1 /* 2 * RISC-V emulation for qemu: main translation routines. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/log.h" 21 #include "cpu.h" 22 #include "tcg/tcg-op.h" 23 #include "disas/disas.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 #include "exec/helper-proto.h" 27 #include "exec/helper-gen.h" 28 29 #include "exec/translator.h" 30 #include "exec/log.h" 31 #include "semihosting/semihost.h" 32 33 #include "instmap.h" 34 #include "internals.h" 35 36 #define HELPER_H "helper.h" 37 #include "exec/helper-info.c.inc" 38 #undef HELPER_H 39 40 /* global register indices */ 41 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart; 42 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */ 43 static TCGv load_res; 44 static TCGv load_val; 45 /* globals for PM CSRs */ 46 static TCGv pm_mask; 47 static TCGv pm_base; 48 49 /* 50 * If an operation is being performed on less than TARGET_LONG_BITS, 51 * it may require the inputs to be sign- or zero-extended; which will 52 * depend on the exact operation being performed. 53 */ 54 typedef enum { 55 EXT_NONE, 56 EXT_SIGN, 57 EXT_ZERO, 58 } DisasExtend; 59 60 typedef struct DisasContext { 61 DisasContextBase base; 62 target_ulong cur_insn_len; 63 target_ulong pc_save; 64 target_ulong priv_ver; 65 RISCVMXL misa_mxl_max; 66 RISCVMXL xl; 67 uint32_t misa_ext; 68 uint32_t opcode; 69 RISCVExtStatus mstatus_fs; 70 RISCVExtStatus mstatus_vs; 71 uint32_t mem_idx; 72 uint32_t priv; 73 /* 74 * Remember the rounding mode encoded in the previous fp instruction, 75 * which we have already installed into env->fp_status. Or -1 for 76 * no previous fp instruction. Note that we exit the TB when writing 77 * to any system register, which includes CSR_FRM, so we do not have 78 * to reset this known value. 79 */ 80 int frm; 81 RISCVMXL ol; 82 bool virt_inst_excp; 83 bool virt_enabled; 84 const RISCVCPUConfig *cfg_ptr; 85 /* vector extension */ 86 bool vill; 87 /* 88 * Encode LMUL to lmul as follows: 89 * LMUL vlmul lmul 90 * 1 000 0 91 * 2 001 1 92 * 4 010 2 93 * 8 011 3 94 * - 100 - 95 * 1/8 101 -3 96 * 1/4 110 -2 97 * 1/2 111 -1 98 */ 99 int8_t lmul; 100 uint8_t sew; 101 uint8_t vta; 102 uint8_t vma; 103 bool cfg_vta_all_1s; 104 bool vstart_eq_zero; 105 bool vl_eq_vlmax; 106 CPUState *cs; 107 TCGv zero; 108 /* PointerMasking extension */ 109 bool pm_mask_enabled; 110 bool pm_base_enabled; 111 /* Use icount trigger for native debug */ 112 bool itrigger; 113 /* FRM is known to contain a valid value. */ 114 bool frm_valid; 115 /* TCG of the current insn_start */ 116 TCGOp *insn_start; 117 } DisasContext; 118 119 static inline bool has_ext(DisasContext *ctx, uint32_t ext) 120 { 121 return ctx->misa_ext & ext; 122 } 123 124 #ifdef TARGET_RISCV32 125 #define get_xl(ctx) MXL_RV32 126 #elif defined(CONFIG_USER_ONLY) 127 #define get_xl(ctx) MXL_RV64 128 #else 129 #define get_xl(ctx) ((ctx)->xl) 130 #endif 131 132 /* The word size for this machine mode. */ 133 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx) 134 { 135 return 16 << get_xl(ctx); 136 } 137 138 /* The operation length, as opposed to the xlen. */ 139 #ifdef TARGET_RISCV32 140 #define get_ol(ctx) MXL_RV32 141 #else 142 #define get_ol(ctx) ((ctx)->ol) 143 #endif 144 145 static inline int get_olen(DisasContext *ctx) 146 { 147 return 16 << get_ol(ctx); 148 } 149 150 /* The maximum register length */ 151 #ifdef TARGET_RISCV32 152 #define get_xl_max(ctx) MXL_RV32 153 #else 154 #define get_xl_max(ctx) ((ctx)->misa_mxl_max) 155 #endif 156 157 /* 158 * RISC-V requires NaN-boxing of narrower width floating point values. 159 * This applies when a 32-bit value is assigned to a 64-bit FP register. 160 * For consistency and simplicity, we nanbox results even when the RVD 161 * extension is not present. 162 */ 163 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in) 164 { 165 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32)); 166 } 167 168 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in) 169 { 170 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48)); 171 } 172 173 /* 174 * A narrow n-bit operation, where n < FLEN, checks that input operands 175 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1. 176 * If so, the least-significant bits of the input are used, otherwise the 177 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2). 