1, vs2,
2016                      env, vl, vm, 3, fn);
2017         break;
2018     }
2019 }
2020 
2021 /* generate helpers for fixed point instructions with OPIVX format */
2022 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ)                    \
2023 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
2024         void *vs2, CPURISCVState *env, uint32_t desc)     \
2025 {                                                         \
2026     vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ,    \
2027                  do_##NAME);                              \
2028 }
2029 
2030 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
2031 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
2032 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
2033 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
2034 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1)
2035 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2)
2036 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4)
2037 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8)
2038 
2039 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2040 {
2041     int8_t res = a + b;
2042     if ((res ^ a) & (res ^ b) & INT8_MIN) {
2043         res = a > 0 ? INT8_MAX : INT8_MIN;
2044         env->vxsat = 0x1;
2045     }
2046     return res;
2047 }
2048 
2049 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2050 {
2051     int16_t res = a + b;
2052     if ((res ^ a) & (res ^ b) & INT16_MIN) {
2053         res = a > 0 ? INT16_MAX : INT16_MIN;
2054         env->vxsat = 0x1;
2055     }
2056     return res;
2057 }
2058 
2059 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2060 {
2061     int32_t res = a + b;
2062     if ((res ^ a) & (res ^ b) & INT32_MIN) {
2063         res = a > 0 ? INT32_MAX : INT32_MIN;
2064         env->vxsat = 0x1;
2065     }
2066     return res;
2067 }
2068 
2069 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2070 {
2071     int64_t res = a + b;
2072     if ((res ^ a) & (res ^ b) & INT64_MIN) {
2073         res = a > 0 ? INT64_MAX : INT64_MIN;
2074         env->vxsat = 0x1;
2075     }
2076     return res;
2077 }
2078 
2079 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
2080 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
2081 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
2082 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
2083 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1)
2084 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2)
2085 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4)
2086 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8)
2087 
2088 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
2089 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
2090 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
2091 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
2092 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1)
2093 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2)
2094 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4)
2095 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8)
2096 
2097 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2098 {
2099     uint8_t res = a - b;
2100     if (res > a) {
2101         res = 0;
2102         env->vxsat = 0x1;
2103     }
2104     return res;
2105 }
2106 
2107 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
2108                                uint16_t b)
2109 {
2110     uint16_t res = a - b;
2111     if (res > a) {
2112         res = 0;
2113         env->vxsat = 0x1;
2114     }
2115     return res;
2116 }
2117 
2118 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
2119                                uint32_t b)
2120 {
2121     uint32_t res = a - b;
2122     if (res > a) {
2123         res = 0;
2124         env->vxsat = 0x1;
2125     }
2126     return res;
2127 }
2128 
2129 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
2130                                uint64_t b)
2131 {
2132     uint64_t res = a - b;
2133     if (res > a) {
2134         res = 0;
2135         env->vxsat = 0x1;
2136     }
2137     return res;
2138 }
2139 
2140 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
2141 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
2142 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
2143 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
2144 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1)
2145 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2)
2146 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4)
2147 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8)
2148 
2149 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
2150 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
2151 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
2152 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
2153 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1)
2154 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2)
2155 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4)
2156 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8)
2157 
2158 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2159 {
2160     int8_t res = a - b;
2161     if ((res ^ a) & (a ^ b) & INT8_MIN) {
2162         res = a >= 0 ? INT8_MAX : INT8_MIN;
2163         env->vxsat = 0x1;
2164     }
2165     return res;
2166 }
2167 
2168 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2169 {
2170     int16_t res = a - b;
2171     if ((res ^ a) & (a ^ b) & INT16_MIN) {
2172         res = a >= 0 ? INT16_MAX : INT16_MIN;
2173         env->vxsat = 0x1;
2174     }
2175     return res;
2176 }
2177 
2178 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2179 {
2180     int32_t res = a - b;
2181     if ((res ^ a) & (a ^ b) & INT32_MIN) {
2182         res = a >= 0 ? INT32_MAX : INT32_MIN;
2183         env->vxsat = 0x1;
2184     }
2185     return res;
2186 }
2187 
2188 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2189 {
2190     int64_t res = a - b;
2191     if ((res ^ a) & (a ^ b) & INT64_MIN) {
2192         res = a >= 0 ? INT64_MAX : INT64_MIN;
2193         env->vxsat = 0x1;
2194     }
2195     return res;
2196 }
2197 
2198 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
2199 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
2200 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
2201 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
2202 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1)
2203 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2)
2204 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4)
2205 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8)
2206 
2207 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
2208 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
2209 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
2210 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
2211 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1)
2212 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2)
2213 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4)
2214 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8)
2215 
2216 /* Vector Single-Width Averaging Add and Subtract */
2217 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
2218 {
2219     uint8_t d = extract64(v, shift, 1);
2220     uint8_t d1;
2221     uint64_t D1, D2;
2222 
2223     if (shift == 0 || shift > 64) {
2224         return 0;
2225     }
2226 
2227     d1 = extract64(v, shift - 1, 1);
2228     D1 = extract64(v, 0, shift);
2229     if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
2230         return d1;
2231     } else if (vxrm == 1) { /* round-to-nearest-even */
2232         if (shift > 1) {
2233             D2 = extract64(v, 0, shift - 1);
2234             return d1 & ((D2 != 0) | d);
2235         } else {
2236             return d1 & d;
2237         }
2238     } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2239         return !d & (D1 != 0);
2240     }
2241     return 0; /* round-down (truncate) */
2242 }
2243 
2244 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2245 {
2246     int64_t res = (int64_t)a + b;
2247     uint8_t round = get_round(vxrm, res, 1);
2248 
2249     return (res >> 1) + round;
2250 }
2251 
2252 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2253 {
2254     int64_t res = a + b;
2255     uint8_t round = get_round(vxrm, res, 1);
2256     int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
2257 
2258     /* With signed overflow, bit 64 is inverse of bit 63. */
2259     return ((res >> 1) ^ over) + round;
2260 }
2261 
2262 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
2263 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
2264 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
2265 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
2266 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1)
2267 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2)
2268 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4)
2269 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8)
2270 
2271 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
2272 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
2273 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
2274 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
2275 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1)
2276 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2)
2277 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4)
2278 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8)
2279 
2280 static inline uint32_t aaddu32(CPURISCVState *env, int vxrm,
2281                                uint32_t a, uint32_t b)
2282 {
2283     uint64_t res = (uint64_t)a + b;
2284     uint8_t round = get_round(vxrm, res, 1);
2285 
2286     return (res >> 1) + round;
2287 }
2288 
2289 static inline uint64_t aaddu64(CPURISCVState *env, int vxrm,
2290                                uint64_t a, uint64_t b)
2291 {
2292     uint64_t res = a + b;
2293     uint8_t round = get_round(vxrm, res, 1);
2294     uint64_t over = (uint64_t)(res < a) << 63;
2295 
2296     return ((res >> 1) | over) + round;
2297 }
2298 
2299 RVVCALL(OPIVV2_RM, vaaddu_vv_b, OP_UUU_B, H1, H1, H1, aaddu32)
2300 RVVCALL(OPIVV2_RM, vaaddu_vv_h, OP_UUU_H, H2, H2, H2, aaddu32)
2301 RVVCALL(OPIVV2_RM, vaaddu_vv_w, OP_UUU_W, H4, H4, H4, aaddu32)
2302 RVVCALL(OPIVV2_RM, vaaddu_vv_d, OP_UUU_D, H8, H8, H8, aaddu64)
2303 GEN_VEXT_VV_RM(vaaddu_vv_b, 1, 1)
2304 GEN_VEXT_VV_RM(vaaddu_vv_h, 2, 2)
2305 GEN_VEXT_VV_RM(vaaddu_vv_w, 4, 4)
2306 GEN_VEXT_VV_RM(vaaddu_vv_d, 8, 8)
2307 
2308 RVVCALL(OPIVX2_RM, vaaddu_vx_b, OP_UUU_B, H1, H1, aaddu32)
2309 RVVCALL(OPIVX2_RM, vaaddu_vx_h, OP_UUU_H, H2, H2, aaddu32)
2310 RVVCALL(OPIVX2_RM, vaaddu_vx_w, OP_UUU_W, H4, H4, aaddu32)
2311 RVVCALL(OPIVX2_RM, vaaddu_vx_d, OP_UUU_D, H8, H8, aaddu64)
2312 GEN_VEXT_VX_RM(vaaddu_vx_b, 1, 1)
2313 GEN_VEXT_VX_RM(vaaddu_vx_h, 2, 2)
2314 GEN_VEXT_VX_RM(vaaddu_vx_w, 4, 4)
2315 GEN_VEXT_VX_RM(vaaddu_vx_d, 8, 8)
2316 
2317 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2318 {
2319     int64_t res = (int64_t)a - b;
2320     uint8_t round = get_round(vxrm, res, 1);
2321 
2322     return (res >> 1) + round;
2323 }
2324 
2325 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2326 {
2327     int64_t res = (int64_t)a - b;
2328     uint8_t round = get_round(vxrm, res, 1);
2329     int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
2330 
2331     /* With signed overflow, bit 64 is inverse of bit 63. */
2332     return ((res >> 1) ^ over) + round;
2333 }
2334 
2335 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
2336 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
2337 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
2338 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
2339 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1)
2340 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2)
2341 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4)
2342 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8)
2343 
2344 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
2345 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
2346 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
2347 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
2348 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1)
2349 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2)
2350 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4)
2351 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8)
2352 
2353 static inline uint32_t asubu32(CPURISCVState *env, int vxrm,
2354                                uint32_t a, uint32_t b)
2355 {
2356     int64_t res = (int64_t)a - b;
2357     uint8_t round = get_round(vxrm, res, 1);
2358 
2359     return (res >> 1) + round;
2360 }
2361 
2362 static inline uint64_t asubu64(CPURISCVState *env, int vxrm,
2363                                uint64_t a, uint64_t b)
2364 {
2365     uint64_t res = (uint64_t)a - b;
2366     uint8_t round = get_round(vxrm, res, 1);
2367     uint64_t over = (uint64_t)(res > a) << 63;
2368 
2369     return ((res >> 1) | over) + round;
2370 }
2371 
2372 RVVCALL(OPIVV2_RM, vasubu_vv_b, OP_UUU_B, H1, H1, H1, asubu32)
2373 RVVCALL(OPIVV2_RM, vasubu_vv_h, OP_UUU_H, H2, H2, H2, asubu32)
2374 RVVCALL(OPIVV2_RM, vasubu_vv_w, OP_UUU_W, H4, H4, H4, asubu32)
2375 RVVCALL(OPIVV2_RM, vasubu_vv_d, OP_UUU_D, H8, H8, H8, asubu64)
2376 GEN_VEXT_VV_RM(vasubu_vv_b, 1, 1)
2377 GEN_VEXT_VV_RM(vasubu_vv_h, 2, 2)
2378 GEN_VEXT_VV_RM(vasubu_vv_w, 4, 4)
2379 GEN_VEXT_VV_RM(vasubu_vv_d, 8, 8)
2380 
2381 RVVCALL(OPIVX2_RM, vasubu_vx_b, OP_UUU_B, H1, H1, asubu32)
2382 RVVCALL(OPIVX2_RM, vasubu_vx_h, OP_UUU_H, H2, H2, asubu32)
2383 RVVCALL(OPIVX2_RM, vasubu_vx_w, OP_UUU_W, H4, H4, asubu32)
2384 RVVCALL(OPIVX2_RM, vasubu_vx_d, OP_UUU_D, H8, H8, asubu64)
2385 GEN_VEXT_VX_RM(vasubu_vx_b, 1, 1)
2386 GEN_VEXT_VX_RM(vasubu_vx_h, 2, 2)
2387 GEN_VEXT_VX_RM(vasubu_vx_w, 4, 4)
2388 GEN_VEXT_VX_RM(vasubu_vx_d, 8, 8)
2389 
2390 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2391 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2392 {
2393     uint8_t round;
2394     int16_t res;
2395 
2396     res = (int16_t)a * (int16_t)b;
2397     round = get_round(vxrm, res, 7);
2398     res   = (res >> 7) + round;
2399 
2400     if (res > INT8_MAX) {
2401         env->vxsat = 0x1;
2402         return INT8_MAX;
2403     } else if (res < INT8_MIN) {
