1 /* 2 * RISC-V emulation for qemu: main translation routines. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "qemu/log.h" 21 #include "cpu.h" 22 #include "tcg/tcg-op.h" 23 #include "disas/disas.h" 24 #include "exec/cpu_ldst.h" 25 #include "exec/exec-all.h" 26 #include "exec/helper-proto.h" 27 #include "exec/helper-gen.h" 28 29 #include "exec/translator.h" 30 #include "exec/log.h" 31 #include "semihosting/semihost.h" 32 33 #include "instmap.h" 34 #include "internals.h" 35 36 #define HELPER_H "helper.h" 37 #include "exec/helper-info.c.inc" 38 #undef HELPER_H 39 40 /* global register indices */ 41 static TCGv cpu_gpr[32], cpu_gprh[32], cpu_pc, cpu_vl, cpu_vstart; 42 static TCGv_i64 cpu_fpr[32]; /* assume F and D extensions */ 43 static TCGv load_res; 44 static TCGv load_val; 45 /* globals for PM CSRs */ 46 static TCGv pm_mask; 47 static TCGv pm_base; 48 49 /* 50 * If an operation is being performed on less than TARGET_LONG_BITS, 51 * it may require the inputs to be sign- or zero-extended; which will 52 * depend on the exact operation being performed. 53 */ 54 typedef enum { 55 EXT_NONE, 56 EXT_SIGN, 57 EXT_ZERO, 58 } DisasExtend; 59 60 typedef struct DisasContext { 61 DisasContextBase base; 62 /* pc_succ_insn points to the instruction following base.pc_next */ 63 target_ulong pc_succ_insn; 64 target_ulong cur_insn_len; 65 target_ulong priv_ver; 66 RISCVMXL misa_mxl_max; 67 RISCVMXL xl; 68 uint32_t misa_ext; 69 uint32_t opcode; 70 RISCVExtStatus mstatus_fs; 71 RISCVExtStatus mstatus_vs; 72 uint32_t mem_idx; 73 uint32_t priv; 74 /* 75 * Remember the rounding mode encoded in the previous fp instruction, 76 * which we have already installed into env->fp_status. Or -1 for 77 * no previous fp instruction. Note that we exit the TB when writing 78 * to any system register, which includes CSR_FRM, so we do not have 79 * to reset this known value. 80 */ 81 int frm; 82 RISCVMXL ol; 83 bool virt_inst_excp; 84 bool virt_enabled; 85 const RISCVCPUConfig *cfg_ptr; 86 /* vector extension */ 87 bool vill; 88 /* 89 * Encode LMUL to lmul as follows: 90 * LMUL vlmul lmul 91 * 1 000 0 92 * 2 001 1 93 * 4 010 2 94 * 8 011 3 95 * - 100 - 96 * 1/8 101 -3 97 * 1/4 110 -2 98 * 1/2 111 -1 99 */ 100 int8_t lmul; 101 uint8_t sew; 102 uint8_t vta; 103 uint8_t vma; 104 bool cfg_vta_all_1s; 105 bool vstart_eq_zero; 106 bool vl_eq_vlmax; 107 CPUState *cs; 108 TCGv zero; 109 /* PointerMasking extension */ 110 bool pm_mask_enabled; 111 bool pm_base_enabled; 112 /* Use icount trigger for native debug */ 113 bool itrigger; 114 /* FRM is known to contain a valid value. */ 115 bool frm_valid; 116 /* TCG of the current insn_start */ 117 TCGOp *insn_start; 118 } DisasContext; 119 120 static inline bool has_ext(DisasContext *ctx, uint32_t ext) 121 { 122 return ctx->misa_ext & ext; 123 } 124 125 static bool always_true_p(DisasContext *ctx __attribute__((__unused__))) 126 { 127 return true; 128 } 129 130 static bool