178 * 179 * Here, the result is always nan-boxed, even the canonical nan. 180 */ 181 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in) 182 { 183 TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull); 184 TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull); 185 186 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 187 } 188 189 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in) 190 { 191 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull); 192 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull); 193 194 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 195 } 196 197 static void decode_save_opc(DisasContext *ctx) 198 { 199 assert(ctx->insn_start != NULL); 200 tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode); 201 ctx->insn_start = NULL; 202 } 203 204 static void gen_pc_plus_diff(TCGv target, DisasContext *ctx, 205 target_long diff) 206 { 207 target_ulong dest = ctx->base.pc_next + diff; 208 209 assert(ctx->pc_save != -1); 210 if (tb_cflags(ctx->base.tb) & CF_PCREL) { 211 tcg_gen_addi_tl(target, cpu_pc, dest - ctx->pc_save); 212 if (get_xl(ctx) == MXL_RV32) { 213 tcg_gen_ext32s_tl(target, target); 214 } 215 } else { 216 if (get_xl(ctx) == MXL_RV32) { 217 dest = (int32_t)dest; 218 } 219 tcg_gen_movi_tl(target, dest); 220 } 221 } 222 223 static void gen_update_pc(DisasContext *ctx, target_long diff) 224 { 225 gen_pc_plus_diff(cpu_pc, ctx, diff); 226 ctx->pc_save = ctx->base.pc_next + diff; 227 } 228 229 static void generate_exception(DisasContext *ctx, int excp) 230 { 231 gen_update_pc(ctx, 0); 232 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 233 ctx->base.is_jmp = DISAS_NORETURN; 234 } 235 236 static void gen_exception_illegal(DisasContext *ctx) 237 { 238 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env, 239 offsetof(CPURISCVState, bins)); 240 if (ctx->virt_inst_excp) { 241 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT); 242 } else { 243 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST); 244 } 245 } 246 247 static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target) 248 { 249 tcg_gen_st_tl(target, cpu_env, offsetof(CPURISCVState, badaddr)); 250 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS); 251 } 252 253 static void lookup_and_goto_ptr(DisasContext *ctx) 254 { 255 #ifndef CONFIG_USER_ONLY 256 if (ctx->itrigger) { 257 gen_helper_itrigger_match(cpu_env); 258 } 259 #endif 260 tcg_gen_lookup_and_goto_ptr(); 261 } 262 263 static void exit_tb(DisasContext *ctx) 264 { 265 #ifndef CONFIG_USER_ONLY 266 if (ctx->itrigger) { 267 gen_helper_itrigger_match(cpu_env); 268 } 269 #endif 270 tcg_gen_exit_tb(NULL, 0); 271 } 272 273 static void gen_goto_tb(DisasContext *ctx, int n, target_long diff) 274 { 275 target_ulong dest = ctx->base.pc_next + diff; 276 277 /* 278 * Under itrigger, instruction executes one by one like singlestep, 279 * direct block chain benefits will be small. 280 */ 281 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) { 282 /* 283 * For pcrel, the pc must always be up-to-date on entry to 284 * the linked TB, so that it can use simple additions for all 285 * further adjustments. For !pcrel, the linked TB is compiled 286 * to know its full virtual address, so we can delay the 287 * update to pc to the unlinked path. A long chain of links 288 * can thus avoid many updates to the PC. 289 */ 290 if (tb_cflags(ctx->base.tb) & CF_PCREL) { 291 gen_update_pc(ctx, diff); 292 tcg_gen_goto_tb(n); 293 } else { 294 tcg_gen_goto_tb(n); 295 gen_update_pc(ctx, diff); 296 } 297 tcg_gen_exit_tb(ctx->base.tb, n); 298 } else { 299 gen_update_pc(ctx, diff); 300 lookup_and_goto_ptr(ctx); 301 } 302 } 303 304 /* 305 * Wrappers for getting reg values. 306 * 307 * The $zero register does not have cpu_gpr[0] allocated -- we supply the 308 * constant zero as a source, and an uninitialized sink as destination. 309 * 310 * Further, we may provide an extension for word operations. 