1 /*
2 * RISC-V Vector Crypto Extension Helpers for QEMU.
3 *
4 * Copyright (C) 2023 SiFive, Inc.
5 * Written by Codethink Ltd and SiFive.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/host-utils.h"
22 #include "qemu/bitops.h"
23 #include "qemu/bswap.h"
24 #include "cpu.h"
25 #include "crypto/aes.h"
26 #include "crypto/aes-round.h"
27 #include "crypto/sm4.h"
28 #include "exec/memop.h"
29 #include "exec/exec-all.h"
30 #include "exec/helper-proto.h"
31 #include "internals.h"
32 #include "vector_internals.h"
33
clmul64(uint64_t y,uint64_t x)34 static uint64_t clmul64(uint64_t y, uint64_t x)
35 {
36 uint64_t result = 0;
37 for (int j = 63; j >= 0; j--) {
38 if ((y >> j) & 1) {
39 result ^= (x << j);
40 }
41 }
42 return result;
43 }
44
clmulh64(uint64_t y,uint64_t x)45 static uint64_t clmulh64(uint64_t y, uint64_t x)
46 {
47 uint64_t result = 0;
48 for (int j = 63; j >= 1; j--) {
49 if ((y >> j) & 1) {
50 result ^= (x >> (64 - j));
51 }
52 }
53 return result;
54 }
55
RVVCALL(OPIVV2,vclmul_vv,OP_UUU_D,H8,H8,H8,clmul64)56 RVVCALL(OPIVV2, vclmul_vv, OP_UUU_D, H8, H8, H8, clmul64)
57 GEN_VEXT_VV(vclmul_vv, 8)
58 RVVCALL(OPIVX2, vclmul_vx, OP_UUU_D, H8, H8, clmul64)
59 GEN_VEXT_VX(vclmul_vx, 8)
60 RVVCALL(OPIVV2, vclmulh_vv, OP_UUU_D, H8, H8, H8, clmulh64)
61 GEN_VEXT_VV(vclmulh_vv, 8)
62 RVVCALL(OPIVX2, vclmulh_vx, OP_UUU_D, H8, H8, clmulh64)
63 GEN_VEXT_VX(vclmulh_vx, 8)
64
65 RVVCALL(OPIVV2, vror_vv_b, OP_UUU_B, H1, H1, H1, ror8)
66 RVVCALL(OPIVV2, vror_vv_h, OP_UUU_H, H2, H2, H2, ror16)
67 RVVCALL(OPIVV2, vror_vv_w, OP_UUU_W, H4, H4, H4, ror32)
68 RVVCALL(OPIVV2, vror_vv_d, OP_UUU_D, H8, H8, H8, ror64)
69 GEN_VEXT_VV(vror_vv_b, 1)
70 GEN_VEXT_VV(vror_vv_h, 2)
71 GEN_VEXT_VV(vror_vv_w, 4)
72 GEN_VEXT_VV(vror_vv_d, 8)
73
74 RVVCALL(OPIVX2, vror_vx_b, OP_UUU_B, H1, H1, ror8)
75 RVVCALL(OPIVX2, vror_vx_h, OP_UUU_H, H2, H2, ror16)
76 RVVCALL(OPIVX2, vror_vx_w, OP_UUU_W, H4, H4, ror32)
77 RVVCALL(OPIVX2, vror_vx_d, OP_UUU_D, H8, H8, ror64)
78 GEN_VEXT_VX(vror_vx_b, 1)
79 GEN_VEXT_VX(vror_vx_h, 2)
80 GEN_VEXT_VX(vror_vx_w, 4)
81 GEN_VEXT_VX(vror_vx_d, 8)
82
83 RVVCALL(OPIVV2, vrol_vv_b, OP_UUU_B, H1, H1, H1, rol8)
84 RVVCALL(OPIVV2, vrol_vv_h, OP_UUU_H, H2, H2, H2, rol16)
85 RVVCALL(OPIVV2, vrol_vv_w, OP_UUU_W, H4, H4, H4, rol32)
86 RVVCALL(OPIVV2, vrol_vv_d, OP_UUU_D, H8, H8, H8, rol64)
87 GEN_VEXT_VV(vrol_vv_b, 1)
88 GEN_VEXT_VV(vrol_vv_h, 2)
89 GEN_VEXT_VV(vrol_vv_w, 4)
90 GEN_VEXT_VV(vrol_vv_d, 8)
91
92 RVVCALL(OPIVX2, vrol_vx_b, OP_UUU_B, H1, H1, rol8)
93 RVVCALL(OPIVX2, vrol_vx_h, OP_UUU_H, H2, H2, rol16)
94 RVVCALL(OPIVX2, vrol_vx_w, OP_UUU_W, H4, H4, rol32)
95 RVVCALL(OPIVX2, vrol_vx_d, OP_UUU_D, H8, H8, rol64)
96 GEN_VEXT_VX(vrol_vx_b, 1)
97 GEN_VEXT_VX(vrol_vx_h, 2)
98 GEN_VEXT_VX(vrol_vx_w, 4)
99 GEN_VEXT_VX(vrol_vx_d, 8)
100
101 static uint64_t brev8(uint64_t val)
102 {
103 val = ((val & 0x5555555555555555ull) << 1) |
104 ((val & 0xAAAAAAAAAAAAAAAAull) >> 1);
105 val = ((val & 0x3333333333333333ull) << 2) |
106 ((val & 0xCCCCCCCCCCCCCCCCull) >> 2);
107 val = ((val & 0x0F0F0F0F0F0F0F0Full) << 4) |
108 ((val & 0xF0F0F0F0F0F0F0F0ull) >> 4);
109
110 return val;
111 }
112
RVVCALL(OPIVV1,vbrev8_v_b,OP_UU_B,H1,H1,brev8)113 RVVCALL(OPIVV1, vbrev8_v_b, OP_UU_B, H1, H1, brev8)
114 RVVCALL(OPIVV1, vbrev8_v_h, OP_UU_H, H2, H2, brev8)
115 RVVCALL(OPIVV1, vbrev8_v_w, OP_UU_W, H4, H4, brev8)
116 RVVCALL(OPIVV1, vbrev8_v_d, OP_UU_D, H8, H8, brev8)
117 GEN_VEXT_V(vbrev8_v_b, 1)
118 GEN_VEXT_V(vbrev8_v_h, 2)
119 GEN_VEXT_V(vbrev8_v_w, 4)
120 GEN_VEXT_V(vbrev8_v_d, 8)
121
122 #define DO_IDENTITY(a) (a)
123 RVVCALL(OPIVV1, vrev8_v_b, OP_UU_B, H1, H1, DO_IDENTITY)
124 RVVCALL(OPIVV1, vrev8_v_h, OP_UU_H, H2, H2, bswap16)
125 RVVCALL(OPIVV1, vrev8_v_w, OP_UU_W, H4, H4, bswap32)
126 RVVCALL(OPIVV1, vrev8_v_d, OP_UU_D, H8, H8, bswap64)
127 GEN_VEXT_V(vrev8_v_b, 1)
128 GEN_VEXT_V(vrev8_v_h, 2)
129 GEN_VEXT_V(vrev8_v_w, 4)
130 GEN_VEXT_V(vrev8_v_d, 8)
