1 /* 2 * RISC-V emulation for qemu: main translation routines. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/log.h" 21 #include "cpu.h" 22 #include "tcg/tcg-op.h" 23 #include "disas/disas.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 #include "exec/helper-proto.h" 27 #include "exec/helper-gen.h" 28 29 #include "exec/translator.h" 30 #include "exec/log.h" 31 #include "semihosting/semihost.h" 32 33 #include "instmap.h" 34 #include "internals.h" 35 36 /* global register indices */ 37 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart; 38 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */ 39 static TCGv load_res; 40 static TCGv load_val; 41 /* globals for PM CSRs */ 42 static TCGv pm_mask; 43 static TCGv pm_base; 44 45 #include "exec/gen-icount.h" 46 47 /* 48 * If an operation is being performed on less than TARGET_LONG_BITS, 49 * it may require the inputs to be sign- or zero-extended; which will 50 * depend on the exact operation being performed. 51 */ 52 typedef enum { 53 EXT_NONE, 54 EXT_SIGN, 55 EXT_ZERO, 56 } DisasExtend; 57 58 typedef struct DisasContext { 59 DisasContextBase base; 60 /* pc_succ_insn points to the instruction following base.pc_next */ 61 target_ulong pc_succ_insn; 62 target_ulong priv_ver; 63 RISCVMXL misa_mxl_max; 64 RISCVMXL xl; 65 uint32_t misa_ext; 66 uint32_t opcode; 67 uint32_t mstatus_fs; 68 uint32_t mstatus_vs; 69 uint32_t mstatus_hs_fs; 70 uint32_t mstatus_hs_vs; 71 uint32_t mem_idx; 72 /* Remember the rounding mode encoded in the previous fp instruction, 73 which we have already installed into env->fp_status. Or -1 for 74 no previous fp instruction. Note that we exit the TB when writing 75 to any system register, which includes CSR_FRM, so we do not have 76 to reset this known value. */ 77 int frm; 78 RISCVMXL ol; 79 bool virt_inst_excp; 80 bool virt_enabled; 81 const RISCVCPUConfig *cfg_ptr; 82 bool hlsx; 83 /* vector extension */ 84 bool vill; 85 /* 86 * Encode LMUL to lmul as follows: 87 * LMUL vlmul lmul 88 * 1 000 0 89 * 2 001 1 90 * 4 010 2 91 * 8 011 3 92 * - 100 - 93 * 1/8 101 -3 94 * 1/4 110 -2 95 * 1/2 111 -1 96 */ 97 int8_t lmul; 98 uint8_t sew; 99 uint8_t vta; 100 uint8_t vma; 101 bool cfg_vta_all_1s; 102 target_ulong vstart; 103 bool vl_eq_vlmax; 104 uint8_t ntemp; 105 CPUState *cs; 106 TCGv zero; 107 /* Space for 3 operands plus 1 extra for address computation. */ 108 TCGv temp[4]; 109 /* Space for 4 operands(1 dest and <=3 src) for float point computation */ 110 TCGv_i64 ftemp[4]; 111 uint8_t nftemp; 112 /* PointerMasking extension */ 113 bool pm_mask_enabled; 114 bool pm_base_enabled; 115 /* Use icount trigger for native debug */ 116 bool itrigger; 117 /* FRM is known to contain a valid value. */ 118 bool frm_valid; 119 /* TCG of the current insn_start */ 120 TCGOp *insn_start; 121 } DisasContext; 122 123 static inline bool has_ext(DisasContext *ctx, uint32_t ext) 124 { 125 return ctx->misa_ext & ext; 126 } 127 128 static bool always_true_p(DisasContext *ctx __attribute__((__unused__))) 129 { 130 return true; 131 } 132 133 #define MATERIALISE_EXT_PREDICATE(ext) \ 134 static bool has_ ## ext ## _p(DisasContext *ctx) \ 135 { \ 136 return ctx->cfg_ptr->ext_ ## ext ; \ 137 } 138 139 MATERIALISE_EXT_PREDICATE(XVentanaCondOps); 140 141 #ifdef TARGET_RISCV32 142 #define get_xl(ctx) MXL_RV32 143 #elif defined(CONFIG_USER_ONLY) 144 #define get_xl(ctx) MXL_RV64 145 #else 146 #define get_xl(ctx) ((ctx)->xl) 147 #endif 148 149 /* The word size for this machine mode. */ 150 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx) 151 { 152 return 16 << get_xl(ctx); 153 } 154 155 /* The operation length, as opposed to the xlen. */ 156 #ifdef TARGET_RISCV32 157 #define get_ol(ctx) MXL_RV32 158 #else 159 #define get_ol(ctx) ((ctx)->ol) 160 #endif 161 162 static inline int get_olen(DisasContext *ctx) 163 { 164 return 16 << get_ol(ctx); 165 } 166 167 /* The maximum register length */ 168 #ifdef TARGET_RISCV32 169 #define get_xl_max(ctx) MXL_RV32 170 #else 171 #define get_xl_max(ctx) ((ctx)->misa_mxl_max) 172 #endif 173 174 /* 175 * RISC-V requires NaN-boxing of narrower width floating point values. 176 * This applies when a 32-bit value is assigned to a 64-bit FP register. 177 * For consistency and simplicity, we nanbox results even when the RVD 178 * extension is not present. 