xref: /openbmc/qemu/target/riscv/vector_helper.c (revision 5a9f8e15)
1 /*
2  * RISC-V Vector Extension Helpers for QEMU.
3  *
4  * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/host-utils.h"
21 #include "cpu.h"
22 #include "exec/memop.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "fpu/softfloat.h"
26 #include "tcg/tcg-gvec-desc.h"
27 #include "internals.h"
28 #include <math.h>
29 
30 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
31                             target_ulong s2)
32 {
33     int vlmax, vl;
34     RISCVCPU *cpu = env_archcpu(env);
35     uint64_t lmul = FIELD_EX64(s2, VTYPE, VLMUL);
36     uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
37     uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
38     bool vill = FIELD_EX64(s2, VTYPE, VILL);
39     target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
40 
41     if (lmul & 4) {
42         /* Fractional LMUL. */
43         if (lmul == 4 ||
44             cpu->cfg.elen >> (8 - lmul) < sew) {
45             vill = true;
46         }
47     }
48 
49     if ((sew > cpu->cfg.elen)
50         || vill
51         || (ediv != 0)
52         || (reserved != 0)) {
53         /* only set vill bit. */
54         env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
55         env->vl = 0;
56         env->vstart = 0;
57         return 0;
58     }
59 
60     vlmax = vext_get_vlmax(cpu, s2);
61     if (s1 <= vlmax) {
62         vl = s1;
63     } else {
64         vl = vlmax;
65     }
66     env->vl = vl;
67     env->vtype = s2;
68     env->vstart = 0;
69     return vl;
70 }
71 
72 /*
73  * Note that vector data is stored in host-endian 64-bit chunks,
74  * so addressing units smaller than that needs a host-endian fixup.
75  */
76 #ifdef HOST_WORDS_BIGENDIAN
77 #define H1(x)   ((x) ^ 7)
78 #define H1_2(x) ((x) ^ 6)
79 #define H1_4(x) ((x) ^ 4)
80 #define H2(x)   ((x) ^ 3)
81 #define H4(x)   ((x) ^ 1)
82 #define H8(x)   ((x))
83 #else
84 #define H1(x)   (x)
85 #define H1_2(x) (x)
86 #define H1_4(x) (x)
87 #define H2(x)   (x)
88 #define H4(x)   (x)
89 #define H8(x)   (x)
90 #endif
91 
92 static inline uint32_t vext_nf(uint32_t desc)
93 {
94     return FIELD_EX32(simd_data(desc), VDATA, NF);
95 }
96 
97 static inline uint32_t vext_vm(uint32_t desc)
98 {
99     return FIELD_EX32(simd_data(desc), VDATA, VM);
100 }
101 
102 /*
103  * Encode LMUL to lmul as following:
104  *     LMUL    vlmul    lmul
105  *      1       000       0
106  *      2       001       1
107  *      4       010       2
108  *      8       011       3
109  *      -       100       -
110  *     1/8      101      -3
111  *     1/4      110      -2
112  *     1/2      111      -1
113  */
114 static inline int32_t vext_lmul(uint32_t desc)
115 {
116     return sextract32(FIELD_EX32(simd_data(desc), VDATA, LMUL), 0, 3);
117 }
118 
119 /*
120  * Get the maximum number of elements can be operated.
121  *
122  * esz: log2 of element size in bytes.
123  */
124 static inline uint32_t vext_max_elems(uint32_t desc, uint32_t esz)
125 {
126     /*
127      * As simd_desc support at most 256 bytes, the max vlen is 256 bits.
128      * so vlen in bytes (vlenb) is encoded as maxsz.
129      */
130     uint32_t vlenb = simd_maxsz(desc);
131 
132     /* Return VLMAX */
133     int scale = vext_lmul(desc) - esz;
134     return scale < 0 ? vlenb >> -scale : vlenb << scale;
135 }
136 
137 /*
138  * This function checks watchpoint before real load operation.
139  *
140  * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
141  * In user mode, there is no watchpoint support now.
142  *
143  * It will trigger an exception if there is no mapping in TLB
144  * and page table walk can't fill the TLB entry. Then the guest
145  * software can return here after process the exception or never return.
146  */
147 static void probe_pages(CPURISCVState *env, target_ulong addr,
148                         target_ulong len, uintptr_t ra,
149                         MMUAccessType access_type)
150 {
151     target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
152     target_ulong curlen = MIN(pagelen, len);
153 
154     probe_access(env, addr, curlen, access_type,
155                  cpu_mmu_index(env, false), ra);
156     if (len > curlen) {
157         addr += curlen;
158         curlen = len - curlen;
159         probe_access(env, addr, curlen, access_type,
160                      cpu_mmu_index(env, false), ra);
161     }
162 }
163 
164 static inline void vext_set_elem_mask(void *v0, int index,
165                                       uint8_t value)
166 {
167     int idx = index / 64;
168     int pos = index % 64;
169     uint64_t old = ((uint64_t *)v0)[idx];
170     ((uint64_t *)v0)[idx] = deposit64(old, pos, 1, value);
171 }
172 
173 /*
174  * Earlier designs (pre-0.9) had a varying number of bits
175  * per mask value (MLEN). In the 0.9 design, MLEN=1.
176  * (Section 4.5)
177  */
178 static inline int vext_elem_mask(void *v0, int index)
179 {
180     int idx = index / 64;
181     int pos = index  % 64;
182     return (((uint64_t *)v0)[idx] >> pos) & 1;
183 }
184 
185 /* elements operations for load and store */
186 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
187                                uint32_t idx, void *vd, uintptr_t retaddr);
188 
189 #define GEN_VEXT_LD_ELEM(NAME, ETYPE, H, LDSUF)            \
190 static void NAME(CPURISCVState *env, abi_ptr addr,         \
191                  uint32_t idx, void *vd, uintptr_t retaddr)\
192 {                                                          \
193     ETYPE *cur = ((ETYPE *)vd + H(idx));                   \
194     *cur = cpu_##LDSUF##_data_ra(env, addr, retaddr);      \
195 }                                                          \
196 
197 GEN_VEXT_LD_ELEM(lde_b, int8_t,  H1, ldsb)
198 GEN_VEXT_LD_ELEM(lde_h, int16_t, H2, ldsw)
199 GEN_VEXT_LD_ELEM(lde_w, int32_t, H4, ldl)
200 GEN_VEXT_LD_ELEM(lde_d, int64_t, H8, ldq)
201 
202 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF)            \
203 static void NAME(CPURISCVState *env, abi_ptr addr,         \
204                  uint32_t idx, void *vd, uintptr_t retaddr)\
205 {                                                          \
206     ETYPE data = *((ETYPE *)vd + H(idx));                  \
207     cpu_##STSUF##_data_ra(env, addr, data, retaddr);       \
208 }
209 
210 GEN_VEXT_ST_ELEM(ste_b, int8_t,  H1, stb)
211 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
212 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
213 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
214 
215 /*
216  *** stride: access vector element from strided memory
217  */
218 static void
219 vext_ldst_stride(void *vd, void *v0, target_ulong base,
220                  target_ulong stride, CPURISCVState *env,
221                  uint32_t desc, uint32_t vm,
222                  vext_ldst_elem_fn *ldst_elem,
223                  uint32_t esz, uintptr_t ra, MMUAccessType access_type)
224 {
225     uint32_t i, k;
226     uint32_t nf = vext_nf(desc);
227     uint32_t max_elems = vext_max_elems(desc, esz);
228 
229     /* probe every access*/
230     for (i = 0; i < env->vl; i++) {
231         if (!vm && !vext_elem_mask(v0, i)) {
232             continue;
233         }
234         probe_pages(env, base + stride * i, nf << esz, ra, access_type);
235     }
236     /* do real access */
237     for (i = 0; i < env->vl; i++) {
238         k = 0;
239         if (!vm && !vext_elem_mask(v0, i)) {
240             continue;
241         }
242         while (k < nf) {
243             target_ulong addr = base + stride * i + (k << esz);
244             ldst_elem(env, addr, i + k * max_elems, vd, ra);
245             k++;
246         }
247     }
248 }
249 
250 #define GEN_VEXT_LD_STRIDE(NAME, ETYPE, LOAD_FN)                        \
251 void HELPER(NAME)(void *vd, void * v0, target_ulong base,               \
252                   target_ulong stride, CPURISCVState *env,              \
253                   uint32_t desc)                                        \
254 {                                                                       \
255     uint32_t vm = vext_vm(desc);                                        \
256     vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN,      \
257                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD);      \
258 }
259 
260 GEN_VEXT_LD_STRIDE(vlse8_v,  int8_t,  lde_b)
261 GEN_VEXT_LD_STRIDE(vlse16_v, int16_t, lde_h)
262 GEN_VEXT_LD_STRIDE(vlse32_v, int32_t, lde_w)
263 GEN_VEXT_LD_STRIDE(vlse64_v, int64_t, lde_d)
264 
265 #define GEN_VEXT_ST_STRIDE(NAME, ETYPE, STORE_FN)                       \
266 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
267                   target_ulong stride, CPURISCVState *env,              \
268                   uint32_t desc)                                        \
269 {                                                                       \
270     uint32_t vm = vext_vm(desc);                                        \
271     vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN,     \
272                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE);     \
273 }
274 
275 GEN_VEXT_ST_STRIDE(vsse8_v,  int8_t,  ste_b)
276 GEN_VEXT_ST_STRIDE(vsse16_v, int16_t, ste_h)
277 GEN_VEXT_ST_STRIDE(vsse32_v, int32_t, ste_w)
278 GEN_VEXT_ST_STRIDE(vsse64_v, int64_t, ste_d)
279 
280 /*
281  *** unit-stride: access elements stored contiguously in memory
282  */
283 
284 /* unmasked unit-stride load and store operation*/
285 static void
286 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
287              vext_ldst_elem_fn *ldst_elem,
288              uint32_t esz, uintptr_t ra, MMUAccessType access_type)
289 {
290     uint32_t i, k;
291     uint32_t nf = vext_nf(desc);
292     uint32_t max_elems = vext_max_elems(desc, esz);
293 
294     /* probe every access */
295     probe_pages(env, base, env->vl * (nf << esz), ra, access_type);
296     /* load bytes from guest memory */
297     for (i = 0; i < env->vl; i++) {
298         k = 0;
299         while (k < nf) {
300             target_ulong addr = base + ((i * nf + k) << esz);
301             ldst_elem(env, addr, i + k * max_elems, vd, ra);
302             k++;
303         }
304     }
305 }
306 
307 /*
308  * masked unit-stride load and store operation will be a special case of stride,
309  * stride = NF * sizeof (MTYPE)
310  */
311 
312 #define GEN_VEXT_LD_US(NAME, ETYPE, LOAD_FN)                            \
313 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base,         \
314                          CPURISCVState *env, uint32_t desc)             \
315 {                                                                       \
316     uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE));             \
317     vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN,   \
318                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD);      \
319 }                                                                       \
320                                                                         \
321 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
322                   CPURISCVState *env, uint32_t desc)                    \
323 {                                                                       \
324     vext_ldst_us(vd, base, env, desc, LOAD_FN,                          \
325                  ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD);          \
326 }
327 
328 GEN_VEXT_LD_US(vle8_v,  int8_t,  lde_b)
329 GEN_VEXT_LD_US(vle16_v, int16_t, lde_h)
330 GEN_VEXT_LD_US(vle32_v, int32_t, lde_w)
331 GEN_VEXT_LD_US(vle64_v, int64_t, lde_d)
332 
333 #define GEN_VEXT_ST_US(NAME, ETYPE, STORE_FN)                           \
334 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base,         \
335                          CPURISCVState *env, uint32_t desc)             \
336 {                                                                       \
337     uint32_t stride = vext_nf(desc) << ctzl(sizeof(ETYPE));             \
338     vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN,  \
339                      ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE);     \
340 }                                                                       \
341                                                                         \
342 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                \
343                   CPURISCVState *env, uint32_t desc)                    \
344 {                                                                       \
345     vext_ldst_us(vd, base, env, desc, STORE_FN,                         \
346                  ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_STORE);         \
347 }
348 
349 GEN_VEXT_ST_US(vse8_v,  int8_t,  ste_b)
350 GEN_VEXT_ST_US(vse16_v, int16_t, ste_h)
351 GEN_VEXT_ST_US(vse32_v, int32_t, ste_w)
352 GEN_VEXT_ST_US(vse64_v, int64_t, ste_d)
353 
354 /*
355  *** index: access vector element from indexed memory
356  */
357 typedef target_ulong vext_get_index_addr(target_ulong base,
358         uint32_t idx, void *vs2);
359 
360 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H)        \
361 static target_ulong NAME(target_ulong base,            \
362                          uint32_t idx, void *vs2)      \
363 {                                                      \
364     return (base + *((ETYPE *)vs2 + H(idx)));          \
365 }
366 
367 GEN_VEXT_GET_INDEX_ADDR(idx_b, uint8_t,  H1)
368 GEN_VEXT_GET_INDEX_ADDR(idx_h, uint16_t, H2)
369 GEN_VEXT_GET_INDEX_ADDR(idx_w, uint32_t, H4)
370 GEN_VEXT_GET_INDEX_ADDR(idx_d, uint64_t, H8)
371 
372 static inline void
373 vext_ldst_index(void *vd, void *v0, target_ulong base,
374                 void *vs2, CPURISCVState *env, uint32_t desc,
375                 vext_get_index_addr get_index_addr,
376                 vext_ldst_elem_fn *ldst_elem,
377                 uint32_t esz, uintptr_t ra, MMUAccessType access_type)
378 {
379     uint32_t i, k;
380     uint32_t nf = vext_nf(desc);
381     uint32_t vm = vext_vm(desc);
382     uint32_t max_elems = vext_max_elems(desc, esz);
383 
384     /* probe every access*/
385     for (i = 0; i < env->vl; i++) {
386         if (!vm && !vext_elem_mask(v0, i)) {
387             continue;
388         }
389         probe_pages(env, get_index_addr(base, i, vs2), nf << esz, ra,
390                     access_type);
391     }
392     /* load bytes from guest memory */
393     for (i = 0; i < env->vl; i++) {
394         k = 0;
395         if (!vm && !vext_elem_mask(v0, i)) {
396             continue;
397         }
398         while (k < nf) {
399             abi_ptr addr = get_index_addr(base, i, vs2) + (k << esz);
400             ldst_elem(env, addr, i + k * max_elems, vd, ra);
401             k++;
402         }
403     }
404 }
405 
406 #define GEN_VEXT_LD_INDEX(NAME, ETYPE, INDEX_FN, LOAD_FN)                  \
407 void HELPER(NAME)(void *vd, void *v0, target_ulong base,                   \
408                   void *vs2, CPURISCVState *env, uint32_t desc)            \
409 {                                                                          \
410     vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN,                \
411                     LOAD_FN, ctzl(sizeof(ETYPE)), GETPC(), MMU_DATA_LOAD); \
412 }
413 
414 GEN_VEXT_LD_INDEX(vlxei8_8_v,   int8_t,  idx_b, lde_b)
415 GEN_VEXT_LD_INDEX(vlxei8_16_v,  int16_t, idx_b, lde_h)
416 GEN_VEXT_LD_INDEX(vlxei8_32_v,  int32_t, idx_b, lde_w)
417 GEN_VEXT_LD_INDEX(vlxei8_64_v,  int64_t, idx_b, lde_d)
418 GEN_VEXT_LD_INDEX(vlxei16_8_v,  int8_t,  idx_h, lde_b)
419 GEN_VEXT_LD_INDEX(vlxei16_16_v, int16_t, idx_h, lde_h)
420 GEN_VEXT_LD_INDEX(vlxei16_32_v, int32_t, idx_h, lde_w)
421 GEN_VEXT_LD_INDEX(vlxei16_64_v, int64_t, idx_h, lde_d)
422 GEN_VEXT_LD_INDEX(vlxei32_8_v,  int8_t,  idx_w, lde_b)
423 GEN_VEXT_LD_INDEX(vlxei32_16_v, int16_t, idx_w, lde_h)
424 GEN_VEXT_LD_INDEX(vlxei32_32_v, int32_t, idx_w, lde_w)
425 GEN_VEXT_LD_INDEX(vlxei32_64_v, int64_t, idx_w, lde_d)
426 GEN_VEXT_LD_INDEX(vlxei64_8_v,  int8_t,  idx_d, lde_b)
427 GEN_VEXT_LD_INDEX(vlxei64_16_v, int16_t, idx_d, lde_h)
428 GEN_VEXT_LD_INDEX(vlxei64_32_v, int32_t, idx_d, lde_w)
429 GEN_VEXT_LD_INDEX(vlxei64_64_v, int64_t, idx_d, lde_d)
430 
431 #define GEN_VEXT_ST_INDEX(NAME, ETYPE, INDEX_FN, STORE_FN)       \
432 void HELPER(NAME)(void *vd, void *v0, target_ulong base,         \
433                   void *vs2, CPURISCVState *env, uint32_t desc)  \
434 {                                                                \
435     vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN,      \
436                     STORE_FN, ctzl(sizeof(ETYPE)),               \
437                     GETPC(), MMU_DATA_STORE);                    \
438 }
439 
440 GEN_VEXT_ST_INDEX(vsxei8_8_v,   int8_t,  idx_b, ste_b)
441 GEN_VEXT_ST_INDEX(vsxei8_16_v,  int16_t, idx_b, ste_h)
442 GEN_VEXT_ST_INDEX(vsxei8_32_v,  int32_t, idx_b, ste_w)
443 GEN_VEXT_ST_INDEX(vsxei8_64_v,  int64_t, idx_b, ste_d)
444 GEN_VEXT_ST_INDEX(vsxei16_8_v,  int8_t,  idx_h, ste_b)
445 GEN_VEXT_ST_INDEX(vsxei16_16_v, int16_t, idx_h, ste_h)
446 GEN_VEXT_ST_INDEX(vsxei16_32_v, int32_t, idx_h, ste_w)
447 GEN_VEXT_ST_INDEX(vsxei16_64_v, int64_t, idx_h, ste_d)
448 GEN_VEXT_ST_INDEX(vsxei32_8_v,  int8_t,  idx_w, ste_b)
449 GEN_VEXT_ST_INDEX(vsxei32_16_v, int16_t, idx_w, ste_h)
450 GEN_VEXT_ST_INDEX(vsxei32_32_v, int32_t, idx_w, ste_w)
451 GEN_VEXT_ST_INDEX(vsxei32_64_v, int64_t, idx_w, ste_d)
452 GEN_VEXT_ST_INDEX(vsxei64_8_v,  int8_t,  idx_d, ste_b)
453 GEN_VEXT_ST_INDEX(vsxei64_16_v, int16_t, idx_d, ste_h)
454 GEN_VEXT_ST_INDEX(vsxei64_32_v, int32_t, idx_d, ste_w)
455 GEN_VEXT_ST_INDEX(vsxei64_64_v, int64_t, idx_d, ste_d)
456 
457 /*
458  *** unit-stride fault-only-fisrt load instructions
459  */
460 static inline void
461 vext_ldff(void *vd, void *v0, target_ulong base,
462           CPURISCVState *env, uint32_t desc,
463           vext_ldst_elem_fn *ldst_elem,
464           uint32_t esz, uintptr_t ra)
465 {
466     void *host;
467     uint32_t i, k, vl = 0;
468     uint32_t nf = vext_nf(desc);
469     uint32_t vm = vext_vm(desc);
470     uint32_t max_elems = vext_max_elems(desc, esz);
471     target_ulong addr, offset, remain;
472 
473     /* probe every access*/
474     for (i = 0; i < env->vl; i++) {
475         if (!vm && !vext_elem_mask(v0, i)) {
476             continue;
477         }
478         addr = base + i * (nf << esz);
479         if (i == 0) {
480             probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
481         } else {
482             /* if it triggers an exception, no need to check watchpoint */
483             remain = nf << esz;
484             while (remain > 0) {
485                 offset = -(addr | TARGET_PAGE_MASK);
486                 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
487                                          cpu_mmu_index(env, false));
488                 if (host) {
489 #ifdef CONFIG_USER_ONLY
490                     if (page_check_range(addr, nf << esz, PAGE_READ) < 0) {
491                         vl = i;
492                         goto ProbeSuccess;
493                     }
494 #else
495                     probe_pages(env, addr, nf << esz, ra, MMU_DATA_LOAD);
496 #endif
497                 } else {
498                     vl = i;
499                     goto ProbeSuccess;
500                 }
501                 if (remain <=  offset) {
502                     break;
503                 }
504                 remain -= offset;
505                 addr += offset;
506             }
507         }
508     }
509 ProbeSuccess:
510     /* load bytes from guest memory */
511     if (vl != 0) {
512         env->vl = vl;
513     }
514     for (i = 0; i < env->vl; i++) {
515         k = 0;
516         if (!vm && !vext_elem_mask(v0, i)) {
517             continue;
518         }
519         while (k < nf) {
520             target_ulong addr = base + ((i * nf + k) << esz);
521             ldst_elem(env, addr, i + k * max_elems, vd, ra);
522             k++;
523         }
524     }
525 }
526 
527 #define GEN_VEXT_LDFF(NAME, ETYPE, LOAD_FN)               \
528 void HELPER(NAME)(void *vd, void *v0, target_ulong base,  \
529                   CPURISCVState *env, uint32_t desc)      \
530 {                                                         \
531     vext_ldff(vd, v0, base, env, desc, LOAD_FN,           \
532               ctzl(sizeof(ETYPE)), GETPC());              \
533 }
534 
535 GEN_VEXT_LDFF(vle8ff_v,  int8_t,  lde_b)
536 GEN_VEXT_LDFF(vle16ff_v, int16_t, lde_h)
537 GEN_VEXT_LDFF(vle32ff_v, int32_t, lde_w)
538 GEN_VEXT_LDFF(vle64ff_v, int64_t, lde_d)
539 
540 #define DO_SWAP(N, M) (M)
541 #define DO_AND(N, M)  (N & M)
542 #define DO_XOR(N, M)  (N ^ M)
543 #define DO_OR(N, M)   (N | M)
544 #define DO_ADD(N, M)  (N + M)
545 
546 /* Signed min/max */
547 #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
548 #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
549 
550 /* Unsigned min/max */
551 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
552 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
553 
554 /*
555  *** load and store whole register instructions
556  */
557 static void
558 vext_ldst_whole(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
559                 vext_ldst_elem_fn *ldst_elem, uint32_t esz, uintptr_t ra,
560                 MMUAccessType access_type)
561 {
562     uint32_t i, k;
563     uint32_t nf = vext_nf(desc);
564     uint32_t vlenb = env_archcpu(env)->cfg.vlen >> 3;
565     uint32_t max_elems = vlenb >> esz;
566 
567     /* probe every access */
568     probe_pages(env, base, vlenb * nf, ra, access_type);
569 
570     /* load bytes from guest memory */
571     for (k = 0; k < nf; k++) {
572         for (i = 0; i < max_elems; i++) {
573             target_ulong addr = base + ((i + k * max_elems) << esz);
574             ldst_elem(env, addr, i + k * max_elems, vd, ra);
575         }
576     }
577 }
578 
579 #define GEN_VEXT_LD_WHOLE(NAME, ETYPE, LOAD_FN)      \
580 void HELPER(NAME)(void *vd, target_ulong base,       \
581                   CPURISCVState *env, uint32_t desc) \
582 {                                                    \
583     vext_ldst_whole(vd, base, env, desc, LOAD_FN,    \
584                     ctzl(sizeof(ETYPE)), GETPC(),    \
585                     MMU_DATA_LOAD);                  \
586 }
587 
588 GEN_VEXT_LD_WHOLE(vl1re8_v,  int8_t,  lde_b)
589 GEN_VEXT_LD_WHOLE(vl1re16_v, int16_t, lde_h)
590 GEN_VEXT_LD_WHOLE(vl1re32_v, int32_t, lde_w)
591 GEN_VEXT_LD_WHOLE(vl1re64_v, int64_t, lde_d)
592 GEN_VEXT_LD_WHOLE(vl2re8_v,  int8_t,  lde_b)
593 GEN_VEXT_LD_WHOLE(vl2re16_v, int16_t, lde_h)
594 GEN_VEXT_LD_WHOLE(vl2re32_v, int32_t, lde_w)
595 GEN_VEXT_LD_WHOLE(vl2re64_v, int64_t, lde_d)
596 GEN_VEXT_LD_WHOLE(vl4re8_v,  int8_t,  lde_b)
597 GEN_VEXT_LD_WHOLE(vl4re16_v, int16_t, lde_h)
598 GEN_VEXT_LD_WHOLE(vl4re32_v, int32_t, lde_w)
599 GEN_VEXT_LD_WHOLE(vl4re64_v, int64_t, lde_d)
600 GEN_VEXT_LD_WHOLE(vl8re8_v,  int8_t,  lde_b)
601 GEN_VEXT_LD_WHOLE(vl8re16_v, int16_t, lde_h)
602 GEN_VEXT_LD_WHOLE(vl8re32_v, int32_t, lde_w)
603 GEN_VEXT_LD_WHOLE(vl8re64_v, int64_t, lde_d)
604 
605 #define GEN_VEXT_ST_WHOLE(NAME, ETYPE, STORE_FN)     \
606 void HELPER(NAME)(void *vd, target_ulong base,       \
607                   CPURISCVState *env, uint32_t desc) \
608 {                                                    \
609     vext_ldst_whole(vd, base, env, desc, STORE_FN,   \
610                     ctzl(sizeof(ETYPE)), GETPC(),    \
611                     MMU_DATA_STORE);                 \
612 }
613 
614 GEN_VEXT_ST_WHOLE(vs1r_v, int8_t, ste_b)
615 GEN_VEXT_ST_WHOLE(vs2r_v, int8_t, ste_b)
616 GEN_VEXT_ST_WHOLE(vs4r_v, int8_t, ste_b)
617 GEN_VEXT_ST_WHOLE(vs8r_v, int8_t, ste_b)
618 
619 /*
620  *** Vector Integer Arithmetic Instructions
621  */
622 
623 /* expand macro args before macro */
624 #define RVVCALL(macro, ...)  macro(__VA_ARGS__)
625 
626 /* (TD, T1, T2, TX1, TX2) */
627 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
628 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
629 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
630 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
631 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
632 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
633 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
634 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
635 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
636 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
637 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
638 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
639 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
640 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
641 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
642 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
643 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
644 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
645 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
646 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
647 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
648 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
649 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
650 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
651 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
652 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
653 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
654 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
655 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
656 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
657 
658 /* operation of two vector elements */