131
132 #define DO_ANDN(a, b) ((a) & ~(b))
133 RVVCALL(OPIVV2, vandn_vv_b, OP_UUU_B, H1, H1, H1, DO_ANDN)
134 RVVCALL(OPIVV2, vandn_vv_h, OP_UUU_H, H2, H2, H2, DO_ANDN)
135 RVVCALL(OPIVV2, vandn_vv_w, OP_UUU_W, H4, H4, H4, DO_ANDN)
136 RVVCALL(OPIVV2, vandn_vv_d, OP_UUU_D, H8, H8, H8, DO_ANDN)
137 GEN_VEXT_VV(vandn_vv_b, 1)
138 GEN_VEXT_VV(vandn_vv_h, 2)
139 GEN_VEXT_VV(vandn_vv_w, 4)
140 GEN_VEXT_VV(vandn_vv_d, 8)
141
142 RVVCALL(OPIVX2, vandn_vx_b, OP_UUU_B, H1, H1, DO_ANDN)
143 RVVCALL(OPIVX2, vandn_vx_h, OP_UUU_H, H2, H2, DO_ANDN)
144 RVVCALL(OPIVX2, vandn_vx_w, OP_UUU_W, H4, H4, DO_ANDN)
145 RVVCALL(OPIVX2, vandn_vx_d, OP_UUU_D, H8, H8, DO_ANDN)
146 GEN_VEXT_VX(vandn_vx_b, 1)
147 GEN_VEXT_VX(vandn_vx_h, 2)
148 GEN_VEXT_VX(vandn_vx_w, 4)
149 GEN_VEXT_VX(vandn_vx_d, 8)
150
151 RVVCALL(OPIVV1, vbrev_v_b, OP_UU_B, H1, H1, revbit8)
152 RVVCALL(OPIVV1, vbrev_v_h, OP_UU_H, H2, H2, revbit16)
153 RVVCALL(OPIVV1, vbrev_v_w, OP_UU_W, H4, H4, revbit32)
154 RVVCALL(OPIVV1, vbrev_v_d, OP_UU_D, H8, H8, revbit64)
155 GEN_VEXT_V(vbrev_v_b, 1)
156 GEN_VEXT_V(vbrev_v_h, 2)
157 GEN_VEXT_V(vbrev_v_w, 4)
158 GEN_VEXT_V(vbrev_v_d, 8)
159
160 RVVCALL(OPIVV1, vclz_v_b, OP_UU_B, H1, H1, clz8)
161 RVVCALL(OPIVV1, vclz_v_h, OP_UU_H, H2, H2, clz16)
162 RVVCALL(OPIVV1, vclz_v_w, OP_UU_W, H4, H4, clz32)
163 RVVCALL(OPIVV1, vclz_v_d, OP_UU_D, H8, H8, clz64)
164 GEN_VEXT_V(vclz_v_b, 1)
165 GEN_VEXT_V(vclz_v_h, 2)
166 GEN_VEXT_V(vclz_v_w, 4)
167 GEN_VEXT_V(vclz_v_d, 8)
168
169 RVVCALL(OPIVV1, vctz_v_b, OP_UU_B, H1, H1, ctz8)
170 RVVCALL(OPIVV1, vctz_v_h, OP_UU_H, H2, H2, ctz16)
171 RVVCALL(OPIVV1, vctz_v_w, OP_UU_W, H4, H4, ctz32)
172 RVVCALL(OPIVV1, vctz_v_d, OP_UU_D, H8, H8, ctz64)
173 GEN_VEXT_V(vctz_v_b, 1)
174 GEN_VEXT_V(vctz_v_h, 2)
175 GEN_VEXT_V(vctz_v_w, 4)
176 GEN_VEXT_V(vctz_v_d, 8)
177
178 RVVCALL(OPIVV1, vcpop_v_b, OP_UU_B, H1, H1, ctpop8)
179 RVVCALL(OPIVV1, vcpop_v_h, OP_UU_H, H2, H2, ctpop16)
180 RVVCALL(OPIVV1, vcpop_v_w, OP_UU_W, H4, H4, ctpop32)
181 RVVCALL(OPIVV1, vcpop_v_d, OP_UU_D, H8, H8, ctpop64)
182 GEN_VEXT_V(vcpop_v_b, 1)
183 GEN_VEXT_V(vcpop_v_h, 2)
184 GEN_VEXT_V(vcpop_v_w, 4)
185 GEN_VEXT_V(vcpop_v_d, 8)
186
187 #define DO_SLL(N, M) (N << (M & (sizeof(N) * 8 - 1)))
188 RVVCALL(OPIVV2, vwsll_vv_b, WOP_UUU_B, H2, H1, H1, DO_SLL)
189 RVVCALL(OPIVV2, vwsll_vv_h, WOP_UUU_H, H4, H2, H2, DO_SLL)
190 RVVCALL(OPIVV2, vwsll_vv_w, WOP_UUU_W, H8, H4, H4, DO_SLL)
191 GEN_VEXT_VV(vwsll_vv_b, 2)
192 GEN_VEXT_VV(vwsll_vv_h, 4)
193 GEN_VEXT_VV(vwsll_vv_w, 8)
194
195 RVVCALL(OPIVX2, vwsll_vx_b, WOP_UUU_B, H2, H1, DO_SLL)
196 RVVCALL(OPIVX2, vwsll_vx_h, WOP_UUU_H, H4, H2, DO_SLL)
197 RVVCALL(OPIVX2, vwsll_vx_w, WOP_UUU_W, H8, H4, DO_SLL)
198 GEN_VEXT_VX(vwsll_vx_b, 2)
199 GEN_VEXT_VX(vwsll_vx_h, 4)
200 GEN_VEXT_VX(vwsll_vx_w, 8)
201
202 void HELPER(egs_check)(uint32_t egs, CPURISCVState *env)
203 {
204 uint32_t vl = env->vl;
205 uint32_t vstart = env->vstart;
206
207 if (vl % egs != 0 || vstart % egs != 0) {
208 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
209 }
210 }
211
xor_round_key(AESState * round_state,AESState * round_key)212 static inline void xor_round_key(AESState *round_state, AESState *round_key)
213 {
214 round_state->v = round_state->v ^ round_key->v;
215 }
216
217 #define GEN_ZVKNED_HELPER_VV(NAME, ...) \
218 void HELPER(NAME)(void *vd, void *vs2, CPURISCVState *env, \
219 uint32_t desc) \
220 { \
221 uint32_t vl = env->vl; \
222 uint32_t total_elems = vext_get_total_elems(env, desc, 4); \
223 uint32_t vta = vext_vta(desc); \
224 \
225 VSTART_CHECK_EARLY_EXIT(env); \
226 \
227 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) { \
228 AESState round_key; \
229 round_key.d[0] = *((uint64_t *)vs2 + H8(i * 2 + 0)); \
230 round_key.d[1] = *((uint64_t *)vs2 + H8(i * 2 + 1)); \
231 AESState round_state; \
232 round_state.d[0] = *((uint64_t *)vd + H8(i * 2 + 0)); \
233 round_state.d[1] = *((uint64_t *)vd + H8(i * 2 + 1)); \