2404         env->vxsat = 0x1;
2405         return INT8_MIN;
2406     } else {
2407         return res;
2408     }
2409 }
2410 
2411 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2412 {
2413     uint8_t round;
2414     int32_t res;
2415 
2416     res = (int32_t)a * (int32_t)b;
2417     round = get_round(vxrm, res, 15);
2418     res   = (res >> 15) + round;
2419 
2420     if (res > INT16_MAX) {
2421         env->vxsat = 0x1;
2422         return INT16_MAX;
2423     } else if (res < INT16_MIN) {
2424         env->vxsat = 0x1;
2425         return INT16_MIN;
2426     } else {
2427         return res;
2428     }
2429 }
2430 
2431 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2432 {
2433     uint8_t round;
2434     int64_t res;
2435 
2436     res = (int64_t)a * (int64_t)b;
2437     round = get_round(vxrm, res, 31);
2438     res   = (res >> 31) + round;
2439 
2440     if (res > INT32_MAX) {
2441         env->vxsat = 0x1;
2442         return INT32_MAX;
2443     } else if (res < INT32_MIN) {
2444         env->vxsat = 0x1;
2445         return INT32_MIN;
2446     } else {
2447         return res;
2448     }
2449 }
2450 
2451 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2452 {
2453     uint8_t round;
2454     uint64_t hi_64, lo_64;
2455     int64_t res;
2456 
2457     if (a == INT64_MIN && b == INT64_MIN) {
2458         env->vxsat = 1;
2459         return INT64_MAX;
2460     }
2461 
2462     muls64(&lo_64, &hi_64, a, b);
2463     round = get_round(vxrm, lo_64, 63);
2464     /*
2465      * Cannot overflow, as there are always
2466      * 2 sign bits after multiply.
2467      */
2468     res = (hi_64 << 1) | (lo_64 >> 63);
2469     if (round) {
2470         if (res == INT64_MAX) {
2471             env->vxsat = 1;
2472         } else {
2473             res += 1;
2474         }
2475     }
2476     return res;
2477 }
2478 
2479 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
2480 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
2481 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
2482 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
2483 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1)
2484 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2)
2485 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4)
2486 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8)
2487 
2488 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
2489 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
2490 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
2491 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
2492 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1)
2493 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2)
2494 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4)
2495 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8)
2496 
2497 /* Vector Single-Width Scaling Shift Instructions */
2498 static inline uint8_t
2499 vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2500 {
2501     uint8_t round, shift = b & 0x7;
2502     uint8_t res;
2503 
2504     round = get_round(vxrm, a, shift);
2505     res   = (a >> shift)  + round;
2506     return res;
2507 }
2508 static inline uint16_t
2509 vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
2510 {
2511     uint8_t round, shift = b & 0xf;
2512     uint16_t res;
2513 
2514     round = get_round(vxrm, a, shift);
2515     res   = (a >> shift)  + round;
2516     return res;
2517 }
2518 static inline uint32_t
2519 vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
2520 {
2521     uint8_t round, shift = b & 0x1f;
2522     uint32_t res;
2523 
2524     round = get_round(vxrm, a, shift);
2525     res   = (a >> shift)  + round;
2526     return res;
2527 }
2528 static inline uint64_t
2529 vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
2530 {
2531     uint8_t round, shift = b & 0x3f;
2532     uint64_t res;
2533 
2534     round = get_round(vxrm, a, shift);
2535     res   = (a >> shift)  + round;
2536     return res;
2537 }
2538 RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
2539 RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
2540 RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
2541 RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
2542 GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1)
2543 GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2)
2544 GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4)
2545 GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8)
2546 
2547 RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
2548 RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
2549 RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
2550 RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
2551 GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1)
2552 GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2)
2553 GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4)
2554 GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8)
2555 
2556 static inline int8_t
2557 vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2558 {
2559     uint8_t round, shift = b & 0x7;
2560     int8_t res;
2561 
2562     round = get_round(vxrm, a, shift);
2563     res   = (a >> shift)  + round;
2564     return res;
2565 }
2566 static inline int16_t
2567 vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2568 {
2569     uint8_t round, shift = b & 0xf;
2570     int16_t res;
2571 
2572     round = get_round(vxrm, a, shift);
2573     res   = (a >> shift)  + round;
2574     return res;
2575 }
2576 static inline int32_t
2577 vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2578 {
2579     uint8_t round, shift = b & 0x1f;
2580     int32_t res;
2581 
2582     round = get_round(vxrm, a, shift);
2583     res   = (a >> shift)  + round;
2584     return res;
2585 }
2586 static inline int64_t
2587 vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2588 {
2589     uint8_t round, shift = b & 0x3f;
2590     int64_t res;
2591 
2592     round = get_round(vxrm, a, shift);
2593     res   = (a >> shift)  + round;
2594     return res;
2595 }
2596 
2597 RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
2598 RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
2599 RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
2600 RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
2601 GEN_VEXT_VV_RM(vssra_vv_b, 1, 1)
2602 GEN_VEXT_VV_RM(vssra_vv_h, 2, 2)
2603 GEN_VEXT_VV_RM(vssra_vv_w, 4, 4)
2604 GEN_VEXT_VV_RM(vssra_vv_d, 8, 8)
2605 
2606 RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
2607 RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
2608 RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
2609 RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
2610 GEN_VEXT_VX_RM(vssra_vx_b, 1, 1)
2611 GEN_VEXT_VX_RM(vssra_vx_h, 2, 2)
2612 GEN_VEXT_VX_RM(vssra_vx_w, 4, 4)
2613 GEN_VEXT_VX_RM(vssra_vx_d, 8, 8)
2614 
2615 /* Vector Narrowing Fixed-Point Clip Instructions */
2616 static inline int8_t
2617 vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
2618 {
2619     uint8_t round, shift = b & 0xf;
2620     int16_t res;
2621 
2622     round = get_round(vxrm, a, shift);
2623     res   = (a >> shift)  + round;
2624     if (res > INT8_MAX) {
2625         env->vxsat = 0x1;
2626         return INT8_MAX;
2627     } else if (res < INT8_MIN) {
2628         env->vxsat = 0x1;
2629         return INT8_MIN;
2630     } else {
2631         return res;
2632     }
2633 }
2634 
2635 static inline int16_t
2636 vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
2637 {
2638     uint8_t round, shift = b & 0x1f;
2639     int32_t res;
2640 
2641     round = get_round(vxrm, a, shift);
2642     res   = (a >> shift)  + round;
2643     if (res > INT16_MAX) {
2644         env->vxsat = 0x1;
2645         return INT16_MAX;
2646     } else if (res < INT16_MIN) {
2647         env->vxsat = 0x1;
2648         return INT16_MIN;
2649     } else {
2650         return res;
2651     }
2652 }
2653 
2654 static inline int32_t
2655 vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
2656 {
2657     uint8_t round, shift = b & 0x3f;
2658     int64_t res;
2659 
2660     round = get_round(vxrm, a, shift);
2661     res   = (a >> shift)  + round;
2662     if (res > INT32_MAX) {
2663         env->vxsat = 0x1;
2664         return INT32_MAX;
2665     } else if (res < INT32_MIN) {
2666         env->vxsat = 0x1;
2667         return INT32_MIN;
2668     } else {
2669         return res;
2670     }
2671 }
2672 
2673 RVVCALL(OPIVV2_RM, vnclip_wv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
2674 RVVCALL(OPIVV2_RM, vnclip_wv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
2675 RVVCALL(OPIVV2_RM, vnclip_wv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
2676 GEN_VEXT_VV_RM(vnclip_wv_b, 1, 1)
2677 GEN_VEXT_VV_RM(vnclip_wv_h, 2, 2)
2678 GEN_VEXT_VV_RM(vnclip_wv_w, 4, 4)
2679 
2680 RVVCALL(OPIVX2_RM, vnclip_wx_b, NOP_SSS_B, H1, H2, vnclip8)
2681 RVVCALL(OPIVX2_RM, vnclip_wx_h, NOP_SSS_H, H2, H4, vnclip16)
2682 RVVCALL(OPIVX2_RM, vnclip_wx_w, NOP_SSS_W, H4, H8, vnclip32)
2683 GEN_VEXT_VX_RM(vnclip_wx_b, 1, 1)
2684 GEN_VEXT_VX_RM(vnclip_wx_h, 2, 2)
2685 GEN_VEXT_VX_RM(vnclip_wx_w, 4, 4)
2686 
2687 static inline uint8_t
2688 vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
2689 {
2690     uint8_t round, shift = b & 0xf;
2691     uint16_t res;
2692 
2693     round = get_round(vxrm, a, shift);
2694     res   = (a >> shift)  + round;
2695     if (res > UINT8_MAX) {
2696         env->vxsat = 0x1;
2697         return UINT8_MAX;
2698     } else {
2699         return res;
2700     }
2701 }
2702 
2703 static inline uint16_t
2704 vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
2705 {
2706     uint8_t round, shift = b & 0x1f;
2707     uint32_t res;
2708 
2709     round = get_round(vxrm, a, shift);
2710     res   = (a >> shift)  + round;
2711     if (res > UINT16_MAX) {
2712         env->vxsat = 0x1;
2713         return UINT16_MAX;
2714     } else {
2715         return res;
2716     }
2717 }
2718 
2719 static inline uint32_t
2720 vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
2721 {
2722     uint8_t round, shift = b & 0x3f;
2723     uint64_t res;
2724 
2725     round = get_round(vxrm, a, shift);
2726     res   = (a >> shift)  + round;
2727     if (res > UINT32_MAX) {
2728         env->vxsat = 0x1;
2729         return UINT32_MAX;
2730     } else {
2731         return res;
2732     }
2733 }
2734 
2735 RVVCALL(OPIVV2_RM, vnclipu_wv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
2736 RVVCALL(OPIVV2_RM, vnclipu_wv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
2737 RVVCALL(OPIVV2_RM, vnclipu_wv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
2738 GEN_VEXT_VV_RM(vnclipu_wv_b, 1, 1)
2739 GEN_VEXT_VV_RM(vnclipu_wv_h, 2, 2)
2740 GEN_VEXT_VV_RM(vnclipu_wv_w, 4, 4)
2741 
2742 RVVCALL(OPIVX2_RM, vnclipu_wx_b, NOP_UUU_B, H1, H2, vnclipu8)
2743 RVVCALL(OPIVX2_RM, vnclipu_wx_h, NOP_UUU_H, H2, H4, vnclipu16)
2744 RVVCALL(OPIVX2_RM, vnclipu_wx_w, NOP_UUU_W, H4, H8, vnclipu32)
2745 GEN_VEXT_VX_RM(vnclipu_wx_b, 1, 1)
2746 GEN_VEXT_VX_RM(vnclipu_wx_h, 2, 2)
2747 GEN_VEXT_VX_RM(vnclipu_wx_w, 4, 4)
2748 
2749 /*
2750  *** Vector Float Point Arithmetic Instructions
2751  */
2752 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
2753 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)   \
2754 static void do_##NAME(void *vd, void *vs1, void *vs2, int i,   \
2755                       CPURISCVState *env)                      \
2756 {                                                              \
2757     TX1 s1 = *((T1 *)vs1 + HS1(i));                            \
2758     TX2 s2 = *((T2 *)vs2 + HS2(i));                            \
2759     *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status);         \
2760 }
2761 
2762 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ)                   \
2763 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
2764                   void *vs2, CPURISCVState *env,          \
2765                   uint32_t desc)                          \
2766 {                                                         \
2767     uint32_t vm = vext_vm(desc);                          \
2768     uint32_t vl = env->vl;                                \
2769     uint32_t i;                                           \
2770                                                           \
2771     for (i = 0; i < vl; i++) {                            \
2772         if (!vm && !vext_elem_mask(v0, i)) {              \
2773             continue;                                     \
2774         }                                                 \
2775         do_##NAME(vd, vs1, vs2, i, env);                  \
2776     }                                                     \
2777 }
2778 
2779 RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
2780 RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
2781 RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
2782 GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2)
2783 GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4)
2784 GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8)
2785 
2786 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)        \
2787 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
2788                       CPURISCVState *env)                      \
2789 {                                                              \
2790     TX2 s2 = *((T2 *)vs2 + HS2(i));                            \
2791     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
2792 }
2793 
2794 #define GEN_VEXT_VF(NAME, ESZ, DSZ)                       \
2795 void HELPER(NAME)(void *vd, void *v0, uint64_t s1,        \
2796                   void *vs2, CPURISCVState *env,          \
2797                   uint32_t desc)                          \
2798 {                                                         \
2799     uint32_t vm = vext_vm(desc);                          \
2800     uint32_t vl = env->vl;                                \
2801     uint32_t i;                                           \
2802                                                           \
2803     for (i = 0; i < vl; i++) {                            \
2804         if (!vm && !vext_elem_mask(v0, i)) {              \
2805             continue;                                     \
2806         }                                                 \
2807         do_##NAME(vd, s1, vs2, i, env);                   \
2808     }                                                     \