659 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
660 
661 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)    \
662 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)    \
663 {                                                               \
664     TX1 s1 = *((T1 *)vs1 + HS1(i));                             \
665     TX2 s2 = *((T2 *)vs2 + HS2(i));                             \
666     *((TD *)vd + HD(i)) = OP(s2, s1);                           \
667 }
668 #define DO_SUB(N, M) (N - M)
669 #define DO_RSUB(N, M) (M - N)
670 
671 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
672 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
673 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
674 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
675 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
676 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
677 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
678 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
679 
680 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
681                        CPURISCVState *env, uint32_t desc,
682                        uint32_t esz, uint32_t dsz,
683                        opivv2_fn *fn)
684 {
685     uint32_t vm = vext_vm(desc);
686     uint32_t vl = env->vl;
687     uint32_t i;
688 
689     for (i = 0; i < vl; i++) {
690         if (!vm && !vext_elem_mask(v0, i)) {
691             continue;
692         }
693         fn(vd, vs1, vs2, i);
694     }
695 }
696 
697 /* generate the helpers for OPIVV */
698 #define GEN_VEXT_VV(NAME, ESZ, DSZ)                       \
699 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
700                   void *vs2, CPURISCVState *env,          \
701                   uint32_t desc)                          \
702 {                                                         \
703     do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ,     \
704                do_##NAME);                                \
705 }
706 
707 GEN_VEXT_VV(vadd_vv_b, 1, 1)
708 GEN_VEXT_VV(vadd_vv_h, 2, 2)
709 GEN_VEXT_VV(vadd_vv_w, 4, 4)
710 GEN_VEXT_VV(vadd_vv_d, 8, 8)
711 GEN_VEXT_VV(vsub_vv_b, 1, 1)
712 GEN_VEXT_VV(vsub_vv_h, 2, 2)
713 GEN_VEXT_VV(vsub_vv_w, 4, 4)
714 GEN_VEXT_VV(vsub_vv_d, 8, 8)
715 
716 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
717 
718 /*
719  * (T1)s1 gives the real operator type.
720  * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
721  */
722 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
723 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
724 {                                                                   \
725     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
726     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1);                      \
727 }
728 
729 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
730 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
731 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
732 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
733 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
734 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
735 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
736 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
737 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
738 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
739 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
740 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
741 
742 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
743                        CPURISCVState *env, uint32_t desc,
744                        uint32_t esz, uint32_t dsz,
745                        opivx2_fn fn)
746 {
747     uint32_t vm = vext_vm(desc);
748     uint32_t vl = env->vl;
749     uint32_t i;
750 
751     for (i = 0; i < vl; i++) {
752         if (!vm && !vext_elem_mask(v0, i)) {
753             continue;
754         }
755         fn(vd, s1, vs2, i);
756     }
757 }
758 
759 /* generate the helpers for OPIVX */
760 #define GEN_VEXT_VX(NAME, ESZ, DSZ)                       \
761 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
762                   void *vs2, CPURISCVState *env,          \
763                   uint32_t desc)                          \
764 {                                                         \
765     do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ,      \
766                do_##NAME);                                \
767 }
768 
769 GEN_VEXT_VX(vadd_vx_b, 1, 1)
770 GEN_VEXT_VX(vadd_vx_h, 2, 2)
771 GEN_VEXT_VX(vadd_vx_w, 4, 4)
772 GEN_VEXT_VX(vadd_vx_d, 8, 8)
773 GEN_VEXT_VX(vsub_vx_b, 1, 1)
774 GEN_VEXT_VX(vsub_vx_h, 2, 2)
775 GEN_VEXT_VX(vsub_vx_w, 4, 4)
776 GEN_VEXT_VX(vsub_vx_d, 8, 8)
777 GEN_VEXT_VX(vrsub_vx_b, 1, 1)
778 GEN_VEXT_VX(vrsub_vx_h, 2, 2)
779 GEN_VEXT_VX(vrsub_vx_w, 4, 4)
780 GEN_VEXT_VX(vrsub_vx_d, 8, 8)
781 
782 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
783 {
784     intptr_t oprsz = simd_oprsz(desc);
785     intptr_t i;
786 
787     for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
788         *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
789     }
790 }
791 
792 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
793 {
794     intptr_t oprsz = simd_oprsz(desc);
795     intptr_t i;
796 
797     for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
798         *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
799     }
800 }
801 
802 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
803 {
804     intptr_t oprsz = simd_oprsz(desc);
805     intptr_t i;
806 
807     for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
808         *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
809     }
810 }
811 
812 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
813 {
814     intptr_t oprsz = simd_oprsz(desc);
815     intptr_t i;
816 
817     for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
818         *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
819     }
820 }
821 
822 /* Vector Widening Integer Add/Subtract */
823 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
824 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
825 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
826 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
827 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
828 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
829 #define WOP_WUUU_B  uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
830 #define WOP_WUUU_H  uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
831 #define WOP_WUUU_W  uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
832 #define WOP_WSSS_B  int16_t, int8_t, int16_t, int16_t, int16_t
833 #define WOP_WSSS_H  int32_t, int16_t, int32_t, int32_t, int32_t
834 #define WOP_WSSS_W  int64_t, int32_t, int64_t, int64_t, int64_t
835 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
836 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
837 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
838 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
839 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
840 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
841 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
842 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
843 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
844 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
845 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
846 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
847 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
848 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
849 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
850 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
851 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
852 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
853 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
854 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
855 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
856 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
857 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
858 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
859 GEN_VEXT_VV(vwaddu_vv_b, 1, 2)
860 GEN_VEXT_VV(vwaddu_vv_h, 2, 4)
861 GEN_VEXT_VV(vwaddu_vv_w, 4, 8)
862 GEN_VEXT_VV(vwsubu_vv_b, 1, 2)
863 GEN_VEXT_VV(vwsubu_vv_h, 2, 4)
864 GEN_VEXT_VV(vwsubu_vv_w, 4, 8)
865 GEN_VEXT_VV(vwadd_vv_b, 1, 2)
866 GEN_VEXT_VV(vwadd_vv_h, 2, 4)
867 GEN_VEXT_VV(vwadd_vv_w, 4, 8)
868 GEN_VEXT_VV(vwsub_vv_b, 1, 2)
869 GEN_VEXT_VV(vwsub_vv_h, 2, 4)
870 GEN_VEXT_VV(vwsub_vv_w, 4, 8)
871 GEN_VEXT_VV(vwaddu_wv_b, 1, 2)
872 GEN_VEXT_VV(vwaddu_wv_h, 2, 4)
873 GEN_VEXT_VV(vwaddu_wv_w, 4, 8)
874 GEN_VEXT_VV(vwsubu_wv_b, 1, 2)
875 GEN_VEXT_VV(vwsubu_wv_h, 2, 4)
876 GEN_VEXT_VV(vwsubu_wv_w, 4, 8)
877 GEN_VEXT_VV(vwadd_wv_b, 1, 2)
878 GEN_VEXT_VV(vwadd_wv_h, 2, 4)
879 GEN_VEXT_VV(vwadd_wv_w, 4, 8)
880 GEN_VEXT_VV(vwsub_wv_b, 1, 2)
881 GEN_VEXT_VV(vwsub_wv_h, 2, 4)
882 GEN_VEXT_VV(vwsub_wv_w, 4, 8)
883 
884 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
885 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
886 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
887 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
888 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
889 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
890 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
891 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
892 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
893 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
894 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
895 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
896 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
897 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
898 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
899 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
900 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
901 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
902 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
903 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
904 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
905 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
906 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
907 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
908 GEN_VEXT_VX(vwaddu_vx_b, 1, 2)
909 GEN_VEXT_VX(vwaddu_vx_h, 2, 4)
910 GEN_VEXT_VX(vwaddu_vx_w, 4, 8)
911 GEN_VEXT_VX(vwsubu_vx_b, 1, 2)
912 GEN_VEXT_VX(vwsubu_vx_h, 2, 4)
913 GEN_VEXT_VX(vwsubu_vx_w, 4, 8)
914 GEN_VEXT_VX(vwadd_vx_b, 1, 2)
915 GEN_VEXT_VX(vwadd_vx_h, 2, 4)
916 GEN_VEXT_VX(vwadd_vx_w, 4, 8)
917 GEN_VEXT_VX(vwsub_vx_b, 1, 2)
918 GEN_VEXT_VX(vwsub_vx_h, 2, 4)
919 GEN_VEXT_VX(vwsub_vx_w, 4, 8)
920 GEN_VEXT_VX(vwaddu_wx_b, 1, 2)
921 GEN_VEXT_VX(vwaddu_wx_h, 2, 4)
922 GEN_VEXT_VX(vwaddu_wx_w, 4, 8)
923 GEN_VEXT_VX(vwsubu_wx_b, 1, 2)
924 GEN_VEXT_VX(vwsubu_wx_h, 2, 4)
925 GEN_VEXT_VX(vwsubu_wx_w, 4, 8)
926 GEN_VEXT_VX(vwadd_wx_b, 1, 2)
927 GEN_VEXT_VX(vwadd_wx_h, 2, 4)
928 GEN_VEXT_VX(vwadd_wx_w, 4, 8)
929 GEN_VEXT_VX(vwsub_wx_b, 1, 2)
930 GEN_VEXT_VX(vwsub_wx_h, 2, 4)
931 GEN_VEXT_VX(vwsub_wx_w, 4, 8)
932 
933 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
934 #define DO_VADC(N, M, C) (N + M + C)
935 #define DO_VSBC(N, M, C) (N - M - C)
936 
937 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP)              \
938 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
939                   CPURISCVState *env, uint32_t desc)          \
940 {                                                             \
941     uint32_t vl = env->vl;                                    \
942     uint32_t i;                                               \
943                                                               \
944     for (i = 0; i < vl; i++) {                                \
945         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
946         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
947         uint8_t carry = vext_elem_mask(v0, i);                \
948                                                               \
949         *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry);         \
950     }                                                         \
951 }
952 
953 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t,  H1, DO_VADC)
954 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC)
955 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC)
956 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC)
957 
958 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t,  H1, DO_VSBC)
959 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC)
960 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC)
961 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC)
962 
963 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP)                         \
964 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,        \
965                   CPURISCVState *env, uint32_t desc)                     \
966 {                                                                        \
967     uint32_t vl = env->vl;                                               \
968     uint32_t i;                                                          \
969                                                                          \
970     for (i = 0; i < vl; i++) {                                           \
971         ETYPE s2 = *((ETYPE *)vs2 + H(i));                               \
972         uint8_t carry = vext_elem_mask(v0, i);                           \
973                                                                          \
974         *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
975     }                                                                    \
976 }
977 
978 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t,  H1, DO_VADC)
979 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC)
980 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC)
981 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC)
982 
983 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t,  H1, DO_VSBC)
984 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC)
985 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC)
986 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC)
987 
988 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N :           \
989                           (__typeof(N))(N + M) < N)
990 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
991 
992 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP)             \
993 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
994                   CPURISCVState *env, uint32_t desc)          \
995 {                                                             \
996     uint32_t vl = env->vl;                                    \
997     uint32_t vlmax = vext_max_elems(desc,                     \
998                                     ctzl(sizeof(ETYPE)));     \
999     uint32_t i;                                               \
1000                                                               \
1001     for (i = 0; i < vl; i++) {                                \
1002         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1003         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1004         uint8_t carry = vext_elem_mask(v0, i);                \
1005                                                               \
1006         vext_set_elem_mask(vd, i, DO_OP(s2, s1, carry));      \
1007     }                                                         \
1008     for (; i < vlmax; i++) {                                  \
1009         vext_set_elem_mask(vd, i, 0);                         \
1010     }                                                         \
1011 }
1012 
1013 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t,  H1, DO_MADC)
1014 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
1015 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
1016 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
1017 
1018 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t,  H1, DO_MSBC)
1019 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
1020 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
1021 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
1022 
1023 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP)               \
1024 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,          \
1025                   void *vs2, CPURISCVState *env, uint32_t desc) \
1026 {                                                               \
1027     uint32_t vl = env->vl;                                      \
1028     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE))); \
1029     uint32_t i;                                                 \
1030                                                                 \
1031     for (i = 0; i < vl; i++) {                                  \
1032         ETYPE s2 = *((ETYPE *)vs2 + H(i));                      \
1033         uint8_t carry = vext_elem_mask(v0, i);                  \
1034                                                                 \
1035         vext_set_elem_mask(vd, i,                               \
1036                 DO_OP(s2, (ETYPE)(target_long)s1, carry));      \
1037     }                                                           \
1038     for (; i < vlmax; i++) {                                    \
1039         vext_set_elem_mask(vd, i, 0);                           \
1040     }                                                           \
1041 }
1042 
1043 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t,  H1, DO_MADC)
1044 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
1045 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
1046 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
1047 
1048 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t,  H1, DO_MSBC)
1049 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
1050 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
1051 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
1052 
1053 /* Vector Bitwise Logical Instructions */
1054 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
1055 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
1056 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
1057 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
1058 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
1059 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
1060 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
1061 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
1062 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
1063 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
1064 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
1065 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
1066 GEN_VEXT_VV(vand_vv_b, 1, 1)
1067 GEN_VEXT_VV(vand_vv_h, 2, 2)
1068 GEN_VEXT_VV(vand_vv_w, 4, 4)
1069 GEN_VEXT_VV(vand_vv_d, 8, 8)
1070 GEN_VEXT_VV(vor_vv_b, 1, 1)
1071 GEN_VEXT_VV(vor_vv_h, 2, 2)
1072 GEN_VEXT_VV(vor_vv_w, 4, 4)
1073 GEN_VEXT_VV(vor_vv_d, 8, 8)
1074 GEN_VEXT_VV(vxor_vv_b, 1, 1)
1075 GEN_VEXT_VV(vxor_vv_h, 2, 2)
1076 GEN_VEXT_VV(vxor_vv_w, 4, 4)
1077 GEN_VEXT_VV(vxor_vv_d, 8, 8)
1078 
1079 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
1080 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
1081 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
1082 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
1083 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
1084 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
1085 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
1086 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
1087 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
1088 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
1089 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
1090 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
1091 GEN_VEXT_VX(vand_vx_b, 1, 1)
1092 GEN_VEXT_VX(vand_vx_h, 2, 2)
1093 GEN_VEXT_VX(vand_vx_w, 4, 4)
1094 GEN_VEXT_VX(vand_vx_d, 8, 8)
1095 GEN_VEXT_VX(vor_vx_b, 1, 1)
1096 GEN_VEXT_VX(vor_vx_h, 2, 2)
1097 GEN_VEXT_VX(vor_vx_w, 4, 4)
1098 GEN_VEXT_VX(vor_vx_d, 8, 8)
1099 GEN_VEXT_VX(vxor_vx_b, 1, 1)
1100 GEN_VEXT_VX(vxor_vx_h, 2, 2)
1101 GEN_VEXT_VX(vxor_vx_w, 4, 4)
1102 GEN_VEXT_VX(vxor_vx_d, 8, 8)
1103 
1104 /* Vector Single-Width Bit Shift Instructions */
1105 #define DO_SLL(N, M)  (N << (M))
1106 #define DO_SRL(N, M)  (N >> (M))
1107 
1108 /* generate the helpers for shift instructions with two vector operators */
1109 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK)             \
1110 void HELPER(NAME)(void *vd, void *v0, void *vs1,                          \
1111                   void *vs2, CPURISCVState *env, uint32_t desc)           \
1112 {                                                                         \
1113     uint32_t vm = vext_vm(desc);                                          \
1114     uint32_t vl = env->vl;                                                \
1115     uint32_t i;                                                           \
1116                                                                           \
1117     for (i = 0; i < vl; i++) {                                            \
1118         if (!vm && !vext_elem_mask(v0, i)) {                              \
1119             continue;                                                     \
1120         }                                                                 \
1121         TS1 s1 = *((TS1 *)vs1 + HS1(i));                                  \
1122         TS2 s2 = *((TS2 *)vs2 + HS2(i));                                  \
1123         *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK);                        \
1124     }                                                                     \
1125 }
1126 
1127 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t,  uint8_t, H1, H1, DO_SLL, 0x7)
1128 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf)
1129 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f)
1130 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f)
1131 
1132 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
1133 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
1134 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
1135 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
1136 
1137 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t,  int8_t, H1, H1, DO_SRL, 0x7)
1138 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf)
1139 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f)
1140 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f)
1141 
1142 /* generate the helpers for shift instructions with one vector and one scalar */
1143 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK) \
1144 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,      \
1145         void *vs2, CPURISCVState *env, uint32_t desc)       \
1146 {                                                           \
1147     uint32_t vm = vext_vm(desc);                            \
1148     uint32_t vl = env->vl;                                  \
1149     uint32_t i;                                             \
1150                                                             \
1151     for (i = 0; i < vl; i++) {                              \
1152         if (!vm && !vext_elem_mask(v0, i)) {                \
1153             continue;                                       \
1154         }                                                   \
1155         TS2 s2 = *((TS2 *)vs2 + HS2(i));                    \
1156         *((TD *)vd + HD(i)) = OP(s2, s1 & MASK);            \
1157     }                                                       \
1158 }
1159 
1160 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7)
1161 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf)
1162 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f)
1163 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f)
1164 
1165 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7)
1166 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf)
1167 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f)
1168 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f)
1169 
1170 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7)
1171 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf)
1172 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f)
1173 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f)
1174 
1175 /* Vector Narrowing Integer Right Shift Instructions */
1176 GEN_VEXT_SHIFT_VV(vnsrl_vv_b, uint8_t,  uint16_t, H1, H2, DO_SRL, 0xf)
1177 GEN_VEXT_SHIFT_VV(vnsrl_vv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
1178 GEN_VEXT_SHIFT_VV(vnsrl_vv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
1179 GEN_VEXT_SHIFT_VV(vnsra_vv_b, uint8_t,  int16_t, H1, H2, DO_SRL, 0xf)
1180 GEN_VEXT_SHIFT_VV(vnsra_vv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f)
1181 GEN_VEXT_SHIFT_VV(vnsra_vv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f)
1182 GEN_VEXT_SHIFT_VX(vnsrl_vx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf)
1183 GEN_VEXT_SHIFT_VX(vnsrl_vx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f)
1184 GEN_VEXT_SHIFT_VX(vnsrl_vx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f)
1185 GEN_VEXT_SHIFT_VX(vnsra_vx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf)
1186 GEN_VEXT_SHIFT_VX(vnsra_vx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f)