234 __VA_ARGS__; \
235 *((uint64_t *)vd + H8(i * 2 + 0)) = round_state.d[0]; \
236 *((uint64_t *)vd + H8(i * 2 + 1)) = round_state.d[1]; \
237 } \
238 env->vstart = 0; \
239 /* set tail elements to 1s */ \
240 vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4); \
241 }
242
243 #define GEN_ZVKNED_HELPER_VS(NAME, ...) \
244 void HELPER(NAME)(void *vd, void *vs2, CPURISCVState *env, \
245 uint32_t desc) \
246 { \
247 uint32_t vl = env->vl; \
248 uint32_t total_elems = vext_get_total_elems(env, desc, 4); \
249 uint32_t vta = vext_vta(desc); \
250 \
251 VSTART_CHECK_EARLY_EXIT(env); \
252 \
253 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) { \
254 AESState round_key; \
255 round_key.d[0] = *((uint64_t *)vs2 + H8(0)); \
256 round_key.d[1] = *((uint64_t *)vs2 + H8(1)); \
257 AESState round_state; \
258 round_state.d[0] = *((uint64_t *)vd + H8(i * 2 + 0)); \
259 round_state.d[1] = *((uint64_t *)vd + H8(i * 2 + 1)); \
260 __VA_ARGS__; \
261 *((uint64_t *)vd + H8(i * 2 + 0)) = round_state.d[0]; \
262 *((uint64_t *)vd + H8(i * 2 + 1)) = round_state.d[1]; \
263 } \
264 env->vstart = 0; \
265 /* set tail elements to 1s */ \
266 vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4); \
267 }
268
GEN_ZVKNED_HELPER_VV(vaesef_vv,aesenc_SB_SR_AK (& round_state,& round_state,& round_key,false);)269 GEN_ZVKNED_HELPER_VV(vaesef_vv, aesenc_SB_SR_AK(&round_state,
270 &round_state,
271 &round_key,
272 false);)
273 GEN_ZVKNED_HELPER_VS(vaesef_vs, aesenc_SB_SR_AK(&round_state,
274 &round_state,
275 &round_key,
276 false);)
277 GEN_ZVKNED_HELPER_VV(vaesdf_vv, aesdec_ISB_ISR_AK(&round_state,
278 &round_state,
279 &round_key,
280 false);)
281 GEN_ZVKNED_HELPER_VS(vaesdf_vs, aesdec_ISB_ISR_AK(&round_state,
282 &round_state,
283 &round_key,
284 false);)
285 GEN_ZVKNED_HELPER_VV(vaesem_vv, aesenc_SB_SR_MC_AK(&round_state,
286 &round_state,
287 &round_key,
288 false);)
289 GEN_ZVKNED_HELPER_VS(vaesem_vs, aesenc_SB_SR_MC_AK(&round_state,
290 &round_state,
291 &round_key,
292 false);)
293 GEN_ZVKNED_HELPER_VV(vaesdm_vv, aesdec_ISB_ISR_AK_IMC(&round_state,
294 &round_state,
295 &round_key,
296 false);)
297 GEN_ZVKNED_HELPER_VS(vaesdm_vs, aesdec_ISB_ISR_AK_IMC(&round_state,
298 &round_state,
299 &round_key,
300 false);)
301 GEN_ZVKNED_HELPER_VS(vaesz_vs, xor_round_key(&round_state, &round_key);)
302
303 void HELPER(vaeskf1_vi)(void *vd_vptr, void *vs2_vptr, uint32_t uimm,
304 CPURISCVState *env, uint32_t desc)
305 {
306 uint32_t *vd = vd_vptr;
307 uint32_t *vs2 = vs2_vptr;
308 uint32_t vl = env->vl;
309 uint32_t total_elems = vext_get_total_elems(env, desc, 4);
310 uint32_t vta = vext_vta(desc);
311
312 VSTART_CHECK_EARLY_EXIT(env);
313
314 uimm &= 0b1111;
315 if (uimm > 10 || uimm == 0) {
316 uimm ^= 0b1000;
317 }
318
319 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
320 uint32_t rk[8], tmp;
321 static const uint32_t rcon[] = {
322 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
323 0x00000020, 0x00000040, 0x00000080, 0x0000001B, 0x00000036,
324 };
325
326 rk[0] = vs2[i * 4 + H4(0)];
327 rk[1] = vs2[i * 4 + H4(1)];
328 rk[2] = vs2[i * 4 + H4(2)];
329 rk[3] = vs2[i * 4 + H4(3)];
330 tmp = ror32(rk[3], 8);
331
332 rk[4] = rk[0] ^ (((uint32_t)AES_sbox[(tmp >> 24) & 0xff] << 24) |
333 ((uint32_t)AES_sbox[(tmp >> 16) & 0xff] << 16) |
334 ((uint32_t)AES_sbox[(tmp >> 8) & 0xff] << 8) |
335 ((uint32_t)AES_sbox[(tmp >> 0) & 0xff] << 0))
336 ^ rcon[uimm - 1];
337 rk[5] = rk[1] ^ rk[4];
338 rk[6] = rk[2] ^ rk[5];
339 rk[7] = rk[3] ^ rk[6];
340
341 vd[i * 4 + H4(0)] = rk[4];
342 vd[i * 4 + H4(1)] = rk[5];
343 vd[i * 4 + H4(2)] = rk[6];
344 vd[i * 4 + H4(3)] = rk[7];
345 }
346 env->vstart = 0;
347 /* set tail elements to 1s */
348 vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4);
349 }
350
HELPER(vaeskf2_vi)351 void HELPER(vaeskf2_vi)(void *vd_vptr, void *vs2_vptr, uint32_t uimm,
352 CPURISCVState *env, uint32_t desc)