179 */ 180 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in) 181 { 182 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32)); 183 } 184 185 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in) 186 { 187 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48)); 188 } 189 190 /* 191 * A narrow n-bit operation, where n < FLEN, checks that input operands 192 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1. 193 * If so, the least-significant bits of the input are used, otherwise the 194 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2). 195 * 196 * Here, the result is always nan-boxed, even the canonical nan. 197 */ 198 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in) 199 { 200 TCGv_i64 t_max = tcg_const_i64(0xffffffffffff0000ull); 201 TCGv_i64 t_nan = tcg_const_i64(0xffffffffffff7e00ull); 202 203 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 204 tcg_temp_free_i64(t_max); 205 tcg_temp_free_i64(t_nan); 206 } 207 208 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in) 209 { 210 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull); 211 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull); 212 213 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 214 } 215 216 static void decode_save_opc(DisasContext *ctx) 217 { 218 assert(ctx->insn_start != NULL); 219 tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode); 220 ctx->insn_start = NULL; 221 } 222 223 static void gen_set_pc_imm(DisasContext *ctx, target_ulong dest) 224 { 225 if (get_xl(ctx) == MXL_RV32) { 226 dest = (int32_t)dest; 227 } 228 tcg_gen_movi_tl(cpu_pc, dest); 229 } 230 231 static void gen_set_pc(DisasContext *ctx, TCGv dest) 232 { 233 if (get_xl(ctx) == MXL_RV32) { 234 tcg_gen_ext32s_tl(cpu_pc, dest); 235 } else { 236 tcg_gen_mov_tl(cpu_pc, dest); 237 } 238 } 239 240 static void generate_exception(DisasContext *ctx, int excp) 241 { 242 gen_set_pc_imm(ctx, ctx->base.pc_next); 243 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 244 ctx->base.is_jmp = DISAS_NORETURN; 245 } 246 247 static void gen_exception_illegal(DisasContext *ctx) 248 { 249 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env, 250 offsetof(CPURISCVState, bins)); 251 if (ctx->virt_inst_excp) { 252 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT); 253 } else { 254 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST); 255 } 256 } 257 258 static void gen_exception_inst_addr_mis(DisasContext *ctx) 259 { 260 tcg_gen_st_tl(cpu_pc, cpu_env, offsetof(CPURISCVState, badaddr)); 261 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS); 262 } 263 264 static void lookup_and_goto_ptr(DisasContext *ctx) 265 { 266 #ifndef CONFIG_USER_ONLY 267 if (ctx->itrigger) { 268 gen_helper_itrigger_match(cpu_env); 269 } 270 #endif 271 tcg_gen_lookup_and_goto_ptr(); 272 } 273 274 static void exit_tb(DisasContext *ctx) 275 { 276 #ifndef CONFIG_USER_ONLY 277 if (ctx->itrigger) { 278 gen_helper_itrigger_match(cpu_env); 279 } 280 #endif 281 tcg_gen_exit_tb(NULL, 0); 282 } 283 284 static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) 285 { 286 /* 287 * Under itrigger, instruction executes one by one like singlestep, 288 * direct block chain benefits will be small. 289 */ 290 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) { 291 tcg_gen_goto_tb(n); 292 gen_set_pc_imm(ctx, dest); 293 tcg_gen_exit_tb(ctx->base.tb, n); 294 } else { 295 gen_set_pc_imm(ctx, dest); 296 lookup_and_goto_ptr(ctx); 297 } 298 } 299 300 /* 301 * Wrappers for getting reg values. 302 * 303 * The $zero register does not have cpu_gpr[0] allocated -- we supply the 304 * constant zero as a source, and an uninitialized sink as destination. 305 * 306 * Further, we may provide an extension for word operations. 307 */ 308 static TCGv temp_new(DisasContext *ctx) 309 { 310 assert(ctx->ntemp < ARRAY_SIZE(ctx->temp)); 311 return ctx->temp[ctx->ntemp++] = tcg_temp_new(); 312 } 313 314 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext) 315 { 316 TCGv t; 317 318 if (reg_num == 0) { 319 return ctx->zero; 320 } 321 322 switch (get_ol(ctx)) { 323 case MXL_RV32: 324 switch (ext) { 325 case EXT_NONE: 326 break; 327 case EXT_SIGN: 328 t = temp_new(ctx); 329 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]); 330 return t; 331 case EXT_ZERO: 332 t = temp_new(ctx); 333 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]); 334 return t; 335 default: 336 g_assert_not_reached(); 337 } 338 break; 339 case MXL_RV64: 340 case MXL_RV128: 341 break; 342 default: 343 g_assert_not_reached(); 344 } 345 return cpu_gpr[reg_num]; 346 } 347 348 static TCGv get_gprh(DisasContext *ctx, int