1187 GEN_VEXT_SHIFT_VX(vnsra_vx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f)
1188 
1189 /* Vector Integer Comparison Instructions */
1190 #define DO_MSEQ(N, M) (N == M)
1191 #define DO_MSNE(N, M) (N != M)
1192 #define DO_MSLT(N, M) (N < M)
1193 #define DO_MSLE(N, M) (N <= M)
1194 #define DO_MSGT(N, M) (N > M)
1195 
1196 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP)                \
1197 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
1198                   CPURISCVState *env, uint32_t desc)          \
1199 {                                                             \
1200     uint32_t vm = vext_vm(desc);                              \
1201     uint32_t vl = env->vl;                                    \
1202     uint32_t vlmax = vext_max_elems(desc,                     \
1203                                     ctzl(sizeof(ETYPE)));     \
1204     uint32_t i;                                               \
1205                                                               \
1206     for (i = 0; i < vl; i++) {                                \
1207         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
1208         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
1209         if (!vm && !vext_elem_mask(v0, i)) {                  \
1210             continue;                                         \
1211         }                                                     \
1212         vext_set_elem_mask(vd, i, DO_OP(s2, s1));             \
1213     }                                                         \
1214     for (; i < vlmax; i++) {                                  \
1215         vext_set_elem_mask(vd, i, 0);                         \
1216     }                                                         \
1217 }
1218 
1219 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t,  H1, DO_MSEQ)
1220 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
1221 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
1222 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
1223 
1224 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t,  H1, DO_MSNE)
1225 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
1226 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
1227 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
1228 
1229 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t,  H1, DO_MSLT)
1230 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
1231 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
1232 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
1233 
1234 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t,  H1, DO_MSLT)
1235 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
1236 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
1237 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
1238 
1239 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t,  H1, DO_MSLE)
1240 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
1241 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
1242 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
1243 
1244 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t,  H1, DO_MSLE)
1245 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
1246 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
1247 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
1248 
1249 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP)                      \
1250 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,   \
1251                   CPURISCVState *env, uint32_t desc)                \
1252 {                                                                   \
1253     uint32_t vm = vext_vm(desc);                                    \
1254     uint32_t vl = env->vl;                                          \
1255     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE)));     \
1256     uint32_t i;                                                     \
1257                                                                     \
1258     for (i = 0; i < vl; i++) {                                      \
1259         ETYPE s2 = *((ETYPE *)vs2 + H(i));                          \
1260         if (!vm && !vext_elem_mask(v0, i)) {                        \
1261             continue;                                               \
1262         }                                                           \
1263         vext_set_elem_mask(vd, i,                                   \
1264                 DO_OP(s2, (ETYPE)(target_long)s1));                 \
1265     }                                                               \
1266     for (; i < vlmax; i++) {                                        \
1267         vext_set_elem_mask(vd, i, 0);                               \
1268     }                                                               \
1269 }
1270 
1271 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t,  H1, DO_MSEQ)
1272 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
1273 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
1274 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
1275 
1276 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t,  H1, DO_MSNE)
1277 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
1278 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
1279 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
1280 
1281 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t,  H1, DO_MSLT)
1282 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
1283 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
1284 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
1285 
1286 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t,  H1, DO_MSLT)
1287 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
1288 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
1289 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
1290 
1291 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t,  H1, DO_MSLE)
1292 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
1293 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
1294 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
1295 
1296 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t,  H1, DO_MSLE)
1297 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
1298 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
1299 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
1300 
1301 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t,  H1, DO_MSGT)
1302 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
1303 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
1304 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
1305 
1306 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t,  H1, DO_MSGT)
1307 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
1308 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
1309 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
1310 
1311 /* Vector Integer Min/Max Instructions */
1312 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
1313 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
1314 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
1315 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
1316 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
1317 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
1318 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
1319 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
1320 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
1321 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
1322 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
1323 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
1324 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
1325 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
1326 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
1327 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
1328 GEN_VEXT_VV(vminu_vv_b, 1, 1)
1329 GEN_VEXT_VV(vminu_vv_h, 2, 2)
1330 GEN_VEXT_VV(vminu_vv_w, 4, 4)
1331 GEN_VEXT_VV(vminu_vv_d, 8, 8)
1332 GEN_VEXT_VV(vmin_vv_b, 1, 1)
1333 GEN_VEXT_VV(vmin_vv_h, 2, 2)
1334 GEN_VEXT_VV(vmin_vv_w, 4, 4)
1335 GEN_VEXT_VV(vmin_vv_d, 8, 8)
1336 GEN_VEXT_VV(vmaxu_vv_b, 1, 1)
1337 GEN_VEXT_VV(vmaxu_vv_h, 2, 2)
1338 GEN_VEXT_VV(vmaxu_vv_w, 4, 4)
1339 GEN_VEXT_VV(vmaxu_vv_d, 8, 8)
1340 GEN_VEXT_VV(vmax_vv_b, 1, 1)
1341 GEN_VEXT_VV(vmax_vv_h, 2, 2)
1342 GEN_VEXT_VV(vmax_vv_w, 4, 4)
1343 GEN_VEXT_VV(vmax_vv_d, 8, 8)
1344 
1345 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
1346 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
1347 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
1348 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
1349 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
1350 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
1351 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
1352 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
1353 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
1354 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
1355 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
1356 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
1357 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
1358 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
1359 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
1360 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
1361 GEN_VEXT_VX(vminu_vx_b, 1, 1)
1362 GEN_VEXT_VX(vminu_vx_h, 2, 2)
1363 GEN_VEXT_VX(vminu_vx_w, 4, 4)
1364 GEN_VEXT_VX(vminu_vx_d, 8, 8)
1365 GEN_VEXT_VX(vmin_vx_b, 1, 1)
1366 GEN_VEXT_VX(vmin_vx_h, 2, 2)
1367 GEN_VEXT_VX(vmin_vx_w, 4, 4)
1368 GEN_VEXT_VX(vmin_vx_d, 8, 8)
1369 GEN_VEXT_VX(vmaxu_vx_b, 1, 1)
1370 GEN_VEXT_VX(vmaxu_vx_h, 2, 2)
1371 GEN_VEXT_VX(vmaxu_vx_w, 4, 4)
1372 GEN_VEXT_VX(vmaxu_vx_d, 8, 8)
1373 GEN_VEXT_VX(vmax_vx_b, 1, 1)
1374 GEN_VEXT_VX(vmax_vx_h, 2, 2)
1375 GEN_VEXT_VX(vmax_vx_w, 4, 4)
1376 GEN_VEXT_VX(vmax_vx_d, 8, 8)
1377 
1378 /* Vector Single-Width Integer Multiply Instructions */
1379 #define DO_MUL(N, M) (N * M)
1380 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
1381 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
1382 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
1383 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
1384 GEN_VEXT_VV(vmul_vv_b, 1, 1)
1385 GEN_VEXT_VV(vmul_vv_h, 2, 2)
1386 GEN_VEXT_VV(vmul_vv_w, 4, 4)
1387 GEN_VEXT_VV(vmul_vv_d, 8, 8)
1388 
1389 static int8_t do_mulh_b(int8_t s2, int8_t s1)
1390 {
1391     return (int16_t)s2 * (int16_t)s1 >> 8;
1392 }
1393 
1394 static int16_t do_mulh_h(int16_t s2, int16_t s1)
1395 {
1396     return (int32_t)s2 * (int32_t)s1 >> 16;
1397 }
1398 
1399 static int32_t do_mulh_w(int32_t s2, int32_t s1)
1400 {
1401     return (int64_t)s2 * (int64_t)s1 >> 32;
1402 }
1403 
1404 static int64_t do_mulh_d(int64_t s2, int64_t s1)
1405 {
1406     uint64_t hi_64, lo_64;
1407 
1408     muls64(&lo_64, &hi_64, s1, s2);
1409     return hi_64;
1410 }
1411 
1412 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
1413 {
1414     return (uint16_t)s2 * (uint16_t)s1 >> 8;
1415 }
1416 
1417 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
1418 {
1419     return (uint32_t)s2 * (uint32_t)s1 >> 16;
1420 }
1421 
1422 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
1423 {
1424     return (uint64_t)s2 * (uint64_t)s1 >> 32;
1425 }
1426 
1427 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
1428 {
1429     uint64_t hi_64, lo_64;
1430 
1431     mulu64(&lo_64, &hi_64, s2, s1);
1432     return hi_64;
1433 }
1434 
1435 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
1436 {
1437     return (int16_t)s2 * (uint16_t)s1 >> 8;
1438 }
1439 
1440 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
1441 {
1442     return (int32_t)s2 * (uint32_t)s1 >> 16;
1443 }
1444 
1445 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
1446 {
1447     return (int64_t)s2 * (uint64_t)s1 >> 32;
1448 }
1449 
1450 /*
1451  * Let  A = signed operand,
1452  *      B = unsigned operand
1453  *      P = mulu64(A, B), unsigned product
1454  *
1455  * LET  X = 2 ** 64  - A, 2's complement of A
1456  *      SP = signed product
1457  * THEN
1458  *      IF A < 0
1459  *          SP = -X * B
1460  *             = -(2 ** 64 - A) * B
1461  *             = A * B - 2 ** 64 * B
1462  *             = P - 2 ** 64 * B
1463  *      ELSE
1464  *          SP = P
1465  * THEN
1466  *      HI_P -= (A < 0 ? B : 0)
1467  */
1468 
1469 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
1470 {
1471     uint64_t hi_64, lo_64;
1472 
1473     mulu64(&lo_64, &hi_64, s2, s1);
1474 
1475     hi_64 -= s2 < 0 ? s1 : 0;
1476     return hi_64;
1477 }
1478 
1479 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
1480 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
1481 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
1482 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
1483 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
1484 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
1485 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
1486 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
1487 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
1488 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
1489 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
1490 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
1491 GEN_VEXT_VV(vmulh_vv_b, 1, 1)
1492 GEN_VEXT_VV(vmulh_vv_h, 2, 2)
1493 GEN_VEXT_VV(vmulh_vv_w, 4, 4)
1494 GEN_VEXT_VV(vmulh_vv_d, 8, 8)
1495 GEN_VEXT_VV(vmulhu_vv_b, 1, 1)
1496 GEN_VEXT_VV(vmulhu_vv_h, 2, 2)
1497 GEN_VEXT_VV(vmulhu_vv_w, 4, 4)
1498 GEN_VEXT_VV(vmulhu_vv_d, 8, 8)
1499 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1)
1500 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2)
1501 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4)
1502 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8)
1503 
1504 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
1505 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
1506 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
1507 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
1508 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
1509 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
1510 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
1511 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
1512 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
1513 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
1514 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
1515 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
1516 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
1517 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
1518 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
1519 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
1520 GEN_VEXT_VX(vmul_vx_b, 1, 1)
1521 GEN_VEXT_VX(vmul_vx_h, 2, 2)
1522 GEN_VEXT_VX(vmul_vx_w, 4, 4)
1523 GEN_VEXT_VX(vmul_vx_d, 8, 8)
1524 GEN_VEXT_VX(vmulh_vx_b, 1, 1)
1525 GEN_VEXT_VX(vmulh_vx_h, 2, 2)
1526 GEN_VEXT_VX(vmulh_vx_w, 4, 4)
1527 GEN_VEXT_VX(vmulh_vx_d, 8, 8)
1528 GEN_VEXT_VX(vmulhu_vx_b, 1, 1)
1529 GEN_VEXT_VX(vmulhu_vx_h, 2, 2)
1530 GEN_VEXT_VX(vmulhu_vx_w, 4, 4)
1531 GEN_VEXT_VX(vmulhu_vx_d, 8, 8)
1532 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1)
1533 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2)
1534 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4)
1535 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8)
1536 
1537 /* Vector Integer Divide Instructions */
1538 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1539 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1540 #define DO_DIV(N, M)  (unlikely(M == 0) ? (__typeof(N))(-1) :\
1541         unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1542 #define DO_REM(N, M)  (unlikely(M == 0) ? N :\
1543         unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1544 
1545 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
1546 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
1547 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
1548 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
1549 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
1550 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
1551 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
1552 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
1553 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
1554 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
1555 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
1556 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
1557 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
1558 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
1559 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
1560 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
1561 GEN_VEXT_VV(vdivu_vv_b, 1, 1)
1562 GEN_VEXT_VV(vdivu_vv_h, 2, 2)
1563 GEN_VEXT_VV(vdivu_vv_w, 4, 4)
1564 GEN_VEXT_VV(vdivu_vv_d, 8, 8)
1565 GEN_VEXT_VV(vdiv_vv_b, 1, 1)
1566 GEN_VEXT_VV(vdiv_vv_h, 2, 2)
1567 GEN_VEXT_VV(vdiv_vv_w, 4, 4)
1568 GEN_VEXT_VV(vdiv_vv_d, 8, 8)
1569 GEN_VEXT_VV(vremu_vv_b, 1, 1)
1570 GEN_VEXT_VV(vremu_vv_h, 2, 2)
1571 GEN_VEXT_VV(vremu_vv_w, 4, 4)
1572 GEN_VEXT_VV(vremu_vv_d, 8, 8)
1573 GEN_VEXT_VV(vrem_vv_b, 1, 1)
1574 GEN_VEXT_VV(vrem_vv_h, 2, 2)
1575 GEN_VEXT_VV(vrem_vv_w, 4, 4)
1576 GEN_VEXT_VV(vrem_vv_d, 8, 8)
1577 
1578 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
1579 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
1580 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
1581 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
1582 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
1583 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
1584 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
1585 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
1586 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
1587 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
1588 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
1589 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
1590 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
1591 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
1592 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
1593 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
1594 GEN_VEXT_VX(vdivu_vx_b, 1, 1)
1595 GEN_VEXT_VX(vdivu_vx_h, 2, 2)
1596 GEN_VEXT_VX(vdivu_vx_w, 4, 4)
1597 GEN_VEXT_VX(vdivu_vx_d, 8, 8)
1598 GEN_VEXT_VX(vdiv_vx_b, 1, 1)
1599 GEN_VEXT_VX(vdiv_vx_h, 2, 2)
1600 GEN_VEXT_VX(vdiv_vx_w, 4, 4)
1601 GEN_VEXT_VX(vdiv_vx_d, 8, 8)
1602 GEN_VEXT_VX(vremu_vx_b, 1, 1)
1603 GEN_VEXT_VX(vremu_vx_h, 2, 2)
1604 GEN_VEXT_VX(vremu_vx_w, 4, 4)
1605 GEN_VEXT_VX(vremu_vx_d, 8, 8)
1606 GEN_VEXT_VX(vrem_vx_b, 1, 1)
1607 GEN_VEXT_VX(vrem_vx_h, 2, 2)
1608 GEN_VEXT_VX(vrem_vx_w, 4, 4)
1609 GEN_VEXT_VX(vrem_vx_d, 8, 8)
1610 
1611 /* Vector Widening Integer Multiply Instructions */
1612 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
1613 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
1614 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
1615 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
1616 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
1617 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
1618 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
1619 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
1620 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
1621 GEN_VEXT_VV(vwmul_vv_b, 1, 2)
1622 GEN_VEXT_VV(vwmul_vv_h, 2, 4)
1623 GEN_VEXT_VV(vwmul_vv_w, 4, 8)
1624 GEN_VEXT_VV(vwmulu_vv_b, 1, 2)
1625 GEN_VEXT_VV(vwmulu_vv_h, 2, 4)
1626 GEN_VEXT_VV(vwmulu_vv_w, 4, 8)
1627 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2)
1628 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4)
1629 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8)
1630 
1631 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
1632 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
1633 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
1634 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
1635 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
1636 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
1637 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
1638 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
1639 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
1640 GEN_VEXT_VX(vwmul_vx_b, 1, 2)
1641 GEN_VEXT_VX(vwmul_vx_h, 2, 4)
1642 GEN_VEXT_VX(vwmul_vx_w, 4, 8)
1643 GEN_VEXT_VX(vwmulu_vx_b, 1, 2)
1644 GEN_VEXT_VX(vwmulu_vx_h, 2, 4)
1645 GEN_VEXT_VX(vwmulu_vx_w, 4, 8)
1646 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2)
1647 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4)
1648 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8)
1649 
1650 /* Vector Single-Width Integer Multiply-Add Instructions */
1651 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)   \
1652 static void do_##NAME(void *vd, void *vs1, void *vs2, int i)       \
1653 {                                                                  \
1654     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
1655     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
1656     TD d = *((TD *)vd + HD(i));                                    \
1657     *((TD *)vd + HD(i)) = OP(s2, s1, d);                           \
1658 }
1659 
1660 #define DO_MACC(N, M, D) (M * N + D)
1661 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1662 #define DO_MADD(N, M, D) (M * D + N)
1663 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1664 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
1665 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
1666 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
1667 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
1668 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
1669 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
1670 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
1671 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
1672 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
1673 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
1674 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
1675 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
1676 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
1677 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
1678 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
1679 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
1680 GEN_VEXT_VV(vmacc_vv_b, 1, 1)
1681 GEN_VEXT_VV(vmacc_vv_h, 2, 2)
1682 GEN_VEXT_VV(vmacc_vv_w, 4, 4)
1683 GEN_VEXT_VV(vmacc_vv_d, 8, 8)
1684 GEN_VEXT_VV(vnmsac_vv_b, 1, 1)
1685 GEN_VEXT_VV(vnmsac_vv_h, 2, 2)
1686 GEN_VEXT_VV(vnmsac_vv_w, 4, 4)
1687 GEN_VEXT_VV(vnmsac_vv_d, 8, 8)
1688 GEN_VEXT_VV(vmadd_vv_b, 1, 1)
1689 GEN_VEXT_VV(vmadd_vv_h, 2, 2)
1690 GEN_VEXT_VV(vmadd_vv_w, 4, 4)
1691 GEN_VEXT_VV(vmadd_vv_d, 8, 8)
1692 GEN_VEXT_VV(vnmsub_vv_b, 1, 1)
1693 GEN_VEXT_VV(vnmsub_vv_h, 2, 2)
1694 GEN_VEXT_VV(vnmsub_vv_w, 4, 4)
1695 GEN_VEXT_VV(vnmsub_vv_d, 8, 8)
1696 
1697 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)             \
1698 static void do_##NAME(void *vd, target_long s1, void *vs2, int i)   \
1699 {                                                                   \
1700     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1701     TD d = *((TD *)vd + HD(i));                                     \
1702     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d);                   \
1703 }
1704 
1705 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
1706 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
1707 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
1708 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
1709 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
1710 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
1711 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
1712 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
1713 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
1714 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
1715 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
1716 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
1717 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
1718 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
1719 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
1720 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
1721 GEN_VEXT_VX(vmacc_vx_b, 1, 1)
1722 GEN_VEXT_VX(vmacc_vx_h, 2, 2)
1723 GEN_VEXT_VX(vmacc_vx_w, 4, 4)
1724 GEN_VEXT_VX(vmacc_vx_d, 8, 8)
1725 GEN_VEXT_VX(vnmsac_vx_b, 1, 1)
1726 GEN_VEXT_VX(vnmsac_vx_h, 2, 2)
1727 GEN_VEXT_VX(vnmsac_vx_w, 4, 4)
1728 GEN_VEXT_VX(vnmsac_vx_d, 8, 8)
1729 GEN_VEXT_VX(vmadd_vx_b, 1, 1)
1730 GEN_VEXT_VX(vmadd_vx_h, 2, 2)
1731 GEN_VEXT_VX(vmadd_vx_w, 4, 4)
1732 GEN_VEXT_VX(vmadd_vx_d, 8, 8)
1733 GEN_VEXT_VX(vnmsub_vx_b, 1, 1)
1734 GEN_VEXT_VX(vnmsub_vx_h, 2, 2)
1735 GEN_VEXT_VX(vnmsub_vx_w, 4, 4)
1736 GEN_VEXT_VX(vnmsub_vx_d, 8, 8)
1737 
1738 /* Vector Widening Integer Multiply-Add Instructions */
1739 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
1740 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
1741 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
1742 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
1743 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
1744 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
1745 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
1746 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
1747 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
1748 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2)
1749 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4)