353 {
354 uint32_t *vd = vd_vptr;
355 uint32_t *vs2 = vs2_vptr;
356 uint32_t vl = env->vl;
357 uint32_t total_elems = vext_get_total_elems(env, desc, 4);
358 uint32_t vta = vext_vta(desc);
359
360 VSTART_CHECK_EARLY_EXIT(env);
361
362 uimm &= 0b1111;
363 if (uimm > 14 || uimm < 2) {
364 uimm ^= 0b1000;
365 }
366
367 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
368 uint32_t rk[12], tmp;
369 static const uint32_t rcon[] = {
370 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
371 0x00000020, 0x00000040, 0x00000080, 0x0000001B, 0x00000036,
372 };
373
374 rk[0] = vd[i * 4 + H4(0)];
375 rk[1] = vd[i * 4 + H4(1)];
376 rk[2] = vd[i * 4 + H4(2)];
377 rk[3] = vd[i * 4 + H4(3)];
378 rk[4] = vs2[i * 4 + H4(0)];
379 rk[5] = vs2[i * 4 + H4(1)];
380 rk[6] = vs2[i * 4 + H4(2)];
381 rk[7] = vs2[i * 4 + H4(3)];
382
383 if (uimm % 2 == 0) {
384 tmp = ror32(rk[7], 8);
385 rk[8] = rk[0] ^ (((uint32_t)AES_sbox[(tmp >> 24) & 0xff] << 24) |
386 ((uint32_t)AES_sbox[(tmp >> 16) & 0xff] << 16) |
387 ((uint32_t)AES_sbox[(tmp >> 8) & 0xff] << 8) |
388 ((uint32_t)AES_sbox[(tmp >> 0) & 0xff] << 0))
389 ^ rcon[(uimm - 1) / 2];
390 } else {
391 rk[8] = rk[0] ^ (((uint32_t)AES_sbox[(rk[7] >> 24) & 0xff] << 24) |
392 ((uint32_t)AES_sbox[(rk[7] >> 16) & 0xff] << 16) |
393 ((uint32_t)AES_sbox[(rk[7] >> 8) & 0xff] << 8) |
394 ((uint32_t)AES_sbox[(rk[7] >> 0) & 0xff] << 0));
395 }
396 rk[9] = rk[1] ^ rk[8];
397 rk[10] = rk[2] ^ rk[9];
398 rk[11] = rk[3] ^ rk[10];
399
400 vd[i * 4 + H4(0)] = rk[8];
401 vd[i * 4 + H4(1)] = rk[9];
402 vd[i * 4 + H4(2)] = rk[10];
403 vd[i * 4 + H4(3)] = rk[11];
404 }
405 env->vstart = 0;
406 /* set tail elements to 1s */
407 vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4);
408 }
409
sig0_sha256(uint32_t x)410 static inline uint32_t sig0_sha256(uint32_t x)
411 {
412 return ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3);
413 }
414
sig1_sha256(uint32_t x)415 static inline uint32_t sig1_sha256(uint32_t x)
416 {
417 return ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10);
418 }
419
sig0_sha512(uint64_t x)420 static inline uint64_t sig0_sha512(uint64_t x)
421 {
422 return ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7);
423 }
424
sig1_sha512(uint64_t x)425 static inline uint64_t sig1_sha512(uint64_t x)
426 {
427 return ror64(x, 19) ^ ror64(x, 61) ^ (x >> 6);
428 }
429
vsha2ms_e32(uint32_t * vd,uint32_t * vs1,uint32_t * vs2)430 static inline void vsha2ms_e32(uint32_t *vd, uint32_t *vs1, uint32_t *vs2)
431 {
432 uint32_t res[4];
433 res[0] = sig1_sha256(vs1[H4(2)]) + vs2[H4(1)] + sig0_sha256(vd[H4(1)]) +
434 vd[H4(0)];
435 res[1] = sig1_sha256(vs1[H4(3)]) + vs2[H4(2)] + sig0_sha256(vd[H4(2)]) +
436 vd[H4(1)];
437 res[2] =
438 sig1_sha256(res[0]) + vs2[H4(3)] + sig0_sha256(vd[H4(3)]) + vd[H4(2)];
439 res[3] =
440 sig1_sha256(res[1]) + vs1[H4(0)] + sig0_sha256(vs2[H4(0)]) + vd[H4(3)];
441 vd[H4(3)] = res[3];
442 vd[H4(2)] = res[2];
443 vd[H4(1)] = res[1];
444 vd[H4(0)] = res[0];
445 }
446
vsha2ms_e64(uint64_t * vd,uint64_t * vs1,uint64_t * vs2)447 static inline void vsha2ms_e64(uint64_t *vd, uint64_t *vs1, uint64_t *vs2)
448 {
449 uint64_t res[4];
450 res[0] = sig1_sha512(vs1[2]) + vs2[1] + sig0_sha512(vd[1]) + vd[0];
451 res[1] = sig1_sha512(vs1[3]) + vs2[2] + sig0_sha512(vd[2]) + vd[1];
452 res[2] = sig1_sha512(res[0]) + vs2[3] + sig0_sha512(vd[3]) + vd[2];
453 res[3] = sig1_sha512(res[1]) + vs1[0] + sig0_sha512(vs2[0]) + vd[3];
454 vd[3] = res[3];
455 vd[2] = res[2];
456 vd[1] = res[1];
457 vd[0] = res[0];
458 }
459
HELPER(vsha2ms_vv)460 void HELPER(vsha2ms_vv)(void *vd, void *vs1, void *vs2, CPURISCVState *env,
461 uint32_t desc)
462 {
463 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
464 uint32_t esz = sew == MO_32 ? 4 : 8;
465 uint32_t total_elems;
466 uint32_t vta = vext_vta(desc);
467
468 VSTART_CHECK_EARLY_EXIT(env);
469
470 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