2809 }
2810 
2811 RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
2812 RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
2813 RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
2814 GEN_VEXT_VF(vfadd_vf_h, 2, 2)
2815 GEN_VEXT_VF(vfadd_vf_w, 4, 4)
2816 GEN_VEXT_VF(vfadd_vf_d, 8, 8)
2817 
2818 RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
2819 RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
2820 RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
2821 GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2)
2822 GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4)
2823 GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8)
2824 RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
2825 RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
2826 RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
2827 GEN_VEXT_VF(vfsub_vf_h, 2, 2)
2828 GEN_VEXT_VF(vfsub_vf_w, 4, 4)
2829 GEN_VEXT_VF(vfsub_vf_d, 8, 8)
2830 
2831 static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
2832 {
2833     return float16_sub(b, a, s);
2834 }
2835 
2836 static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
2837 {
2838     return float32_sub(b, a, s);
2839 }
2840 
2841 static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
2842 {
2843     return float64_sub(b, a, s);
2844 }
2845 
2846 RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
2847 RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
2848 RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
2849 GEN_VEXT_VF(vfrsub_vf_h, 2, 2)
2850 GEN_VEXT_VF(vfrsub_vf_w, 4, 4)
2851 GEN_VEXT_VF(vfrsub_vf_d, 8, 8)
2852 
2853 /* Vector Widening Floating-Point Add/Subtract Instructions */
2854 static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
2855 {
2856     return float32_add(float16_to_float32(a, true, s),
2857             float16_to_float32(b, true, s), s);
2858 }
2859 
2860 static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
2861 {
2862     return float64_add(float32_to_float64(a, s),
2863             float32_to_float64(b, s), s);
2864 
2865 }
2866 
2867 RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
2868 RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
2869 GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4)
2870 GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8)
2871 RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
2872 RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
2873 GEN_VEXT_VF(vfwadd_vf_h, 2, 4)
2874 GEN_VEXT_VF(vfwadd_vf_w, 4, 8)
2875 
2876 static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
2877 {
2878     return float32_sub(float16_to_float32(a, true, s),
2879             float16_to_float32(b, true, s), s);
2880 }
2881 
2882 static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
2883 {
2884     return float64_sub(float32_to_float64(a, s),
2885             float32_to_float64(b, s), s);
2886 
2887 }
2888 
2889 RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
2890 RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
2891 GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4)
2892 GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8)
2893 RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
2894 RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
2895 GEN_VEXT_VF(vfwsub_vf_h, 2, 4)
2896 GEN_VEXT_VF(vfwsub_vf_w, 4, 8)
2897 
2898 static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
2899 {
2900     return float32_add(a, float16_to_float32(b, true, s), s);
2901 }
2902 
2903 static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
2904 {
2905     return float64_add(a, float32_to_float64(b, s), s);
2906 }
2907 
2908 RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
2909 RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
2910 GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4)
2911 GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8)
2912 RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
2913 RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
2914 GEN_VEXT_VF(vfwadd_wf_h, 2, 4)
2915 GEN_VEXT_VF(vfwadd_wf_w, 4, 8)
2916 
2917 static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
2918 {
2919     return float32_sub(a, float16_to_float32(b, true, s), s);
2920 }
2921 
2922 static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
2923 {
2924     return float64_sub(a, float32_to_float64(b, s), s);
2925 }
2926 
2927 RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
2928 RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
2929 GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4)
2930 GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8)
2931 RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
2932 RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
2933 GEN_VEXT_VF(vfwsub_wf_h, 2, 4)
2934 GEN_VEXT_VF(vfwsub_wf_w, 4, 8)
2935 
2936 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
2937 RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
2938 RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
2939 RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
2940 GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2)
2941 GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4)
2942 GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8)
2943 RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
2944 RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
2945 RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
2946 GEN_VEXT_VF(vfmul_vf_h, 2, 2)
2947 GEN_VEXT_VF(vfmul_vf_w, 4, 4)
2948 GEN_VEXT_VF(vfmul_vf_d, 8, 8)
2949 
2950 RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
2951 RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
2952 RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
2953 GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2)
2954 GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4)
2955 GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8)
2956 RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
2957 RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
2958 RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
2959 GEN_VEXT_VF(vfdiv_vf_h, 2, 2)
2960 GEN_VEXT_VF(vfdiv_vf_w, 4, 4)
2961 GEN_VEXT_VF(vfdiv_vf_d, 8, 8)
2962 
2963 static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
2964 {
2965     return float16_div(b, a, s);
2966 }
2967 
2968 static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
2969 {
2970     return float32_div(b, a, s);
2971 }
2972 
2973 static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
2974 {
2975     return float64_div(b, a, s);
2976 }
2977 
2978 RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
2979 RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
2980 RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
2981 GEN_VEXT_VF(vfrdiv_vf_h, 2, 2)
2982 GEN_VEXT_VF(vfrdiv_vf_w, 4, 4)
2983 GEN_VEXT_VF(vfrdiv_vf_d, 8, 8)
2984 
2985 /* Vector Widening Floating-Point Multiply */
2986 static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
2987 {
2988     return float32_mul(float16_to_float32(a, true, s),
2989             float16_to_float32(b, true, s), s);
2990 }
2991 
2992 static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
2993 {
2994     return float64_mul(float32_to_float64(a, s),
2995             float32_to_float64(b, s), s);
2996 
2997 }
2998 RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
2999 RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
3000 GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4)
3001 GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8)
3002 RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
3003 RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
3004 GEN_VEXT_VF(vfwmul_vf_h, 2, 4)
3005 GEN_VEXT_VF(vfwmul_vf_w, 4, 8)
3006 
3007 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3008 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)       \
3009 static void do_##NAME(void *vd, void *vs1, void *vs2, int i,       \
3010         CPURISCVState *env)                                        \
3011 {                                                                  \
3012     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
3013     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
3014     TD d = *((TD *)vd + HD(i));                                    \
3015     *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status);          \
3016 }
3017 
3018 static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3019 {
3020     return float16_muladd(a, b, d, 0, s);
3021 }
3022 
3023 static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3024 {
3025     return float32_muladd(a, b, d, 0, s);
3026 }
3027 
3028 static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3029 {
3030     return float64_muladd(a, b, d, 0, s);
3031 }
3032 
3033 RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
3034 RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
3035 RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
3036 GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2)
3037 GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4)
3038 GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8)
3039 
3040 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)           \
3041 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i,    \
3042         CPURISCVState *env)                                       \
3043 {                                                                 \
3044     TX2 s2 = *((T2 *)vs2 + HS2(i));                               \
3045     TD d = *((TD *)vd + HD(i));                                   \
3046     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3047 }
3048 
3049 RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
3050 RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
3051 RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
3052 GEN_VEXT_VF(vfmacc_vf_h, 2, 2)
3053 GEN_VEXT_VF(vfmacc_vf_w, 4, 4)
3054 GEN_VEXT_VF(vfmacc_vf_d, 8, 8)
3055 
3056 static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3057 {
3058     return float16_muladd(a, b, d,
3059             float_muladd_negate_c | float_muladd_negate_product, s);
3060 }
3061 
3062 static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3063 {
3064     return float32_muladd(a, b, d,
3065             float_muladd_negate_c | float_muladd_negate_product, s);
3066 }
3067 
3068 static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3069 {
3070     return float64_muladd(a, b, d,
3071             float_muladd_negate_c | float_muladd_negate_product, s);
3072 }
3073 
3074 RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
3075 RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
3076 RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
3077 GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2)
3078 GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4)
3079 GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8)
3080 RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
3081 RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
3082 RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
3083 GEN_VEXT_VF(vfnmacc_vf_h, 2, 2)
3084 GEN_VEXT_VF(vfnmacc_vf_w, 4, 4)
3085 GEN_VEXT_VF(vfnmacc_vf_d, 8, 8)
3086 
3087 static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3088 {
3089     return float16_muladd(a, b, d, float_muladd_negate_c, s);
3090 }
3091 
3092 static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3093 {
3094     return float32_muladd(a, b, d, float_muladd_negate_c, s);
3095 }
3096 
3097 static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3098 {
3099     return float64_muladd(a, b, d, float_muladd_negate_c, s);
3100 }
3101 
3102 RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
3103 RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
3104 RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
3105 GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2)
3106 GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4)
3107 GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8)
3108 RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
3109 RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
3110 RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
3111 GEN_VEXT_VF(vfmsac_vf_h, 2, 2)
3112 GEN_VEXT_VF(vfmsac_vf_w, 4, 4)
3113 GEN_VEXT_VF(vfmsac_vf_d, 8, 8)
3114 
3115 static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3116 {
3117     return float16_muladd(a, b, d, float_muladd_negate_product, s);
3118 }
3119 
3120 static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3121 {
3122     return float32_muladd(a, b, d, float_muladd_negate_product, s);
3123 }
3124 
3125 static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3126 {
3127     return float64_muladd(a, b, d, float_muladd_negate_product, s);
3128 }
3129 
3130 RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
3131 RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
3132 RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
3133 GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2)
3134 GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4)
3135 GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8)
3136 RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
3137 RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
3138 RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
3139 GEN_VEXT_VF(vfnmsac_vf_h, 2, 2)
3140 GEN_VEXT_VF(vfnmsac_vf_w, 4, 4)
3141 GEN_VEXT_VF(vfnmsac_vf_d, 8, 8)
3142 
3143 static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3144 {
3145     return float16_muladd(d, b, a, 0, s);
3146 }
3147 
3148 static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3149 {
3150     return float32_muladd(d, b, a, 0, s);
3151 }
3152 
3153 static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3154 {
3155     return float64_muladd(d, b, a, 0, s);
3156 }
3157 
3158 RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
3159 RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
3160 RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
3161 GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2)
3162 GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4)
3163 GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8)
3164 RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
3165 RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
3166 RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
3167 GEN_VEXT_VF(vfmadd_vf_h, 2, 2)
3168 GEN_VEXT_VF(vfmadd_vf_w, 4, 4)