reg_num) 349 { 350 assert(get_xl(ctx) == MXL_RV128); 351 if (reg_num == 0) { 352 return ctx->zero; 353 } 354 return cpu_gprh[reg_num]; 355 } 356 357 static TCGv dest_gpr(DisasContext *ctx, int reg_num) 358 { 359 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) { 360 return temp_new(ctx); 361 } 362 return cpu_gpr[reg_num]; 363 } 364 365 static TCGv dest_gprh(DisasContext *ctx, int reg_num) 366 { 367 if (reg_num == 0) { 368 return temp_new(ctx); 369 } 370 return cpu_gprh[reg_num]; 371 } 372 373 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t) 374 { 375 if (reg_num != 0) { 376 switch (get_ol(ctx)) { 377 case MXL_RV32: 378 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t); 379 break; 380 case MXL_RV64: 381 case MXL_RV128: 382 tcg_gen_mov_tl(cpu_gpr[reg_num], t); 383 break; 384 default: 385 g_assert_not_reached(); 386 } 387 388 if (get_xl_max(ctx) == MXL_RV128) { 389 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63); 390 } 391 } 392 } 393 394 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm) 395 { 396 if (reg_num != 0) { 397 switch (get_ol(ctx)) { 398 case MXL_RV32: 399 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm); 400 break; 401 case MXL_RV64: 402 case MXL_RV128: 403 tcg_gen_movi_tl(cpu_gpr[reg_num], imm); 404 break; 405 default: 406 g_assert_not_reached(); 407 } 408 409 if (get_xl_max(ctx) == MXL_RV128) { 410 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0)); 411 } 412 } 413 } 414 415 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh) 416 { 417 assert(get_ol(ctx) == MXL_RV128); 418 if (reg_num != 0) { 419 tcg_gen_mov_tl(cpu_gpr[reg_num], rl); 420 tcg_gen_mov_tl(cpu_gprh[reg_num], rh); 421 } 422 } 423 424 static TCGv_i64 ftemp_new(DisasContext *ctx) 425 { 426 assert(ctx->nftemp < ARRAY_SIZE(ctx->ftemp)); 427 return ctx->ftemp[ctx->nftemp++] = tcg_temp_new_i64(); 428 } 429 430 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num) 431 { 432 if (!ctx->cfg_ptr->ext_zfinx) { 433 return cpu_fpr[reg_num]; 434 } 435 436 if (reg_num == 0) { 437 return tcg_constant_i64(0); 438 } 439 switch (get_xl(ctx)) { 440 case MXL_RV32: 441 #ifdef TARGET_RISCV32 442 { 443 TCGv_i64 t = ftemp_new(ctx); 444 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]); 445 return t; 446 } 447 #else 448 /* fall through */ 449 case MXL_RV64: 450 return cpu_gpr[reg_num]; 451 #endif 452 default: 453 g_assert_not_reached(); 454 } 455 } 456 457 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num) 458 { 459 if (!ctx->cfg_ptr->ext_zfinx) { 460 return cpu_fpr[reg_num]; 461 } 462 463 if (reg_num == 0) { 464 return tcg_constant_i64(0); 465 } 466 switch (get_xl(ctx)) { 467 case MXL_RV32: 468 { 469 TCGv_i64 t = ftemp_new(ctx); 470 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]); 471 return t; 472 } 473 #ifdef TARGET_RISCV64 474 case MXL_RV64: 475 return cpu_gpr[reg_num]; 476 #endif 477 default: 478 g_assert_not_reached(); 479 } 480 } 481 482 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num) 483 { 484 if (!ctx->cfg_ptr->ext_zfinx) { 485 return cpu_fpr[reg_num]; 486 } 487 488 if (reg_num == 0) { 489 return ftemp_new(ctx); 490 } 491 492 switch (get_xl(ctx)) { 493 case MXL_RV32: 494 return ftemp_new(ctx); 495 #ifdef TARGET_RISCV64 496 case MXL_RV64: 497 return cpu_gpr[reg_num]; 498 #endif 499 default: 500 g_assert_not_reached(); 501 } 502 } 503 504 /* assume t is nanboxing (for normal) or sign-extended (for zfinx) */ 505 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t) 506 { 507 if (!ctx->cfg_ptr->ext_zfinx) { 508 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 509 return; 510 } 511 if (reg_num != 0) { 512 switch (get_xl(ctx)) { 513 case MXL_RV32: 514 #ifdef TARGET_RISCV32 515 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t); 516 break; 517 #else 518 /* fall through */ 519 case MXL_RV64: 520 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 521 break; 522 #endif 523 default: 524 g_assert_not_reached(); 525 } 526 } 527 } 528 529 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t) 530 { 531 if (!ctx->cfg_ptr->ext_zfinx) { 532 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 533 return; 534 } 535 536 if (reg_num != 0) { 537 switch (get_xl(ctx)) { 538 case MXL_RV32: 539 #ifdef TARGET_RISCV32 540 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t); 541 break; 542 #else 543 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t); 544 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32); 545 break; 546 case