471 if (sew == MO_32) {
472 vsha2ms_e32(((uint32_t *)vd) + i * 4, ((uint32_t *)vs1) + i * 4,
473 ((uint32_t *)vs2) + i * 4);
474 } else {
475 /* If not 32 then SEW should be 64 */
476 vsha2ms_e64(((uint64_t *)vd) + i * 4, ((uint64_t *)vs1) + i * 4,
477 ((uint64_t *)vs2) + i * 4);
478 }
479 }
480 /* set tail elements to 1s */
481 total_elems = vext_get_total_elems(env, desc, esz);
482 vext_set_elems_1s(vd, vta, env->vl * esz, total_elems * esz);
483 env->vstart = 0;
484 }
485
sum0_64(uint64_t x)486 static inline uint64_t sum0_64(uint64_t x)
487 {
488 return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39);
489 }
490
sum0_32(uint32_t x)491 static inline uint32_t sum0_32(uint32_t x)
492 {
493 return ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22);
494 }
495
sum1_64(uint64_t x)496 static inline uint64_t sum1_64(uint64_t x)
497 {
498 return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41);
499 }
500
sum1_32(uint32_t x)501 static inline uint32_t sum1_32(uint32_t x)
502 {
503 return ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25);
504 }
505
506 #define ch(x, y, z) ((x & y) ^ ((~x) & z))
507
508 #define maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
509
vsha2c_64(uint64_t * vs2,uint64_t * vd,uint64_t * vs1)510 static void vsha2c_64(uint64_t *vs2, uint64_t *vd, uint64_t *vs1)
511 {
512 uint64_t a = vs2[3], b = vs2[2], e = vs2[1], f = vs2[0];
513 uint64_t c = vd[3], d = vd[2], g = vd[1], h = vd[0];
514 uint64_t W0 = vs1[0], W1 = vs1[1];
515 uint64_t T1 = h + sum1_64(e) + ch(e, f, g) + W0;
516 uint64_t T2 = sum0_64(a) + maj(a, b, c);
517
518 h = g;
519 g = f;
520 f = e;
521 e = d + T1;
522 d = c;
523 c = b;
524 b = a;
525 a = T1 + T2;
526
527 T1 = h + sum1_64(e) + ch(e, f, g) + W1;
528 T2 = sum0_64(a) + maj(a, b, c);
529 h = g;
530 g = f;
531 f = e;
532 e = d + T1;
533 d = c;
534 c = b;
535 b = a;
536 a = T1 + T2;
537
538 vd[0] = f;
539 vd[1] = e;
540 vd[2] = b;
541 vd[3] = a;
542 }
543
vsha2c_32(uint32_t * vs2,uint32_t * vd,uint32_t * vs1)544 static void vsha2c_32(uint32_t *vs2, uint32_t *vd, uint32_t *vs1)
545 {
546 uint32_t a = vs2[H4(3)], b = vs2[H4(2)], e = vs2[H4(1)], f = vs2[H4(0)];
547 uint32_t c = vd[H4(3)], d = vd[H4(2)], g = vd[H4(1)], h = vd[H4(0)];
548 uint32_t W0 = vs1[H4(0)], W1 = vs1[H4(1)];
549 uint32_t T1 = h + sum1_32(e) + ch(e, f, g) + W0;
550 uint32_t T2 = sum0_32(a) + maj(a, b, c);
551
552 h = g;
553 g = f;
554 f = e;
555 e = d + T1;
556 d = c;
557 c = b;
558 b = a;
559 a = T1 + T2;
560
561 T1 = h + sum1_32(e) + ch(e, f, g) + W1;
562 T2 = sum0_32(a) + maj(a, b, c);
563 h = g;
564 g = f;
565 f = e;
566 e = d + T1;
567 d = c;
568 c = b;
569 b = a;
570 a = T1 + T2;
571
572 vd[H4(0)] = f;
573 vd[H4(1)] = e;
574 vd[H4(2)] = b;
575 vd[H4(3)] = a;
576 }
577
HELPER(vsha2ch32_vv)578 void HELPER(vsha2ch32_vv)(void *vd, void *vs1, void *vs2, CPURISCVState *env,
579 uint32_t desc)
580 {
581 const uint32_t esz = 4;
582 uint32_t total_elems;
583 uint32_t vta = vext_vta(desc);
584
585 VSTART_CHECK_EARLY_EXIT(env);
586
587 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
588 vsha2c_32(((uint32_t *)vs2) + 4 * i, ((uint32_t *)vd) + 4 * i,
589 ((uint32_t *)vs1) + 4 * i + 2);
590 }
591
592 /* set tail elements to 1s */
593 total_elems = vext_get_total_elems(env, desc, esz);
594 vext_set_elems_1s(vd, vta, env->vl * esz, total_elems * esz);
595 env->vstart = 0;
596 }
597
HELPER(vsha2ch64_vv)598 void HELPER(vsha2ch64_vv)(void *vd, void *vs1, void *vs2, CPURISCVState *env,
599 uint32_t desc)
600 {
601 const uint32_t esz = 8;
602 uint32_t total_elems;
603 uint32_t vta = vext_vta(desc);
604
605 VSTART_CHECK_EARLY_EXIT(env);
606
607 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
608 vsha2c_64(((uint64_t *)vs2) + 4 * i, ((uint64_t *)vd) + 4 * i,
609 ((uint64_t *)vs1) + 4 * i + 2);
610 }
611
612 /* set tail elements to 1s */
613 total_elems = vext_get_total_elems(env, desc, esz);