3169 GEN_VEXT_VF(vfmadd_vf_d, 8, 8)
3170 
3171 static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3172 {
3173     return float16_muladd(d, b, a,
3174             float_muladd_negate_c | float_muladd_negate_product, s);
3175 }
3176 
3177 static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3178 {
3179     return float32_muladd(d, b, a,
3180             float_muladd_negate_c | float_muladd_negate_product, s);
3181 }
3182 
3183 static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3184 {
3185     return float64_muladd(d, b, a,
3186             float_muladd_negate_c | float_muladd_negate_product, s);
3187 }
3188 
3189 RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
3190 RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
3191 RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
3192 GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2)
3193 GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4)
3194 GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8)
3195 RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
3196 RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
3197 RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
3198 GEN_VEXT_VF(vfnmadd_vf_h, 2, 2)
3199 GEN_VEXT_VF(vfnmadd_vf_w, 4, 4)
3200 GEN_VEXT_VF(vfnmadd_vf_d, 8, 8)
3201 
3202 static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3203 {
3204     return float16_muladd(d, b, a, float_muladd_negate_c, s);
3205 }
3206 
3207 static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3208 {
3209     return float32_muladd(d, b, a, float_muladd_negate_c, s);
3210 }
3211 
3212 static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3213 {
3214     return float64_muladd(d, b, a, float_muladd_negate_c, s);
3215 }
3216 
3217 RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
3218 RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
3219 RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
3220 GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2)
3221 GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4)
3222 GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8)
3223 RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
3224 RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
3225 RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
3226 GEN_VEXT_VF(vfmsub_vf_h, 2, 2)
3227 GEN_VEXT_VF(vfmsub_vf_w, 4, 4)
3228 GEN_VEXT_VF(vfmsub_vf_d, 8, 8)
3229 
3230 static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3231 {
3232     return float16_muladd(d, b, a, float_muladd_negate_product, s);
3233 }
3234 
3235 static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3236 {
3237     return float32_muladd(d, b, a, float_muladd_negate_product, s);
3238 }
3239 
3240 static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3241 {
3242     return float64_muladd(d, b, a, float_muladd_negate_product, s);
3243 }
3244 
3245 RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
3246 RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
3247 RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
3248 GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2)
3249 GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4)
3250 GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8)
3251 RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
3252 RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
3253 RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
3254 GEN_VEXT_VF(vfnmsub_vf_h, 2, 2)
3255 GEN_VEXT_VF(vfnmsub_vf_w, 4, 4)
3256 GEN_VEXT_VF(vfnmsub_vf_d, 8, 8)
3257 
3258 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3259 static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3260 {
3261     return float32_muladd(float16_to_float32(a, true, s),
3262                         float16_to_float32(b, true, s), d, 0, s);
3263 }
3264 
3265 static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3266 {
3267     return float64_muladd(float32_to_float64(a, s),
3268                         float32_to_float64(b, s), d, 0, s);
3269 }
3270 
3271 RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
3272 RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
3273 GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4)
3274 GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8)
3275 RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
3276 RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
3277 GEN_VEXT_VF(vfwmacc_vf_h, 2, 4)
3278 GEN_VEXT_VF(vfwmacc_vf_w, 4, 8)
3279 
3280 static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3281 {
3282     return float32_muladd(float16_to_float32(a, true, s),
3283                         float16_to_float32(b, true, s), d,
3284                         float_muladd_negate_c | float_muladd_negate_product, s);
3285 }
3286 
3287 static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3288 {
3289     return float64_muladd(float32_to_float64(a, s),
3290                         float32_to_float64(b, s), d,
3291                         float_muladd_negate_c | float_muladd_negate_product, s);
3292 }
3293 
3294 RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
3295 RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
3296 GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4)
3297 GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8)
3298 RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
3299 RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
3300 GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4)
3301 GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8)
3302 
3303 static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3304 {
3305     return float32_muladd(float16_to_float32(a, true, s),
3306                         float16_to_float32(b, true, s), d,
3307                         float_muladd_negate_c, s);
3308 }
3309 
3310 static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3311 {
3312     return float64_muladd(float32_to_float64(a, s),
3313                         float32_to_float64(b, s), d,
3314                         float_muladd_negate_c, s);
3315 }
3316 
3317 RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
3318 RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
3319 GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4)
3320 GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8)
3321 RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
3322 RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
3323 GEN_VEXT_VF(vfwmsac_vf_h, 2, 4)
3324 GEN_VEXT_VF(vfwmsac_vf_w, 4, 8)
3325 
3326 static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3327 {
3328     return float32_muladd(float16_to_float32(a, true, s),
3329                         float16_to_float32(b, true, s), d,
3330                         float_muladd_negate_product, s);
3331 }
3332 
3333 static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3334 {
3335     return float64_muladd(float32_to_float64(a, s),
3336                         float32_to_float64(b, s), d,
3337                         float_muladd_negate_product, s);
3338 }
3339 
3340 RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
3341 RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
3342 GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4)
3343 GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8)
3344 RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
3345 RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
3346 GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4)
3347 GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8)
3348 
3349 /* Vector Floating-Point Square-Root Instruction */
3350 /* (TD, T2, TX2) */
3351 #define OP_UU_H uint16_t, uint16_t, uint16_t
3352 #define OP_UU_W uint32_t, uint32_t, uint32_t
3353 #define OP_UU_D uint64_t, uint64_t, uint64_t
3354 
3355 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP)        \
3356 static void do_##NAME(void *vd, void *vs2, int i,      \
3357         CPURISCVState *env)                            \
3358 {                                                      \
3359     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
3360     *((TD *)vd + HD(i)) = OP(s2, &env->fp_status);     \
3361 }
3362 
3363 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ)                 \
3364 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
3365         CPURISCVState *env, uint32_t desc)             \
3366 {                                                      \
3367     uint32_t vm = vext_vm(desc);                       \
3368     uint32_t vl = env->vl;                             \
3369     uint32_t i;                                        \
3370                                                        \
3371     if (vl == 0) {                                     \
3372         return;                                        \
3373     }                                                  \
3374     for (i = 0; i < vl; i++) {                         \
3375         if (!vm && !vext_elem_mask(v0, i)) {           \
3376             continue;                                  \
3377         }                                              \
3378         do_##NAME(vd, vs2, i, env);                    \
3379     }                                                  \
3380 }
3381 
3382 RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
3383 RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
3384 RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
3385 GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2)
3386 GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4)
3387 GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8)
3388 
3389 /* Vector Floating-Point MIN/MAX Instructions */
3390 RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minimum_number)
3391 RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minimum_number)
3392 RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minimum_number)
3393 GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2)
3394 GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4)
3395 GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8)
3396 RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minimum_number)
3397 RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minimum_number)
3398 RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minimum_number)
3399 GEN_VEXT_VF(vfmin_vf_h, 2, 2)
3400 GEN_VEXT_VF(vfmin_vf_w, 4, 4)
3401 GEN_VEXT_VF(vfmin_vf_d, 8, 8)
3402 
3403 RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maximum_number)
3404 RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maximum_number)
3405 RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maximum_number)
3406 GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2)
3407 GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4)
3408 GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8)
3409 RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maximum_number)
3410 RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maximum_number)
3411 RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maximum_number)
3412 GEN_VEXT_VF(vfmax_vf_h, 2, 2)
3413 GEN_VEXT_VF(vfmax_vf_w, 4, 4)
3414 GEN_VEXT_VF(vfmax_vf_d, 8, 8)
3415 
3416 /* Vector Floating-Point Sign-Injection Instructions */
3417 static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
3418 {
3419     return deposit64(b, 0, 15, a);
3420 }
3421 
3422 static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
3423 {
3424     return deposit64(b, 0, 31, a);
3425 }
3426 
3427 static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
3428 {
3429     return deposit64(b, 0, 63, a);
3430 }
3431 
3432 RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
3433 RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
3434 RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
3435 GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2)
3436 GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4)
3437 GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8)
3438 RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
3439 RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
3440 RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
3441 GEN_VEXT_VF(vfsgnj_vf_h, 2, 2)
3442 GEN_VEXT_VF(vfsgnj_vf_w, 4, 4)
3443 GEN_VEXT_VF(vfsgnj_vf_d, 8, 8)
3444 
3445 static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
3446 {
3447     return deposit64(~b, 0, 15, a);
3448 }
3449 
3450 static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
3451 {
3452     return deposit64(~b, 0, 31, a);
3453 }
3454 
3455 static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
3456 {
3457     return deposit64(~b, 0, 63, a);
3458 }
3459 
3460 RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
3461 RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
3462 RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
3463 GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2)
3464 GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4)
3465 GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8)
3466 RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
3467 RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
3468 RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
3469 GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2)
3470 GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4)
3471 GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8)
3472 
3473 static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
3474 {
3475     return deposit64(b ^ a, 0, 15, a);
3476 }
3477 
3478 static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
3479 {
3480     return deposit64(b ^ a, 0, 31, a);
3481 }
3482 
3483 static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
3484 {
3485     return deposit64(b ^ a, 0, 63, a);
3486 }
3487 
3488 RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
3489 RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
3490 RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
3491 GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2)
3492 GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4)
3493 GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8)
3494 RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
3495 RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
3496 RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
3497 GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2)
3498 GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4)
3499 GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8)