MXL_RV64: 547 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 548 break; 549 #endif 550 default: 551 g_assert_not_reached(); 552 } 553 } 554 } 555 556 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm) 557 { 558 target_ulong next_pc; 559 560 /* check misaligned: */ 561 next_pc = ctx->base.pc_next + imm; 562 if (!has_ext(ctx, RVC)) { 563 if ((next_pc & 0x3) != 0) { 564 gen_exception_inst_addr_mis(ctx); 565 return; 566 } 567 } 568 569 gen_set_gpri(ctx, rd, ctx->pc_succ_insn); 570 gen_goto_tb(ctx, 0, ctx->base.pc_next + imm); /* must use this for safety */ 571 ctx->base.is_jmp = DISAS_NORETURN; 572 } 573 574 /* Compute a canonical address from a register plus offset. */ 575 static TCGv get_address(DisasContext *ctx, int rs1, int imm) 576 { 577 TCGv addr = temp_new(ctx); 578 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 579 580 tcg_gen_addi_tl(addr, src1, imm); 581 if (ctx->pm_mask_enabled) { 582 tcg_gen_andc_tl(addr, addr, pm_mask); 583 } else if (get_xl(ctx) == MXL_RV32) { 584 tcg_gen_ext32u_tl(addr, addr); 585 } 586 if (ctx->pm_base_enabled) { 587 tcg_gen_or_tl(addr, addr, pm_base); 588 } 589 return addr; 590 } 591 592 #ifndef CONFIG_USER_ONLY 593 /* The states of mstatus_fs are: 594 * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty 595 * We will have already diagnosed disabled state, 596 * and need to turn initial/clean into dirty. 597 */ 598 static void mark_fs_dirty(DisasContext *ctx) 599 { 600 TCGv tmp; 601 602 if (!has_ext(ctx, RVF)) { 603 return; 604 } 605 606 if (ctx->mstatus_fs != MSTATUS_FS) { 607 /* Remember the state change for the rest of the TB. */ 608 ctx->mstatus_fs = MSTATUS_FS; 609 610 tmp = tcg_temp_new(); 611 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 612 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 613 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 614 tcg_temp_free(tmp); 615 } 616 617 if (ctx->virt_enabled && ctx->mstatus_hs_fs != MSTATUS_FS) { 618 /* Remember the stage change for the rest of the TB. */ 619 ctx->mstatus_hs_fs = MSTATUS_FS; 620 621 tmp = tcg_temp_new(); 622 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 623 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 624 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 625 tcg_temp_free(tmp); 626 } 627 } 628 #else 629 static inline void mark_fs_dirty(DisasContext *ctx) { } 630 #endif 631 632 #ifndef CONFIG_USER_ONLY 633 /* The states of mstatus_vs are: 634 * 0 = disabled, 1 = initial, 2 = clean, 3 = dirty 635 * We will have already diagnosed disabled state, 636 * and need to turn initial/clean into dirty. 637 */ 638 static void mark_vs_dirty(DisasContext *ctx) 639 { 640 TCGv tmp; 641 642 if (ctx->mstatus_vs != MSTATUS_VS) { 643 /* Remember the state change for the rest of the TB. */ 644 ctx->mstatus_vs = MSTATUS_VS; 645 646 tmp = tcg_temp_new(); 647 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 648 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 649 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 650 tcg_temp_free(tmp); 651 } 652 653 if (ctx->virt_enabled && ctx->mstatus_hs_vs != MSTATUS_VS) { 654 /* Remember the stage change for the rest of the TB. */ 655 ctx->mstatus_hs_vs = MSTATUS_VS; 656 657 tmp = tcg_temp_new(); 658 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 659 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 660 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 661 tcg_temp_free(tmp); 662 } 663 } 664 #else 665 static inline void mark_vs_dirty(DisasContext *ctx) { } 666 #endif 667 668 static void gen_set_rm(DisasContext *ctx, int rm) 669 { 670 if (ctx->frm == rm) { 671 return; 672 } 673 ctx->frm = rm; 674 675 if (rm == RISCV_FRM_ROD) { 676 gen_helper_set_rod_rounding_mode(cpu_env); 677 return; 678 } 679 if (rm == RISCV_FRM_DYN) { 680 /* The helper will return only if frm valid. */ 681 ctx->frm_valid = true; 682 } 683 684 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 685 decode_save_opc(ctx); 686 gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm)); 687 } 688 689 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm) 690 { 691 if (ctx->frm == rm && ctx->frm_valid) { 692 return; 693 } 694 ctx->frm = rm; 695 ctx->frm_valid = true; 696 697 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 698 decode_save_opc(ctx); 699 gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm)); 700 } 701 702 static int ex_plus_1(DisasContext *ctx, int nf) 703 { 704 return nf + 1; 705 } 706 