1 /* 2 * RISC-V emulation for qemu: main translation routines. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/log.h" 21 #include "cpu.h" 22 #include "tcg/tcg-op.h" 23 #include "disas/disas.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 #include "exec/helper-proto.h" 27 #include "exec/helper-gen.h" 28 29 #include "exec/translator.h" 30 #include "exec/log.h" 31 #include "semihosting/semihost.h" 32 33 #include "instmap.h" 34 #include "internals.h" 35 36 #define HELPER_H "helper.h" 37 #include "exec/helper-info.c.inc" 38 #undef HELPER_H 39 40 /* global register indices */ 41 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart; 42 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */ 43 static TCGv load_res; 44 static TCGv load_val; 45 /* globals for PM CSRs */ 46 static TCGv pm_mask; 47 static TCGv pm_base; 48 49 /* 50 * If an operation is being performed on less than TARGET_LONG_BITS, 51 * it may require the inputs to be sign- or zero-extended; which will 52 * depend on the exact operation being performed. 53 */ 54 typedef enum { 55 EXT_NONE, 56 EXT_SIGN, 57 EXT_ZERO, 58 } DisasExtend; 59 60 typedef struct DisasContext { 61 DisasContextBase base; 62 /* pc_succ_insn points to the instruction following base.pc_next */ 63 target_ulong pc_succ_insn; 64 target_ulong priv_ver; 65 RISCVMXL misa_mxl_max; 66 RISCVMXL xl; 67 uint32_t misa_ext; 68 uint32_t opcode; 69 RISCVExtStatus mstatus_fs; 70 RISCVExtStatus mstatus_vs; 71 uint32_t mem_idx; 72 uint32_t priv; 73 /* 74 * Remember the rounding mode encoded in the previous fp instruction, 75 * which we have already installed into env->fp_status. Or -1 for 76 * no previous fp instruction. Note that we exit the TB when writing 77 * to any system register, which includes CSR_FRM, so we do not have 78 * to reset this known value. 79 */ 80 int frm; 81 RISCVMXL ol; 82 bool virt_inst_excp; 83 bool virt_enabled; 84 const RISCVCPUConfig *cfg_ptr; 85 /* vector extension */ 86 bool vill; 87 /* 88 * Encode LMUL to lmul as follows: 89 * LMUL vlmul lmul 90 * 1 000 0 91 * 2 001 1 92 * 4 010 2 93 * 8 011 3 94 * - 100 - 95 * 1/8 101 -3 96 * 1/4 110 -2 97 * 1/2 111 -1 98 */ 99 int8_t lmul; 100 uint8_t sew; 101 uint8_t vta; 102 uint8_t vma; 103 bool cfg_vta_all_1s; 104 bool vstart_eq_zero; 105 bool vl_eq_vlmax; 106 CPUState *cs; 107 TCGv zero; 108 /* PointerMasking extension */ 109 bool pm_mask_enabled; 110 bool pm_base_enabled; 111 /* Use icount trigger for native debug */ 112 bool itrigger; 113 /* FRM is known to contain a valid value. */ 114 bool frm_valid; 115 /* TCG of the current insn_start */ 116 TCGOp *insn_start; 117 } DisasContext; 118 119 static inline bool has_ext(DisasContext *ctx, uint32_t ext) 120 { 121 return ctx->misa_ext & ext; 122 } 123 124 static bool always_true_p(DisasContext *ctx __attribute__((__unused__))) 125 { 126 return true; 127 } 128 129 static bool has_xthead_p(DisasContext *ctx __attribute__((__unused__))) 130 { 131 return ctx->cfg_ptr->ext_xtheadba || ctx->cfg_ptr->ext_xtheadbb || 132 ctx->cfg_ptr->ext_xtheadbs || ctx->cfg_ptr->ext_xtheadcmo || 133 ctx->cfg_ptr->ext_xtheadcondmov || 134 ctx->cfg_ptr->ext_xtheadfmemidx || ctx->cfg_ptr->ext_xtheadfmv || 135 ctx->cfg_ptr->ext_xtheadmac || ctx->cfg_ptr->ext_xtheadmemidx || 136 ctx->cfg_ptr->ext_xtheadmempair || ctx->cfg_ptr->ext_xtheadsync; 137 } 138 139 #define MATERIALISE_EXT_PREDICATE(ext) \ 140 static bool has_ ## ext ## _p(DisasContext *ctx) \ 141 { \ 142 return ctx->cfg_ptr->ext_ ## ext ; \ 143 } 144 145 MATERIALISE_EXT_PREDICATE(XVentanaCondOps); 146 147 #ifdef TARGET_RISCV32 148 #define get_xl(ctx) MXL_RV32 149 #elif defined(CONFIG_USER_ONLY) 150 #define get_xl(ctx) MXL_RV64 151 #else 152 #define get_xl(ctx) ((ctx)->xl) 153 #endif 154 155 /* The word size for this machine mode. */ 156 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx) 157 { 158 return 16 << get_xl(ctx); 159 } 160 161 /* The operation length, as opposed to the xlen. */ 162 #ifdef TARGET_RISCV32 163 #define get_ol(ctx) MXL_RV32 164 #else 165 #define get_ol(ctx) ((ctx)->ol) 166 #endif 167 168 static inline int get_olen(DisasContext *ctx) 169 { 170 return 16 << get_ol(ctx); 171 } 172 173 /* The maximum register length */ 174 #ifdef TARGET_RISCV32 175 #define get_xl_max(ctx) MXL_RV32 176 #else 177 #define get_xl_max(ctx) ((ctx)->misa_mxl_max) 178 #endif 179 180 /* 181 * RISC-V requires NaN-boxing of narrower width floating point values. 