has_xthead_p(DisasContext *ctx __attribute__((__unused__))) 131 { 132 return ctx->cfg_ptr->ext_xtheadba || ctx->cfg_ptr->ext_xtheadbb || 133 ctx->cfg_ptr->ext_xtheadbs || ctx->cfg_ptr->ext_xtheadcmo || 134 ctx->cfg_ptr->ext_xtheadcondmov || 135 ctx->cfg_ptr->ext_xtheadfmemidx || ctx->cfg_ptr->ext_xtheadfmv || 136 ctx->cfg_ptr->ext_xtheadmac || ctx->cfg_ptr->ext_xtheadmemidx || 137 ctx->cfg_ptr->ext_xtheadmempair || ctx->cfg_ptr->ext_xtheadsync; 138 } 139 140 #define MATERIALISE_EXT_PREDICATE(ext) \ 141 static bool has_ ## ext ## _p(DisasContext *ctx) \ 142 { \ 143 return ctx->cfg_ptr->ext_ ## ext ; \ 144 } 145 146 MATERIALISE_EXT_PREDICATE(XVentanaCondOps); 147 148 #ifdef TARGET_RISCV32 149 #define get_xl(ctx) MXL_RV32 150 #elif defined(CONFIG_USER_ONLY) 151 #define get_xl(ctx) MXL_RV64 152 #else 153 #define get_xl(ctx) ((ctx)->xl) 154 #endif 155 156 /* The word size for this machine mode. */ 157 static inline int __attribute__((unused)) get_xlen(DisasContext *ctx) 158 { 159 return 16 << get_xl(ctx); 160 } 161 162 /* The operation length, as opposed to the xlen. */ 163 #ifdef TARGET_RISCV32 164 #define get_ol(ctx) MXL_RV32 165 #else 166 #define get_ol(ctx) ((ctx)->ol) 167 #endif 168 169 static inline int get_olen(DisasContext *ctx) 170 { 171 return 16 << get_ol(ctx); 172 } 173 174 /* The maximum register length */ 175 #ifdef TARGET_RISCV32 176 #define get_xl_max(ctx) MXL_RV32 177 #else 178 #define get_xl_max(ctx) ((ctx)->misa_mxl_max) 179 #endif 180 181 /* 182 * RISC-V requires NaN-boxing of narrower width floating point values. 183 * This applies when a 32-bit value is assigned to a 64-bit FP register. 184 * For consistency and simplicity, we nanbox results even when the RVD 185 * extension is not present. 186 */ 187 static void gen_nanbox_s(TCGv_i64 out, TCGv_i64 in) 188 { 189 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(32, 32)); 190 } 191 192 static void gen_nanbox_h(TCGv_i64 out, TCGv_i64 in) 193 { 194 tcg_gen_ori_i64(out, in, MAKE_64BIT_MASK(16, 48)); 195 } 196 197 /* 198 * A narrow n-bit operation, where n < FLEN, checks that input operands 199 * are correctly Nan-boxed, i.e., all upper FLEN - n bits are 1. 200 * If so, the least-significant bits of the input are used, otherwise the 201 * input value is treated as an n-bit canonical NaN (v2.2 section 9.2). 202 * 203 * Here, the result is always nan-boxed, even the canonical nan. 204 */ 205 static void gen_check_nanbox_h(TCGv_i64 out, TCGv_i64 in) 206 { 207 TCGv_i64 t_max = tcg_constant_i64(0xffffffffffff0000ull); 208 TCGv_i64 t_nan = tcg_constant_i64(0xffffffffffff7e00ull); 209 210 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 211 } 212 213 static void gen_check_nanbox_s(TCGv_i64 out, TCGv_i64 in) 214 { 215 TCGv_i64 t_max = tcg_constant_i64(0xffffffff00000000ull); 216 TCGv_i64 t_nan = tcg_constant_i64(0xffffffff7fc00000ull); 217 218 tcg_gen_movcond_i64(TCG_COND_GEU, out, in, t_max, in, t_nan); 219 } 220 221 