311 */ 312 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext) 313 { 314 TCGv t; 315 316 if (reg_num == 0) { 317 return ctx->zero; 318 } 319 320 switch (get_ol(ctx)) { 321 case MXL_RV32: 322 switch (ext) { 323 case EXT_NONE: 324 break; 325 case EXT_SIGN: 326 t = tcg_temp_new(); 327 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]); 328 return t; 329 case EXT_ZERO: 330 t = tcg_temp_new(); 331 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]); 332 return t; 333 default: 334 g_assert_not_reached(); 335 } 336 break; 337 case MXL_RV64: 338 case MXL_RV128: 339 break; 340 default: 341 g_assert_not_reached(); 342 } 343 return cpu_gpr[reg_num]; 344 } 345 346 static TCGv get_gprh(DisasContext *ctx, int reg_num) 347 { 348 assert(get_xl(ctx) == MXL_RV128); 349 if (reg_num == 0) { 350 return ctx->zero; 351 } 352 return cpu_gprh[reg_num]; 353 } 354 355 static TCGv dest_gpr(DisasContext *ctx, int reg_num) 356 { 357 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) { 358 return tcg_temp_new(); 359 } 360 return cpu_gpr[reg_num]; 361 } 362 363 static TCGv dest_gprh(DisasContext *ctx, int reg_num) 364 { 365 if (reg_num == 0) { 366 return tcg_temp_new(); 367 } 368 return cpu_gprh[reg_num]; 369 } 370 371 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t) 372 { 373 if (reg_num != 0) { 374 switch (get_ol(ctx)) { 375 case MXL_RV32: 376 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t); 377 break; 378 case MXL_RV64: 379 case MXL_RV128: 380 tcg_gen_mov_tl(cpu_gpr[reg_num], t); 381 break; 382 default: 383 g_assert_not_reached(); 384 } 385 386 if (get_xl_max(ctx) == MXL_RV128) { 387 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63); 388 } 389 } 390 } 391 392 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm) 393 { 394 if (reg_num != 0) { 395 switch (get_ol(ctx)) { 396 case MXL_RV32: 397 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm); 398 break; 399 case MXL_RV64: 400 case MXL_RV128: 401 tcg_gen_movi_tl(cpu_gpr[reg_num], imm); 402 break; 403 default: 404 g_assert_not_reached(); 405 } 406 407 if (get_xl_max(ctx) == MXL_RV128) { 408 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0)); 409 } 410 } 411 } 412 413 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh) 414 { 415 assert(get_ol(ctx) == MXL_RV128); 416 if (reg_num != 0) { 417 tcg_gen_mov_tl(cpu_gpr[reg_num], rl); 418 tcg_gen_mov_tl(cpu_gprh[reg_num], rh); 419 } 420 } 421 422 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num) 423 { 424 if (!ctx->cfg_ptr->ext_zfinx) { 425 return cpu_fpr[reg_num]; 426 } 427 428 if (reg_num == 0) { 429 return tcg_constant_i64(0); 430 } 431 switch (get_xl(ctx)) { 432 case MXL_RV32: 433 #ifdef TARGET_RISCV32 434 { 435 TCGv_i64 t = tcg_temp_new_i64(); 436 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]); 437 return t; 438 } 439 #else 440 /* fall through */ 441 case MXL_RV64: 442 return cpu_gpr[reg_num]; 443 #endif 444 default: 445 g_assert_not_reached(); 446 } 447 } 448 449 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num) 450 { 451 if (!ctx->cfg_ptr->ext_zfinx) { 452 return cpu_fpr[reg_num]; 453 } 454 455 if (reg_num == 0) { 456 return tcg_constant_i64(0); 457 } 458 switch (get_xl(ctx)) { 459 case MXL_RV32: 460 { 461 TCGv_i64 t = tcg_temp_new_i64(); 462 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]); 463 return t; 464 } 465 #ifdef TARGET_RISCV64 466 case MXL_RV64: 467 return cpu_gpr[reg_num]; 468 #endif 469 default: 470 g_assert_not_reached(); 471 } 472 } 473 474 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num) 475 { 476 if (!ctx->cfg_ptr->ext_zfinx) { 477 return cpu_fpr[reg_num]; 478 } 479 480 if (reg_num == 0) { 481 return tcg_temp_new_i64(); 482 } 483 484 switch (get_xl(ctx)) { 485 case MXL_RV32: 486 return tcg_temp_new_i64(); 487 #ifdef TARGET_RISCV64 488 case MXL_RV64: 489 return cpu_gpr[reg_num]; 490 #endif 491 default: 492 g_assert_not_reached(); 493 } 494 } 495 496 /* assume it is nanboxing (for normal) or sign-extended (for zfinx) */ 497 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t) 498 { 499 if (!ctx->cfg_ptr->ext_zfinx) { 500 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 501 return; 502 } 503 if (reg_num != 0) { 504 switch (get_xl(ctx)) { 505 case MXL_RV32: 506 #ifdef TARGET_RISCV32 507 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t); 508 break; 509 #else 510 /* fall through */ 511 case MXL_RV64: 512 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 513 break; 514 #endif 515 default: 516 g_assert_not_reached(); 517 } 518 } 519 } 520 521 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t) 522 { 523 if (!ctx->cfg_ptr->ext_zfinx) { 524 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 525 return; 526 } 527 528 if (reg_num != 0) { 529 switch (get_xl(ctx)) { 530 case MXL_RV32: 531 #ifdef TARGET_RISCV32 532 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t); 533 break; 534 #else 535 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t); 536 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32); 537 break; 538 case MXL_RV64: 539 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 