182 * This applies when a 32-bit value is assigned to a 64-bit FP register. 183 * For consistency and simplicity, we nanbox results even when the RVD 184 * extension is not present. 185 */ 186 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in) 187 { 188 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32)); 189 } 190 191 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in) 192 { 193 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48)); 194 } 195 196 /* 197 * A narrow n-bit operation, where n < FLEN, checks that input operands 198 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1. 199 * If so, the least-significant bits of the input are used, otherwise the 200 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2). 201 * 202 * Here, the result is always nan-boxed, even the canonical nan. 203 */ 204 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in) 205 { 206 TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull); 207 TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull); 208 209 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 210 } 211 212 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in) 213 { 214 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull); 215 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull); 216 217 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 218 } 219 220 static void decode_save_opc(DisasContext *ctx) 221 { 222 assert(ctx->insn_start != NULL); 223 tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode); 224 ctx->insn_start = NULL; 225 } 226 227 static void gen_pc_plus_diff(TCGv target, DisasContext *ctx, 228 target_ulong dest) 229 { 230 if (get_xl(ctx) == MXL_RV32) { 231 dest = (int32_t)dest; 232 } 233 tcg_gen_movi_tl(target, dest); 234 } 235 236 static void gen_set_pc_imm(DisasContext *ctx, target_ulong dest) 237 { 238 gen_pc_plus_diff(cpu_pc, ctx, dest); 239 } 240 241 static void generate_exception(DisasContext *ctx, int excp) 242 { 243 gen_set_pc_imm(ctx, ctx->base.pc_next); 244 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 245 ctx->base.is_jmp = DISAS_NORETURN; 246 } 247 248 static void gen_exception_illegal(DisasContext *ctx) 249 { 250 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env, 251 offsetof(CPURISCVState, bins)); 252 if (ctx->virt_inst_excp) { 253 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT); 254 } else { 255 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST); 256 } 257 } 258 259 static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target) 260 { 261 tcg_gen_st_tl(target, cpu_env, offsetof(CPURISCVState, badaddr)); 262 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS); 263 } 264 265 static void lookup_and_goto_ptr(DisasContext *ctx) 266 { 267 #ifndef CONFIG_USER_ONLY 268 if (ctx->itrigger) { 269 gen_helper_itrigger_match(cpu_env); 270 } 271 #endif 272 tcg_gen_lookup_and_goto_ptr(); 273 } 274 275 static void exit_tb(DisasContext *ctx) 276 { 277 #ifndef CONFIG_USER_ONLY 278 if (ctx->itrigger) { 279 gen_helper_itrigger_match(cpu_env); 280 } 281 #endif 282 tcg_gen_exit_tb(NULL, 0); 283 } 284 285 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) 286 { 287 /* 288 * Under itrigger, instruction executes one by one like singlestep, 289 * direct block chain benefits will be small. 290 */ 291 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) { 292 tcg_gen_goto_tb(n); 293 gen_set_pc_imm(ctx, dest); 294 tcg_gen_exit_tb(ctx->base.tb, n); 295 } else { 296 gen_set_pc_imm(ctx, dest); 297 lookup_and_goto_ptr(ctx); 298 } 299 } 300 301 /* 302 * Wrappers for getting reg values. 303 * 304 * The $zero register does not have cpu_gpr[0] allocated -- we supply the 305 * constant zero as a source, and an uninitialized sink as destination. 306 * 307 * Further, we may provide an extension for word operations. 