707 #define EX_SH(amount) \ 708 static int ex_shift_##amount(DisasContext *ctx, int imm) \ 709 { \ 710 return imm << amount; \ 711 } 712 EX_SH(1) 713 EX_SH(2) 714 EX_SH(3) 715 EX_SH(4) 716 EX_SH(12) 717 718 #define REQUIRE_EXT(ctx, ext) do { \ 719 if (!has_ext(ctx, ext)) { \ 720 return false; \ 721 } \ 722 } while (0) 723 724 #define REQUIRE_32BIT(ctx) do { \ 725 if (get_xl(ctx) != MXL_RV32) { \ 726 return false; \ 727 } \ 728 } while (0) 729 730 #define REQUIRE_64BIT(ctx) do { \ 731 if (get_xl(ctx) != MXL_RV64) { \ 732 return false; \ 733 } \ 734 } while (0) 735 736 #define REQUIRE_128BIT(ctx) do { \ 737 if (get_xl(ctx) != MXL_RV128) { \ 738 return false; \ 739 } \ 740 } while (0) 741 742 #define REQUIRE_64_OR_128BIT(ctx) do { \ 743 if (get_xl(ctx) == MXL_RV32) { \ 744 return false; \ 745 } \ 746 } while (0) 747 748 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \ 749 if (!ctx->cfg_ptr->ext_##A && \ 750 !ctx->cfg_ptr->ext_##B) { \ 751 return false; \ 752 } \ 753 } while (0) 754 755 static int ex_rvc_register(DisasContext *ctx, int reg) 756 { 757 return 8 + reg; 758 } 759 760 static int ex_rvc_shiftli(DisasContext *ctx, int imm) 761 { 762 /* For RV128 a shamt of 0 means a shift by 64. */ 763 if (get_ol(ctx) == MXL_RV128) { 764 imm = imm ? imm : 64; 765 } 766 return imm; 767 } 768 769 static int ex_rvc_shiftri(DisasContext *ctx, int imm) 770 { 771 /* 772 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right 773 * shifts, the shamt is sign-extended. 774 */ 775 if (get_ol(ctx) == MXL_RV128) { 776 imm = imm | (imm & 32) << 1; 777 imm = imm ? imm : 64; 778 } 779 return imm; 780 } 781 782 /* Include the auto-generated decoder for 32 bit insn */ 783 #include "decode-insn32.c.inc" 784 785 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a, 786 void (*func)(TCGv, TCGv, target_long)) 787 { 788 TCGv dest = dest_gpr(ctx, a->rd); 789 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 790 791 func(dest, src1, a->imm); 792 793 if (get_xl(ctx) == MXL_RV128) { 794 TCGv src1h = get_gprh(ctx, a->rs1); 795 TCGv desth = dest_gprh(ctx, a->rd); 796 797 func(desth, src1h, -(a->imm < 0)); 798 gen_set_gpr128(ctx, a->rd, dest, desth); 799 } else { 800 gen_set_gpr(ctx, a->rd, dest); 801 } 802 803 return true; 804 } 805 806 static bool gen_logic(DisasContext *ctx, arg_r *a, 807 void (*func)(TCGv, TCGv, TCGv)) 808 { 809 TCGv dest = dest_gpr(ctx, a->rd); 810 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 811 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 812 813 func(dest, src1, src2); 814 815 if (get_xl(ctx) == MXL_RV128) { 816 TCGv src1h = get_gprh(ctx, a->rs1); 817 TCGv src2h = get_gprh(ctx, a->rs2); 818 TCGv desth = dest_gprh(ctx, a->rd); 819 820 func(desth, src1h, src2h); 821 gen_set_gpr128(ctx, a->rd, dest, desth); 822 } else { 823 gen_set_gpr(ctx, a->rd, dest); 824 } 825 826 return true; 827 } 828 829 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext, 830 void (*func)(TCGv, TCGv, target_long), 831 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 832 { 833 TCGv dest = dest_gpr(ctx, a->rd); 834 TCGv src1 = get_gpr(ctx, a->rs1, ext); 835 836 if (get_ol(ctx) < MXL_RV128) { 837 func(dest, src1, a->imm); 838 gen_set_gpr(ctx, a->rd, dest); 839 } else { 840 if (f128 == NULL) { 841 return false; 842 } 843 844 TCGv src1h = get_gprh(ctx, a->rs1); 845 TCGv desth = dest_gprh(ctx, a->rd); 846 847 f128(dest, desth, src1, src1h, a->imm); 848 gen_set_gpr128(ctx, a->rd, dest, desth); 849 } 850 return true; 851 } 852 853 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext, 854 void (*func)(TCGv, TCGv, TCGv), 855 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 856 { 857 TCGv dest = dest_gpr(ctx, a->rd); 858 TCGv src1 = get_gpr(ctx, a->rs1, ext); 859 TCGv src2 = tcg_constant_tl(a->imm); 860 861 if (get_ol(ctx) < MXL_RV128) { 862 func(dest, src1, src2); 863 gen_set_gpr(ctx, a->rd, dest); 864 } else { 865 if (f128 == NULL) { 866 return false; 867 } 868 869 TCGv src1h = get_gprh(ctx, a->rs1); 870 TCGv src2h = tcg_constant_tl(-(a->imm < 0)); 871 TCGv desth = dest_gprh(ctx, a->rd); 872 873 f128(dest, desth, src1, src1h, src2, src2h); 874 gen_set_gpr128(ctx, a->rd, dest, desth); 875 } 876 return true; 877 } 878 879 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext, 880 void (*func)(TCGv, TCGv, TCGv), 881 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 882 { 883 TCGv dest = dest_gpr(ctx, a->rd); 884 TCGv src1 = get_gpr(ctx, a->rs1, ext); 885 TCGv src2 = get_gpr(ctx, a->rs2, ext); 886 887 if (get_ol(ctx) < MXL_RV128) { 888 func(dest, src1, src2); 889 gen_set_gpr(ctx, a->rd, dest); 890 } else { 891 if (f128 == NULL) { 892 return false; 893 } 894 895 TCGv src1h = get_gprh(ctx, a->rs1); 896 TCGv src2h = get_gprh(ctx, a->rs2); 897 TCGv desth = dest_gprh(ctx, a->rd); 898 899 f128(dest, desth, src1, src1h, src2, src2h); 900 gen_set_gpr128(ctx, a->rd, dest, desth); 901 } 902 return true; 903 } 904 905 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 906 void (*f_tl)(TCGv, TCGv, TCGv), 907 void (*f_32)(TCGv, TCGv, TCGv), 908 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 909 { 910 int olen = get_olen(ctx); 911 912 if (olen != TARGET_LONG_BITS) { 913 if (olen == 32) { 914 f_tl = f_32; 915 } else if (olen != 128) { 916 g_assert_not_reached(); 917 } 918 } 919 return gen_arith(ctx, a, ext, f_tl, f_128); 920 } 921 922 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext, 923 void (*func)(TCGv, TCGv, target_long), 924 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 925 { 926 TCGv dest, src1; 927 int max_len = get_olen(ctx); 928 929 if (a->shamt >= max_len) { 930 return false; 931 } 932 933 dest = dest_gpr(ctx, a->rd); 934 src1 = get_gpr(ctx, a->rs1, ext); 935 936 if (max_len < 128) { 937 func(dest, src1, a->shamt); 938 gen_set_gpr(ctx, a->rd, dest); 939 } else { 940 TCGv src1h = get_gprh(ctx, a->rs1); 941 TCGv desth = dest_gprh(ctx, a->rd); 942 943 if (f128 == NULL) { 944 return false; 945 } 946 f128(dest, desth, src1, src1h, a->shamt); 947 gen_set_gpr128(ctx, a->rd, dest, desth); 948 } 949 return true; 950 } 951 952 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a, 953 DisasExtend ext, 954 void (*f_tl)(TCGv, TCGv, target_long), 955 void (*f_32)(TCGv, TCGv, target_long), 956 void (*f_128)(TCGv, TCGv, TCGv, TCGv, 957 target_long)) 958 { 959 int olen = get_olen(ctx); 960 if (olen != TARGET_LONG_BITS) { 961 if (olen == 32) { 962 f_tl = f_32; 963 } else if (olen != 128) { 964 g_assert_not_reached(); 965 } 966 } 967 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128); 968 } 969 970 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext, 971 void (*func)(TCGv, TCGv, TCGv)) 972 { 973 TCGv dest, src1, src2; 974 int max_len = get_olen(ctx); 975 976 if (a->shamt >= max_len) { 977 return false; 978 } 979 980 dest = dest_gpr(ctx, a->rd); 981 src1 = get_gpr(ctx, a->rs1, ext); 982 src2 = tcg_constant_tl(a->shamt); 983 984 func(dest, src1, src2); 985 986 gen_set_gpr(ctx, a->rd, dest); 987 return true; 988 } 989 990 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext, 991 void (*func)(TCGv, TCGv, TCGv), 992 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 993 { 994 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 995 TCGv ext2 = tcg_temp_new(); 996 int max_len = get_olen(ctx); 997 998 tcg_gen_andi_tl(ext2, src2, max_len - 1); 999 1000 TCGv dest = dest_gpr(ctx, a->rd); 1001 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1002 1003 if (max_len < 128) { 1004 func(dest, src1, ext2); 1005 gen_set_gpr(ctx, a->rd, dest); 1006 } else { 1007 TCGv src1h = get_gprh(ctx, a->rs1); 1008 TCGv desth = dest_gprh(ctx, a->rd); 1009 1010 if (f128 == NULL) { 1011 return false; 1012 } 1013 f128(dest, desth, src1, src1h, ext2); 1014 gen_set_gpr128(ctx, a->rd, dest, desth); 1015 } 1016 tcg_temp_free(ext2); 1017 return true; 1018 } 1019 1020 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 1021 void (*f_tl)(TCGv, TCGv, TCGv), 1022 void (*f_32)(TCGv, TCGv, TCGv), 1023 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 1024 { 1025 int olen = get_olen(ctx); 1026 if (olen != TARGET_LONG_BITS) { 1027 if (olen == 32) { 1028 f_tl = f_32; 1029 } else if (olen != 128) { 1030 g_assert_not_reached(); 1031 } 1032 } 1033 return gen_shift(ctx, a, ext, f_tl, f_128); 1034 } 1035 1036 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1037 void (*func)(TCGv, TCGv)) 1038 { 1039 TCGv dest = dest_gpr(ctx, a->rd); 1040 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1041 1042 func(dest, src1); 1043 1044 gen_set_gpr(ctx, a->rd, dest); 1045 return true; 1046 } 1047 1048 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1049 void (*f_tl)(TCGv, TCGv), 1050 void (*f_32)(TCGv, TCGv)) 1051 { 1052 int olen = get_olen(ctx); 1053 1054 if (olen != TARGET_LONG_BITS) { 1055 if (olen == 32) { 1056 f_tl = f_32; 1057 } else { 1058 g_assert_not_reached(); 1059 } 1060 } 1061 return gen_unary(ctx, a, ext, f_tl); 1062 } 1063 1064 