1750 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8)
1751 GEN_VEXT_VV(vwmacc_vv_b, 1, 2)
1752 GEN_VEXT_VV(vwmacc_vv_h, 2, 4)
1753 GEN_VEXT_VV(vwmacc_vv_w, 4, 8)
1754 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2)
1755 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4)
1756 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8)
1757 
1758 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
1759 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
1760 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
1761 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
1762 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
1763 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
1764 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
1765 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
1766 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
1767 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
1768 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
1769 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
1770 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2)
1771 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4)
1772 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8)
1773 GEN_VEXT_VX(vwmacc_vx_b, 1, 2)
1774 GEN_VEXT_VX(vwmacc_vx_h, 2, 4)
1775 GEN_VEXT_VX(vwmacc_vx_w, 4, 8)
1776 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2)
1777 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4)
1778 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8)
1779 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2)
1780 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4)
1781 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8)
1782 
1783 /* Vector Integer Merge and Move Instructions */
1784 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H)                              \
1785 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env,           \
1786                   uint32_t desc)                                     \
1787 {                                                                    \
1788     uint32_t vl = env->vl;                                           \
1789     uint32_t i;                                                      \
1790                                                                      \
1791     for (i = 0; i < vl; i++) {                                       \
1792         ETYPE s1 = *((ETYPE *)vs1 + H(i));                           \
1793         *((ETYPE *)vd + H(i)) = s1;                                  \
1794     }                                                                \
1795 }
1796 
1797 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t,  H1)
1798 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2)
1799 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4)
1800 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8)
1801 
1802 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H)                              \
1803 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env,         \
1804                   uint32_t desc)                                     \
1805 {                                                                    \
1806     uint32_t vl = env->vl;                                           \
1807     uint32_t i;                                                      \
1808                                                                      \
1809     for (i = 0; i < vl; i++) {                                       \
1810         *((ETYPE *)vd + H(i)) = (ETYPE)s1;                           \
1811     }                                                                \
1812 }
1813 
1814 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t,  H1)
1815 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2)
1816 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4)
1817 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8)
1818 
1819 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H)                           \
1820 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,          \
1821                   CPURISCVState *env, uint32_t desc)                 \
1822 {                                                                    \
1823     uint32_t vl = env->vl;                                           \
1824     uint32_t i;                                                      \
1825                                                                      \
1826     for (i = 0; i < vl; i++) {                                       \
1827         ETYPE *vt = (!vext_elem_mask(v0, i) ? vs2 : vs1);            \
1828         *((ETYPE *)vd + H(i)) = *(vt + H(i));                        \
1829     }                                                                \
1830 }
1831 
1832 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t,  H1)
1833 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2)
1834 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4)
1835 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8)
1836 
1837 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H)                           \
1838 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,               \
1839                   void *vs2, CPURISCVState *env, uint32_t desc)      \
1840 {                                                                    \
1841     uint32_t vl = env->vl;                                           \
1842     uint32_t i;                                                      \
1843                                                                      \
1844     for (i = 0; i < vl; i++) {                                       \
1845         ETYPE s2 = *((ETYPE *)vs2 + H(i));                           \
1846         ETYPE d = (!vext_elem_mask(v0, i) ? s2 :                     \
1847                    (ETYPE)(target_long)s1);                          \
1848         *((ETYPE *)vd + H(i)) = d;                                   \
1849     }                                                                \
1850 }
1851 
1852 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t,  H1)
1853 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2)
1854 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4)
1855 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8)
1856 
1857 /*
1858  *** Vector Fixed-Point Arithmetic Instructions
1859  */
1860 
1861 /* Vector Single-Width Saturating Add and Subtract */
1862 
1863 /*
1864  * As fixed point instructions probably have round mode and saturation,
1865  * define common macros for fixed point here.
1866  */
1867 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
1868                           CPURISCVState *env, int vxrm);
1869 
1870 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)     \
1871 static inline void                                                  \
1872 do_##NAME(void *vd, void *vs1, void *vs2, int i,                    \
1873           CPURISCVState *env, int vxrm)                             \
1874 {                                                                   \
1875     TX1 s1 = *((T1 *)vs1 + HS1(i));                                 \
1876     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1877     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1);                    \
1878 }
1879 
1880 static inline void
1881 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
1882              CPURISCVState *env,
1883              uint32_t vl, uint32_t vm, int vxrm,
1884              opivv2_rm_fn *fn)
1885 {
1886     for (uint32_t i = 0; i < vl; i++) {
1887         if (!vm && !vext_elem_mask(v0, i)) {
1888             continue;
1889         }
1890         fn(vd, vs1, vs2, i, env, vxrm);
1891     }
1892 }
1893 
1894 static inline void
1895 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
1896              CPURISCVState *env,
1897              uint32_t desc, uint32_t esz, uint32_t dsz,
1898              opivv2_rm_fn *fn)
1899 {
1900     uint32_t vm = vext_vm(desc);
1901     uint32_t vl = env->vl;
1902 
1903     switch (env->vxrm) {
1904     case 0: /* rnu */
1905         vext_vv_rm_1(vd, v0, vs1, vs2,
1906                      env, vl, vm, 0, fn);
1907         break;
1908     case 1: /* rne */
1909         vext_vv_rm_1(vd, v0, vs1, vs2,
1910                      env, vl, vm, 1, fn);
1911         break;
1912     case 2: /* rdn */
1913         vext_vv_rm_1(vd, v0, vs1, vs2,
1914                      env, vl, vm, 2, fn);
1915         break;
1916     default: /* rod */
1917         vext_vv_rm_1(vd, v0, vs1, vs2,
1918                      env, vl, vm, 3, fn);
1919         break;
1920     }
1921 }
1922 
1923 /* generate helpers for fixed point instructions with OPIVV format */
1924 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ)                          \
1925 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,     \
1926                   CPURISCVState *env, uint32_t desc)            \
1927 {                                                               \
1928     vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ,         \
1929                  do_##NAME);                                    \
1930 }
1931 
1932 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
1933 {
1934     uint8_t res = a + b;
1935     if (res < a) {
1936         res = UINT8_MAX;
1937         env->vxsat = 0x1;
1938     }
1939     return res;
1940 }
1941 
1942 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
1943                                uint16_t b)
1944 {
1945     uint16_t res = a + b;
1946     if (res < a) {
1947         res = UINT16_MAX;
1948         env->vxsat = 0x1;
1949     }
1950     return res;
1951 }
1952 
1953 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
1954                                uint32_t b)
1955 {
1956     uint32_t res = a + b;
1957     if (res < a) {
1958         res = UINT32_MAX;
1959         env->vxsat = 0x1;
1960     }
1961     return res;
1962 }
1963 
1964 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
1965                                uint64_t b)
1966 {
1967     uint64_t res = a + b;
1968     if (res < a) {
1969         res = UINT64_MAX;
1970         env->vxsat = 0x1;
1971     }
1972     return res;
1973 }
1974 
1975 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
1976 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
1977 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
1978 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
1979 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1)
1980 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2)
1981 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4)
1982 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8)
1983 
1984 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
1985                           CPURISCVState *env, int vxrm);
1986 
1987 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)          \
1988 static inline void                                                  \
1989 do_##NAME(void *vd, target_long s1, void *vs2, int i,               \
1990           CPURISCVState *env, int vxrm)                             \
1991 {                                                                   \
1992     TX2 s2 = *((T2 *)vs2 + HS2(i));                                 \
1993     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1);           \
1994 }
1995 
1996 static inline void
1997 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
1998              CPURISCVState *env,
1999              uint32_t vl, uint32_t vm, int vxrm,
2000              opivx2_rm_fn *fn)
2001 {
2002     for (uint32_t i = 0; i < vl; i++) {
2003         if (!vm && !vext_elem_mask(v0, i)) {
2004             continue;
2005         }
2006         fn(vd, s1, vs2, i, env, vxrm);
2007     }
2008 }
2009 
2010 static inline void
2011 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
2012              CPURISCVState *env,
2013              uint32_t desc, uint32_t esz, uint32_t dsz,
2014              opivx2_rm_fn *fn)
2015 {
2016     uint32_t vm = vext_vm(desc);
2017     uint32_t vl = env->vl;
2018 
2019     switch (env->vxrm) {
2020     case 0: /* rnu */
2021         vext_vx_rm_1(vd, v0, s1, vs2,
2022                      env, vl, vm, 0, fn);
2023         break;
2024     case 1: /* rne */
2025         vext_vx_rm_1(vd, v0, s1, vs2,
2026                      env, vl, vm, 1, fn);
2027         break;
2028     case 2: /* rdn */
2029         vext_vx_rm_1(vd, v0, s1, vs2,
2030                      env, vl, vm, 2, fn);
2031         break;
2032     default: /* rod */
2033         vext_vx_rm_1(vd, v0, s1, vs2,
2034                      env, vl, vm, 3, fn);
2035         break;
2036     }
2037 }
2038 
2039 /* generate helpers for fixed point instructions with OPIVX format */
2040 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ)                    \
2041 void HELPER(NAME)(void *vd, void *v0, target_ulong s1,    \
2042         void *vs2, CPURISCVState *env, uint32_t desc)     \
2043 {                                                         \
2044     vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ,    \
2045                  do_##NAME);                              \
2046 }
2047 
2048 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
2049 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
2050 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
2051 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
2052 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1)
2053 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2)
2054 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4)
2055 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8)
2056 
2057 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2058 {
2059     int8_t res = a + b;
2060     if ((res ^ a) & (res ^ b) & INT8_MIN) {
2061         res = a > 0 ? INT8_MAX : INT8_MIN;
2062         env->vxsat = 0x1;
2063     }
2064     return res;
2065 }
2066 
2067 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2068 {
2069     int16_t res = a + b;
2070     if ((res ^ a) & (res ^ b) & INT16_MIN) {
2071         res = a > 0 ? INT16_MAX : INT16_MIN;
2072         env->vxsat = 0x1;
2073     }
2074     return res;
2075 }
2076 
2077 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2078 {
2079     int32_t res = a + b;
2080     if ((res ^ a) & (res ^ b) & INT32_MIN) {
2081         res = a > 0 ? INT32_MAX : INT32_MIN;
2082         env->vxsat = 0x1;
2083     }
2084     return res;
2085 }
2086 
2087 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2088 {
2089     int64_t res = a + b;
2090     if ((res ^ a) & (res ^ b) & INT64_MIN) {
2091         res = a > 0 ? INT64_MAX : INT64_MIN;
2092         env->vxsat = 0x1;
2093     }
2094     return res;
2095 }
2096 
2097 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
2098 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
2099 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
2100 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
2101 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1)
2102 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2)
2103 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4)
2104 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8)
2105 
2106 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
2107 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
2108 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
2109 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
2110 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1)
2111 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2)
2112 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4)
2113 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8)
2114 
2115 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2116 {
2117     uint8_t res = a - b;
2118     if (res > a) {
2119         res = 0;
2120         env->vxsat = 0x1;
2121     }
2122     return res;
2123 }
2124 
2125 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
2126                                uint16_t b)
2127 {
2128     uint16_t res = a - b;
2129     if (res > a) {
2130         res = 0;
2131         env->vxsat = 0x1;
2132     }
2133     return res;
2134 }
2135 
2136 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
2137                                uint32_t b)
2138 {
2139     uint32_t res = a - b;
2140     if (res > a) {
2141         res = 0;
2142         env->vxsat = 0x1;
2143     }
2144     return res;
2145 }
2146 
2147 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
2148                                uint64_t b)
2149 {
2150     uint64_t res = a - b;
2151     if (res > a) {
2152         res = 0;
2153         env->vxsat = 0x1;
2154     }
2155     return res;
2156 }
2157 
2158 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
2159 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
2160 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
2161 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
2162 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1)
2163 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2)
2164 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4)
2165 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8)
2166 
2167 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
2168 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
2169 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
2170 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
2171 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1)
2172 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2)
2173 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4)
2174 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8)
2175 
2176 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2177 {
2178     int8_t res = a - b;
2179     if ((res ^ a) & (a ^ b) & INT8_MIN) {
2180         res = a >= 0 ? INT8_MAX : INT8_MIN;
2181         env->vxsat = 0x1;
2182     }
2183     return res;
2184 }
2185 
2186 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2187 {
2188     int16_t res = a - b;
2189     if ((res ^ a) & (a ^ b) & INT16_MIN) {
2190         res = a >= 0 ? INT16_MAX : INT16_MIN;
2191         env->vxsat = 0x1;
2192     }
2193     return res;
2194 }
2195 
2196 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2197 {
2198     int32_t res = a - b;
2199     if ((res ^ a) & (a ^ b) & INT32_MIN) {
2200         res = a >= 0 ? INT32_MAX : INT32_MIN;
2201         env->vxsat = 0x1;
2202     }
2203     return res;
2204 }
2205 
2206 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2207 {
2208     int64_t res = a - b;
2209     if ((res ^ a) & (a ^ b) & INT64_MIN) {
2210         res = a >= 0 ? INT64_MAX : INT64_MIN;
2211         env->vxsat = 0x1;
2212     }
2213     return res;
2214 }
2215 
2216 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
2217 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
2218 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
2219 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
2220 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1)
2221 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2)
2222 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4)
2223 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8)
2224 
2225 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
2226 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
2227 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
2228 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
2229 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1)
2230 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2)
2231 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4)
2232 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8)
2233 
2234 /* Vector Single-Width Averaging Add and Subtract */
2235 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
2236 {
2237     uint8_t d = extract64(v, shift, 1);
2238     uint8_t d1;
2239     uint64_t D1, D2;
2240 
2241     if (shift == 0 || shift > 64) {
2242         return 0;
2243     }
2244 
2245     d1 = extract64(v, shift - 1, 1);
2246     D1 = extract64(v, 0, shift);
2247     if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
2248         return d1;
2249     } else if (vxrm == 1) { /* round-to-nearest-even */
2250         if (shift > 1) {
2251             D2 = extract64(v, 0, shift - 1);
2252             return d1 & ((D2 != 0) | d);
2253         } else {
2254             return d1 & d;
2255         }
2256     } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2257         return !d & (D1 != 0);
2258     }
2259     return 0; /* round-down (truncate) */
2260 }
2261 
2262 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2263 {
2264     int64_t res = (int64_t)a + b;
2265     uint8_t round = get_round(vxrm, res, 1);
2266 
2267     return (res >> 1) + round;
2268 }
2269 
2270 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2271 {
2272     int64_t res = a + b;
2273     uint8_t round = get_round(vxrm, res, 1);
2274     int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
2275 
2276     /* With signed overflow, bit 64 is inverse of bit 63. */
2277     return ((res >> 1) ^ over) + round;
2278 }
2279 
2280 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
2281 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
2282 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
2283 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
2284 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1)
2285 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2)
2286 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4)
2287 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8)
2288 
2289 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
2290 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
2291 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
2292 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
2293 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1)
2294 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2)
2295 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4)
2296 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8)
2297 
2298 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2299 {
2300     int64_t res = (int64_t)a - b;
2301     uint8_t round = get_round(vxrm, res, 1);
2302 
2303     return (res >> 1) + round;
2304 }
2305 
2306 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2307 {
2308     int64_t res = (int64_t)a - b;
2309     uint8_t round = get_round(vxrm, res, 1);
2310     int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
2311 
2312     /* With signed overflow, bit 64 is inverse of bit 63. */
2313     return ((res >> 1) ^ over) + round;
2314 }
2315 
2316 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
2317 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
2318 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
2319 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
2320 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1)
2321 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2)
2322 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4)
2323 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8)
2324 
2325 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
2326 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
2327 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
2328 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
2329 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1)
2330 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2)
2331 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4)
2332 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8)
2333 
2334 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2335 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2336 {
2337     uint8_t round;
2338     int16_t res;
2339 
2340     res = (int16_t)a * (int16_t)b;
2341     round = get_round(vxrm, res, 7);
2342     res   = (res >> 7) + round;
2343 
2344     if (res > INT8_MAX) {
2345         env->vxsat = 0x1;
2346         return INT8_MAX;
2347     } else if (res < INT8_MIN) {
2348         env->vxsat = 0x1;
2349         return INT8_MIN;
2350     } else {
2351         return res;
2352     }
2353 }
2354 
2355 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2356 {
2357     uint8_t round;
2358     int32_t res;
2359 
2360     res = (int32_t)a * (int32_t)b;
2361     round = get_round(vxrm, res, 15);
2362     res   = (res >> 15) + round;
2363 
2364     if (res > INT16_MAX) {
2365         env->vxsat = 0x1;
2366         return INT16_MAX;
2367     } else if (res < INT16_MIN) {
2368         env->vxsat = 0x1;
2369         return INT16_MIN;
2370     } else {
2371         return res;
2372     }
2373 }
2374 
2375 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2376 {
2377     uint8_t round;
2378     int64_t res;
2379 
2380     res = (int64_t)a * (int64_t)b;
2381     round = get_round(vxrm, res, 31);
2382     res   = (res >> 31) + round;
2383 
2384     if (res > INT32_MAX) {
2385         env->vxsat = 0x1;
2386         return INT32_MAX;
2387     } else if (res < INT32_MIN) {
2388         env->vxsat = 0x1;
2389         return INT32_MIN;
2390     } else {
2391         return res;
2392     }
2393 }
2394 
2395 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2396 {
2397     uint8_t round;
2398     uint64_t hi_64, lo_64;
2399     int64_t res;
2400 
2401     if (a == INT64_MIN && b == INT64_MIN) {
2402         env->vxsat = 1;
2403         return INT64_MAX;
2404     }
2405 
2406     muls64(&lo_64, &hi_64, a, b);
2407     round = get_round(vxrm, lo_64, 63);
2408     /*
2409      * Cannot overflow, as there are always
2410      * 2 sign bits after multiply.