308 */ 309 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext) 310 { 311 TCGv t; 312 313 if (reg_num == 0) { 314 return ctx->zero; 315 } 316 317 switch (get_ol(ctx)) { 318 case MXL_RV32: 319 switch (ext) { 320 case EXT_NONE: 321 break; 322 case EXT_SIGN: 323 t = tcg_temp_new(); 324 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]); 325 return t; 326 case EXT_ZERO: 327 t = tcg_temp_new(); 328 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]); 329 return t; 330 default: 331 g_assert_not_reached(); 332 } 333 break; 334 case MXL_RV64: 335 case MXL_RV128: 336 break; 337 default: 338 g_assert_not_reached(); 339 } 340 return cpu_gpr[reg_num]; 341 } 342 343 static TCGv get_gprh(DisasContext *ctx, int reg_num) 344 { 345 assert(get_xl(ctx) == MXL_RV128); 346 if (reg_num == 0) { 347 return ctx->zero; 348 } 349 return cpu_gprh[reg_num]; 350 } 351 352 static TCGv dest_gpr(DisasContext *ctx, int reg_num) 353 { 354 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) { 355 return tcg_temp_new(); 356 } 357 return cpu_gpr[reg_num]; 358 } 359 360 static TCGv dest_gprh(DisasContext *ctx, int reg_num) 361 { 362 if (reg_num == 0) { 363 return tcg_temp_new(); 364 } 365 return cpu_gprh[reg_num]; 366 } 367 368 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t) 369 { 370 if (reg_num != 0) { 371 switch (get_ol(ctx)) { 372 case MXL_RV32: 373 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t); 374 break; 375 case MXL_RV64: 376 case MXL_RV128: 377 tcg_gen_mov_tl(cpu_gpr[reg_num], t); 378 break; 379 default: 380 g_assert_not_reached(); 381 } 382 383 if (get_xl_max(ctx) == MXL_RV128) { 384 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63); 385 } 386 } 387 } 388 389 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm) 390 { 391 if (reg_num != 0) { 392 switch (get_ol(ctx)) { 393 case MXL_RV32: 394 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm); 395 break; 396 case MXL_RV64: 397 case MXL_RV128: 398 tcg_gen_movi_tl(cpu_gpr[reg_num], imm); 399 break; 400 default: 401 g_assert_not_reached(); 402 } 403 404 if (get_xl_max(ctx) == MXL_RV128) { 405 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0)); 406 } 407 } 408 } 409 410 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh) 411 { 412 assert(get_ol(ctx) == MXL_RV128); 413 if (reg_num != 0) { 414 tcg_gen_mov_tl(cpu_gpr[reg_num], rl); 415 tcg_gen_mov_tl(cpu_gprh[reg_num], rh); 416 } 417 } 418 419 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num) 420 { 421 if (!ctx->cfg_ptr->ext_zfinx) { 422 return cpu_fpr[reg_num]; 423 } 424 425 if (reg_num == 0) { 426 return tcg_constant_i64(0); 427 } 428 switch (get_xl(ctx)) { 429 case MXL_RV32: 430 #ifdef TARGET_RISCV32 431 { 432 TCGv_i64 t = tcg_temp_new_i64(); 433 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]); 434 return t; 435 } 436 #else 437 /* fall through */ 438 case MXL_RV64: 439 return cpu_gpr[reg_num]; 440 #endif 441 default: 442 g_assert_not_reached(); 443 } 444 } 445 446 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num) 447 { 448 if (!ctx->cfg_ptr->ext_zfinx) { 449 return cpu_fpr[reg_num]; 450 } 451 452 if (reg_num == 0) { 453 return tcg_constant_i64(0); 454 } 455 switch (get_xl(ctx)) { 456 case MXL_RV32: 457 { 458 TCGv_i64 t = tcg_temp_new_i64(); 459 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]); 460 return t; 461 } 462 #ifdef TARGET_RISCV64 463 case MXL_RV64: 464 return cpu_gpr[reg_num]; 465 #endif 466 default: 467 g_assert_not_reached(); 468 } 469 } 470 471 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num) 472 { 473 if (!ctx->cfg_ptr->ext_zfinx) { 474 return cpu_fpr[reg_num]; 475 } 476 477 if (reg_num == 0) { 478 return tcg_temp_new_i64(); 479 } 480 481 switch (get_xl(ctx)) { 482 case MXL_RV32: 483 return tcg_temp_new_i64(); 484 #ifdef TARGET_RISCV64 485 case MXL_RV64: 486 return cpu_gpr[reg_num]; 487 #endif 488 default: 489 g_assert_not_reached(); 490 } 491 } 492 493 /* assume it is nanboxing (for normal) or sign-extended (for zfinx) */ 494 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t) 495 { 496 if (!ctx->cfg_ptr->ext_zfinx) { 497 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 498 return; 499 } 500 if (reg_num != 0) { 501 switch (get_xl(ctx)) { 502 case MXL_RV32: 503 #ifdef TARGET_RISCV32 504 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t); 505 break; 506 #else 507 /* fall through */ 508 case MXL_RV64: 509 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 510 break; 511 #endif 512 default: 513 g_assert_not_reached(); 514 } 515 } 516 } 517 518 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t) 519 { 520 if (!ctx->cfg_ptr->ext_zfinx) { 521 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 522 return; 523 } 524 525 if (reg_num != 0) { 526 switch (get_xl(ctx)) { 527 case MXL_RV32: 528 #ifdef TARGET_RISCV32 529 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t); 530 break; 531 #else 532 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t); 533 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32); 534 break; 535 case MXL_RV64: 536 