540 break; 541 #endif 542 default: 543 g_assert_not_reached(); 544 } 545 } 546 } 547 548 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm) 549 { 550 TCGv succ_pc = dest_gpr(ctx, rd); 551 552 /* check misaligned: */ 553 if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) { 554 if ((imm & 0x3) != 0) { 555 TCGv target_pc = tcg_temp_new(); 556 gen_pc_plus_diff(target_pc, ctx, imm); 557 gen_exception_inst_addr_mis(ctx, target_pc); 558 return; 559 } 560 } 561 562 gen_pc_plus_diff(succ_pc, ctx, ctx->cur_insn_len); 563 gen_set_gpr(ctx, rd, succ_pc); 564 565 gen_goto_tb(ctx, 0, imm); /* must use this for safety */ 566 ctx->base.is_jmp = DISAS_NORETURN; 567 } 568 569 /* Compute a canonical address from a register plus offset. */ 570 static TCGv get_address(DisasContext *ctx, int rs1, int imm) 571 { 572 TCGv addr = tcg_temp_new(); 573 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 574 575 tcg_gen_addi_tl(addr, src1, imm); 576 if (ctx->pm_mask_enabled) { 577 tcg_gen_andc_tl(addr, addr, pm_mask); 578 } else if (get_xl(ctx) == MXL_RV32) { 579 tcg_gen_ext32u_tl(addr, addr); 580 } 581 if (ctx->pm_base_enabled) { 582 tcg_gen_or_tl(addr, addr, pm_base); 583 } 584 return addr; 585 } 586 587 /* Compute a canonical address from a register plus reg offset. */ 588 static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs) 589 { 590 TCGv addr = tcg_temp_new(); 591 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 592 593 tcg_gen_add_tl(addr, src1, offs); 594 if (ctx->pm_mask_enabled) { 595 tcg_gen_andc_tl(addr, addr, pm_mask); 596 } else if (get_xl(ctx) == MXL_RV32) { 597 tcg_gen_ext32u_tl(addr, addr); 598 } 599 if (ctx->pm_base_enabled) { 600 tcg_gen_or_tl(addr, addr, pm_base); 601 } 602 return addr; 603 } 604 605 #ifndef CONFIG_USER_ONLY 606 /* 607 * We will have already diagnosed disabled state, 608 * and need to turn initial/clean into dirty. 609 */ 610 static void mark_fs_dirty(DisasContext *ctx) 611 { 612 TCGv tmp; 613 614 if (!has_ext(ctx, RVF)) { 615 return; 616 } 617 618 if (ctx->mstatus_fs != EXT_STATUS_DIRTY) { 619 /* Remember the state change for the rest of the TB. */ 620 ctx->mstatus_fs = EXT_STATUS_DIRTY; 621 622 tmp = tcg_temp_new(); 623 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 624 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 625 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 626 627 if (ctx->virt_enabled) { 628 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 629 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 630 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 631 } 632 } 633 } 634 #else 635 static inline void mark_fs_dirty(DisasContext *ctx) { } 636 #endif 637 638 #ifndef CONFIG_USER_ONLY 639 /* 640 * We will have already diagnosed disabled state, 641 * and need to turn initial/clean into dirty. 642 */ 643 static void mark_vs_dirty(DisasContext *ctx) 644 { 645 TCGv tmp; 646 647 if (ctx->mstatus_vs != EXT_STATUS_DIRTY) { 648 /* Remember the state change for the rest of the TB. */ 649 ctx->mstatus_vs = EXT_STATUS_DIRTY; 650 651 tmp = tcg_temp_new(); 652 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 653 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 654 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 655 656 if (ctx->virt_enabled) { 657 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 658 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 659 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 660 } 661 } 662 } 663 #else 664 static inline void mark_vs_dirty(DisasContext *ctx) { } 665 #endif 666 667 static void gen_set_rm(DisasContext *ctx, int rm) 668 { 669 if (ctx->frm == rm) { 670 return; 671 } 672 ctx->frm = rm; 673 674 if (rm == RISCV_FRM_DYN) { 675 /* The helper will return only if frm valid. */ 676 ctx->frm_valid = true; 677 } 678 679 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 680 decode_save_opc(ctx); 681 gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm)); 682 } 683 684 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm) 685 { 686 if (ctx->frm == rm && ctx->frm_valid) { 687 return; 688 } 689 ctx->frm = rm; 690 ctx->frm_valid = true; 691 692 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 693 decode_save_opc(ctx); 694 gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm)); 695 } 696 697 static int ex_plus_1(DisasContext *ctx, int nf) 698 { 699 return nf + 1; 700 } 701 702 #define EX_SH(amount) \ 703 