2411      */
2412     res = (hi_64 << 1) | (lo_64 >> 63);
2413     if (round) {
2414         if (res == INT64_MAX) {
2415             env->vxsat = 1;
2416         } else {
2417             res += 1;
2418         }
2419     }
2420     return res;
2421 }
2422 
2423 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
2424 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
2425 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
2426 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
2427 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1)
2428 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2)
2429 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4)
2430 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8)
2431 
2432 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
2433 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
2434 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
2435 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
2436 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1)
2437 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2)
2438 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4)
2439 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8)
2440 
2441 /* Vector Widening Saturating Scaled Multiply-Add */
2442 static inline uint16_t
2443 vwsmaccu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b,
2444           uint16_t c)
2445 {
2446     uint8_t round;
2447     uint16_t res = (uint16_t)a * b;
2448 
2449     round = get_round(vxrm, res, 4);
2450     res   = (res >> 4) + round;
2451     return saddu16(env, vxrm, c, res);
2452 }
2453 
2454 static inline uint32_t
2455 vwsmaccu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b,
2456            uint32_t c)
2457 {
2458     uint8_t round;
2459     uint32_t res = (uint32_t)a * b;
2460 
2461     round = get_round(vxrm, res, 8);
2462     res   = (res >> 8) + round;
2463     return saddu32(env, vxrm, c, res);
2464 }
2465 
2466 static inline uint64_t
2467 vwsmaccu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b,
2468            uint64_t c)
2469 {
2470     uint8_t round;
2471     uint64_t res = (uint64_t)a * b;
2472 
2473     round = get_round(vxrm, res, 16);
2474     res   = (res >> 16) + round;
2475     return saddu64(env, vxrm, c, res);
2476 }
2477 
2478 #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)    \
2479 static inline void                                                 \
2480 do_##NAME(void *vd, void *vs1, void *vs2, int i,                   \
2481           CPURISCVState *env, int vxrm)                            \
2482 {                                                                  \
2483     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
2484     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
2485     TD d = *((TD *)vd + HD(i));                                    \
2486     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d);                \
2487 }
2488 
2489 RVVCALL(OPIVV3_RM, vwsmaccu_vv_b, WOP_UUU_B, H2, H1, H1, vwsmaccu8)
2490 RVVCALL(OPIVV3_RM, vwsmaccu_vv_h, WOP_UUU_H, H4, H2, H2, vwsmaccu16)
2491 RVVCALL(OPIVV3_RM, vwsmaccu_vv_w, WOP_UUU_W, H8, H4, H4, vwsmaccu32)
2492 GEN_VEXT_VV_RM(vwsmaccu_vv_b, 1, 2)
2493 GEN_VEXT_VV_RM(vwsmaccu_vv_h, 2, 4)
2494 GEN_VEXT_VV_RM(vwsmaccu_vv_w, 4, 8)
2495 
2496 #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)         \
2497 static inline void                                                 \
2498 do_##NAME(void *vd, target_long s1, void *vs2, int i,              \
2499           CPURISCVState *env, int vxrm)                            \
2500 {                                                                  \
2501     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
2502     TD d = *((TD *)vd + HD(i));                                    \
2503     *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d);       \
2504 }
2505 
2506 RVVCALL(OPIVX3_RM, vwsmaccu_vx_b, WOP_UUU_B, H2, H1, vwsmaccu8)
2507 RVVCALL(OPIVX3_RM, vwsmaccu_vx_h, WOP_UUU_H, H4, H2, vwsmaccu16)
2508 RVVCALL(OPIVX3_RM, vwsmaccu_vx_w, WOP_UUU_W, H8, H4, vwsmaccu32)
2509 GEN_VEXT_VX_RM(vwsmaccu_vx_b, 1, 2)
2510 GEN_VEXT_VX_RM(vwsmaccu_vx_h, 2, 4)
2511 GEN_VEXT_VX_RM(vwsmaccu_vx_w, 4, 8)
2512 
2513 static inline int16_t
2514 vwsmacc8(CPURISCVState *env, int vxrm, int8_t a, int8_t b, int16_t c)
2515 {
2516     uint8_t round;
2517     int16_t res = (int16_t)a * b;
2518 
2519     round = get_round(vxrm, res, 4);
2520     res   = (res >> 4) + round;
2521     return sadd16(env, vxrm, c, res);
2522 }
2523 
2524 static inline int32_t
2525 vwsmacc16(CPURISCVState *env, int vxrm, int16_t a, int16_t b, int32_t c)
2526 {
2527     uint8_t round;
2528     int32_t res = (int32_t)a * b;
2529 
2530     round = get_round(vxrm, res, 8);
2531     res   = (res >> 8) + round;
2532     return sadd32(env, vxrm, c, res);
2533 
2534 }
2535 
2536 static inline int64_t
2537 vwsmacc32(CPURISCVState *env, int vxrm, int32_t a, int32_t b, int64_t c)
2538 {
2539     uint8_t round;
2540     int64_t res = (int64_t)a * b;
2541 
2542     round = get_round(vxrm, res, 16);
2543     res   = (res >> 16) + round;
2544     return sadd64(env, vxrm, c, res);
2545 }
2546 
2547 RVVCALL(OPIVV3_RM, vwsmacc_vv_b, WOP_SSS_B, H2, H1, H1, vwsmacc8)
2548 RVVCALL(OPIVV3_RM, vwsmacc_vv_h, WOP_SSS_H, H4, H2, H2, vwsmacc16)
2549 RVVCALL(OPIVV3_RM, vwsmacc_vv_w, WOP_SSS_W, H8, H4, H4, vwsmacc32)
2550 GEN_VEXT_VV_RM(vwsmacc_vv_b, 1, 2)
2551 GEN_VEXT_VV_RM(vwsmacc_vv_h, 2, 4)
2552 GEN_VEXT_VV_RM(vwsmacc_vv_w, 4, 8)
2553 RVVCALL(OPIVX3_RM, vwsmacc_vx_b, WOP_SSS_B, H2, H1, vwsmacc8)
2554 RVVCALL(OPIVX3_RM, vwsmacc_vx_h, WOP_SSS_H, H4, H2, vwsmacc16)
2555 RVVCALL(OPIVX3_RM, vwsmacc_vx_w, WOP_SSS_W, H8, H4, vwsmacc32)
2556 GEN_VEXT_VX_RM(vwsmacc_vx_b, 1, 2)
2557 GEN_VEXT_VX_RM(vwsmacc_vx_h, 2, 4)
2558 GEN_VEXT_VX_RM(vwsmacc_vx_w, 4, 8)
2559 
2560 static inline int16_t
2561 vwsmaccsu8(CPURISCVState *env, int vxrm, uint8_t a, int8_t b, int16_t c)
2562 {
2563     uint8_t round;
2564     int16_t res = a * (int16_t)b;
2565 
2566     round = get_round(vxrm, res, 4);
2567     res   = (res >> 4) + round;
2568     return ssub16(env, vxrm, c, res);
2569 }
2570 
2571 static inline int32_t
2572 vwsmaccsu16(CPURISCVState *env, int vxrm, uint16_t a, int16_t b, uint32_t c)
2573 {
2574     uint8_t round;
2575     int32_t res = a * (int32_t)b;
2576 
2577     round = get_round(vxrm, res, 8);
2578     res   = (res >> 8) + round;
2579     return ssub32(env, vxrm, c, res);
2580 }
2581 
2582 static inline int64_t
2583 vwsmaccsu32(CPURISCVState *env, int vxrm, uint32_t a, int32_t b, int64_t c)
2584 {
2585     uint8_t round;
2586     int64_t res = a * (int64_t)b;
2587 
2588     round = get_round(vxrm, res, 16);
2589     res   = (res >> 16) + round;
2590     return ssub64(env, vxrm, c, res);
2591 }
2592 
2593 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, vwsmaccsu8)
2594 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, vwsmaccsu16)
2595 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, vwsmaccsu32)
2596 GEN_VEXT_VV_RM(vwsmaccsu_vv_b, 1, 2)
2597 GEN_VEXT_VV_RM(vwsmaccsu_vv_h, 2, 4)
2598 GEN_VEXT_VV_RM(vwsmaccsu_vv_w, 4, 8)
2599 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_b, WOP_SSU_B, H2, H1, vwsmaccsu8)
2600 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_h, WOP_SSU_H, H4, H2, vwsmaccsu16)
2601 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_w, WOP_SSU_W, H8, H4, vwsmaccsu32)
2602 GEN_VEXT_VX_RM(vwsmaccsu_vx_b, 1, 2)
2603 GEN_VEXT_VX_RM(vwsmaccsu_vx_h, 2, 4)
2604 GEN_VEXT_VX_RM(vwsmaccsu_vx_w, 4, 8)
2605 
2606 static inline int16_t
2607 vwsmaccus8(CPURISCVState *env, int vxrm, int8_t a, uint8_t b, int16_t c)
2608 {
2609     uint8_t round;
2610     int16_t res = (int16_t)a * b;
2611 
2612     round = get_round(vxrm, res, 4);
2613     res   = (res >> 4) + round;
2614     return ssub16(env, vxrm, c, res);
2615 }
2616 
2617 static inline int32_t
2618 vwsmaccus16(CPURISCVState *env, int vxrm, int16_t a, uint16_t b, int32_t c)
2619 {
2620     uint8_t round;
2621     int32_t res = (int32_t)a * b;
2622 
2623     round = get_round(vxrm, res, 8);
2624     res   = (res >> 8) + round;
2625     return ssub32(env, vxrm, c, res);
2626 }
2627 
2628 static inline int64_t
2629 vwsmaccus32(CPURISCVState *env, int vxrm, int32_t a, uint32_t b, int64_t c)
2630 {
2631     uint8_t round;
2632     int64_t res = (int64_t)a * b;
2633 
2634     round = get_round(vxrm, res, 16);
2635     res   = (res >> 16) + round;
2636     return ssub64(env, vxrm, c, res);
2637 }
2638 
2639 RVVCALL(OPIVX3_RM, vwsmaccus_vx_b, WOP_SUS_B, H2, H1, vwsmaccus8)
2640 RVVCALL(OPIVX3_RM, vwsmaccus_vx_h, WOP_SUS_H, H4, H2, vwsmaccus16)
2641 RVVCALL(OPIVX3_RM, vwsmaccus_vx_w, WOP_SUS_W, H8, H4, vwsmaccus32)
2642 GEN_VEXT_VX_RM(vwsmaccus_vx_b, 1, 2)
2643 GEN_VEXT_VX_RM(vwsmaccus_vx_h, 2, 4)
2644 GEN_VEXT_VX_RM(vwsmaccus_vx_w, 4, 8)
2645 
2646 /* Vector Single-Width Scaling Shift Instructions */
2647 static inline uint8_t
2648 vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2649 {
2650     uint8_t round, shift = b & 0x7;
2651     uint8_t res;
2652 
2653     round = get_round(vxrm, a, shift);
2654     res   = (a >> shift)  + round;
2655     return res;
2656 }
2657 static inline uint16_t
2658 vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
2659 {
2660     uint8_t round, shift = b & 0xf;
2661     uint16_t res;
2662 
2663     round = get_round(vxrm, a, shift);
2664     res   = (a >> shift)  + round;
2665     return res;
2666 }
2667 static inline uint32_t
2668 vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
2669 {
2670     uint8_t round, shift = b & 0x1f;
2671     uint32_t res;
2672 
2673     round = get_round(vxrm, a, shift);
2674     res   = (a >> shift)  + round;
2675     return res;
2676 }
2677 static inline uint64_t
2678 vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
2679 {
2680     uint8_t round, shift = b & 0x3f;
2681     uint64_t res;
2682 
2683     round = get_round(vxrm, a, shift);
2684     res   = (a >> shift)  + round;
2685     return res;
2686 }
2687 RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
2688 RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
2689 RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
2690 RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
2691 GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1)
2692 GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2)
2693 GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4)
2694 GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8)
2695 
2696 RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
2697 RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
2698 RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
2699 RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
2700 GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1)
2701 GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2)
2702 GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4)
2703 GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8)
2704 
2705 static inline int8_t
2706 vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2707 {
2708     uint8_t round, shift = b & 0x7;
2709     int8_t res;
2710 
2711     round = get_round(vxrm, a, shift);
2712     res   = (a >> shift)  + round;
2713     return res;
2714 }
2715 static inline int16_t
2716 vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2717 {
2718     uint8_t round, shift = b & 0xf;
2719     int16_t res;
2720 
2721     round = get_round(vxrm, a, shift);
2722     res   = (a >> shift)  + round;
2723     return res;
2724 }
2725 static inline int32_t
2726 vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2727 {
2728     uint8_t round, shift = b & 0x1f;
2729     int32_t res;
2730 
2731     round = get_round(vxrm, a, shift);
2732     res   = (a >> shift)  + round;
2733     return res;
2734 }
2735 static inline int64_t
2736 vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2737 {
2738     uint8_t round, shift = b & 0x3f;
2739     int64_t res;
2740 
2741     round = get_round(vxrm, a, shift);
2742     res   = (a >> shift)  + round;
2743     return res;
2744 }
2745 
2746 RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
2747 RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
2748 RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
2749 RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
2750 GEN_VEXT_VV_RM(vssra_vv_b, 1, 1)
2751 GEN_VEXT_VV_RM(vssra_vv_h, 2, 2)
2752 GEN_VEXT_VV_RM(vssra_vv_w, 4, 4)
2753 GEN_VEXT_VV_RM(vssra_vv_d, 8, 8)
2754 
2755 RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
2756 RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
2757 RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
2758 RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
2759 GEN_VEXT_VX_RM(vssra_vx_b, 1, 1)
2760 GEN_VEXT_VX_RM(vssra_vx_h, 2, 2)
2761 GEN_VEXT_VX_RM(vssra_vx_w, 4, 4)
2762 GEN_VEXT_VX_RM(vssra_vx_d, 8, 8)
2763 
2764 /* Vector Narrowing Fixed-Point Clip Instructions */
2765 static inline int8_t
2766 vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
2767 {
2768     uint8_t round, shift = b & 0xf;
2769     int16_t res;
2770 
2771     round = get_round(vxrm, a, shift);
2772     res   = (a >> shift)  + round;
2773     if (res > INT8_MAX) {
2774         env->vxsat = 0x1;
2775         return INT8_MAX;
2776     } else if (res < INT8_MIN) {
2777         env->vxsat = 0x1;
2778         return INT8_MIN;
2779     } else {
2780         return res;
2781     }
2782 }
2783 
2784 static inline int16_t
2785 vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
2786 {
2787     uint8_t round, shift = b & 0x1f;
2788     int32_t res;
2789 
2790     round = get_round(vxrm, a, shift);
2791     res   = (a >> shift)  + round;
2792     if (res > INT16_MAX) {
2793         env->vxsat = 0x1;
2794         return INT16_MAX;
2795     } else if (res < INT16_MIN) {
2796         env->vxsat = 0x1;
2797         return INT16_MIN;
2798     } else {
2799         return res;
2800     }
2801 }
2802 
2803 static inline int32_t
2804 vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
2805 {
2806     uint8_t round, shift = b & 0x3f;
2807     int64_t res;
2808 
2809     round = get_round(vxrm, a, shift);
2810     res   = (a >> shift)  + round;
2811     if (res > INT32_MAX) {
2812         env->vxsat = 0x1;
2813         return INT32_MAX;
2814     } else if (res < INT32_MIN) {
2815         env->vxsat = 0x1;
2816         return INT32_MIN;
2817     } else {
2818         return res;
2819     }
2820 }
2821 
2822 RVVCALL(OPIVV2_RM, vnclip_vv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
2823 RVVCALL(OPIVV2_RM, vnclip_vv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
2824 RVVCALL(OPIVV2_RM, vnclip_vv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
2825 GEN_VEXT_VV_RM(vnclip_vv_b, 1, 1)
2826 GEN_VEXT_VV_RM(vnclip_vv_h, 2, 2)
2827 GEN_VEXT_VV_RM(vnclip_vv_w, 4, 4)
2828 
2829 RVVCALL(OPIVX2_RM, vnclip_vx_b, NOP_SSS_B, H1, H2, vnclip8)
2830 RVVCALL(OPIVX2_RM, vnclip_vx_h, NOP_SSS_H, H2, H4, vnclip16)
2831 RVVCALL(OPIVX2_RM, vnclip_vx_w, NOP_SSS_W, H4, H8, vnclip32)
2832 GEN_VEXT_VX_RM(vnclip_vx_b, 1, 1)
2833 GEN_VEXT_VX_RM(vnclip_vx_h, 2, 2)
2834 GEN_VEXT_VX_RM(vnclip_vx_w, 4, 4)
2835 
2836 static inline uint8_t
2837 vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
2838 {
2839     uint8_t round, shift = b & 0xf;
2840     uint16_t res;
2841 
2842     round = get_round(vxrm, a, shift);
2843     res   = (a >> shift)  + round;
2844     if (res > UINT8_MAX) {
2845         env->vxsat = 0x1;
2846         return UINT8_MAX;
2847     } else {
2848         return res;
2849     }
2850 }
2851 
2852 static inline uint16_t
2853 vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
2854 {
2855     uint8_t round, shift = b & 0x1f;
2856     uint32_t res;
2857 
2858     round = get_round(vxrm, a, shift);
2859     res   = (a >> shift)  + round;
2860     if (res > UINT16_MAX) {
2861         env->vxsat = 0x1;
2862         return UINT16_MAX;
2863     } else {
2864         return res;
2865     }
2866 }
2867 
2868 static inline uint32_t
2869 vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
2870 {
2871     uint8_t round, shift = b & 0x3f;
2872     int64_t res;
2873 
2874     round = get_round(vxrm, a, shift);
2875     res   = (a >> shift)  + round;
2876     if (res > UINT32_MAX) {
2877         env->vxsat = 0x1;
2878         return UINT32_MAX;
2879     } else {
2880         return res;
2881     }
2882 }
2883 
2884 RVVCALL(OPIVV2_RM, vnclipu_vv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
2885 RVVCALL(OPIVV2_RM, vnclipu_vv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
2886 RVVCALL(OPIVV2_RM, vnclipu_vv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
2887 GEN_VEXT_VV_RM(vnclipu_vv_b, 1, 1)
2888 GEN_VEXT_VV_RM(vnclipu_vv_h, 2, 2)
2889 GEN_VEXT_VV_RM(vnclipu_vv_w, 4, 4)
2890 
2891 RVVCALL(OPIVX2_RM, vnclipu_vx_b, NOP_UUU_B, H1, H2, vnclipu8)
2892 RVVCALL(OPIVX2_RM, vnclipu_vx_h, NOP_UUU_H, H2, H4, vnclipu16)
2893 RVVCALL(OPIVX2_RM, vnclipu_vx_w, NOP_UUU_W, H4, H8, vnclipu32)
2894 GEN_VEXT_VX_RM(vnclipu_vx_b, 1, 1)
2895 GEN_VEXT_VX_RM(vnclipu_vx_h, 2, 2)
2896 GEN_VEXT_VX_RM(vnclipu_vx_w, 4, 4)
2897 
2898 /*
2899  *** Vector Float Point Arithmetic Instructions
2900  */
2901 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
2902 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)   \
2903 static void do_##NAME(void *vd, void *vs1, void *vs2, int i,   \
2904                       CPURISCVState *env)                      \
2905 {                                                              \
2906     TX1 s1 = *((T1 *)vs1 + HS1(i));                            \
2907     TX2 s2 = *((T2 *)vs2 + HS2(i));                            \
2908     *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status);         \
2909 }
2910 
2911 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ)                   \
2912 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
2913                   void *vs2, CPURISCVState *env,          \
2914                   uint32_t desc)                          \
2915 {                                                         \
2916     uint32_t vm = vext_vm(desc);                          \
2917     uint32_t vl = env->vl;                                \
2918     uint32_t i;                                           \
2919                                                           \
2920     for (i = 0; i < vl; i++) {                            \
2921         if (!vm && !vext_elem_mask(v0, i)) {              \
2922             continue;                                     \
2923         }                                                 \
2924         do_##NAME(vd, vs1, vs2, i, env);                  \
2925     }                                                     \
2926 }
2927 
2928 RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
2929 RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
2930 RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
2931 GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2)
2932 GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4)
2933 GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8)
2934 
2935 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)        \
2936 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
2937                       CPURISCVState *env)                      \
2938 {                                                              \
2939     TX2 s2 = *((T2 *)vs2 + HS2(i));                            \
2940     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
2941 }
2942 
2943 #define GEN_VEXT_VF(NAME, ESZ, DSZ)                       \
2944 void HELPER(NAME)(void *vd, void *v0, uint64_t s1,        \
2945                   void *vs2, CPURISCVState *env,          \
2946                   uint32_t desc)                          \
2947 {                                                         \
2948     uint32_t vm = vext_vm(desc);                          \
2949     uint32_t vl = env->vl;                                \
2950     uint32_t i;                                           \
2951                                                           \
2952     for (i = 0; i < vl; i++) {                            \
2953         if (!vm && !vext_elem_mask(v0, i)) {              \
2954             continue;                                     \
2955         }                                                 \
2956         do_##NAME(vd, s1, vs2, i, env);                   \
2957     }                                                     \
2958 }
2959 
2960 RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
2961 RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
2962 RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
2963 GEN_VEXT_VF(vfadd_vf_h, 2, 2)
2964 GEN_VEXT_VF(vfadd_vf_w, 4, 4)
2965 GEN_VEXT_VF(vfadd_vf_d, 8, 8)
2966 
2967 RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
2968 RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
2969 RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
2970 GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2)
2971 GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4)
2972 GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8)
2973 RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
2974 RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
2975 RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
2976 GEN_VEXT_VF(vfsub_vf_h, 2, 2)
2977 GEN_VEXT_VF(vfsub_vf_w, 4, 4)
2978 GEN_VEXT_VF(vfsub_vf_d, 8, 8)
2979 
2980 static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