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc) 1065 { 1066 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1067 CPUState *cpu = ctx->cs; 1068 CPURISCVState *env = cpu->env_ptr; 1069 1070 return cpu_ldl_code(env, pc); 1071 } 1072 1073 /* Include insn module translation function */ 1074 #include "insn_trans/trans_rvi.c.inc" 1075 #include "insn_trans/trans_rvm.c.inc" 1076 #include "insn_trans/trans_rva.c.inc" 1077 #include "insn_trans/trans_rvf.c.inc" 1078 #include "insn_trans/trans_rvd.c.inc" 1079 #include "insn_trans/trans_rvh.c.inc" 1080 #include "insn_trans/trans_rvv.c.inc" 1081 #include "insn_trans/trans_rvb.c.inc" 1082 #include "insn_trans/trans_rvzawrs.c.inc" 1083 #include "insn_trans/trans_rvzfh.c.inc" 1084 #include "insn_trans/trans_rvk.c.inc" 1085 #include "insn_trans/trans_privileged.c.inc" 1086 #include "insn_trans/trans_svinval.c.inc" 1087 #include "insn_trans/trans_xventanacondops.c.inc" 1088 1089 /* Include the auto-generated decoder for 16 bit insn */ 1090 #include "decode-insn16.c.inc" 1091 /* Include decoders for factored-out extensions */ 1092 #include "decode-XVentanaCondOps.c.inc" 1093 1094 /* The specification allows for longer insns, but not supported by qemu. */ 1095 #define MAX_INSN_LEN 4 1096 1097 static inline int insn_len(uint16_t first_word) 1098 { 1099 return (first_word & 3) == 3 ? 4 : 2; 1100 } 1101 1102 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) 1103 { 1104 /* 1105 * A table with predicate (i.e., guard) functions and decoder functions 1106 * that are tested in-order until a decoder matches onto the opcode. 1107 */ 1108 static const struct { 1109 bool (*guard_func)(DisasContext *); 1110 bool (*decode_func)(DisasContext *, uint32_t); 1111 } decoders[] = { 1112 { always_true_p, decode_insn32 }, 1113 { has_XVentanaCondOps_p, decode_XVentanaCodeOps }, 1114 }; 1115 1116 ctx->virt_inst_excp = false; 1117 /* Check for compressed insn */ 1118 if (insn_len(opcode) == 2) { 1119 ctx->opcode = opcode; 1120 ctx->pc_succ_insn = ctx->base.pc_next + 2; 1121 if (has_ext(ctx, RVC) && decode_insn16(ctx, opcode)) { 1122 return; 1123 } 1124 } else { 1125 uint32_t opcode32 = opcode; 1126 opcode32 = deposit32(opcode32, 16, 16, 1127 translator_lduw(env, &ctx->base, 1128 ctx->base.pc_next + 2)); 1129 ctx->opcode = opcode32; 1130 ctx->pc_succ_insn = ctx->base.pc_next + 4; 1131 1132 for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) { 1133 if (decoders[i].guard_func(ctx) && 1134 decoders[i].decode_func(ctx, opcode32)) { 1135 return; 1136 } 1137 } 1138 } 1139 1140 gen_exception_illegal(ctx); 1141 } 1142 1143 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 1144 { 1145 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1146 CPURISCVState *env = cs->env_ptr; 1147 RISCVCPU *cpu = RISCV_CPU(cs); 1148 uint32_t tb_flags = ctx->base.tb->flags; 1149 1150 ctx->pc_succ_insn = ctx->base.pc_first; 1151 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX); 1152 ctx->mstatus_fs = tb_flags & TB_FLAGS_MSTATUS_FS; 1153 ctx->mstatus_vs = tb_flags & TB_FLAGS_MSTATUS_VS; 1154 ctx->priv_ver = env->priv_ver; 1155 #if !defined(CONFIG_USER_ONLY) 1156 if (riscv_has_ext(env, RVH)) { 1157 ctx->virt_enabled = riscv_cpu_virt_enabled(env); 1158 } else { 1159 ctx->virt_enabled = false; 1160 } 1161 #else 1162 ctx->virt_enabled = false; 1163 #endif 1164 ctx->misa_ext = env->misa_ext; 1165 ctx->frm = -1; /* unknown rounding mode */ 1166 ctx->cfg_ptr = &(cpu->cfg); 1167 ctx->mstatus_hs_fs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_FS); 1168 ctx->mstatus_hs_vs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_VS); 1169 ctx->hlsx = FIELD_EX32(tb_flags, TB_FLAGS, HLSX); 1170 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL); 1171 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW); 1172 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3); 1173 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s; 1174 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s; 1175 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s; 1176 ctx->vstart = env->vstart; 1177 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX); 1178 ctx->misa_mxl_max = env->misa_mxl_max; 1179 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL); 1180 ctx->cs = cs; 1181 ctx->ntemp = 0; 1182 memset(ctx->temp, 0, sizeof(ctx->temp)); 1183 ctx->nftemp = 0; 1184 memset(ctx->ftemp, 0, sizeof(ctx->ftemp)); 1185 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED); 1186 