static int ex_shift_##amount(DisasContext *ctx, int imm) \ 704 { \ 705 return imm << amount; \ 706 } 707 EX_SH(1) 708 EX_SH(2) 709 EX_SH(3) 710 EX_SH(4) 711 EX_SH(12) 712 713 #define REQUIRE_EXT(ctx, ext) do { \ 714 if (!has_ext(ctx, ext)) { \ 715 return false; \ 716 } \ 717 } while (0) 718 719 #define REQUIRE_32BIT(ctx) do { \ 720 if (get_xl(ctx) != MXL_RV32) { \ 721 return false; \ 722 } \ 723 } while (0) 724 725 #define REQUIRE_64BIT(ctx) do { \ 726 if (get_xl(ctx) != MXL_RV64) { \ 727 return false; \ 728 } \ 729 } while (0) 730 731 #define REQUIRE_128BIT(ctx) do { \ 732 if (get_xl(ctx) != MXL_RV128) { \ 733 return false; \ 734 } \ 735 } while (0) 736 737 #define REQUIRE_64_OR_128BIT(ctx) do { \ 738 if (get_xl(ctx) == MXL_RV32) { \ 739 return false; \ 740 } \ 741 } while (0) 742 743 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \ 744 if (!ctx->cfg_ptr->ext_##A && \ 745 !ctx->cfg_ptr->ext_##B) { \ 746 return false; \ 747 } \ 748 } while (0) 749 750 static int ex_rvc_register(DisasContext *ctx, int reg) 751 { 752 return 8 + reg; 753 } 754 755 static int ex_sreg_register(DisasContext *ctx, int reg) 756 { 757 return reg < 2 ? reg + 8 : reg + 16; 758 } 759 760 static int ex_rvc_shiftli(DisasContext *ctx, int imm) 761 { 762 /* For RV128 a shamt of 0 means a shift by 64. */ 763 if (get_ol(ctx) == MXL_RV128) { 764 imm = imm ? imm : 64; 765 } 766 return imm; 767 } 768 769 static int ex_rvc_shiftri(DisasContext *ctx, int imm) 770 { 771 /* 772 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right 773 * shifts, the shamt is sign-extended. 774 */ 775 if (get_ol(ctx) == MXL_RV128) { 776 imm = imm | (imm & 32) << 1; 777 imm = imm ? imm : 64; 778 } 779 return imm; 780 } 781 782 /* Include the auto-generated decoder for 32 bit insn */ 783 #include "decode-insn32.c.inc" 784 785 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a, 786 void (*func)(TCGv, TCGv, target_long)) 787 { 788 TCGv dest = dest_gpr(ctx, a->rd); 789 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 790 791 func(dest, src1, a->imm); 792 793 if (get_xl(ctx) == MXL_RV128) { 794 TCGv src1h = get_gprh(ctx, a->rs1); 795 TCGv desth = dest_gprh(ctx, a->rd); 796 797 func(desth, src1h, -(a->imm < 0)); 798 gen_set_gpr128(ctx, a->rd, dest, desth); 799 } else { 800 gen_set_gpr(ctx, a->rd, dest); 801 } 802 803 return true; 804 } 805 806 static bool gen_logic(DisasContext *ctx, arg_r *a, 807 void (*func)(TCGv, TCGv, TCGv)) 808 { 809 TCGv dest = dest_gpr(ctx, a->rd); 810 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 811 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 812 813 func(dest, src1, src2); 814 815 if (get_xl(ctx) == MXL_RV128) { 816 TCGv src1h = get_gprh(ctx, a->rs1); 817 TCGv src2h = get_gprh(ctx, a->rs2); 818 TCGv desth = dest_gprh(ctx, a->rd); 819 820 func(desth, src1h, src2h); 821 gen_set_gpr128(ctx, a->rd, dest, desth); 822 } else { 823 gen_set_gpr(ctx, a->rd, dest); 824 } 825 826 return true; 827 } 828 829 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext, 830 void (*func)(TCGv, TCGv, target_long), 831 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 832 { 833 TCGv dest = dest_gpr(ctx, a->rd); 834 TCGv src1 = get_gpr(ctx, a->rs1, ext); 835 836 if (get_ol(ctx) < MXL_RV128) { 837 func(dest, src1, a->imm); 838 gen_set_gpr(ctx, a->rd, dest); 839 } else { 840 if (f128 == NULL) { 841 return false; 842 } 843 844 TCGv src1h = get_gprh(ctx, a->rs1); 845 TCGv desth = dest_gprh(ctx, a->rd); 846 847 f128(dest, desth, src1, src1h, a->imm); 848 gen_set_gpr128(ctx, a->rd, dest, desth); 849 } 850 return true; 851 } 852 853 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext, 854 void (*func)(TCGv, TCGv, TCGv), 855 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 856 { 857 TCGv dest = dest_gpr(ctx, a->rd); 858 TCGv src1 = get_gpr(ctx, a->rs1, ext); 859 TCGv src2 = tcg_constant_tl(a->imm); 860 861 if (get_ol(ctx) < MXL_RV128) { 862 func(dest, src1, src2); 863 gen_set_gpr(ctx, a->rd, dest); 864 } else { 865 if (f128 == NULL) { 866 return false; 867 } 868 869 TCGv src1h = get_gprh(ctx, a->rs1); 870 TCGv src2h = tcg_constant_tl(-(a->imm < 0)); 871 TCGv desth = dest_gprh(ctx, a->rd); 872 873 f128(dest, desth, src1, src1h, src2, src2h); 874 gen_set_gpr128(ctx, a->rd, dest, desth); 875 } 876 return true; 877 } 878 879 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext, 880 void (*func)(TCGv, TCGv, TCGv), 881 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 882 { 883 TCGv dest = dest_gpr(ctx, a->rd); 884 TCGv src1 = get_gpr(ctx, a->rs1, ext); 885 TCGv src2 = get_gpr(ctx, a->rs2, ext); 886 887 if (get_ol(ctx) < MXL_RV128) { 888 func(dest, src1, src2); 889 gen_set_gpr(ctx, a->rd, dest); 890 } else { 891 if (f128 == NULL) { 892 return false; 893 } 894 895 TCGv src1h = get_gprh(ctx, a->rs1); 896 TCGv src2h = get_gprh(ctx, a->rs2); 897 TCGv desth = dest_gprh(ctx, a->rd); 898 899 f128(dest, desth, src1, src1h, src2, src2h); 900 gen_set_gpr128(ctx, a->rd, dest, desth); 901 } 902 return true; 903 } 904 905 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 906 void (*f_tl)(TCGv, TCGv, TCGv), 907 void (*f_32)(TCGv, TCGv, TCGv), 908 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 909 { 910 int olen = get_olen(ctx); 911 912 if (olen != TARGET_LONG_BITS) { 913 if (olen == 32) { 914 f_tl = f_32; 915 } else if (olen != 128) { 916 g_assert_not_reached(); 917 } 918 } 919 return gen_arith(ctx, a, ext, f_tl, f_128); 920 } 921 922 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext, 923 void (*func)(TCGv, TCGv, target_long), 924 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 925 { 926 TCGv dest, src1; 927 int max_len = get_olen(ctx); 928 929 if (a->shamt >= max_len) { 930 return false; 931 } 932 933 dest = dest_gpr(ctx, a->rd); 934 src1 = get_gpr(ctx, a->rs1, ext); 935 936 if (max_len < 128) { 937 func(dest, src1, a->shamt); 938 gen_set_gpr(ctx, a->rd, dest); 939 } else { 940 TCGv src1h = get_gprh(ctx, a->rs1); 941 TCGv desth = dest_gprh(ctx, a->rd); 942 943 if (f128 == NULL) { 944 return false; 945 } 946 f128(dest, desth, src1, src1h, a->shamt); 947 gen_set_gpr128(ctx, a->rd, dest, desth); 948 } 949 return true; 950 } 951 952 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a, 953 DisasExtend ext, 954 void (*f_tl)(TCGv, TCGv, target_long), 955 void (*f_32)(TCGv, TCGv, target_long), 956 void (*f_128)(TCGv, TCGv, TCGv, TCGv, 957 target_long)) 958 { 959 int olen = get_olen(ctx); 960 if (olen != TARGET_LONG_BITS) { 961 if (olen == 32) { 962 f_tl = f_32; 963 } else if (olen != 128) { 964 g_assert_not_reached(); 965 } 966 } 967 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128); 968 } 969 970 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext, 971 void (*func)(TCGv, TCGv, TCGv)) 972 { 973 TCGv dest, src1, src2; 974 int max_len = get_olen(ctx); 975 976 if (a->shamt >= max_len) { 977 return false; 978 } 979 980 dest = dest_gpr(ctx, a->rd); 981 src1 = get_gpr(ctx, a->rs1, ext); 982 src2 = tcg_constant_tl(a->shamt); 983 984 func(dest, src1, src2); 985 986 gen_set_gpr(ctx, a->rd, dest); 987 return true; 988 } 989 990 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext, 991 void (*func)(TCGv, TCGv, TCGv), 992 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 993 { 994 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 995 TCGv ext2 = tcg_temp_new(); 996 int max_len = get_olen(ctx); 997 998 tcg_gen_andi_tl(ext2, src2, max_len - 1); 999 1000 TCGv dest = dest_gpr(ctx, a->rd); 1001 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1002 1003 if (max_len < 128) { 1004 func(dest, src1, ext2); 1005 gen_set_gpr(ctx, a->rd, dest); 1006 } else { 1007 TCGv src1h = get_gprh(ctx, a->rs1); 1008 TCGv desth = dest_gprh(ctx, a->rd); 1009 1010 if (f128 == NULL) { 1011 return false; 1012 } 1013 f128(dest, desth, src1, src1h, ext2); 1014 gen_set_gpr128(ctx, a->rd, dest, desth); 1015 } 1016 return true; 1017 } 1018 1019 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 1020 void (*f_tl)(TCGv, TCGv, TCGv), 1021 void (*f_32)(TCGv, TCGv, TCGv), 1022 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 1023 { 1024 int olen = get_olen(ctx); 1025 if (olen != TARGET_LONG_BITS) { 1026 if (olen == 32) { 1027 f_tl = f_32; 1028 } else if (olen != 128) { 1029 g_assert_not_reached(); 1030 } 1031 } 1032 return gen_shift(ctx, a, ext, f_tl, f_128); 1033 } 1034 1035 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1036 void (*func)(TCGv, TCGv)) 1037 { 1038 TCGv dest = dest_gpr(ctx, a->rd); 1039 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1040 1041 func(dest, src1); 1042 1043 gen_set_gpr(ctx, a->rd, dest); 1044 return true; 1045 } 1046 1047 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1048 void (*f_tl)(TCGv, TCGv), 1049 void (*f_32)(TCGv, TCGv)) 1050 { 1051 int olen = get_olen(ctx); 1052 1053 if (olen != TARGET_LONG_BITS) { 1054 if (olen == 32) { 1055 f_tl = f_32; 1056 } else { 1057 g_assert_not_reached(); 