3500 
3501 /* Vector Floating-Point Compare Instructions */
3502 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP)            \
3503 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
3504                   CPURISCVState *env, uint32_t desc)          \
3505 {                                                             \
3506     uint32_t vm = vext_vm(desc);                              \
3507     uint32_t vl = env->vl;                                    \
3508     uint32_t i;                                               \
3509                                                               \
3510     for (i = 0; i < vl; i++) {                                \
3511         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
3512         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
3513         if (!vm && !vext_elem_mask(v0, i)) {                  \
3514             continue;                                         \
3515         }                                                     \
3516         vext_set_elem_mask(vd, i,                             \
3517                            DO_OP(s2, s1, &env->fp_status));   \
3518     }                                                         \
3519 }
3520 
3521 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
3522 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
3523 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
3524 
3525 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP)                      \
3526 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2,       \
3527                   CPURISCVState *env, uint32_t desc)                \
3528 {                                                                   \
3529     uint32_t vm = vext_vm(desc);                                    \
3530     uint32_t vl = env->vl;                                          \
3531     uint32_t i;                                                     \
3532                                                                     \
3533     for (i = 0; i < vl; i++) {                                      \
3534         ETYPE s2 = *((ETYPE *)vs2 + H(i));                          \
3535         if (!vm && !vext_elem_mask(v0, i)) {                        \
3536             continue;                                               \
3537         }                                                           \
3538         vext_set_elem_mask(vd, i,                                   \
3539                            DO_OP(s2, (ETYPE)s1, &env->fp_status));  \
3540     }                                                               \
3541 }
3542 
3543 GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
3544 GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
3545 GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
3546 
3547 static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
3548 {
3549     FloatRelation compare = float16_compare_quiet(a, b, s);
3550     return compare != float_relation_equal;
3551 }
3552 
3553 static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
3554 {
3555     FloatRelation compare = float32_compare_quiet(a, b, s);
3556     return compare != float_relation_equal;
3557 }
3558 
3559 static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
3560 {
3561     FloatRelation compare = float64_compare_quiet(a, b, s);
3562     return compare != float_relation_equal;
3563 }
3564 
3565 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
3566 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
3567 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
3568 GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
3569 GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
3570 GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
3571 
3572 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
3573 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
3574 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
3575 GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
3576 GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
3577 GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
3578 
3579 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
3580 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
3581 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
3582 GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
3583 GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
3584 GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
3585 
3586 static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
3587 {
3588     FloatRelation compare = float16_compare(a, b, s);
3589     return compare == float_relation_greater;
3590 }
3591 
3592 static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
3593 {
3594     FloatRelation compare = float32_compare(a, b, s);
3595     return compare == float_relation_greater;
3596 }
3597 
3598 static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
3599 {
3600     FloatRelation compare = float64_compare(a, b, s);
3601     return compare == float_relation_greater;
3602 }
3603 
3604 GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
3605 GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
3606 GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
3607 
3608 static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
3609 {
3610     FloatRelation compare = float16_compare(a, b, s);
3611     return compare == float_relation_greater ||
3612            compare == float_relation_equal;
3613 }
3614 
3615 static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
3616 {
3617     FloatRelation compare = float32_compare(a, b, s);
3618     return compare == float_relation_greater ||
3619            compare == float_relation_equal;
3620 }
3621 
3622 static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
3623 {
3624     FloatRelation compare = float64_compare(a, b, s);
3625     return compare == float_relation_greater ||
3626            compare == float_relation_equal;
3627 }
3628 
3629 GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
3630 GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
3631 GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
3632 
3633 /* Vector Floating-Point Classify Instruction */
3634 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP)         \
3635 static void do_##NAME(void *vd, void *vs2, int i)      \
3636 {                                                      \
3637     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
3638     *((TD *)vd + HD(i)) = OP(s2);                      \
3639 }
3640 
3641 #define GEN_VEXT_V(NAME, ESZ, DSZ)                     \
3642 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
3643                   CPURISCVState *env, uint32_t desc)   \
3644 {                                                      \
3645     uint32_t vm = vext_vm(desc);                       \
3646     uint32_t vl = env->vl;                             \
3647     uint32_t i;                                        \
3648                                                        \
3649     for (i = 0; i < vl; i++) {                         \
3650         if (!vm && !vext_elem_mask(v0, i)) {           \
3651             continue;                                  \
3652         }                                              \
3653         do_##NAME(vd, vs2, i);                         \
3654     }                                                  \
3655 }
3656 
3657 target_ulong fclass_h(uint64_t frs1)
3658 {
3659     float16 f = frs1;
3660     bool sign = float16_is_neg(f);
3661 
3662     if (float16_is_infinity(f)) {
3663         return sign ? 1 << 0 : 1 << 7;
3664     } else if (float16_is_zero(f)) {
3665         return sign ? 1 << 3 : 1 << 4;
3666     } else if (float16_is_zero_or_denormal(f)) {
3667         return sign ? 1 << 2 : 1 << 5;
3668     } else if (float16_is_any_nan(f)) {
3669         float_status s = { }; /* for snan_bit_is_one */
3670         return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3671     } else {
3672         return sign ? 1 << 1 : 1 << 6;
3673     }
3674 }
3675 
3676 target_ulong fclass_s(uint64_t frs1)
3677 {
3678     float32 f = frs1;
3679     bool sign = float32_is_neg(f);
3680 
3681     if (float32_is_infinity(f)) {
3682         return sign ? 1 << 0 : 1 << 7;
3683     } else if (float32_is_zero(f)) {
3684         return sign ? 1 << 3 : 1 << 4;
3685     } else if (float32_is_zero_or_denormal(f)) {
3686         return sign ? 1 << 2 : 1 << 5;
3687     } else if (float32_is_any_nan(f)) {
3688         float_status s = { }; /* for snan_bit_is_one */
3689         return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3690     } else {
3691         return sign ? 1 << 1 : 1 << 6;
3692     }
3693 }
3694 
3695 target_ulong fclass_d(uint64_t frs1)
3696 {
3697     float64 f = frs1;
3698     bool sign = float64_is_neg(f);
3699 
3700     if (float64_is_infinity(f)) {
3701         return sign ? 1 << 0 : 1 << 7;
3702     } else if (float64_is_zero(f)) {
3703         return sign ? 1 << 3 : 1 << 4;
3704     } else if (float64_is_zero_or_denormal(f)) {
3705         return sign ? 1 << 2 : 1 << 5;
3706     } else if (float64_is_any_nan(f)) {
3707         float_status s = { }; /* for snan_bit_is_one */
3708         return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3709     } else {
3710         return sign ? 1 << 1 : 1 << 6;
3711     }
3712 }
3713 
3714 RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
3715 RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
3716 RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
3717 GEN_VEXT_V(vfclass_v_h, 2, 2)
3718 GEN_VEXT_V(vfclass_v_w, 4, 4)
3719 GEN_VEXT_V(vfclass_v_d, 8, 8)
3720 
3721 /* Vector Floating-Point Merge Instruction */
3722 #define GEN_VFMERGE_VF(NAME, ETYPE, H)                        \
3723 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3724                   CPURISCVState *env, uint32_t desc)          \
3725 {                                                             \
3726     uint32_t vm = vext_vm(desc);                              \
3727     uint32_t vl = env->vl;                                    \
3728     uint32_t i;                                               \
3729                                                               \
3730     for (i = 0; i < vl; i++) {                                \
3731         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
3732         *((ETYPE *)vd + H(i))                                 \
3733           = (!vm && !vext_elem_mask(v0, i) ? s2 : s1);        \
3734     }                                                         \
3735 }
3736 
3737 GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2)
3738 GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4)
3739 GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8)
3740 
3741 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
3742 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
3743 RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
3744 RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
3745 RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
3746 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2)
3747 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4)
3748 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8)
3749 
3750 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
3751 RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
3752 RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
3753 RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
3754 GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2)
3755 GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4)
3756 GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8)
3757 
3758 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
3759 RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
3760 RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
3761 RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
3762 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2)
3763 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4)
3764 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8)
3765 
3766 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
3767 RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
3768 RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
3769 RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
3770 GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2)
3771 GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4)
3772 GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8)
3773 
3774 /* Widening Floating-Point/Integer Type-Convert Instructions */
3775 /* (TD, T2, TX2) */
3776 #define WOP_UU_B uint16_t, uint8_t,  uint8_t
3777 #define WOP_UU_H uint32_t, uint16_t, uint16_t
3778 #define WOP_UU_W uint64_t, uint32_t, uint32_t
3779 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
3780 RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
3781 RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
3782 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4)
3783 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8)
3784 
3785 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
3786 RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
3787 RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
3788 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4)
3789 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8)
3790 
3791 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
3792 RVVCALL(OPFVV1, vfwcvt_f_xu_v_b, WOP_UU_B, H2, H1, uint8_to_float16)
3793 RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
3794 RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
3795 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_b, 1, 2)
3796 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4)
3797 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8)
3798 
3799 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
3800 RVVCALL(OPFVV1, vfwcvt_f_x_v_b, WOP_UU_B, H2, H1, int8_to_float16)
3801 RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
3802 RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
3803 GEN_VEXT_V_ENV(vfwcvt_f_x_v_b, 1, 2)
3804 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4)
3805 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8)
3806 
3807 /*
3808  * vfwcvt.f.f.v vd, vs2, vm
3809  * Convert single-width float to double-width float.