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 537 break; 538 #endif 539 default: 540 g_assert_not_reached(); 541 } 542 } 543 } 544 545 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm) 546 { 547 target_ulong next_pc; 548 549 /* check misaligned: */ 550 next_pc = ctx->base.pc_next + imm; 551 if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) { 552 if ((next_pc & 0x3) != 0) { 553 TCGv target_pc = tcg_temp_new(); 554 gen_pc_plus_diff(target_pc, ctx, next_pc); 555 gen_exception_inst_addr_mis(ctx, target_pc); 556 return; 557 } 558 } 559 560 gen_set_gpri(ctx, rd, ctx->pc_succ_insn); 561 gen_goto_tb(ctx, 0, ctx->base.pc_next + imm); /* must use this for safety */ 562 ctx->base.is_jmp = DISAS_NORETURN; 563 } 564 565 /* Compute a canonical address from a register plus offset. */ 566 static TCGv get_address(DisasContext *ctx, int rs1, int imm) 567 { 568 TCGv addr = tcg_temp_new(); 569 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 570 571 tcg_gen_addi_tl(addr, src1, imm); 572 if (ctx->pm_mask_enabled) { 573 tcg_gen_andc_tl(addr, addr, pm_mask); 574 } else if (get_xl(ctx) == MXL_RV32) { 575 tcg_gen_ext32u_tl(addr, addr); 576 } 577 if (ctx->pm_base_enabled) { 578 tcg_gen_or_tl(addr, addr, pm_base); 579 } 580 return addr; 581 } 582 583 /* Compute a canonical address from a register plus reg offset. */ 584 static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs) 585 { 586 TCGv addr = tcg_temp_new(); 587 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 588 589 tcg_gen_add_tl(addr, src1, offs); 590 if (ctx->pm_mask_enabled) { 591 tcg_gen_andc_tl(addr, addr, pm_mask); 592 } else if (get_xl(ctx) == MXL_RV32) { 593 tcg_gen_ext32u_tl(addr, addr); 594 } 595 if (ctx->pm_base_enabled) { 596 tcg_gen_or_tl(addr, addr, pm_base); 597 } 598 return addr; 599 } 600 601 #ifndef CONFIG_USER_ONLY 602 /* 603 * We will have already diagnosed disabled state, 604 * and need to turn initial/clean into dirty. 605 */ 606 static void mark_fs_dirty(DisasContext *ctx) 607 { 608 TCGv tmp; 609 610 if (!has_ext(ctx, RVF)) { 611 return; 612 } 613 614 if (ctx->mstatus_fs != EXT_STATUS_DIRTY) { 615 /* Remember the state change for the rest of the TB. */ 616 ctx->mstatus_fs = EXT_STATUS_DIRTY; 617 618 tmp = tcg_temp_new(); 619 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 620 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 621 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 622 623 if (ctx->virt_enabled) { 624 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 625 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 626 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 627 } 628 } 629 } 630 #else 631 static inline void mark_fs_dirty(DisasContext *ctx) { } 632 #endif 633 634 #ifndef CONFIG_USER_ONLY 635 /* 636 * We will have already diagnosed disabled state, 637 * and need to turn initial/clean into dirty. 638 */ 639 static void mark_vs_dirty(DisasContext *ctx) 640 { 641 TCGv tmp; 642 643 if (ctx->mstatus_vs != EXT_STATUS_DIRTY) { 644 /* Remember the state change for the rest of the TB. */ 645 ctx->mstatus_vs = EXT_STATUS_DIRTY; 646 647 tmp = tcg_temp_new(); 648 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 649 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 650 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 651 652 if (ctx->virt_enabled) { 653 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 654 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 655 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 656 } 657 } 658 } 659 #else 660 static inline void mark_vs_dirty(DisasContext *ctx) { } 661 #endif 662 663 static void gen_set_rm(DisasContext *ctx, int rm) 664 { 665 if (ctx->frm == rm) { 666 return; 667 } 668 ctx->frm = rm; 669 670 if (rm == RISCV_FRM_DYN) { 671 /* The helper will return only if frm valid. */ 672 ctx->frm_valid = true; 673 } 674 675 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 676 decode_save_opc(ctx); 677 gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm)); 678 } 679 680 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm) 681 { 682 if (ctx->frm == rm && ctx->frm_valid) { 683 return; 684 } 685 ctx->frm = rm; 686 ctx->frm_valid = true; 687 688 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 689 decode_save_opc(ctx); 690 gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm)); 691 } 692 693 static int ex_plus_1(DisasContext *ctx, int nf) 694 { 695 return nf + 1; 696 } 697 