1058 } 1059 } 1060 return gen_unary(ctx, a, ext, f_tl); 1061 } 1062 1063 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc) 1064 { 1065 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1066 CPUState *cpu = ctx->cs; 1067 CPURISCVState *env = cpu->env_ptr; 1068 1069 return cpu_ldl_code(env, pc); 1070 } 1071 1072 /* Include insn module translation function */ 1073 #include "insn_trans/trans_rvi.c.inc" 1074 #include "insn_trans/trans_rvm.c.inc" 1075 #include "insn_trans/trans_rva.c.inc" 1076 #include "insn_trans/trans_rvf.c.inc" 1077 #include "insn_trans/trans_rvd.c.inc" 1078 #include "insn_trans/trans_rvh.c.inc" 1079 #include "insn_trans/trans_rvv.c.inc" 1080 #include "insn_trans/trans_rvb.c.inc" 1081 #include "insn_trans/trans_rvzicond.c.inc" 1082 #include "insn_trans/trans_rvzawrs.c.inc" 1083 #include "insn_trans/trans_rvzicbo.c.inc" 1084 #include "insn_trans/trans_rvzfh.c.inc" 1085 #include "insn_trans/trans_rvk.c.inc" 1086 #include "insn_trans/trans_privileged.c.inc" 1087 #include "insn_trans/trans_svinval.c.inc" 1088 #include "decode-xthead.c.inc" 1089 #include "insn_trans/trans_xthead.c.inc" 1090 #include "insn_trans/trans_xventanacondops.c.inc" 1091 1092 /* Include the auto-generated decoder for 16 bit insn */ 1093 #include "decode-insn16.c.inc" 1094 #include "insn_trans/trans_rvzce.c.inc" 1095 1096 /* Include decoders for factored-out extensions */ 1097 #include "decode-XVentanaCondOps.c.inc" 1098 1099 /* The specification allows for longer insns, but not supported by qemu. */ 1100 #define MAX_INSN_LEN 4 1101 1102 static inline int insn_len(uint16_t first_word) 1103 { 1104 return (first_word & 3) == 3 ? 4 : 2; 1105 } 1106 1107 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) 1108 { 1109 /* 1110 * A table with predicate (i.e., guard) functions and decoder functions 1111 * that are tested in-order until a decoder matches onto the opcode. 1112 */ 1113 static const struct { 1114 bool (*guard_func)(const RISCVCPUConfig *); 1115 bool (*decode_func)(DisasContext *, uint32_t); 1116 } decoders[] = { 1117 { always_true_p, decode_insn32 }, 1118 { has_xthead_p, decode_xthead }, 1119 { has_XVentanaCondOps_p, decode_XVentanaCodeOps }, 1120 }; 1121 1122 ctx->virt_inst_excp = false; 1123 ctx->cur_insn_len = insn_len(opcode); 1124 /* Check for compressed insn */ 1125 if (ctx->cur_insn_len == 2) { 1126 ctx->opcode = opcode; 1127 /* 1128 * The Zca extension is added as way to refer to instructions in the C 1129 * extension that do not include the floating-point loads and stores 1130 */ 1131 if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) && 1132 decode_insn16(ctx, opcode)) { 1133 return; 1134 } 1135 } else { 1136 uint32_t opcode32 = opcode; 1137 opcode32 = deposit32(opcode32, 16, 16, 1138 translator_lduw(env, &ctx->base, 1139 ctx->base.pc_next + 2)); 1140 ctx->opcode = opcode32; 1141 1142 for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) { 1143 if (decoders[i].guard_func(ctx->cfg_ptr) && 1144 decoders[i].decode_func(ctx, opcode32)) { 1145 return; 1146 } 1147 } 1148 } 1149 1150 gen_exception_illegal(ctx); 1151 } 1152 1153 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 1154 { 1155 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1156 CPURISCVState *env = cs->env_ptr; 1157 RISCVCPU *cpu = RISCV_CPU(cs); 1158 uint32_t tb_flags = ctx->base.tb->flags; 1159 1160 ctx->pc_save = ctx->base.pc_first; 1161 ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV); 1162 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX); 1163 ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS); 1164 ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS); 1165 ctx->priv_ver = env->priv_ver; 1166 ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED); 1167 ctx->misa_ext = env->misa_ext; 1168 ctx->frm = -1; /* unknown rounding mode */ 1169 ctx->cfg_ptr = &(cpu->cfg); 1170 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL); 1171 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW); 1172 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3); 1173 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s; 1174 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s; 1175 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s; 1176 ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO); 1177 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX); 1178 ctx->misa_mxl_max = env->misa_mxl_max; 1179 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL); 