3810  */
3811 static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
3812 {
3813     return float16_to_float32(a, true, s);
3814 }
3815 
3816 RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
3817 RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
3818 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4)
3819 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8)
3820 
3821 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
3822 /* (TD, T2, TX2) */
3823 #define NOP_UU_B uint8_t,  uint16_t, uint32_t
3824 #define NOP_UU_H uint16_t, uint32_t, uint32_t
3825 #define NOP_UU_W uint32_t, uint64_t, uint64_t
3826 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
3827 RVVCALL(OPFVV1, vfncvt_xu_f_w_b, NOP_UU_B, H1, H2, float16_to_uint8)
3828 RVVCALL(OPFVV1, vfncvt_xu_f_w_h, NOP_UU_H, H2, H4, float32_to_uint16)
3829 RVVCALL(OPFVV1, vfncvt_xu_f_w_w, NOP_UU_W, H4, H8, float64_to_uint32)
3830 GEN_VEXT_V_ENV(vfncvt_xu_f_w_b, 1, 1)
3831 GEN_VEXT_V_ENV(vfncvt_xu_f_w_h, 2, 2)
3832 GEN_VEXT_V_ENV(vfncvt_xu_f_w_w, 4, 4)
3833 
3834 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
3835 RVVCALL(OPFVV1, vfncvt_x_f_w_b, NOP_UU_B, H1, H2, float16_to_int8)
3836 RVVCALL(OPFVV1, vfncvt_x_f_w_h, NOP_UU_H, H2, H4, float32_to_int16)
3837 RVVCALL(OPFVV1, vfncvt_x_f_w_w, NOP_UU_W, H4, H8, float64_to_int32)
3838 GEN_VEXT_V_ENV(vfncvt_x_f_w_b, 1, 1)
3839 GEN_VEXT_V_ENV(vfncvt_x_f_w_h, 2, 2)
3840 GEN_VEXT_V_ENV(vfncvt_x_f_w_w, 4, 4)
3841 
3842 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
3843 RVVCALL(OPFVV1, vfncvt_f_xu_w_h, NOP_UU_H, H2, H4, uint32_to_float16)
3844 RVVCALL(OPFVV1, vfncvt_f_xu_w_w, NOP_UU_W, H4, H8, uint64_to_float32)
3845 GEN_VEXT_V_ENV(vfncvt_f_xu_w_h, 2, 2)
3846 GEN_VEXT_V_ENV(vfncvt_f_xu_w_w, 4, 4)
3847 
3848 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
3849 RVVCALL(OPFVV1, vfncvt_f_x_w_h, NOP_UU_H, H2, H4, int32_to_float16)
3850 RVVCALL(OPFVV1, vfncvt_f_x_w_w, NOP_UU_W, H4, H8, int64_to_float32)
3851 GEN_VEXT_V_ENV(vfncvt_f_x_w_h, 2, 2)
3852 GEN_VEXT_V_ENV(vfncvt_f_x_w_w, 4, 4)
3853 
3854 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
3855 static uint16_t vfncvtffv16(uint32_t a, float_status *s)
3856 {
3857     return float32_to_float16(a, true, s);
3858 }
3859 
3860 RVVCALL(OPFVV1, vfncvt_f_f_w_h, NOP_UU_H, H2, H4, vfncvtffv16)
3861 RVVCALL(OPFVV1, vfncvt_f_f_w_w, NOP_UU_W, H4, H8, float64_to_float32)
3862 GEN_VEXT_V_ENV(vfncvt_f_f_w_h, 2, 2)
3863 GEN_VEXT_V_ENV(vfncvt_f_f_w_w, 4, 4)
3864 
3865 /*
3866  *** Vector Reduction Operations
3867  */
3868 /* Vector Single-Width Integer Reduction Instructions */
3869 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP)          \
3870 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
3871         void *vs2, CPURISCVState *env, uint32_t desc)     \
3872 {                                                         \
3873     uint32_t vm = vext_vm(desc);                          \
3874     uint32_t vl = env->vl;                                \
3875     uint32_t i;                                           \
3876     TD s1 =  *((TD *)vs1 + HD(0));                        \
3877                                                           \
3878     for (i = 0; i < vl; i++) {                            \
3879         TS2 s2 = *((TS2 *)vs2 + HS2(i));                  \
3880         if (!vm && !vext_elem_mask(v0, i)) {              \
3881             continue;                                     \
3882         }                                                 \
3883         s1 = OP(s1, (TD)s2);                              \
3884     }                                                     \
3885     *((TD *)vd + HD(0)) = s1;                             \
3886 }
3887 
3888 /* vd[0] = sum(vs1[0], vs2[*]) */
3889 GEN_VEXT_RED(vredsum_vs_b, int8_t,  int8_t,  H1, H1, DO_ADD)
3890 GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD)
3891 GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD)
3892 GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD)
3893 
3894 /* vd[0] = maxu(vs1[0], vs2[*]) */
3895 GEN_VEXT_RED(vredmaxu_vs_b, uint8_t,  uint8_t,  H1, H1, DO_MAX)
3896 GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX)
3897 GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX)
3898 GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX)
3899 
3900 /* vd[0] = max(vs1[0], vs2[*]) */
3901 GEN_VEXT_RED(vredmax_vs_b, int8_t,  int8_t,  H1, H1, DO_MAX)
3902 GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX)
3903 GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX)
3904 GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX)
3905 
3906 /* vd[0] = minu(vs1[0], vs2[*]) */
3907 GEN_VEXT_RED(vredminu_vs_b, uint8_t,  uint8_t,  H1, H1, DO_MIN)
3908 GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN)
3909 GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN)
3910 GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN)
3911 
3912 /* vd[0] = min(vs1[0], vs2[*]) */
3913 GEN_VEXT_RED(vredmin_vs_b, int8_t,  int8_t,  H1, H1, DO_MIN)
3914 GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN)
3915 GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN)
3916 GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN)
3917 
3918 /* vd[0] = and(vs1[0], vs2[*]) */
3919 GEN_VEXT_RED(vredand_vs_b, int8_t,  int8_t,  H1, H1, DO_AND)
3920 GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND)
3921 GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND)
3922 GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND)
3923 
3924 /* vd[0] = or(vs1[0], vs2[*]) */
3925 GEN_VEXT_RED(vredor_vs_b, int8_t,  int8_t,  H1, H1, DO_OR)
3926 GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR)
3927 GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR)
3928 GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR)
3929 
3930 /* vd[0] = xor(vs1[0], vs2[*]) */
3931 GEN_VEXT_RED(vredxor_vs_b, int8_t,  int8_t,  H1, H1, DO_XOR)
3932 GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR)
3933 GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR)
3934 GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR)
3935 
3936 /* Vector Widening Integer Reduction Instructions */
3937 /* signed sum reduction into double-width accumulator */
3938 GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t,  H2, H1, DO_ADD)
3939 GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD)
3940 GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD)
3941 
3942 /* Unsigned sum reduction into double-width accumulator */
3943 GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t,  H2, H1, DO_ADD)
3944 GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD)
3945 GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD)
3946 
3947 /* Vector Single-Width Floating-Point Reduction Instructions */
3948 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP)          \
3949 void HELPER(NAME)(void *vd, void *v0, void *vs1,           \
3950                   void *vs2, CPURISCVState *env,           \
3951                   uint32_t desc)                           \
3952 {                                                          \
3953     uint32_t vm = vext_vm(desc);                           \
3954     uint32_t vl = env->vl;                                 \
3955     uint32_t i;                                            \
3956     TD s1 =  *((TD *)vs1 + HD(0));                         \
3957                                                            \
3958     for (i = 0; i < vl; i++) {                             \
3959         TS2 s2 = *((TS2 *)vs2 + HS2(i));                   \
3960         if (!vm && !vext_elem_mask(v0, i)) {               \
3961             continue;                                      \
3962         }                                                  \
3963         s1 = OP(s1, (TD)s2, &env->fp_status);              \
3964     }                                                      \
3965     *((TD *)vd + HD(0)) = s1;                              \
3966 }
3967 
3968 /* Unordered sum */
3969 GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add)
3970 GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add)
3971 GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add)
3972 
3973 /* Maximum value */
3974 GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maximum_number)
3975 GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maximum_number)
3976 GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maximum_number)
3977 
3978 /* Minimum value */
3979 GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minimum_number)
3980 GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minimum_number)
3981 GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minimum_number)
3982 
3983 /* Vector Widening Floating-Point Reduction Instructions */
3984 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
3985 void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
3986                             void *vs2, CPURISCVState *env, uint32_t desc)
3987 {
3988     uint32_t vm = vext_vm(desc);
3989     uint32_t vl = env->vl;
3990     uint32_t i;
3991     uint32_t s1 =  *((uint32_t *)vs1 + H4(0));
3992 
3993     for (i = 0; i < vl; i++) {
3994         uint16_t s2 = *((uint16_t *)vs2 + H2(i));
3995         if (!vm && !vext_elem_mask(v0, i)) {
3996             continue;
3997         }
3998         s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
3999                          &env->fp_status);
4000     }
4001     *((uint32_t *)vd + H4(0)) = s1;
4002 }
4003 
4004 void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
4005                             void *vs2, CPURISCVState *env, uint32_t desc)
4006 {
4007     uint32_t vm = vext_vm(desc);
4008     uint32_t vl = env->vl;
4009     uint32_t i;
4010     uint64_t s1 =  *((uint64_t *)vs1);
4011 
4012     for (i = 0; i < vl; i++) {
4013         uint32_t s2 = *((uint32_t *)vs2 + H4(i));
4014         if (!vm && !vext_elem_mask(v0, i)) {
4015             continue;
4016         }
4017         s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
4018                          &env->fp_status);
4019     }
4020     *((uint64_t *)vd) = s1;
4021 }
4022 
4023 /*
4024  *** Vector Mask Operations
4025  */
4026 /* Vector Mask-Register Logical Instructions */
4027 #define GEN_VEXT_MASK_VV(NAME, OP)                        \
4028 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
4029                   void *vs2, CPURISCVState *env,          \
4030                   uint32_t desc)                          \
4031 {                                                         \
4032     uint32_t vl = env->vl;                                \
4033     uint32_t i;                                           \
4034     int a, b;                                             \
4035                                                           \
4036     for (i = 0; i < vl; i++) {                            \
4037         a = vext_elem_mask(vs1, i);                       \
4038         b = vext_elem_mask(vs2, i);                       \
4039         vext_set_elem_mask(vd, i, OP(b, a));              \
4040     }                                                     \
4041 }
4042 
4043 #define DO_NAND(N, M)  (!(N & M))
4044 #define DO_ANDNOT(N, M)  (N & !M)
4045 #define DO_NOR(N, M)  (!(N | M))
4046 #define DO_ORNOT(N, M)  (N | !M)
4047 #define DO_XNOR(N, M)  (!(N ^ M))
4048 
4049 GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
4050 GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
4051 GEN_VEXT_MASK_VV(vmandnot_mm, DO_ANDNOT)
4052 GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
4053 GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
4054 GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
4055 GEN_VEXT_MASK_VV(vmornot_mm, DO_ORNOT)