614 vext_set_elems_1s(vd, vta, env->vl * esz, total_elems * esz);
615 env->vstart = 0;
616 }
617
HELPER(vsha2cl32_vv)618 void HELPER(vsha2cl32_vv)(void *vd, void *vs1, void *vs2, CPURISCVState *env,
619 uint32_t desc)
620 {
621 const uint32_t esz = 4;
622 uint32_t total_elems;
623 uint32_t vta = vext_vta(desc);
624
625 VSTART_CHECK_EARLY_EXIT(env);
626
627 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
628 vsha2c_32(((uint32_t *)vs2) + 4 * i, ((uint32_t *)vd) + 4 * i,
629 (((uint32_t *)vs1) + 4 * i));
630 }
631
632 /* set tail elements to 1s */
633 total_elems = vext_get_total_elems(env, desc, esz);
634 vext_set_elems_1s(vd, vta, env->vl * esz, total_elems * esz);
635 env->vstart = 0;
636 }
637
HELPER(vsha2cl64_vv)638 void HELPER(vsha2cl64_vv)(void *vd, void *vs1, void *vs2, CPURISCVState *env,
639 uint32_t desc)
640 {
641 uint32_t esz = 8;
642 uint32_t total_elems;
643 uint32_t vta = vext_vta(desc);
644
645 VSTART_CHECK_EARLY_EXIT(env);
646
647 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
648 vsha2c_64(((uint64_t *)vs2) + 4 * i, ((uint64_t *)vd) + 4 * i,
649 (((uint64_t *)vs1) + 4 * i));
650 }
651
652 /* set tail elements to 1s */
653 total_elems = vext_get_total_elems(env, desc, esz);
654 vext_set_elems_1s(vd, vta, env->vl * esz, total_elems * esz);
655 env->vstart = 0;
656 }
657
p1(uint32_t x)658 static inline uint32_t p1(uint32_t x)
659 {
660 return x ^ rol32(x, 15) ^ rol32(x, 23);
661 }
662
zvksh_w(uint32_t m16,uint32_t m9,uint32_t m3,uint32_t m13,uint32_t m6)663 static inline uint32_t zvksh_w(uint32_t m16, uint32_t m9, uint32_t m3,
664 uint32_t m13, uint32_t m6)
665 {
666 return p1(m16 ^ m9 ^ rol32(m3, 15)) ^ rol32(m13, 7) ^ m6;
667 }
668
HELPER(vsm3me_vv)669 void HELPER(vsm3me_vv)(void *vd_vptr, void *vs1_vptr, void *vs2_vptr,
670 CPURISCVState *env, uint32_t desc)
671 {
672 uint32_t esz = memop_size(FIELD_EX64(env->vtype, VTYPE, VSEW));
673 uint32_t total_elems = vext_get_total_elems(env, desc, esz);
674 uint32_t vta = vext_vta(desc);
675 uint32_t *vd = vd_vptr;
676 uint32_t *vs1 = vs1_vptr;
677 uint32_t *vs2 = vs2_vptr;
678
679 VSTART_CHECK_EARLY_EXIT(env);
680
681 for (int i = env->vstart / 8; i < env->vl / 8; i++) {
682 uint32_t w[24];
683 for (int j = 0; j < 8; j++) {
684 w[j] = bswap32(vs1[H4((i * 8) + j)]);
685 w[j + 8] = bswap32(vs2[H4((i * 8) + j)]);
686 }
687 for (int j = 0; j < 8; j++) {
688 w[j + 16] =
689 zvksh_w(w[j], w[j + 7], w[j + 13], w[j + 3], w[j + 10]);
690 }
691 for (int j = 0; j < 8; j++) {
692 vd[(i * 8) + j] = bswap32(w[H4(j + 16)]);
693 }
694 }
695 vext_set_elems_1s(vd_vptr, vta, env->vl * esz, total_elems * esz);
696 env->vstart = 0;
697 }
698
ff1(uint32_t x,uint32_t y,uint32_t z)699 static inline uint32_t ff1(uint32_t x, uint32_t y, uint32_t z)
700 {
701 return x ^ y ^ z;
702 }
703
ff2(uint32_t x,uint32_t y,uint32_t z)704 static inline uint32_t ff2(uint32_t x, uint32_t y, uint32_t z)
705 {
706 return (x & y) | (x & z) | (y & z);
707 }
708
ff_j(uint32_t x,uint32_t y,uint32_t z,uint32_t j)709 static inline uint32_t ff_j(uint32_t x, uint32_t y, uint32_t z, uint32_t j)
710 {
711 return (j <= 15) ? ff1(x, y, z) : ff2(x, y, z);
712 }
713
gg1(uint32_t x,uint32_t y,uint32_t z)714 static inline uint32_t gg1(uint32_t x, uint32_t y, uint32_t z)
715 {
716 return x ^ y ^ z;
717 }
718
gg2(uint32_t x,uint32_t y,uint32_t z)719 static inline uint32_t gg2(uint32_t x, uint32_t y, uint32_t z)
720 {
721 return (x & y) | (~x & z);
722 }
723
gg_j(uint32_t x,uint32_t y,uint32_t z,uint32_t j)724 static inline uint32_t gg_j(uint32_t x, uint32_t y, uint32_t z, uint32_t j)
725 {
726 return (j <= 15) ? gg1(x, y, z) : gg2(x, y, z);
727 }
728
t_j(uint32_t j)729 static inline uint32_t t_j(uint32_t j)
730 {
731 return (j <= 15) ? 0x79cc4519 : 0x7a879d8a;
732 }
733
p_0(uint32_t x)734 static inline uint32_t p_0(uint32_t x)
735 {
736 return x ^ rol32(x, 9) ^ rol32(x, 17);
737 }
738