698 #define EX_SH(amount) \ 699 static int ex_shift_##amount(DisasContext *ctx, int imm) \ 700 { \ 701 return imm << amount; \ 702 } 703 EX_SH(1) 704 EX_SH(2) 705 EX_SH(3) 706 EX_SH(4) 707 EX_SH(12) 708 709 #define REQUIRE_EXT(ctx, ext) do { \ 710 if (!has_ext(ctx, ext)) { \ 711 return false; \ 712 } \ 713 } while (0) 714 715 #define REQUIRE_32BIT(ctx) do { \ 716 if (get_xl(ctx) != MXL_RV32) { \ 717 return false; \ 718 } \ 719 } while (0) 720 721 #define REQUIRE_64BIT(ctx) do { \ 722 if (get_xl(ctx) != MXL_RV64) { \ 723 return false; \ 724 } \ 725 } while (0) 726 727 #define REQUIRE_128BIT(ctx) do { \ 728 if (get_xl(ctx) != MXL_RV128) { \ 729 return false; \ 730 } \ 731 } while (0) 732 733 #define REQUIRE_64_OR_128BIT(ctx) do { \ 734 if (get_xl(ctx) == MXL_RV32) { \ 735 return false; \ 736 } \ 737 } while (0) 738 739 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \ 740 if (!ctx->cfg_ptr->ext_##A && \ 741 !ctx->cfg_ptr->ext_##B) { \ 742 return false; \ 743 } \ 744 } while (0) 745 746 static int ex_rvc_register(DisasContext *ctx, int reg) 747 { 748 return 8 + reg; 749 } 750 751 static int ex_sreg_register(DisasContext *ctx, int reg) 752 { 753 return reg < 2 ? reg + 8 : reg + 16; 754 } 755 756 static int ex_rvc_shiftli(DisasContext *ctx, int imm) 757 { 758 /* For RV128 a shamt of 0 means a shift by 64. */ 759 if (get_ol(ctx) == MXL_RV128) { 760 imm = imm ? imm : 64; 761 } 762 return imm; 763 } 764 765 static int ex_rvc_shiftri(DisasContext *ctx, int imm) 766 { 767 /* 768 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right 769 * shifts, the shamt is sign-extended. 770 */ 771 if (get_ol(ctx) == MXL_RV128) { 772 imm = imm | (imm & 32) << 1; 773 imm = imm ? imm : 64; 774 } 775 return imm; 776 } 777 778 /* Include the auto-generated decoder for 32 bit insn */ 779 #include "decode-insn32.c.inc" 780 781 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a, 782 void (*func)(TCGv, TCGv, target_long)) 783 { 784 TCGv dest = dest_gpr(ctx, a->rd); 785 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 786 787 func(dest, src1, a->imm); 788 789 if (get_xl(ctx) == MXL_RV128) { 790 TCGv src1h = get_gprh(ctx, a->rs1); 791 TCGv desth = dest_gprh(ctx, a->rd); 792 793 func(desth, src1h, -(a->imm < 0)); 794 gen_set_gpr128(ctx, a->rd, dest, desth); 795 } else { 796 gen_set_gpr(ctx, a->rd, dest); 797 } 798 799 return true; 800 } 801 802 static bool gen_logic(DisasContext *ctx, arg_r *a, 803 void (*func)(TCGv, TCGv, TCGv)) 804 { 805 TCGv dest = dest_gpr(ctx, a->rd); 806 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 807 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 808 809 func(dest, src1, src2); 810 811 if (get_xl(ctx) == MXL_RV128) { 812 TCGv src1h = get_gprh(ctx, a->rs1); 813 TCGv src2h = get_gprh(ctx, a->rs2); 814 TCGv desth = dest_gprh(ctx, a->rd); 815 816 func(desth, src1h, src2h); 817 gen_set_gpr128(ctx, a->rd, dest, desth); 818 } else { 819 gen_set_gpr(ctx, a->rd, dest); 820 } 821 822 return true; 823 } 824 825 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext, 826 void (*func)(TCGv, TCGv, target_long), 827 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 828 { 829 TCGv dest = dest_gpr(ctx, a->rd); 830 TCGv src1 = get_gpr(ctx, a->rs1, ext); 831 832 if (get_ol(ctx) < MXL_RV128) { 833 func(dest, src1, a->imm); 834 gen_set_gpr(ctx, a->rd, dest); 835 } else { 836 if (f128 == NULL) { 837 return false; 838 } 839 840 TCGv src1h = get_gprh(ctx, a->rs1); 841 TCGv desth = dest_gprh(ctx, a->rd); 842 843 f128(dest, desth, src1, src1h, a->imm); 844 gen_set_gpr128(ctx, a->rd, dest, desth); 845 } 846 return true; 847 } 848 849 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext, 850 void (*func)(TCGv, TCGv, TCGv), 851 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 852 { 853 TCGv dest = dest_gpr(ctx, a->rd); 854 TCGv src1 = get_gpr(ctx, a->rs1, ext); 855 TCGv src2 = tcg_constant_tl(a->imm); 856 857 if (get_ol(ctx) < MXL_RV128) { 858 func(dest, src1, src2); 859 gen_set_gpr(ctx, a->rd, dest); 860 } else { 861 if (f128 == NULL) { 862 return false; 863 } 864 865 TCGv src1h = get_gprh(ctx, a->rs1); 866 TCGv src2h = tcg_constant_tl(-(a->imm < 0)); 867 TCGv desth = dest_gprh(ctx, a->rd); 868 869 f128(dest, desth, src1, src1h, src2, src2h); 870 gen_set_gpr128(ctx, a->rd, dest, desth); 871 } 872 return true; 873 } 874 875 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext, 876 void (*func)(TCGv, TCGv, TCGv), 877 