4056 GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
4057 
4058 /* Vector count population in mask vcpop */
4059 target_ulong HELPER(vcpop_m)(void *v0, void *vs2, CPURISCVState *env,
4060                              uint32_t desc)
4061 {
4062     target_ulong cnt = 0;
4063     uint32_t vm = vext_vm(desc);
4064     uint32_t vl = env->vl;
4065     int i;
4066 
4067     for (i = 0; i < vl; i++) {
4068         if (vm || vext_elem_mask(v0, i)) {
4069             if (vext_elem_mask(vs2, i)) {
4070                 cnt++;
4071             }
4072         }
4073     }
4074     return cnt;
4075 }
4076 
4077 /* vfirst find-first-set mask bit*/
4078 target_ulong HELPER(vfirst_m)(void *v0, void *vs2, CPURISCVState *env,
4079                               uint32_t desc)
4080 {
4081     uint32_t vm = vext_vm(desc);
4082     uint32_t vl = env->vl;
4083     int i;
4084 
4085     for (i = 0; i < vl; i++) {
4086         if (vm || vext_elem_mask(v0, i)) {
4087             if (vext_elem_mask(vs2, i)) {
4088                 return i;
4089             }
4090         }
4091     }
4092     return -1LL;
4093 }
4094 
4095 enum set_mask_type {
4096     ONLY_FIRST = 1,
4097     INCLUDE_FIRST,
4098     BEFORE_FIRST,
4099 };
4100 
4101 static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
4102                    uint32_t desc, enum set_mask_type type)
4103 {
4104     uint32_t vm = vext_vm(desc);
4105     uint32_t vl = env->vl;
4106     int i;
4107     bool first_mask_bit = false;
4108 
4109     for (i = 0; i < vl; i++) {
4110         if (!vm && !vext_elem_mask(v0, i)) {
4111             continue;
4112         }
4113         /* write a zero to all following active elements */
4114         if (first_mask_bit) {
4115             vext_set_elem_mask(vd, i, 0);
4116             continue;
4117         }
4118         if (vext_elem_mask(vs2, i)) {
4119             first_mask_bit = true;
4120             if (type == BEFORE_FIRST) {
4121                 vext_set_elem_mask(vd, i, 0);
4122             } else {
4123                 vext_set_elem_mask(vd, i, 1);
4124             }
4125         } else {
4126             if (type == ONLY_FIRST) {
4127                 vext_set_elem_mask(vd, i, 0);
4128             } else {
4129                 vext_set_elem_mask(vd, i, 1);
4130             }
4131         }
4132     }
4133 }
4134 
4135 void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4136                      uint32_t desc)
4137 {
4138     vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
4139 }
4140 
4141 void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4142                      uint32_t desc)
4143 {
4144     vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
4145 }
4146 
4147 void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4148                      uint32_t desc)
4149 {
4150     vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
4151 }
4152 
4153 /* Vector Iota Instruction */
4154 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H)                                  \
4155 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env,      \
4156                   uint32_t desc)                                          \
4157 {                                                                         \
4158     uint32_t vm = vext_vm(desc);                                          \
4159     uint32_t vl = env->vl;                                                \
4160     uint32_t sum = 0;                                                     \
4161     int i;                                                                \
4162                                                                           \
4163     for (i = 0; i < vl; i++) {                                            \
4164         if (!vm && !vext_elem_mask(v0, i)) {                              \
4165             continue;                                                     \
4166         }                                                                 \
4167         *((ETYPE *)vd + H(i)) = sum;                                      \
4168         if (vext_elem_mask(vs2, i)) {                                     \
4169             sum++;                                                        \
4170         }                                                                 \
4171     }                                                                     \
4172 }
4173 
4174 GEN_VEXT_VIOTA_M(viota_m_b, uint8_t,  H1)
4175 GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2)
4176 GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4)
4177 GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8)
4178 
4179 /* Vector Element Index Instruction */
4180 #define GEN_VEXT_VID_V(NAME, ETYPE, H)                                    \
4181 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc)  \
4182 {                                                                         \
4183     uint32_t vm = vext_vm(desc);                                          \
4184     uint32_t vl = env->vl;                                                \
4185     int i;                                                                \
4186                                                                           \
4187     for (i = 0; i < vl; i++) {                                            \
4188         if (!vm && !vext_elem_mask(v0, i)) {                              \
4189             continue;                                                     \
4190         }                                                                 \
4191         *((ETYPE *)vd + H(i)) = i;                                        \
4192     }                                                                     \
4193 }
4194 
4195 GEN_VEXT_VID_V(vid_v_b, uint8_t,  H1)
4196 GEN_VEXT_VID_V(vid_v_h, uint16_t, H2)
4197 GEN_VEXT_VID_V(vid_v_w, uint32_t, H4)
4198 GEN_VEXT_VID_V(vid_v_d, uint64_t, H8)
4199 
4200 /*
4201  *** Vector Permutation Instructions
4202  */
4203 
4204 /* Vector Slide Instructions */
4205 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H)                              \
4206 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4207                   CPURISCVState *env, uint32_t desc)                      \
4208 {                                                                         \
4209     uint32_t vm = vext_vm(desc);                                          \
4210     uint32_t vl = env->vl;                                                \
4211     target_ulong offset = s1, i;                                          \
4212                                                                           \
4213     for (i = offset; i < vl; i++) {                                       \
4214         if (!vm && !vext_elem_mask(v0, i)) {                              \
4215             continue;                                                     \
4216         }                                                                 \
4217         *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset));          \
4218     }                                                                     \
4219 }
4220 
4221 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4222 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t,  H1)
4223 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2)
4224 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4)
4225 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8)
4226 
4227 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H)                            \
4228 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4229                   CPURISCVState *env, uint32_t desc)                      \
4230 {                                                                         \
4231     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE)));           \
4232     uint32_t vm = vext_vm(desc);                                          \
4233     uint32_t vl = env->vl;                                                \
4234     target_ulong i_max, i;                                                \
4235                                                                           \
4236     i_max = MIN(s1 < vlmax ? vlmax - s1 : 0, vl);                         \
4237     for (i = 0; i < i_max; ++i) {                                         \
4238         if (vm || vext_elem_mask(v0, i)) {                                \
4239             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + s1));          \
4240         }                                                                 \
4241     }                                                                     \
4242                                                                           \
4243     for (i = i_max; i < vl; ++i) {                                        \
4244         if (vm || vext_elem_mask(v0, i)) {                                \
4245             *((ETYPE *)vd + H(i)) = 0;                                    \
4246         }                                                                 \
4247     }                                                                     \
4248 }
4249 
4250 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4251 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t,  H1)
4252 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2)
4253 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4)
4254 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8)
4255 
4256 #define GEN_VEXT_VSLIE1UP(ESZ, H)                                           \
4257 static void vslide1up_##ESZ(void *vd, void *v0, target_ulong s1, void *vs2, \
4258                      CPURISCVState *env, uint32_t desc)                     \
4259 {                                                                           \
4260     typedef uint##ESZ##_t ETYPE;                                            \
4261     uint32_t vm = vext_vm(desc);                                            \
4262     uint32_t vl = env->vl;                                                  \
4263     uint32_t i;                                                             \
4264                                                                             \
4265     for (i = 0; i < vl; i++) {                                              \
4266         if (!vm && !vext_elem_mask(v0, i)) {                                \
4267             continue;                                                       \
4268         }                                                                   \
4269         if (i == 0) {                                                       \
4270             *((ETYPE *)vd + H(i)) = s1;                                     \
4271         } else {                                                            \
4272             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1));             \
4273         }                                                                   \
4274     }                                                                       \
4275 }
4276 
4277 GEN_VEXT_VSLIE1UP(8,  H1)
4278 GEN_VEXT_VSLIE1UP(16, H2)
4279 GEN_VEXT_VSLIE1UP(32, H4)
4280 GEN_VEXT_VSLIE1UP(64, H8)
4281 
4282 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ESZ)                          \
4283 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4284                   CPURISCVState *env, uint32_t desc)              \
4285 {                                                                 \
4286     vslide1up_##ESZ(vd, v0, s1, vs2, env, desc);                  \
4287 }
4288 
4289 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4290 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, 8)