sm3c(uint32_t * vd,uint32_t * vs1,uint32_t * vs2,uint32_t uimm)739 static void sm3c(uint32_t *vd, uint32_t *vs1, uint32_t *vs2, uint32_t uimm)
740 {
741 uint32_t x0, x1;
742 uint32_t j;
743 uint32_t ss1, ss2, tt1, tt2;
744 x0 = vs2[0] ^ vs2[4];
745 x1 = vs2[1] ^ vs2[5];
746 j = 2 * uimm;
747 ss1 = rol32(rol32(vs1[0], 12) + vs1[4] + rol32(t_j(j), j % 32), 7);
748 ss2 = ss1 ^ rol32(vs1[0], 12);
749 tt1 = ff_j(vs1[0], vs1[1], vs1[2], j) + vs1[3] + ss2 + x0;
750 tt2 = gg_j(vs1[4], vs1[5], vs1[6], j) + vs1[7] + ss1 + vs2[0];
751 vs1[3] = vs1[2];
752 vd[3] = rol32(vs1[1], 9);
753 vs1[1] = vs1[0];
754 vd[1] = tt1;
755 vs1[7] = vs1[6];
756 vd[7] = rol32(vs1[5], 19);
757 vs1[5] = vs1[4];
758 vd[5] = p_0(tt2);
759 j = 2 * uimm + 1;
760 ss1 = rol32(rol32(vd[1], 12) + vd[5] + rol32(t_j(j), j % 32), 7);
761 ss2 = ss1 ^ rol32(vd[1], 12);
762 tt1 = ff_j(vd[1], vs1[1], vd[3], j) + vs1[3] + ss2 + x1;
763 tt2 = gg_j(vd[5], vs1[5], vd[7], j) + vs1[7] + ss1 + vs2[1];
764 vd[2] = rol32(vs1[1], 9);
765 vd[0] = tt1;
766 vd[6] = rol32(vs1[5], 19);
767 vd[4] = p_0(tt2);
768 }
769
HELPER(vsm3c_vi)770 void HELPER(vsm3c_vi)(void *vd_vptr, void *vs2_vptr, uint32_t uimm,
771 CPURISCVState *env, uint32_t desc)
772 {
773 uint32_t esz = memop_size(FIELD_EX64(env->vtype, VTYPE, VSEW));
774 uint32_t total_elems = vext_get_total_elems(env, desc, esz);
775 uint32_t vta = vext_vta(desc);
776 uint32_t *vd = vd_vptr;
777 uint32_t *vs2 = vs2_vptr;
778 uint32_t v1[8], v2[8], v3[8];
779
780 VSTART_CHECK_EARLY_EXIT(env);
781
782 for (int i = env->vstart / 8; i < env->vl / 8; i++) {
783 for (int k = 0; k < 8; k++) {
784 v2[k] = bswap32(vd[H4(i * 8 + k)]);
785 v3[k] = bswap32(vs2[H4(i * 8 + k)]);
786 }
787 sm3c(v1, v2, v3, uimm);
788 for (int k = 0; k < 8; k++) {
789 vd[i * 8 + k] = bswap32(v1[H4(k)]);
790 }
791 }
792 vext_set_elems_1s(vd_vptr, vta, env->vl * esz, total_elems * esz);
793 env->vstart = 0;
794 }
795
HELPER(vghsh_vv)796 void HELPER(vghsh_vv)(void *vd_vptr, void *vs1_vptr, void *vs2_vptr,
797 CPURISCVState *env, uint32_t desc)
798 {
799 uint64_t *vd = vd_vptr;
800 uint64_t *vs1 = vs1_vptr;
801 uint64_t *vs2 = vs2_vptr;
802 uint32_t vta = vext_vta(desc);
803 uint32_t total_elems = vext_get_total_elems(env, desc, 4);
804
805 VSTART_CHECK_EARLY_EXIT(env);
806
807 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
808 uint64_t Y[2] = {vd[i * 2 + 0], vd[i * 2 + 1]};
809 uint64_t H[2] = {brev8(vs2[i * 2 + 0]), brev8(vs2[i * 2 + 1])};
810 uint64_t X[2] = {vs1[i * 2 + 0], vs1[i * 2 + 1]};
811 uint64_t Z[2] = {0, 0};
812
813 uint64_t S[2] = {brev8(Y[0] ^ X[0]), brev8(Y[1] ^ X[1])};
814
815 for (int j = 0; j < 128; j++) {
816 if ((S[j / 64] >> (j % 64)) & 1) {
817 Z[0] ^= H[0];
818 Z[1] ^= H[1];
819 }
820 bool reduce = ((H[1] >> 63) & 1);
821 H[1] = H[1] << 1 | H[0] >> 63;
822 H[0] = H[0] << 1;
823 if (reduce) {
824 H[0] ^= 0x87;
825 }
826 }
827
828 vd[i * 2 + 0] = brev8(Z[0]);
829 vd[i * 2 + 1] = brev8(Z[1]);
830 }
831 /* set tail elements to 1s */
832 vext_set_elems_1s(vd, vta, env->vl * 4, total_elems * 4);
833 env->vstart = 0;
834 }
835
HELPER(vgmul_vv)836 void HELPER(vgmul_vv)(void *vd_vptr, void *vs2_vptr, CPURISCVState *env,
837 uint32_t desc)
838 {
839 uint64_t *vd = vd_vptr;
840 uint64_t *vs2 = vs2_vptr;
841 uint32_t vta = vext_vta(desc);
842 uint32_t total_elems = vext_get_total_elems(env, desc, 4);
843
844 VSTART_CHECK_EARLY_EXIT(env);
845
846 for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
847 uint64_t Y[2] = {brev8(vd[i * 2 + 0]), brev8(vd[i * 2 + 1])};
848 uint64_t H[2] = {brev8(vs2[i * 2 + 0]), brev8(vs2[i * 2 + 1])};
849 uint64_t Z[2] = {0, 0};
850
851 for (int j = 0; j < 128; j++) {
852 if ((Y[j / 64] >> (j % 64)) & 1) {
853 Z[0] ^= H[0];
854 Z[1] ^= H[1];
855 }
856 bool reduce = ((H[1] >> 63) & 1);
857 H[1] = H[1] << 1 | H[0] >> 63;
858 H[0] = H[0] << 1;
859 if (reduce) {
860 H[0] ^= 0x87;
861 }
862 }
863
864 vd[i * 2 + 0] = brev8(Z[0]);
865 vd[i * 2 + 1] = brev8(Z[1]);