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 878 { 879 TCGv dest = dest_gpr(ctx, a->rd); 880 TCGv src1 = get_gpr(ctx, a->rs1, ext); 881 TCGv src2 = get_gpr(ctx, a->rs2, ext); 882 883 if (get_ol(ctx) < MXL_RV128) { 884 func(dest, src1, src2); 885 gen_set_gpr(ctx, a->rd, dest); 886 } else { 887 if (f128 == NULL) { 888 return false; 889 } 890 891 TCGv src1h = get_gprh(ctx, a->rs1); 892 TCGv src2h = get_gprh(ctx, a->rs2); 893 TCGv desth = dest_gprh(ctx, a->rd); 894 895 f128(dest, desth, src1, src1h, src2, src2h); 896 gen_set_gpr128(ctx, a->rd, dest, desth); 897 } 898 return true; 899 } 900 901 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 902 void (*f_tl)(TCGv, TCGv, TCGv), 903 void (*f_32)(TCGv, TCGv, TCGv), 904 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 905 { 906 int olen = get_olen(ctx); 907 908 if (olen != TARGET_LONG_BITS) { 909 if (olen == 32) { 910 f_tl = f_32; 911 } else if (olen != 128) { 912 g_assert_not_reached(); 913 } 914 } 915 return gen_arith(ctx, a, ext, f_tl, f_128); 916 } 917 918 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext, 919 void (*func)(TCGv, TCGv, target_long), 920 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 921 { 922 TCGv dest, src1; 923 int max_len = get_olen(ctx); 924 925 if (a->shamt >= max_len) { 926 return false; 927 } 928 929 dest = dest_gpr(ctx, a->rd); 930 src1 = get_gpr(ctx, a->rs1, ext); 931 932 if (max_len < 128) { 933 func(dest, src1, a->shamt); 934 gen_set_gpr(ctx, a->rd, dest); 935 } else { 936 TCGv src1h = get_gprh(ctx, a->rs1); 937 TCGv desth = dest_gprh(ctx, a->rd); 938 939 if (f128 == NULL) { 940 return false; 941 } 942 f128(dest, desth, src1, src1h, a->shamt); 943 gen_set_gpr128(ctx, a->rd, dest, desth); 944 } 945 return true; 946 } 947 948 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a, 949 DisasExtend ext, 950 void (*f_tl)(TCGv, TCGv, target_long), 951 void (*f_32)(TCGv, TCGv, target_long), 952 void (*f_128)(TCGv, TCGv, TCGv, TCGv, 953 target_long)) 954 { 955 int olen = get_olen(ctx); 956 if (olen != TARGET_LONG_BITS) { 957 if (olen == 32) { 958 f_tl = f_32; 959 } else if (olen != 128) { 960 g_assert_not_reached(); 961 } 962 } 963 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128); 964 } 965 966 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext, 967 void (*func)(TCGv, TCGv, TCGv)) 968 { 969 TCGv dest, src1, src2; 970 int max_len = get_olen(ctx); 971 972 if (a->shamt >= max_len) { 973 return false; 974 } 975 976 dest = dest_gpr(ctx, a->rd); 977 src1 = get_gpr(ctx, a->rs1, ext); 978 src2 = tcg_constant_tl(a->shamt); 979 980 func(dest, src1, src2); 981 982 gen_set_gpr(ctx, a->rd, dest); 983 return true; 984 } 985 986 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext, 987 void (*func)(TCGv, TCGv, TCGv), 988 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 989 { 990 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 991 TCGv ext2 = tcg_temp_new(); 992 int max_len = get_olen(ctx); 993 994 tcg_gen_andi_tl(ext2, src2, max_len - 1); 995 996 TCGv dest = dest_gpr(ctx, a->rd); 997 TCGv src1 = get_gpr(ctx, a->rs1, ext); 998 999 if (max_len < 128) { 1000 func(dest, src1, ext2); 1001 gen_set_gpr(ctx, a->rd, dest); 1002 } else { 1003 TCGv src1h = get_gprh(ctx, a->rs1); 1004 TCGv desth = dest_gprh(ctx, a->rd); 1005 1006 if (f128 == NULL) { 1007 return false; 1008 } 1009 f128(dest, desth, src1, src1h, ext2); 1010 gen_set_gpr128(ctx, a->rd, dest, desth); 1011 } 1012 return true; 1013 } 1014 1015 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 1016 void (*f_tl)(TCGv, TCGv, TCGv), 1017 void (*f_32)(TCGv, TCGv, TCGv), 1018 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 1019 { 1020 int olen = get_olen(ctx); 1021 if (olen != TARGET_LONG_BITS) { 1022 if (olen == 32) { 1023 f_tl = f_32; 1024 } else if (olen != 128) { 1025 g_assert_not_reached(); 1026 } 1027 } 1028 return gen_shift(ctx, a, ext, f_tl, f_128); 1029 } 1030 1031 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1032 void (*func)(TCGv, TCGv)) 1033 { 1034 TCGv dest = dest_gpr(ctx, a->rd); 1035 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1036 1037 func(dest, src1); 1038 1039 gen_set_gpr(ctx, a->rd, dest); 1040 return true; 1041 } 1042 1043 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1044 void (*f_tl)(TCGv, TCGv), 1045 void (*f_32)(TCGv, TCGv)) 1046 { 1047 int olen = get_olen(ctx); 1048 1049 if (olen != TARGET_LONG_BITS) { 1050 if (olen == 32) { 1051 f_tl = f_32; 1052 } else { 1053 g_assert_not_reached(); 1054 } 1055 } 1056 return gen_unary(ctx, a, ext, f_tl); 1057 } 1058 1059 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc) 1060 { 1061 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1062 CPUState *cpu = ctx->cs; 1063 CPURISCVState *env = cpu->env_ptr; 1064 1065 return cpu_ldl_code(env, pc); 1066 } 1067 1068 /* Include insn module translation function */ 1069 #include "insn_trans/trans_rvi.c.inc" 1070 #include "insn_trans/trans_rvm.c.inc" 1071 #include "insn_trans/trans_rva.c.inc" 1072 #include "insn_trans/trans_rvf.c.inc" 1073 #include "insn_trans/trans_rvd.c.inc" 1074 #include "insn_trans/trans_rvh.c.inc" 1075 #include "insn_trans/trans_rvv.c.inc" 1076 #include "insn_trans/trans_rvb.c.inc" 1077 #include "insn_trans/trans_rvzicond.c.inc" 1078 #include "insn_trans/trans_rvzawrs.c.inc" 1079 #include "insn_trans/trans_rvzicbo.c.inc" 1080 #include "insn_trans/trans_rvzfh.c.inc" 1081 #include "insn_trans/trans_rvk.c.inc" 1082 #include "insn_trans/trans_privileged.c.inc" 1083 #include "insn_trans/trans_svinval.c.inc" 1084 #include "decode-xthead.c.inc" 1085 #include "insn_trans/trans_xthead.c.inc" 1086 #include "insn_trans/trans_xventanacondops.c.inc" 1087 1088 /* Include the auto-generated decoder for 16 bit insn */ 1089 #include "decode-insn16.c.inc" 1090 #include "insn_trans/trans_rvzce.c.inc" 1091 1092 /* Include decoders for factored-out extensions */ 1093 #include "decode-XVentanaCondOps.c.inc" 1094 1095 /* The specification allows for longer insns, but not supported by qemu. */ 1096 #define MAX_INSN_LEN 4 1097 1098 static inline int insn_len(uint16_t first_word) 1099 { 1100 return (first_word & 3) == 3 ? 4 : 2; 1101 } 1102 1103 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) 1104 { 1105 /* 1106 * A table with predicate (i.e., guard) functions and decoder functions 1107 * that are tested in-order until a decoder matches onto the opcode. 1108 */ 1109 static const struct { 1110 bool (*guard_func)(DisasContext *); 1111 bool (*decode_func)(DisasContext *, uint32_t); 1112 } decoders[] = { 1113 { always_true_p, decode_insn32 }, 1114 { has_xthead_p, decode_xthead }, 1115 { has_XVentanaCondOps_p, decode_XVentanaCodeOps }, 1116 }; 1117 1118 ctx->virt_inst_excp = false; 1119 /* Check for compressed insn */ 1120 if (insn_len(opcode) == 2) { 1121 ctx->opcode = opcode; 1122 ctx->pc_succ_insn = ctx->base.pc_next + 2; 1123 /* 1124 * The Zca extension is added as way to refer to instructions in the C 1125 * extension that do not include the floating-point loads and stores 1126 */ 1127 if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) && 1128 decode_insn16(ctx, opcode)) { 1129 return; 1130 } 1131 } else { 1132 uint32_t opcode32 = opcode; 1133 opcode32 = deposit32(opcode32, 16, 16, 1134 translator_lduw(env, &ctx->base, 1135 ctx->base.pc_next + 2)); 1136 ctx->opcode = opcode32; 1137 ctx->pc_succ_insn = ctx->base.pc_next + 4; 1138 1139 for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) { 1140 if (decoders[i].guard_func(ctx) && 1141 decoders[i].decode_func(ctx, opcode32)) { 1142 return; 1143 } 1144 } 1145 } 1146 1147 gen_exception_illegal(ctx); 1148 } 1149 1150 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 1151 { 1152 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1153 CPURISCVState *env = cs->env_ptr; 1154 RISCVCPU *cpu = RISCV_CPU(cs); 1155 uint32_t tb_flags = ctx->base.tb->flags; 1156 1157 ctx->pc_succ_insn = ctx->base.pc_first; 1158 ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV); 1159 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX); 1160 ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS); 1161 ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS); 1162 ctx->priv_ver = env->priv_ver; 1163 ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED); 1164 ctx->misa_ext = env->misa_ext; 1165 ctx->frm = -1; /* unknown rounding mode */ 1166 ctx->cfg_ptr = &(cpu->cfg); 1167 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL); 1168 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW); 1169 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3); 1170 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s; 1171 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s; 1172 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s; 1173 ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO); 1174 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX); 