4291 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, 16)
4292 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, 32)
4293 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, 64)
4294 
4295 #define GEN_VEXT_VSLIDE1DOWN(ESZ, H)                                          \
4296 static void vslide1down_##ESZ(void *vd, void *v0, target_ulong s1, void *vs2, \
4297                        CPURISCVState *env, uint32_t desc)                     \
4298 {                                                                             \
4299     typedef uint##ESZ##_t ETYPE;                                              \
4300     uint32_t vm = vext_vm(desc);                                              \
4301     uint32_t vl = env->vl;                                                    \
4302     uint32_t i;                                                               \
4303                                                                               \
4304     for (i = 0; i < vl; i++) {                                                \
4305         if (!vm && !vext_elem_mask(v0, i)) {                                  \
4306             continue;                                                         \
4307         }                                                                     \
4308         if (i == vl - 1) {                                                    \
4309             *((ETYPE *)vd + H(i)) = s1;                                       \
4310         } else {                                                              \
4311             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1));               \
4312         }                                                                     \
4313     }                                                                         \
4314 }
4315 
4316 GEN_VEXT_VSLIDE1DOWN(8,  H1)
4317 GEN_VEXT_VSLIDE1DOWN(16, H2)
4318 GEN_VEXT_VSLIDE1DOWN(32, H4)
4319 GEN_VEXT_VSLIDE1DOWN(64, H8)
4320 
4321 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ESZ)                        \
4322 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4323                   CPURISCVState *env, uint32_t desc)              \
4324 {                                                                 \
4325     vslide1down_##ESZ(vd, v0, s1, vs2, env, desc);                \
4326 }
4327 
4328 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4329 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, 8)
4330 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, 16)
4331 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, 32)
4332 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, 64)
4333 
4334 /* Vector Floating-Point Slide Instructions */
4335 #define GEN_VEXT_VFSLIDE1UP_VF(NAME, ESZ)                     \
4336 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
4337                   CPURISCVState *env, uint32_t desc)          \
4338 {                                                             \
4339     vslide1up_##ESZ(vd, v0, s1, vs2, env, desc);              \
4340 }
4341 
4342 /* vfslide1up.vf vd, vs2, rs1, vm # vd[0]=f[rs1], vd[i+1] = vs2[i] */
4343 GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_h, 16)
4344 GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_w, 32)
4345 GEN_VEXT_VFSLIDE1UP_VF(vfslide1up_vf_d, 64)
4346 
4347 #define GEN_VEXT_VFSLIDE1DOWN_VF(NAME, ESZ)                   \
4348 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
4349                   CPURISCVState *env, uint32_t desc)          \
4350 {                                                             \
4351     vslide1down_##ESZ(vd, v0, s1, vs2, env, desc);            \
4352 }
4353 
4354 /* vfslide1down.vf vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=f[rs1] */
4355 GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_h, 16)
4356 GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_w, 32)
4357 GEN_VEXT_VFSLIDE1DOWN_VF(vfslide1down_vf_d, 64)
4358 
4359 /* Vector Register Gather Instruction */
4360 #define GEN_VEXT_VRGATHER_VV(NAME, TS1, TS2, HS1, HS2)                    \
4361 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,               \
4362                   CPURISCVState *env, uint32_t desc)                      \
4363 {                                                                         \
4364     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(TS1)));             \
4365     uint32_t vm = vext_vm(desc);                                          \
4366     uint32_t vl = env->vl;                                                \
4367     uint64_t index;                                                       \
4368     uint32_t i;                                                           \
4369                                                                           \
4370     for (i = 0; i < vl; i++) {                                            \
4371         if (!vm && !vext_elem_mask(v0, i)) {                              \
4372             continue;                                                     \
4373         }                                                                 \
4374         index = *((TS1 *)vs1 + HS1(i));                                   \
4375         if (index >= vlmax) {                                             \
4376             *((TS2 *)vd + HS2(i)) = 0;                                    \
4377         } else {                                                          \
4378             *((TS2 *)vd + HS2(i)) = *((TS2 *)vs2 + HS2(index));           \
4379         }                                                                 \
4380     }                                                                     \
4381 }
4382 
4383 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4384 GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t,  uint8_t,  H1, H1)
4385 GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, uint16_t, H2, H2)
4386 GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, uint32_t, H4, H4)
4387 GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, uint64_t, H8, H8)
4388 
4389 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_b, uint16_t, uint8_t,  H2, H1)
4390 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_h, uint16_t, uint16_t, H2, H2)
4391 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_w, uint16_t, uint32_t, H2, H4)
4392 GEN_VEXT_VRGATHER_VV(vrgatherei16_vv_d, uint16_t, uint64_t, H2, H8)
4393 
4394 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H)                              \
4395 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4396                   CPURISCVState *env, uint32_t desc)                      \
4397 {                                                                         \
4398     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE)));           \
4399     uint32_t vm = vext_vm(desc);                                          \
4400     uint32_t vl = env->vl;                                                \
4401     uint64_t index = s1;                                                  \
4402     uint32_t i;                                                           \
4403                                                                           \
4404     for (i = 0; i < vl; i++) {                                            \
4405         if (!vm && !vext_elem_mask(v0, i)) {                              \
4406             continue;                                                     \
4407         }                                                                 \
4408         if (index >= vlmax) {                                             \
4409             *((ETYPE *)vd + H(i)) = 0;                                    \
4410         } else {                                                          \
4411             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index));           \
4412         }                                                                 \
4413     }                                                                     \
4414 }
4415 
4416 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4417 GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t,  H1)
4418 GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2)
4419 GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4)
4420 GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8)
4421 
4422 /* Vector Compress Instruction */
4423 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H)                             \
4424 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,               \
4425                   CPURISCVState *env, uint32_t desc)                      \
4426 {                                                                         \
4427     uint32_t vl = env->vl;                                                \
4428     uint32_t num = 0, i;                                                  \
4429                                                                           \
4430     for (i = 0; i < vl; i++) {                                            \
4431         if (!vext_elem_mask(vs1, i)) {                                    \
4432             continue;                                                     \
4433         }                                                                 \
4434         *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i));                 \
4435         num++;                                                            \
4436     }                                                                     \
4437 }
4438 
4439 /* Compress into vd elements of vs2 where vs1 is enabled */
4440 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t,  H1)
4441 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2)
4442 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4)
4443 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8)
4444 
4445 /* Vector Integer Extension */
4446 #define GEN_VEXT_INT_EXT(NAME, ETYPE, DTYPE, HD, HS1)            \
4447 void HELPER(NAME)(void *vd, void *v0, void *vs2,                 \
4448                   CPURISCVState *env, uint32_t desc)             \
4449 {                                                                \
4450     uint32_t vl = env->vl;                                       \
4451     uint32_t vm = vext_vm(desc);                                 \
4452     uint32_t i;                                                  \
4453                                                                  \
4454     for (i = 0; i < vl; i++) {                                   \
4455         if (!vm && !vext_elem_mask(v0, i)) {                     \
4456             continue;                                            \
4457         }                                                        \
4458         *((ETYPE *)vd + HD(i)) = *((DTYPE *)vs2 + HS1(i));       \
4459     }                                                            \
4460 }
4461 
4462 GEN_VEXT_INT_EXT(vzext_vf2_h, uint16_t, uint8_t,  H2, H1)
4463 GEN_VEXT_INT_EXT(vzext_vf2_w, uint32_t, uint16_t, H4, H2)
4464 GEN_VEXT_INT_EXT(vzext_vf2_d, uint64_t, uint32_t, H8, H4)
4465 GEN_VEXT_INT_EXT(vzext_vf4_w, uint32_t, uint8_t,  H4, H1)
4466 GEN_VEXT_INT_EXT(vzext_vf4_d, uint64_t, uint16_t, H8, H2)
4467 GEN_VEXT_INT_EXT(vzext_vf8_d, uint64_t, uint8_t,  H8, H1)
4468 
4469 GEN_VEXT_INT_EXT(vsext_vf2_h, int16_t, int8_t,  H2, H1)
4470 GEN_VEXT_INT_EXT(vsext_vf2_w, int32_t, int16_t, H4, H2)
4471 GEN_VEXT_INT_EXT(vsext_vf2_d, int64_t, int32_t, H8, H4)
4472 GEN_VEXT_INT_EXT(vsext_vf4_w, int32_t, int8_t,  H4, H1)
4473 GEN_VEXT_INT_EXT(vsext_vf4_d, int64_t, int16_t, H8, H2)
4474 GEN_VEXT_INT_EXT(vsext_vf8_d, int64_t, int8_t,  H8, H1)
4475