866 }
867 /* set tail elements to 1s */
868 vext_set_elems_1s(vd, vta, env->vl * 4, total_elems * 4);
869 env->vstart = 0;
870 }
871
HELPER(vsm4k_vi)872 void HELPER(vsm4k_vi)(void *vd, void *vs2, uint32_t uimm5, CPURISCVState *env,
873 uint32_t desc)
874 {
875 const uint32_t egs = 4;
876 uint32_t rnd = uimm5 & 0x7;
877 uint32_t group_start = env->vstart / egs;
878 uint32_t group_end = env->vl / egs;
879 uint32_t esz = sizeof(uint32_t);
880 uint32_t total_elems = vext_get_total_elems(env, desc, esz);
881
882 VSTART_CHECK_EARLY_EXIT(env);
883
884 for (uint32_t i = group_start; i < group_end; ++i) {
885 uint32_t vstart = i * egs;
886 uint32_t vend = (i + 1) * egs;
887 uint32_t rk[4] = {0};
888 uint32_t tmp[8] = {0};
889
890 for (uint32_t j = vstart; j < vend; ++j) {
891 rk[j - vstart] = *((uint32_t *)vs2 + H4(j));
892 }
893
894 for (uint32_t j = 0; j < egs; ++j) {
895 tmp[j] = rk[j];
896 }
897
898 for (uint32_t j = 0; j < egs; ++j) {
899 uint32_t b, s;
900 b = tmp[j + 1] ^ tmp[j + 2] ^ tmp[j + 3] ^ sm4_ck[rnd * 4 + j];
901
902 s = sm4_subword(b);
903
904 tmp[j + 4] = tmp[j] ^ (s ^ rol32(s, 13) ^ rol32(s, 23));
905 }
906
907 for (uint32_t j = vstart; j < vend; ++j) {
908 *((uint32_t *)vd + H4(j)) = tmp[egs + (j - vstart)];
909 }
910 }
911
912 env->vstart = 0;
913 /* set tail elements to 1s */
914 vext_set_elems_1s(vd, vext_vta(desc), env->vl * esz, total_elems * esz);
915 }
916
do_sm4_round(uint32_t * rk,uint32_t * buf)917 static void do_sm4_round(uint32_t *rk, uint32_t *buf)
918 {
919 const uint32_t egs = 4;
920 uint32_t s, b;
921
922 for (uint32_t j = egs; j < egs * 2; ++j) {
923 b = buf[j - 3] ^ buf[j - 2] ^ buf[j - 1] ^ rk[j - 4];
924
925 s = sm4_subword(b);
926
927 buf[j] = buf[j - 4] ^ (s ^ rol32(s, 2) ^ rol32(s, 10) ^ rol32(s, 18) ^
928 rol32(s, 24));
929 }
930 }
931
HELPER(vsm4r_vv)932 void HELPER(vsm4r_vv)(void *vd, void *vs2, CPURISCVState *env, uint32_t desc)
933 {
934 const uint32_t egs = 4;
935 uint32_t group_start = env->vstart / egs;
936 uint32_t group_end = env->vl / egs;
937 uint32_t esz = sizeof(uint32_t);
938 uint32_t total_elems = vext_get_total_elems(env, desc, esz);
939
940 VSTART_CHECK_EARLY_EXIT(env);
941
942 for (uint32_t i = group_start; i < group_end; ++i) {
943 uint32_t vstart = i * egs;
944 uint32_t vend = (i + 1) * egs;
945 uint32_t rk[4] = {0};
946 uint32_t tmp[8] = {0};
947
948 for (uint32_t j = vstart; j < vend; ++j) {
949 rk[j - vstart] = *((uint32_t *)vs2 + H4(j));
950 }
951
952 for (uint32_t j = vstart; j < vend; ++j) {
953 tmp[j - vstart] = *((uint32_t *)vd + H4(j));
954 }
955
956 do_sm4_round(rk, tmp);
957
958 for (uint32_t j = vstart; j < vend; ++j) {
959 *((uint32_t *)vd + H4(j)) = tmp[egs + (j - vstart)];
960 }
961 }
962
963 env->vstart = 0;
964 /* set tail elements to 1s */
965 vext_set_elems_1s(vd, vext_vta(desc), env->vl * esz, total_elems * esz);
966 }
967
HELPER(vsm4r_vs)968 void HELPER(vsm4r_vs)(void *vd, void *vs2, CPURISCVState *env, uint32_t desc)
969 {
970 const uint32_t egs = 4;
971 uint32_t group_start = env->vstart / egs;
972 uint32_t group_end = env->vl / egs;
973 uint32_t esz = sizeof(uint32_t);
974 uint32_t total_elems = vext_get_total_elems(env, desc, esz);
975
976 VSTART_CHECK_EARLY_EXIT(env);
977
978 for (uint32_t i = group_start; i < group_end; ++i) {
979 uint32_t vstart = i * egs;
980 uint32_t vend = (i + 1) * egs;
981 uint32_t rk[4] = {0};
982 uint32_t tmp[8] = {0};
983
984 for (uint32_t j = 0; j < egs; ++j) {
985 rk[j] = *((uint32_t *)vs2 + H4(j));
986 }
987
988 for (uint32_t j = vstart; j < vend; ++j) {
989 tmp[j - vstart] = *((uint32_t *)vd + H4(j));
990 }
991
992 do_sm4_round(rk, tmp);
993
994 for (uint32_t j = vstart; j < vend; ++j) {
995 *((uint32_t *)vd + H4(j)) = tmp[egs + (j - vstart)];
996 }
997 }
998
999 env->vstart = 0;
1000 /* set tail elements to 1s */
1001 vext_set_elems_1s(vd, vext_vta(desc), env->vl * esz, total_elems * esz);
1002 }
1003