1180 ctx->cs = cs; 1181 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED); 1182 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED); 1183 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER); 1184 ctx->zero = tcg_constant_tl(0); 1185 ctx->virt_inst_excp = false; 1186 } 1187 1188 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu) 1189 { 1190 } 1191 1192 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 1193 { 1194 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1195 target_ulong pc_next = ctx->base.pc_next; 1196 1197 if (tb_cflags(dcbase->tb) & CF_PCREL) { 1198 pc_next &= ~TARGET_PAGE_MASK; 1199 } 1200 1201 tcg_gen_insn_start(pc_next, 0); 1202 ctx->insn_start = tcg_last_op(); 1203 } 1204 1205 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 1206 { 1207 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1208 CPURISCVState *env = cpu->env_ptr; 1209 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next); 1210 1211 ctx->ol = ctx->xl; 1212 decode_opc(env, ctx, opcode16); 1213 ctx->base.pc_next += ctx->cur_insn_len; 1214 1215 /* Only the first insn within a TB is allowed to cross a page boundary. */ 1216 if (ctx->base.is_jmp == DISAS_NEXT) { 1217 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) { 1218 ctx->base.is_jmp = DISAS_TOO_MANY; 1219 } else { 1220 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK; 1221 1222 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) { 1223 uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next); 1224 int len = insn_len(next_insn); 1225 1226 if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) { 1227 ctx->base.is_jmp = DISAS_TOO_MANY; 1228 } 1229 } 1230 } 1231 } 1232 } 1233 1234 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 1235 { 1236 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1237 1238 switch (ctx->base.is_jmp) { 1239 case DISAS_TOO_MANY: 1240 gen_goto_tb(ctx, 0, 0); 1241 break; 1242 case DISAS_NORETURN: 1243 break; 1244 default: 1245 g_assert_not_reached(); 1246 } 1247 } 1248 1249 static void riscv_tr_disas_log(const DisasContextBase *dcbase, 1250 CPUState *cpu, FILE *logfile) 1251 { 1252 #ifndef CONFIG_USER_ONLY 1253 RISCVCPU *rvcpu = RISCV_CPU(cpu); 1254 CPURISCVState *env = &rvcpu->env; 1255 #endif 1256 1257 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 1258 #ifndef CONFIG_USER_ONLY 1259 fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: %d\n", 1260 env->priv, env->virt_enabled); 1261 #endif 1262 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 1263 } 1264 1265 static const TranslatorOps riscv_tr_ops = { 1266 .init_disas_context = riscv_tr_init_disas_context, 1267 .tb_start = riscv_tr_tb_start, 1268 .insn_start = riscv_tr_insn_start, 1269 .translate_insn = riscv_tr_translate_insn, 1270 .tb_stop = riscv_tr_tb_stop, 1271 .disas_log = riscv_tr_disas_log, 1272 }; 1273 1274 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, 1275 target_ulong pc, void *host_pc) 1276 { 1277 DisasContext ctx; 1278 1279 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base); 1280 } 1281 1282 void riscv_translate_init(void) 1283 { 1284 int i; 1285 1286 /* 1287 * cpu_gpr[0] is a placeholder for the zero register. Do not use it. 1288 * Use the gen_set_gpr and get_gpr helper functions when accessing regs, 1289 * unless you specifically block reads/writes to reg 0. 1290 */ 1291 cpu_gpr[0] = NULL; 1292 cpu_gprh[0] = NULL; 1293 1294 for (i = 1; i < 32; i++) { 1295 cpu_gpr[i] = tcg_global_mem_new(cpu_env, 1296 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]); 1297 cpu_gprh[i] = tcg_global_mem_new(cpu_env, 1298 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]); 1299 } 1300 1301 for (i = 0; i < 32; i++) { 1302 cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env, 1303 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]); 1304 } 1305 1306 cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc"); 1307 cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl"); 1308 cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart), 1309 "vstart"); 1310 load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res), 1311 "load_res"); 1312 load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val), 1313 "load_val"); 1314 /* Assign PM CSRs to tcg globals */ 1315 pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask), 1316 "pmmask"); 1317 pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase), 1318 "pmbase"); 1319 } 1320