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED); 1187 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER); 1188 ctx->zero = tcg_constant_tl(0); 1189 } 1190 1191 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu) 1192 { 1193 } 1194 1195 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 1196 { 1197 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1198 1199 tcg_gen_insn_start(ctx->base.pc_next, 0); 1200 ctx->insn_start = tcg_last_op(); 1201 } 1202 1203 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 1204 { 1205 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1206 CPURISCVState *env = cpu->env_ptr; 1207 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next); 1208 int i; 1209 1210 ctx->ol = ctx->xl; 1211 decode_opc(env, ctx, opcode16); 1212 ctx->base.pc_next = ctx->pc_succ_insn; 1213 1214 for (i = ctx->ntemp - 1; i >= 0; --i) { 1215 tcg_temp_free(ctx->temp[i]); 1216 ctx->temp[i] = NULL; 1217 } 1218 ctx->ntemp = 0; 1219 for (i = ctx->nftemp - 1; i >= 0; --i) { 1220 tcg_temp_free_i64(ctx->ftemp[i]); 1221 ctx->ftemp[i] = NULL; 1222 } 1223 ctx->nftemp = 0; 1224 1225 /* Only the first insn within a TB is allowed to cross a page boundary. */ 1226 if (ctx->base.is_jmp == DISAS_NEXT) { 1227 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) { 1228 ctx->base.is_jmp = DISAS_TOO_MANY; 1229 } else { 1230 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK; 1231 1232 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) { 1233 uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next); 1234 int len = insn_len(next_insn); 1235 1236 if (!is_same_page(&ctx->base, ctx->base.pc_next + len)) { 1237 ctx->base.is_jmp = DISAS_TOO_MANY; 1238 } 1239 } 1240 } 1241 } 1242 } 1243 1244 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 1245 { 1246 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1247 1248 switch (ctx->base.is_jmp) { 1249 case DISAS_TOO_MANY: 1250 gen_goto_tb(ctx, 0, ctx->base.pc_next); 1251 break; 1252 case DISAS_NORETURN: 1253 break; 1254 default: 1255 g_assert_not_reached(); 1256 } 1257 } 1258 1259 static void riscv_tr_disas_log(const DisasContextBase *dcbase, 1260 CPUState *cpu, FILE *logfile) 1261 { 1262 #ifndef CONFIG_USER_ONLY 1263 RISCVCPU *rvcpu = RISCV_CPU(cpu); 1264 CPURISCVState *env = &rvcpu->env; 1265 #endif 1266 1267 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 1268 #ifndef CONFIG_USER_ONLY 1269 fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: "TARGET_FMT_ld"\n", 1270 env->priv, env->virt); 1271 #endif 1272 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 1273 } 1274 1275 static const TranslatorOps riscv_tr_ops = { 1276 .init_disas_context = riscv_tr_init_disas_context, 1277 .tb_start = riscv_tr_tb_start, 1278 .insn_start = riscv_tr_insn_start, 1279 .translate_insn = riscv_tr_translate_insn, 1280 .tb_stop = riscv_tr_tb_stop, 1281 .disas_log = riscv_tr_disas_log, 1282 }; 1283 1284 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns, 1285 target_ulong pc, void *host_pc) 1286 { 1287 DisasContext ctx; 1288 1289 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base); 1290 } 1291 1292 void riscv_translate_init(void) 1293 { 1294 int i; 1295 1296 /* 1297 * cpu_gpr[0] is a placeholder for the zero register. Do not use it. 1298 * Use the gen_set_gpr and get_gpr helper functions when accessing regs, 1299 * unless you specifically block reads/writes to reg 0. 1300 */ 1301 cpu_gpr[0] = NULL; 1302 cpu_gprh[0] = NULL; 1303 1304 for (i = 1; i < 32; i++) { 1305 cpu_gpr[i] = tcg_global_mem_new(cpu_env, 1306 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]); 1307 cpu_gprh[i] = tcg_global_mem_new(cpu_env, 1308 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]); 1309 } 1310 1311 for (i = 0; i < 32; i++) { 1312 cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env, 1313 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]); 1314 } 1315 1316 cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc"); 1317 cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl"); 1318 cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart), 1319 "vstart"); 1320 load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res), 1321 "load_res"); 1322 load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val), 1323 "load_val"); 1324 /* Assign PM CSRs to tcg globals */ 1325 pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask), 1326 "pmmask"); 1327 pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase), 1328 "pmbase"); 1329 } 1330