1175 ctx->misa_mxl_max = env->misa_mxl_max; 1176 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL); 1177 ctx->cs = cs; 1178 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED); 1179 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED); 1180 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER); 1181 ctx->zero = tcg_constant_tl(0); 1182 ctx->virt_inst_excp = false; 1183 } 1184 1185 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu) 1186 { 1187 } 1188 1189 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 1190 { 1191 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1192 1193 tcg_gen_insn_start(ctx->base.pc_next, 0); 1194 ctx->insn_start = tcg_last_op(); 1195 } 1196 1197 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 1198 { 1199 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1200 CPURISCVState *env = cpu->env_ptr; 1201 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next); 1202 1203 ctx->ol = ctx->xl; 1204 decode_opc(env, ctx, opcode16); 1205 ctx->base.pc_next = ctx->pc_succ_insn; 1206 1207 /* Only the first insn within a TB is allowed to cross a page boundary. */ 1208 if (ctx->base.is_jmp == DISAS_NEXT) { 1209 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) { 1210 ctx->base.is_jmp = DISAS_TOO_MANY; 1211 } else { 1212 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK; 1213 1214 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) { 1215 uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next); 1216 int len = insn_len(next_insn); 1217 1218 if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) { 1219 ctx->base.is_jmp = DISAS_TOO_MANY; 1220 } 1221 } 1222 } 1223 } 1224 } 1225 1226 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 1227 { 1228 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1229 1230 switch (ctx->base.is_jmp) { 1231 case DISAS_TOO_MANY: 1232 gen_goto_tb(ctx, 0, ctx->base.pc_next); 1233 break; 1234 case DISAS_NORETURN: 1235 break; 1236 default: 1237 g_assert_not_reached(); 1238 } 1239 } 1240 1241 static void riscv_tr_disas_log(const DisasContextBase *dcbase, 1242 CPUState *cpu, FILE *logfile) 1243 { 1244 #ifndef CONFIG_USER_ONLY 1245 RISCVCPU *rvcpu = RISCV_CPU(cpu); 1246 CPURISCVState *env = &rvcpu->env; 1247 #endif 1248 1249 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 1250 #ifndef CONFIG_USER_ONLY 1251 fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: %d\n", 1252 env->priv, env->virt_enabled); 1253 #endif 1254 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 1255 } 1256 1257 static const TranslatorOps riscv_tr_ops = { 1258 .init_disas_context = riscv_tr_init_disas_context, 1259 .tb_start = riscv_tr_tb_start, 1260 .insn_start = riscv_tr_insn_start, 1261 .translate_insn = riscv_tr_translate_insn, 1262 .tb_stop = riscv_tr_tb_stop, 1263 .disas_log = riscv_tr_disas_log, 1264 }; 1265 1266 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, 1267 target_ulong pc, void *host_pc) 1268 { 1269 DisasContext ctx; 1270 1271 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base); 1272 } 1273 1274 void riscv_translate_init(void) 1275 { 1276 int i; 1277 1278 /* 1279 * cpu_gpr[0] is a placeholder for the zero register. Do not use it. 1280 * Use the gen_set_gpr and get_gpr helper functions when accessing regs, 1281 * unless you specifically block reads/writes to reg 0. 1282 */ 1283 cpu_gpr[0] = NULL; 1284 cpu_gprh[0] = NULL; 1285 1286 for (i = 1; i < 32; i++) { 1287 cpu_gpr[i] = tcg_global_mem_new(cpu_env, 1288 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]); 1289 cpu_gprh[i] = tcg_global_mem_new(cpu_env, 1290 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]); 1291 } 1292 1293 for (i = 0; i < 32; i++) { 1294 cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env, 1295 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]); 1296 } 1297 1298 cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc"); 1299 cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl"); 1300 cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart), 1301 "vstart"); 1302 load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res), 1303 "load_res"); 1304 load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val), 1305 "load_val"); 1306 /* Assign PM CSRs to tcg globals */ 1307 pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask), 1308 "pmmask"); 1309 pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase), 1310 "pmbase"); 1311 } 1312