2981 {
2982     return float16_sub(b, a, s);
2983 }
2984 
2985 static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
2986 {
2987     return float32_sub(b, a, s);
2988 }
2989 
2990 static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
2991 {
2992     return float64_sub(b, a, s);
2993 }
2994 
2995 RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
2996 RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
2997 RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
2998 GEN_VEXT_VF(vfrsub_vf_h, 2, 2)
2999 GEN_VEXT_VF(vfrsub_vf_w, 4, 4)
3000 GEN_VEXT_VF(vfrsub_vf_d, 8, 8)
3001 
3002 /* Vector Widening Floating-Point Add/Subtract Instructions */
3003 static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
3004 {
3005     return float32_add(float16_to_float32(a, true, s),
3006             float16_to_float32(b, true, s), s);
3007 }
3008 
3009 static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
3010 {
3011     return float64_add(float32_to_float64(a, s),
3012             float32_to_float64(b, s), s);
3013 
3014 }
3015 
3016 RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
3017 RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
3018 GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4)
3019 GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8)
3020 RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
3021 RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
3022 GEN_VEXT_VF(vfwadd_vf_h, 2, 4)
3023 GEN_VEXT_VF(vfwadd_vf_w, 4, 8)
3024 
3025 static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
3026 {
3027     return float32_sub(float16_to_float32(a, true, s),
3028             float16_to_float32(b, true, s), s);
3029 }
3030 
3031 static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
3032 {
3033     return float64_sub(float32_to_float64(a, s),
3034             float32_to_float64(b, s), s);
3035 
3036 }
3037 
3038 RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
3039 RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
3040 GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4)
3041 GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8)
3042 RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
3043 RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
3044 GEN_VEXT_VF(vfwsub_vf_h, 2, 4)
3045 GEN_VEXT_VF(vfwsub_vf_w, 4, 8)
3046 
3047 static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
3048 {
3049     return float32_add(a, float16_to_float32(b, true, s), s);
3050 }
3051 
3052 static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
3053 {
3054     return float64_add(a, float32_to_float64(b, s), s);
3055 }
3056 
3057 RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
3058 RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
3059 GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4)
3060 GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8)
3061 RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
3062 RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
3063 GEN_VEXT_VF(vfwadd_wf_h, 2, 4)
3064 GEN_VEXT_VF(vfwadd_wf_w, 4, 8)
3065 
3066 static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
3067 {
3068     return float32_sub(a, float16_to_float32(b, true, s), s);
3069 }
3070 
3071 static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
3072 {
3073     return float64_sub(a, float32_to_float64(b, s), s);
3074 }
3075 
3076 RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
3077 RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
3078 GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4)
3079 GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8)
3080 RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
3081 RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
3082 GEN_VEXT_VF(vfwsub_wf_h, 2, 4)
3083 GEN_VEXT_VF(vfwsub_wf_w, 4, 8)
3084 
3085 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
3086 RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
3087 RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
3088 RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
3089 GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2)
3090 GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4)
3091 GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8)
3092 RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
3093 RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
3094 RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
3095 GEN_VEXT_VF(vfmul_vf_h, 2, 2)
3096 GEN_VEXT_VF(vfmul_vf_w, 4, 4)
3097 GEN_VEXT_VF(vfmul_vf_d, 8, 8)
3098 
3099 RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
3100 RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
3101 RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
3102 GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2)
3103 GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4)
3104 GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8)
3105 RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
3106 RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
3107 RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
3108 GEN_VEXT_VF(vfdiv_vf_h, 2, 2)
3109 GEN_VEXT_VF(vfdiv_vf_w, 4, 4)
3110 GEN_VEXT_VF(vfdiv_vf_d, 8, 8)
3111 
3112 static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
3113 {
3114     return float16_div(b, a, s);
3115 }
3116 
3117 static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
3118 {
3119     return float32_div(b, a, s);
3120 }
3121 
3122 static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
3123 {
3124     return float64_div(b, a, s);
3125 }
3126 
3127 RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
3128 RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
3129 RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
3130 GEN_VEXT_VF(vfrdiv_vf_h, 2, 2)
3131 GEN_VEXT_VF(vfrdiv_vf_w, 4, 4)
3132 GEN_VEXT_VF(vfrdiv_vf_d, 8, 8)
3133 
3134 /* Vector Widening Floating-Point Multiply */
3135 static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
3136 {
3137     return float32_mul(float16_to_float32(a, true, s),
3138             float16_to_float32(b, true, s), s);
3139 }
3140 
3141 static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
3142 {
3143     return float64_mul(float32_to_float64(a, s),
3144             float32_to_float64(b, s), s);
3145 
3146 }
3147 RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
3148 RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
3149 GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4)
3150 GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8)
3151 RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
3152 RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
3153 GEN_VEXT_VF(vfwmul_vf_h, 2, 4)
3154 GEN_VEXT_VF(vfwmul_vf_w, 4, 8)
3155 
3156 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3157 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP)       \
3158 static void do_##NAME(void *vd, void *vs1, void *vs2, int i,       \
3159         CPURISCVState *env)                                        \
3160 {                                                                  \
3161     TX1 s1 = *((T1 *)vs1 + HS1(i));                                \
3162     TX2 s2 = *((T2 *)vs2 + HS2(i));                                \
3163     TD d = *((TD *)vd + HD(i));                                    \
3164     *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status);          \
3165 }
3166 
3167 static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3168 {
3169     return float16_muladd(a, b, d, 0, s);
3170 }
3171 
3172 static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3173 {
3174     return float32_muladd(a, b, d, 0, s);
3175 }
3176 
3177 static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3178 {
3179     return float64_muladd(a, b, d, 0, s);
3180 }
3181 
3182 RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
3183 RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
3184 RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
3185 GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2)
3186 GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4)
3187 GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8)
3188 
3189 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP)           \
3190 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i,    \
3191         CPURISCVState *env)                                       \
3192 {                                                                 \
3193     TX2 s2 = *((T2 *)vs2 + HS2(i));                               \
3194     TD d = *((TD *)vd + HD(i));                                   \
3195     *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3196 }
3197 
3198 RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
3199 RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
3200 RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
3201 GEN_VEXT_VF(vfmacc_vf_h, 2, 2)
3202 GEN_VEXT_VF(vfmacc_vf_w, 4, 4)
3203 GEN_VEXT_VF(vfmacc_vf_d, 8, 8)
3204 
3205 static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3206 {
3207     return float16_muladd(a, b, d,
3208             float_muladd_negate_c | float_muladd_negate_product, s);
3209 }
3210 
3211 static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3212 {
3213     return float32_muladd(a, b, d,
3214             float_muladd_negate_c | float_muladd_negate_product, s);
3215 }
3216 
3217 static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3218 {
3219     return float64_muladd(a, b, d,
3220             float_muladd_negate_c | float_muladd_negate_product, s);
3221 }
3222 
3223 RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
3224 RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
3225 RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
3226 GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2)
3227 GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4)
3228 GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8)
3229 RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
3230 RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
3231 RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
3232 GEN_VEXT_VF(vfnmacc_vf_h, 2, 2)
3233 GEN_VEXT_VF(vfnmacc_vf_w, 4, 4)
3234 GEN_VEXT_VF(vfnmacc_vf_d, 8, 8)
3235 
3236 static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3237 {
3238     return float16_muladd(a, b, d, float_muladd_negate_c, s);
3239 }
3240 
3241 static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3242 {
3243     return float32_muladd(a, b, d, float_muladd_negate_c, s);
3244 }
3245 
3246 static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3247 {
3248     return float64_muladd(a, b, d, float_muladd_negate_c, s);
3249 }
3250 
3251 RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
3252 RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
3253 RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
3254 GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2)
3255 GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4)
3256 GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8)
3257 RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
3258 RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
3259 RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
3260 GEN_VEXT_VF(vfmsac_vf_h, 2, 2)
3261 GEN_VEXT_VF(vfmsac_vf_w, 4, 4)
3262 GEN_VEXT_VF(vfmsac_vf_d, 8, 8)
3263 
3264 static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3265 {
3266     return float16_muladd(a, b, d, float_muladd_negate_product, s);
3267 }
3268 
3269 static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3270 {
3271     return float32_muladd(a, b, d, float_muladd_negate_product, s);
3272 }
3273 
3274 static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3275 {
3276     return float64_muladd(a, b, d, float_muladd_negate_product, s);
3277 }
3278 
3279 RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
3280 RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
3281 RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
3282 GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2)
3283 GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4)
3284 GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8)
3285 RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
3286 RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
3287 RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
3288 GEN_VEXT_VF(vfnmsac_vf_h, 2, 2)
3289 GEN_VEXT_VF(vfnmsac_vf_w, 4, 4)
3290 GEN_VEXT_VF(vfnmsac_vf_d, 8, 8)
3291 
3292 static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3293 {
3294     return float16_muladd(d, b, a, 0, s);
3295 }
3296 
3297 static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3298 {
3299     return float32_muladd(d, b, a, 0, s);
3300 }
3301 
3302 static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3303 {
3304     return float64_muladd(d, b, a, 0, s);
3305 }
3306 
3307 RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
3308 RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
3309 RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
3310 GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2)
3311 GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4)
3312 GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8)
3313 RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
3314 RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
3315 RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
3316 GEN_VEXT_VF(vfmadd_vf_h, 2, 2)
3317 GEN_VEXT_VF(vfmadd_vf_w, 4, 4)
3318 GEN_VEXT_VF(vfmadd_vf_d, 8, 8)
3319 
3320 static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3321 {
3322     return float16_muladd(d, b, a,
3323             float_muladd_negate_c | float_muladd_negate_product, s);
3324 }
3325 
3326 static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3327 {
3328     return float32_muladd(d, b, a,
3329             float_muladd_negate_c | float_muladd_negate_product, s);
3330 }
3331 
3332 static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3333 {
3334     return float64_muladd(d, b, a,
3335             float_muladd_negate_c | float_muladd_negate_product, s);
3336 }
3337 
3338 RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
3339 RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
3340 RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
3341 GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2)
3342 GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4)
3343 GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8)
3344 RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
3345 RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
3346 RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
3347 GEN_VEXT_VF(vfnmadd_vf_h, 2, 2)
3348 GEN_VEXT_VF(vfnmadd_vf_w, 4, 4)
3349 GEN_VEXT_VF(vfnmadd_vf_d, 8, 8)
3350 
3351 static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3352 {
3353     return float16_muladd(d, b, a, float_muladd_negate_c, s);
3354 }
3355 
3356 static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3357 {
3358     return float32_muladd(d, b, a, float_muladd_negate_c, s);
3359 }
3360 
3361 static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3362 {
3363     return float64_muladd(d, b, a, float_muladd_negate_c, s);
3364 }
3365 
3366 RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
3367 RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
3368 RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
3369 GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2)
3370 GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4)
3371 GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8)
3372 RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
3373 RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
3374 RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
3375 GEN_VEXT_VF(vfmsub_vf_h, 2, 2)
3376 GEN_VEXT_VF(vfmsub_vf_w, 4, 4)
3377 GEN_VEXT_VF(vfmsub_vf_d, 8, 8)
3378 
3379 static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3380 {
3381     return float16_muladd(d, b, a, float_muladd_negate_product, s);
3382 }
3383 
3384 static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3385 {
3386     return float32_muladd(d, b, a, float_muladd_negate_product, s);
3387 }
3388 
3389 static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3390 {
3391     return float64_muladd(d, b, a, float_muladd_negate_product, s);
3392 }
3393 
3394 RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
3395 RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
3396 RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
3397 GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2)
3398 GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4)
3399 GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8)
3400 RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
3401 RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
3402 RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
3403 GEN_VEXT_VF(vfnmsub_vf_h, 2, 2)
3404 GEN_VEXT_VF(vfnmsub_vf_w, 4, 4)
3405 GEN_VEXT_VF(vfnmsub_vf_d, 8, 8)
3406 
3407 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3408 static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3409 {
3410     return float32_muladd(float16_to_float32(a, true, s),
3411                         float16_to_float32(b, true, s), d, 0, s);
3412 }
3413 
3414 static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3415 {
3416     return float64_muladd(float32_to_float64(a, s),
3417                         float32_to_float64(b, s), d, 0, s);
3418 }
3419 
3420 RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
3421 RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
3422 GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4)
3423 GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8)
3424 RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
3425 RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
3426 GEN_VEXT_VF(vfwmacc_vf_h, 2, 4)
3427 GEN_VEXT_VF(vfwmacc_vf_w, 4, 8)
3428 
3429 static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3430 {
3431     return float32_muladd(float16_to_float32(a, true, s),
3432                         float16_to_float32(b, true, s), d,
3433                         float_muladd_negate_c | float_muladd_negate_product, s);
3434 }
3435 
3436 static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3437 {
3438     return float64_muladd(float32_to_float64(a, s),
3439                         float32_to_float64(b, s), d,
3440                         float_muladd_negate_c | float_muladd_negate_product, s);
3441 }
3442 
3443 RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
3444 RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
3445 GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4)
3446 GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8)
3447 RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
3448 RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
3449 GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4)
3450 GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8)
3451 
3452 static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3453 {
3454     return float32_muladd(float16_to_float32(a, true, s),
3455                         float16_to_float32(b, true, s), d,
3456                         float_muladd_negate_c, s);
3457 }
3458 
3459 static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3460 {
3461     return float64_muladd(float32_to_float64(a, s),
3462                         float32_to_float64(b, s), d,
3463                         float_muladd_negate_c, s);
3464 }
3465 
3466 RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
3467 RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
3468 GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4)
3469 GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8)
3470 RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
3471 RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
3472 GEN_VEXT_VF(vfwmsac_vf_h, 2, 4)
3473 GEN_VEXT_VF(vfwmsac_vf_w, 4, 8)
3474 
3475 static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3476 {
3477     return float32_muladd(float16_to_float32(a, true, s),
3478                         float16_to_float32(b, true, s), d,
3479                         float_muladd_negate_product, s);
3480 }
3481 
3482 static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3483 {
3484     return float64_muladd(float32_to_float64(a, s),
3485                         float32_to_float64(b, s), d,
3486                         float_muladd_negate_product, s);
3487 }
3488 
3489 RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
3490 RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
3491 GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4)
3492 GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8)
3493 RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
3494 RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
3495 GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4)
3496 GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8)
3497 
3498 /* Vector Floating-Point Square-Root Instruction */
3499 /* (TD, T2, TX2) */
3500 #define OP_UU_H uint16_t, uint16_t, uint16_t
3501 #define OP_UU_W uint32_t, uint32_t, uint32_t
3502 #define OP_UU_D uint64_t, uint64_t, uint64_t
3503 
3504 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP)        \
3505 static void do_##NAME(void *vd, void *vs2, int i,      \
3506         CPURISCVState *env)                            \
3507 {                                                      \
3508     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
3509     *((TD *)vd + HD(i)) = OP(s2, &env->fp_status);     \
3510 }
3511 
3512 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ)                 \
3513 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
3514         CPURISCVState *env, uint32_t desc)             \
3515 {                                                      \
3516     uint32_t vm = vext_vm(desc);                       \
3517     uint32_t vl = env->vl;                             \
3518     uint32_t i;                                        \
3519                                                        \
3520     if (vl == 0) {                                     \
3521         return;                                        \
3522     }                                                  \
3523     for (i = 0; i < vl; i++) {                         \
3524         if (!vm && !vext_elem_mask(v0, i)) {           \
3525             continue;                                  \
3526         }                                              \
3527         do_##NAME(vd, vs2, i, env);                    \
3528     }                                                  \
3529 }
3530 
3531 RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
3532 RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
3533 RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
3534 GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2)
3535 GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4)
3536 GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8)
3537 
3538 /* Vector Floating-Point MIN/MAX Instructions */
3539 RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minnum)
3540 RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minnum)
3541 RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minnum)
3542 GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2)
3543 GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4)
3544 GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8)
3545 RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minnum)
3546 RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minnum)
3547 RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minnum)
3548 GEN_VEXT_VF(vfmin_vf_h, 2, 2)
3549 GEN_VEXT_VF(vfmin_vf_w, 4, 4)
3550 GEN_VEXT_VF(vfmin_vf_d, 8, 8)
3551 
3552 RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maxnum)
3553 RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maxnum)
3554 RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maxnum)
3555 GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2)
3556 GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4)
3557 GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8)
3558 RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maxnum)
3559 RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maxnum)
3560 RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maxnum)
3561 GEN_VEXT_VF(vfmax_vf_h, 2, 2)
3562 GEN_VEXT_VF(vfmax_vf_w, 4, 4)
3563 GEN_VEXT_VF(vfmax_vf_d, 8, 8)
3564 
3565 /* Vector Floating-Point Sign-Injection Instructions */
3566 static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
3567 {
3568     return deposit64(b, 0, 15, a);
3569 }
3570 
3571 static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
3572 {
3573     return deposit64(b, 0, 31, a);
3574 }
3575 
3576 static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
3577 {
3578     return deposit64(b, 0, 63, a);
3579 }
3580 
3581 RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
3582 RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
3583 RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
3584 GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2)
3585 GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4)
3586 GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8)
3587 RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
3588 RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
3589 RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
3590 GEN_VEXT_VF(vfsgnj_vf_h, 2, 2)
3591 GEN_VEXT_VF(vfsgnj_vf_w, 4, 4)
3592 GEN_VEXT_VF(vfsgnj_vf_d, 8, 8)
3593 
3594 static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
3595 {
3596     return deposit64(~b, 0, 15, a);
3597 }
3598 
3599 static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
3600 {
3601     return deposit64(~b, 0, 31, a);
3602 }
3603 
3604 static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
3605 {
3606     return deposit64(~b, 0, 63, a);
3607 }
3608 
3609 RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
3610 RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
3611 RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
3612 GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2)
3613 GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4)
3614 GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8)
3615 RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
3616 RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
3617 RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
3618 GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2)
3619 GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4)
3620 GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8)
3621 
3622 static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
3623 {
3624     return deposit64(b ^ a, 0, 15, a);
3625 }
3626 
3627 static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
3628 {
3629     return deposit64(b ^ a, 0, 31, a);
3630 }
3631 
3632 static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
3633 {
3634     return deposit64(b ^ a, 0, 63, a);
3635 }
3636 
3637 RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
3638 RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
3639 RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
3640 GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2)
3641 GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4)
3642 GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8)
3643 RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
3644 RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
3645 RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
3646 GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2)
3647 GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4)
3648 GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8)
3649 
3650 /* Vector Floating-Point Compare Instructions */
3651 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP)            \
3652 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,   \
3653                   CPURISCVState *env, uint32_t desc)          \
3654 {                                                             \
3655     uint32_t vm = vext_vm(desc);                              \
3656     uint32_t vl = env->vl;                                    \
3657     uint32_t vlmax = vext_max_elems(desc,                     \
3658                                     ctzl(sizeof(ETYPE)));     \
3659     uint32_t i;                                               \
3660                                                               \
3661     for (i = 0; i < vl; i++) {                                \
3662         ETYPE s1 = *((ETYPE *)vs1 + H(i));                    \
3663         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
3664         if (!vm && !vext_elem_mask(v0, i)) {                  \
3665             continue;                                         \
3666         }                                                     \
3667         vext_set_elem_mask(vd, i,                             \
3668                            DO_OP(s2, s1, &env->fp_status));   \
3669     }                                                         \
3670     for (; i < vlmax; i++) {                                  \
3671         vext_set_elem_mask(vd, i, 0);                         \
3672     }                                                         \
3673 }
3674 
3675 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
3676 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
3677 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
3678 
3679 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP)                      \
3680 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2,       \
3681                   CPURISCVState *env, uint32_t desc)                \
3682 {                                                                   \
3683     uint32_t vm = vext_vm(desc);                                    \
3684     uint32_t vl = env->vl;                                          \
3685     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE)));     \
3686     uint32_t i;                                                     \
3687                                                                     \
3688     for (i = 0; i < vl; i++) {                                      \
3689         ETYPE s2 = *((ETYPE *)vs2 + H(i));                          \
3690         if (!vm && !vext_elem_mask(v0, i)) {                        \
3691             continue;                                               \
3692         }                                                           \
3693         vext_set_elem_mask(vd, i,                                   \
3694                            DO_OP(s2, (ETYPE)s1, &env->fp_status));  \
3695     }                                                               \
3696     for (; i < vlmax; i++) {                                        \
3697         vext_set_elem_mask(vd, i, 0);                               \
3698     }                                                               \
3699 }
3700 
3701 GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
3702 GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
3703 GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
3704 
3705 static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
3706 {
3707     FloatRelation compare = float16_compare_quiet(a, b, s);
3708     return compare != float_relation_equal;
3709 }
3710 
3711 static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
3712 {
3713     FloatRelation compare = float32_compare_quiet(a, b, s);
3714     return compare != float_relation_equal;
3715 }
3716 
3717 static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
3718 {
3719     FloatRelation compare = float64_compare_quiet(a, b, s);
3720     return compare != float_relation_equal;
3721 }
3722 
3723 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
3724 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
3725 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
3726 GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
3727 GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
3728 GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
3729 
3730 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
3731 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
3732 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
3733 GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
3734 GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
3735 GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
3736 
3737 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
3738 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
3739 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
3740 GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
3741 GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
3742 GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
3743 
3744 static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
3745 {
3746     FloatRelation compare = float16_compare(a, b, s);
3747     return compare == float_relation_greater;
3748 }
3749 
3750 static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
3751 {
3752     FloatRelation compare = float32_compare(a, b, s);
3753     return compare == float_relation_greater;
3754 }
3755 
3756 static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
3757 {
3758     FloatRelation compare = float64_compare(a, b, s);
3759     return compare == float_relation_greater;
3760 }
3761 
3762 GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
3763 GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
3764 GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
3765 
3766 static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
3767 {
3768     FloatRelation compare = float16_compare(a, b, s);
3769     return compare == float_relation_greater ||
3770            compare == float_relation_equal;
3771 }
3772 
3773 static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
3774 {
3775     FloatRelation compare = float32_compare(a, b, s);
3776     return compare == float_relation_greater ||
3777            compare == float_relation_equal;
3778 }
3779 
3780 static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
3781 {
3782     FloatRelation compare = float64_compare(a, b, s);
3783     return compare == float_relation_greater ||
3784            compare == float_relation_equal;
3785 }
3786 
3787 GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
3788 GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
3789 GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
3790 
3791 GEN_VEXT_CMP_VV_ENV(vmford_vv_h, uint16_t, H2, !float16_unordered_quiet)
3792 GEN_VEXT_CMP_VV_ENV(vmford_vv_w, uint32_t, H4, !float32_unordered_quiet)
3793 GEN_VEXT_CMP_VV_ENV(vmford_vv_d, uint64_t, H8, !float64_unordered_quiet)
3794 GEN_VEXT_CMP_VF(vmford_vf_h, uint16_t, H2, !float16_unordered_quiet)
3795 GEN_VEXT_CMP_VF(vmford_vf_w, uint32_t, H4, !float32_unordered_quiet)
3796 GEN_VEXT_CMP_VF(vmford_vf_d, uint64_t, H8, !float64_unordered_quiet)
3797 
3798 /* Vector Floating-Point Classify Instruction */
3799 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP)         \
3800 static void do_##NAME(void *vd, void *vs2, int i)      \
3801 {                                                      \
3802     TX2 s2 = *((T2 *)vs2 + HS2(i));                    \
3803     *((TD *)vd + HD(i)) = OP(s2);                      \
3804 }
3805 
3806 #define GEN_VEXT_V(NAME, ESZ, DSZ)                     \
3807 void HELPER(NAME)(void *vd, void *v0, void *vs2,       \
3808                   CPURISCVState *env, uint32_t desc)   \
3809 {                                                      \
3810     uint32_t vm = vext_vm(desc);                       \
3811     uint32_t vl = env->vl;                             \
3812     uint32_t i;                                        \
3813                                                        \
3814     for (i = 0; i < vl; i++) {                         \
3815         if (!vm && !vext_elem_mask(v0, i)) {           \
3816             continue;                                  \
3817         }                                              \
3818         do_##NAME(vd, vs2, i);                         \
3819     }                                                  \
3820 }
3821 
3822 target_ulong fclass_h(uint64_t frs1)
3823 {
3824     float16 f = frs1;
3825     bool sign = float16_is_neg(f);
3826 
3827     if (float16_is_infinity(f)) {
3828         return sign ? 1 << 0 : 1 << 7;
3829     } else if (float16_is_zero(f)) {
3830         return sign ? 1 << 3 : 1 << 4;
3831     } else if (float16_is_zero_or_denormal(f)) {
3832         return sign ? 1 << 2 : 1 << 5;
3833     } else if (float16_is_any_nan(f)) {
3834         float_status s = { }; /* for snan_bit_is_one */
3835         return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3836     } else {
3837         return sign ? 1 << 1 : 1 << 6;
3838     }
3839 }
3840 
3841 target_ulong fclass_s(uint64_t frs1)
3842 {
3843     float32 f = frs1;
3844     bool sign = float32_is_neg(f);
3845 
3846     if (float32_is_infinity(f)) {
3847         return sign ? 1 << 0 : 1 << 7;
3848     } else if (float32_is_zero(f)) {
3849         return sign ? 1 << 3 : 1 << 4;
3850     } else if (float32_is_zero_or_denormal(f)) {
3851         return sign ? 1 << 2 : 1 << 5;
3852     } else if (float32_is_any_nan(f)) {
3853         float_status s = { }; /* for snan_bit_is_one */
3854         return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3855     } else {
3856         return sign ? 1 << 1 : 1 << 6;
3857     }
3858 }
3859 
3860 target_ulong fclass_d(uint64_t frs1)
3861 {
3862     float64 f = frs1;
3863     bool sign = float64_is_neg(f);
3864 
3865     if (float64_is_infinity(f)) {
3866         return sign ? 1 << 0 : 1 << 7;
3867     } else if (float64_is_zero(f)) {
3868         return sign ? 1 << 3 : 1 << 4;
3869     } else if (float64_is_zero_or_denormal(f)) {
3870         return sign ? 1 << 2 : 1 << 5;
3871     } else if (float64_is_any_nan(f)) {
3872         float_status s = { }; /* for snan_bit_is_one */
3873         return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
3874     } else {
3875         return sign ? 1 << 1 : 1 << 6;
3876     }
3877 }
3878 
3879 RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
3880 RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
3881 RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
3882 GEN_VEXT_V(vfclass_v_h, 2, 2)
3883 GEN_VEXT_V(vfclass_v_w, 4, 4)
3884 GEN_VEXT_V(vfclass_v_d, 8, 8)
3885 
3886 /* Vector Floating-Point Merge Instruction */
3887 #define GEN_VFMERGE_VF(NAME, ETYPE, H)                        \
3888 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3889                   CPURISCVState *env, uint32_t desc)          \
3890 {                                                             \
3891     uint32_t vm = vext_vm(desc);                              \
3892     uint32_t vl = env->vl;                                    \
3893     uint32_t i;                                               \
3894                                                               \
3895     for (i = 0; i < vl; i++) {                                \
3896         ETYPE s2 = *((ETYPE *)vs2 + H(i));                    \
3897         *((ETYPE *)vd + H(i))                                 \
3898           = (!vm && !vext_elem_mask(v0, i) ? s2 : s1);        \
3899     }                                                         \
3900 }
3901 
3902 GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2)
3903 GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4)
3904 GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8)
3905 
3906 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
3907 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
3908 RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
3909 RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
3910 RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
3911 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2)
3912 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4)
3913 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8)
3914 
3915 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
3916 RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
3917 RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
3918 RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
3919 GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2)
3920 GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4)
3921 GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8)
3922 
3923 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
3924 RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
3925 RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
3926 RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
3927 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2)
3928 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4)
3929 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8)
3930 
3931 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
3932 RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
3933 RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
3934 RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
3935 GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2)
3936 GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4)
3937 GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8)
3938 
3939 /* Widening Floating-Point/Integer Type-Convert Instructions */
3940 /* (TD, T2, TX2) */
3941 #define WOP_UU_H uint32_t, uint16_t, uint16_t
3942 #define WOP_UU_W uint64_t, uint32_t, uint32_t
3943 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
3944 RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
3945 RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
3946 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4)
3947 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8)
3948 
3949 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
3950 RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
3951 RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
3952 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4)
3953 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8)
3954 
3955 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
3956 RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
3957 RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
3958 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4)
3959 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8)
3960 
3961 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
3962 RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
3963 RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
3964 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4)
3965 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8)
3966 
3967 /*
3968  * vfwcvt.f.f.v vd, vs2, vm #
3969  * Convert single-width float to double-width float.
3970  */
3971 static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
3972 {
3973     return float16_to_float32(a, true, s);
3974 }
3975 
3976 RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
3977 RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
3978 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4)
3979 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8)
3980 
3981 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
3982 /* (TD, T2, TX2) */
3983 #define NOP_UU_H uint16_t, uint32_t, uint32_t
3984 #define NOP_UU_W uint32_t, uint64_t, uint64_t
3985 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
3986 RVVCALL(OPFVV1, vfncvt_xu_f_v_h, NOP_UU_H, H2, H4, float32_to_uint16)
3987 RVVCALL(OPFVV1, vfncvt_xu_f_v_w, NOP_UU_W, H4, H8, float64_to_uint32)
3988 GEN_VEXT_V_ENV(vfncvt_xu_f_v_h, 2, 2)
3989 GEN_VEXT_V_ENV(vfncvt_xu_f_v_w, 4, 4)
3990 
3991 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
3992 RVVCALL(OPFVV1, vfncvt_x_f_v_h, NOP_UU_H, H2, H4, float32_to_int16)
3993 RVVCALL(OPFVV1, vfncvt_x_f_v_w, NOP_UU_W, H4, H8, float64_to_int32)
3994 GEN_VEXT_V_ENV(vfncvt_x_f_v_h, 2, 2)
3995 GEN_VEXT_V_ENV(vfncvt_x_f_v_w, 4, 4)
3996 
3997 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
3998 RVVCALL(OPFVV1, vfncvt_f_xu_v_h, NOP_UU_H, H2, H4, uint32_to_float16)
3999 RVVCALL(OPFVV1, vfncvt_f_xu_v_w, NOP_UU_W, H4, H8, uint64_to_float32)
4000 GEN_VEXT_V_ENV(vfncvt_f_xu_v_h, 2, 2)
4001 GEN_VEXT_V_ENV(vfncvt_f_xu_v_w, 4, 4)
4002 
4003 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
4004 RVVCALL(OPFVV1, vfncvt_f_x_v_h, NOP_UU_H, H2, H4, int32_to_float16)
4005 RVVCALL(OPFVV1, vfncvt_f_x_v_w, NOP_UU_W, H4, H8, int64_to_float32)
4006 GEN_VEXT_V_ENV(vfncvt_f_x_v_h, 2, 2)
4007 GEN_VEXT_V_ENV(vfncvt_f_x_v_w, 4, 4)
4008 
4009 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
4010 static uint16_t vfncvtffv16(uint32_t a, float_status *s)
4011 {
4012     return float32_to_float16(a, true, s);
4013 }
4014 
4015 RVVCALL(OPFVV1, vfncvt_f_f_v_h, NOP_UU_H, H2, H4, vfncvtffv16)
4016 RVVCALL(OPFVV1, vfncvt_f_f_v_w, NOP_UU_W, H4, H8, float64_to_float32)
4017 GEN_VEXT_V_ENV(vfncvt_f_f_v_h, 2, 2)
4018 GEN_VEXT_V_ENV(vfncvt_f_f_v_w, 4, 4)
4019 
4020 /*
4021  *** Vector Reduction Operations
4022  */
4023 /* Vector Single-Width Integer Reduction Instructions */
4024 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP)          \
4025 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
4026         void *vs2, CPURISCVState *env, uint32_t desc)     \
4027 {                                                         \
4028     uint32_t vm = vext_vm(desc);                          \
4029     uint32_t vl = env->vl;                                \
4030     uint32_t i;                                           \
4031     TD s1 =  *((TD *)vs1 + HD(0));                        \
4032                                                           \
4033     for (i = 0; i < vl; i++) {                            \
4034         TS2 s2 = *((TS2 *)vs2 + HS2(i));                  \
4035         if (!vm && !vext_elem_mask(v0, i)) {              \
4036             continue;                                     \
4037         }                                                 \
4038         s1 = OP(s1, (TD)s2);                              \
4039     }                                                     \
4040     *((TD *)vd + HD(0)) = s1;                             \
4041 }
4042 
4043 /* vd[0] = sum(vs1[0], vs2[*]) */
4044 GEN_VEXT_RED(vredsum_vs_b, int8_t,  int8_t,  H1, H1, DO_ADD)
4045 GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD)
4046 GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD)
4047 GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD)
4048 
4049 /* vd[0] = maxu(vs1[0], vs2[*]) */
4050 GEN_VEXT_RED(vredmaxu_vs_b, uint8_t,  uint8_t,  H1, H1, DO_MAX)
4051 GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX)
4052 GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX)
4053 GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX)
4054 
4055 /* vd[0] = max(vs1[0], vs2[*]) */
4056 GEN_VEXT_RED(vredmax_vs_b, int8_t,  int8_t,  H1, H1, DO_MAX)
4057 GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX)
4058 GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX)
4059 GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX)
4060 
4061 /* vd[0] = minu(vs1[0], vs2[*]) */
4062 GEN_VEXT_RED(vredminu_vs_b, uint8_t,  uint8_t,  H1, H1, DO_MIN)
4063 GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN)
4064 GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN)
4065 GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN)
4066 
4067 /* vd[0] = min(vs1[0], vs2[*]) */
4068 GEN_VEXT_RED(vredmin_vs_b, int8_t,  int8_t,  H1, H1, DO_MIN)
4069 GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN)
4070 GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN)
4071 GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN)
4072 
4073 /* vd[0] = and(vs1[0], vs2[*]) */
4074 GEN_VEXT_RED(vredand_vs_b, int8_t,  int8_t,  H1, H1, DO_AND)
4075 GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND)
4076 GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND)
4077 GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND)
4078 
4079 /* vd[0] = or(vs1[0], vs2[*]) */
4080 GEN_VEXT_RED(vredor_vs_b, int8_t,  int8_t,  H1, H1, DO_OR)
4081 GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR)
4082 GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR)
4083 GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR)
4084 
4085 /* vd[0] = xor(vs1[0], vs2[*]) */
4086 GEN_VEXT_RED(vredxor_vs_b, int8_t,  int8_t,  H1, H1, DO_XOR)
4087 GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR)
4088 GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR)
4089 GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR)
4090 
4091 /* Vector Widening Integer Reduction Instructions */
4092 /* signed sum reduction into double-width accumulator */
4093 GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t,  H2, H1, DO_ADD)
4094 GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD)
4095 GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD)
4096 
4097 /* Unsigned sum reduction into double-width accumulator */
4098 GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t,  H2, H1, DO_ADD)
4099 GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD)
4100 GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD)
4101 
4102 /* Vector Single-Width Floating-Point Reduction Instructions */
4103 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP)          \
4104 void HELPER(NAME)(void *vd, void *v0, void *vs1,           \
4105                   void *vs2, CPURISCVState *env,           \
4106                   uint32_t desc)                           \
4107 {                                                          \
4108     uint32_t vm = vext_vm(desc);                           \
4109     uint32_t vl = env->vl;                                 \
4110     uint32_t i;                                            \
4111     TD s1 =  *((TD *)vs1 + HD(0));                         \
4112                                                            \
4113     for (i = 0; i < vl; i++) {                             \
4114         TS2 s2 = *((TS2 *)vs2 + HS2(i));                   \
4115         if (!vm && !vext_elem_mask(v0, i)) {               \
4116             continue;                                      \
4117         }                                                  \
4118         s1 = OP(s1, (TD)s2, &env->fp_status);              \
4119     }                                                      \
4120     *((TD *)vd + HD(0)) = s1;                              \
4121 }
4122 
4123 /* Unordered sum */
4124 GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add)
4125 GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add)
4126 GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add)
4127 
4128 /* Maximum value */
4129 GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maxnum)
4130 GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maxnum)
4131 GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maxnum)
4132 
4133 /* Minimum value */
4134 GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minnum)
4135 GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minnum)
4136 GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minnum)
4137 
4138 /* Vector Widening Floating-Point Reduction Instructions */
4139 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
4140 void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
4141                             void *vs2, CPURISCVState *env, uint32_t desc)
4142 {
4143     uint32_t vm = vext_vm(desc);
4144     uint32_t vl = env->vl;
4145     uint32_t i;
4146     uint32_t s1 =  *((uint32_t *)vs1 + H4(0));
4147 
4148     for (i = 0; i < vl; i++) {
4149         uint16_t s2 = *((uint16_t *)vs2 + H2(i));
4150         if (!vm && !vext_elem_mask(v0, i)) {
4151             continue;
4152         }
4153         s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
4154                          &env->fp_status);
4155     }
4156     *((uint32_t *)vd + H4(0)) = s1;
4157 }
4158 
4159 void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
4160                             void *vs2, CPURISCVState *env, uint32_t desc)
4161 {
4162     uint32_t vm = vext_vm(desc);
4163     uint32_t vl = env->vl;
4164     uint32_t i;
4165     uint64_t s1 =  *((uint64_t *)vs1);
4166 
4167     for (i = 0; i < vl; i++) {
4168         uint32_t s2 = *((uint32_t *)vs2 + H4(i));
4169         if (!vm && !vext_elem_mask(v0, i)) {
4170             continue;
4171         }
4172         s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
4173                          &env->fp_status);
4174     }
4175     *((uint64_t *)vd) = s1;
4176 }
4177 
4178 /*
4179  *** Vector Mask Operations
4180  */
4181 /* Vector Mask-Register Logical Instructions */
4182 #define GEN_VEXT_MASK_VV(NAME, OP)                        \
4183 void HELPER(NAME)(void *vd, void *v0, void *vs1,          \
4184                   void *vs2, CPURISCVState *env,          \
4185                   uint32_t desc)                          \
4186 {                                                         \
4187     uint32_t vlmax = env_archcpu(env)->cfg.vlen;          \
4188     uint32_t vl = env->vl;                                \
4189     uint32_t i;                                           \
4190     int a, b;                                             \
4191                                                           \
4192     for (i = 0; i < vl; i++) {                            \
4193         a = vext_elem_mask(vs1, i);                       \
4194         b = vext_elem_mask(vs2, i);                       \
4195         vext_set_elem_mask(vd, i, OP(b, a));              \
4196     }                                                     \
4197     for (; i < vlmax; i++) {                              \
4198         vext_set_elem_mask(vd, i, 0);                     \
4199     }                                                     \
4200 }
4201 
4202 #define DO_NAND(N, M)  (!(N & M))
4203 #define DO_ANDNOT(N, M)  (N & !M)
4204 #define DO_NOR(N, M)  (!(N | M))
4205 #define DO_ORNOT(N, M)  (N | !M)
4206 #define DO_XNOR(N, M)  (!(N ^ M))
4207 
4208 GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
4209 GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
4210 GEN_VEXT_MASK_VV(vmandnot_mm, DO_ANDNOT)
4211 GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
4212 GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
4213 GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
4214 GEN_VEXT_MASK_VV(vmornot_mm, DO_ORNOT)
4215 GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
4216 
4217 /* Vector mask population count vmpopc */
4218 target_ulong HELPER(vmpopc_m)(void *v0, void *vs2, CPURISCVState *env,
4219                               uint32_t desc)
4220 {
4221     target_ulong cnt = 0;
4222     uint32_t vm = vext_vm(desc);
4223     uint32_t vl = env->vl;
4224     int i;
4225 
4226     for (i = 0; i < vl; i++) {
4227         if (vm || vext_elem_mask(v0, i)) {
4228             if (vext_elem_mask(vs2, i)) {
4229                 cnt++;
4230             }
4231         }
4232     }
4233     return cnt;
4234 }
4235 
4236 /* vmfirst find-first-set mask bit*/
4237 target_ulong HELPER(vmfirst_m)(void *v0, void *vs2, CPURISCVState *env,
4238                                uint32_t desc)
4239 {
4240     uint32_t vm = vext_vm(desc);
4241     uint32_t vl = env->vl;
4242     int i;
4243 
4244     for (i = 0; i < vl; i++) {
4245         if (vm || vext_elem_mask(v0, i)) {
4246             if (vext_elem_mask(vs2, i)) {
4247                 return i;
4248             }
4249         }
4250     }
4251     return -1LL;
4252 }
4253 
4254 enum set_mask_type {
4255     ONLY_FIRST = 1,
4256     INCLUDE_FIRST,
4257     BEFORE_FIRST,
4258 };
4259 
4260 static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
4261                    uint32_t desc, enum set_mask_type type)
4262 {
4263     uint32_t vlmax = env_archcpu(env)->cfg.vlen;
4264     uint32_t vm = vext_vm(desc);
4265     uint32_t vl = env->vl;
4266     int i;
4267     bool first_mask_bit = false;
4268 
4269     for (i = 0; i < vl; i++) {
4270         if (!vm && !vext_elem_mask(v0, i)) {
4271             continue;
4272         }
4273         /* write a zero to all following active elements */
4274         if (first_mask_bit) {
4275             vext_set_elem_mask(vd, i, 0);
4276             continue;
4277         }
4278         if (vext_elem_mask(vs2, i)) {
4279             first_mask_bit = true;
4280             if (type == BEFORE_FIRST) {
4281                 vext_set_elem_mask(vd, i, 0);
4282             } else {
4283                 vext_set_elem_mask(vd, i, 1);
4284             }
4285         } else {
4286             if (type == ONLY_FIRST) {
4287                 vext_set_elem_mask(vd, i, 0);
4288             } else {
4289                 vext_set_elem_mask(vd, i, 1);
4290             }
4291         }
4292     }
4293     for (; i < vlmax; i++) {
4294         vext_set_elem_mask(vd, i, 0);
4295     }
4296 }
4297 
4298 void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4299                      uint32_t desc)
4300 {
4301     vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
4302 }
4303 
4304 void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4305                      uint32_t desc)
4306 {
4307     vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
4308 }
4309 
4310 void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4311                      uint32_t desc)
4312 {
4313     vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
4314 }
4315 
4316 /* Vector Iota Instruction */
4317 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H)                                  \
4318 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env,      \
4319                   uint32_t desc)                                          \
4320 {                                                                         \
4321     uint32_t vm = vext_vm(desc);                                          \
4322     uint32_t vl = env->vl;                                                \
4323     uint32_t sum = 0;                                                     \
4324     int i;                                                                \
4325                                                                           \
4326     for (i = 0; i < vl; i++) {                                            \
4327         if (!vm && !vext_elem_mask(v0, i)) {                              \
4328             continue;                                                     \
4329         }                                                                 \
4330         *((ETYPE *)vd + H(i)) = sum;                                      \
4331         if (vext_elem_mask(vs2, i)) {                                     \
4332             sum++;                                                        \
4333         }                                                                 \
4334     }                                                                     \
4335 }
4336 
4337 GEN_VEXT_VIOTA_M(viota_m_b, uint8_t,  H1)
4338 GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2)
4339 GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4)
4340 GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8)
4341 
4342 /* Vector Element Index Instruction */
4343 #define GEN_VEXT_VID_V(NAME, ETYPE, H)                                    \
4344 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc)  \
4345 {                                                                         \
4346     uint32_t vm = vext_vm(desc);                                          \
4347     uint32_t vl = env->vl;                                                \
4348     int i;                                                                \
4349                                                                           \
4350     for (i = 0; i < vl; i++) {                                            \
4351         if (!vm && !vext_elem_mask(v0, i)) {                              \
4352             continue;                                                     \
4353         }                                                                 \
4354         *((ETYPE *)vd + H(i)) = i;                                        \
4355     }                                                                     \
4356 }
4357 
4358 GEN_VEXT_VID_V(vid_v_b, uint8_t,  H1)
4359 GEN_VEXT_VID_V(vid_v_h, uint16_t, H2)
4360 GEN_VEXT_VID_V(vid_v_w, uint32_t, H4)
4361 GEN_VEXT_VID_V(vid_v_d, uint64_t, H8)
4362 
4363 /*
4364  *** Vector Permutation Instructions
4365  */
4366 
4367 /* Vector Slide Instructions */
4368 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H)                              \
4369 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4370                   CPURISCVState *env, uint32_t desc)                      \
4371 {                                                                         \
4372     uint32_t vm = vext_vm(desc);                                          \
4373     uint32_t vl = env->vl;                                                \
4374     target_ulong offset = s1, i;                                          \
4375                                                                           \
4376     for (i = offset; i < vl; i++) {                                       \
4377         if (!vm && !vext_elem_mask(v0, i)) {                              \
4378             continue;                                                     \
4379         }                                                                 \
4380         *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset));          \
4381     }                                                                     \
4382 }
4383 
4384 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4385 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t,  H1)
4386 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2)
4387 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4)
4388 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8)
4389 
4390 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H)                            \
4391 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4392                   CPURISCVState *env, uint32_t desc)                      \
4393 {                                                                         \
4394     uint32_t vlmax = env_archcpu(env)->cfg.vlen;                          \
4395     uint32_t vm = vext_vm(desc);                                          \
4396     uint32_t vl = env->vl;                                                \
4397     target_ulong offset = s1, i;                                          \
4398                                                                           \
4399     for (i = 0; i < vl; ++i) {                                            \
4400         target_ulong j = i + offset;                                      \
4401         if (!vm && !vext_elem_mask(v0, i)) {                              \
4402             continue;                                                     \
4403         }                                                                 \
4404         *((ETYPE *)vd + H(i)) = j >= vlmax ? 0 : *((ETYPE *)vs2 + H(j));  \
4405     }                                                                     \
4406 }
4407 
4408 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4409 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t,  H1)
4410 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2)
4411 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4)
4412 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8)
4413 
4414 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ETYPE, H)                             \
4415 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4416                   CPURISCVState *env, uint32_t desc)                      \
4417 {                                                                         \
4418     uint32_t vm = vext_vm(desc);                                          \
4419     uint32_t vl = env->vl;                                                \
4420     uint32_t i;                                                           \
4421                                                                           \
4422     for (i = 0; i < vl; i++) {                                            \
4423         if (!vm && !vext_elem_mask(v0, i)) {                              \
4424             continue;                                                     \
4425         }                                                                 \
4426         if (i == 0) {                                                     \
4427             *((ETYPE *)vd + H(i)) = s1;                                   \
4428         } else {                                                          \
4429             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1));           \
4430         }                                                                 \
4431     }                                                                     \
4432 }
4433 
4434 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4435 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, uint8_t,  H1)
4436 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, uint16_t, H2)
4437 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, uint32_t, H4)
4438 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, uint64_t, H8)
4439 
4440 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ETYPE, H)                           \
4441 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4442                   CPURISCVState *env, uint32_t desc)                      \
4443 {                                                                         \
4444     uint32_t vm = vext_vm(desc);                                          \
4445     uint32_t vl = env->vl;                                                \
4446     uint32_t i;                                                           \
4447                                                                           \
4448     for (i = 0; i < vl; i++) {                                            \
4449         if (!vm && !vext_elem_mask(v0, i)) {                              \
4450             continue;                                                     \
4451         }                                                                 \
4452         if (i == vl - 1) {                                                \
4453             *((ETYPE *)vd + H(i)) = s1;                                   \
4454         } else {                                                          \
4455             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1));           \
4456         }                                                                 \
4457     }                                                                     \
4458 }
4459 
4460 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4461 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, uint8_t,  H1)
4462 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, uint16_t, H2)
4463 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, uint32_t, H4)
4464 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, uint64_t, H8)
4465 
4466 /* Vector Register Gather Instruction */
4467 #define GEN_VEXT_VRGATHER_VV(NAME, ETYPE, H)                              \
4468 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,               \
4469                   CPURISCVState *env, uint32_t desc)                      \
4470 {                                                                         \
4471     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE)));           \
4472     uint32_t vm = vext_vm(desc);                                          \
4473     uint32_t vl = env->vl;                                                \
4474     uint64_t index;                                                       \
4475     uint32_t i;                                                           \
4476                                                                           \
4477     for (i = 0; i < vl; i++) {                                            \
4478         if (!vm && !vext_elem_mask(v0, i)) {                              \
4479             continue;                                                     \
4480         }                                                                 \
4481         index = *((ETYPE *)vs1 + H(i));                                   \
4482         if (index >= vlmax) {                                             \
4483             *((ETYPE *)vd + H(i)) = 0;                                    \
4484         } else {                                                          \
4485             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index));           \
4486         }                                                                 \
4487     }                                                                     \
4488 }
4489 
4490 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4491 GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t,  H1)
4492 GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, H2)
4493 GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, H4)
4494 GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, H8)
4495 
4496 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H)                              \
4497 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2,         \
4498                   CPURISCVState *env, uint32_t desc)                      \
4499 {                                                                         \
4500     uint32_t vlmax = vext_max_elems(desc, ctzl(sizeof(ETYPE)));           \
4501     uint32_t vm = vext_vm(desc);                                          \
4502     uint32_t vl = env->vl;                                                \
4503     uint64_t index = s1;                                                  \
4504     uint32_t i;                                                           \
4505                                                                           \
4506     for (i = 0; i < vl; i++) {                                            \
4507         if (!vm && !vext_elem_mask(v0, i)) {                              \
4508             continue;                                                     \
4509         }                                                                 \
4510         if (index >= vlmax) {                                             \
4511             *((ETYPE *)vd + H(i)) = 0;                                    \
4512         } else {                                                          \
4513             *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index));           \
4514         }                                                                 \
4515     }                                                                     \
4516 }
4517 
4518 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4519 GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t,  H1)
4520 GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2)
4521 GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4)
4522 GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8)
4523 
4524 /* Vector Compress Instruction */
4525 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H)                             \
4526 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2,               \
4527                   CPURISCVState *env, uint32_t desc)                      \
4528 {                                                                         \
4529     uint32_t vl = env->vl;                                                \
4530     uint32_t num = 0, i;                                                  \
4531                                                                           \
4532     for (i = 0; i < vl; i++) {                                            \
4533         if (!vext_elem_mask(vs1, i)) {                                    \
4534             continue;                                                     \
4535         }                                                                 \
4536         *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i));                 \
4537         num++;                                                            \
4538     }                                                                     \
4539 }
4540 
4541 /* Compress into vd elements of vs2 where vs1 is enabled */
4542 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t,  H1)
4543 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2)
4544 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4)
4545 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8)
4546