static void decode_save_opc(DisasContext *ctx) 222 { 223 assert(ctx->insn_start != NULL); 224 tcg_set_insn_start_param(ctx->insn_start, 1, ctx->opcode); 225 ctx->insn_start = NULL; 226 } 227 228 static void gen_pc_plus_diff(TCGv target, DisasContext *ctx, 229 target_long diff) 230 { 231 target_ulong dest = ctx->base.pc_next + diff; 232 233 if (get_xl(ctx) == MXL_RV32) { 234 dest = (int32_t)dest; 235 } 236 tcg_gen_movi_tl(target, dest); 237 } 238 239 static void gen_update_pc(DisasContext *ctx, target_long diff) 240 { 241 gen_pc_plus_diff(cpu_pc, ctx, diff); 242 } 243 244 static void generate_exception(DisasContext *ctx, int excp) 245 { 246 gen_update_pc(ctx, 0); 247 gen_helper_raise_exception(cpu_env, tcg_constant_i32(excp)); 248 ctx->base.is_jmp = DISAS_NORETURN; 249 } 250 251 static void gen_exception_illegal(DisasContext *ctx) 252 { 253 tcg_gen_st_i32(tcg_constant_i32(ctx->opcode), cpu_env, 254 offsetof(CPURISCVState, bins)); 255 if (ctx->virt_inst_excp) { 256 generate_exception(ctx, RISCV_EXCP_VIRT_INSTRUCTION_FAULT); 257 } else { 258 generate_exception(ctx, RISCV_EXCP_ILLEGAL_INST); 259 } 260 } 261 262 static void gen_exception_inst_addr_mis(DisasContext *ctx, TCGv target) 263 { 264 tcg_gen_st_tl(target, cpu_env, offsetof(CPURISCVState, badaddr)); 265 generate_exception(ctx, RISCV_EXCP_INST_ADDR_MIS); 266 } 267 268 static void lookup_and_goto_ptr(DisasContext *ctx) 269 { 270 #ifndef CONFIG_USER_ONLY 271 if (ctx->itrigger) { 272 gen_helper_itrigger_match(cpu_env); 273 } 274 #endif 275 tcg_gen_lookup_and_goto_ptr(); 276 } 277 278 static void exit_tb(DisasContext *ctx) 279 { 280 #ifndef CONFIG_USER_ONLY 281 if (ctx->itrigger) { 282 gen_helper_itrigger_match(cpu_env); 283 } 284 #endif 285 tcg_gen_exit_tb(NULL, 0); 286 } 287 288 static void gen_goto_tb(DisasContext *ctx, int n, target_long diff) 289 { 290 target_ulong dest = ctx->base.pc_next + diff; 291 292 /* 293 * Under itrigger, instruction executes one by one like singlestep, 294 * direct block chain benefits will be small. 295 */ 296 if (translator_use_goto_tb(&ctx->base, dest) && !ctx->itrigger) { 297 tcg_gen_goto_tb(n); 298 gen_update_pc(ctx, diff); 299 tcg_gen_exit_tb(ctx->base.tb, n); 300 } else { 301 gen_update_pc(ctx, diff); 302 lookup_and_goto_ptr(ctx); 303 } 304 } 305 306 /* 307 * Wrappers for getting reg values. 308 * 309 * The $zero register does not have cpu_gpr[0] allocated -- we supply the 310 * constant zero as a source, and an uninitialized sink as destination. 311 * 312 * Further, we may provide an extension for word operations. 313 */ 314 static TCGv get_gpr(DisasContext *ctx, int reg_num, DisasExtend ext) 315 { 316 TCGv t; 317 318 if (reg_num == 0) { 319 return ctx->zero; 320 } 321 322 switch (get_ol(ctx)) { 323 case MXL_RV32: 324 switch (ext) { 325 case EXT_NONE: 326 break; 327 case EXT_SIGN: 328 t = tcg_temp_new(); 329 tcg_gen_ext32s_tl(t, cpu_gpr[reg_num]); 330 return t; 331 case EXT_ZERO: 332 t = tcg_temp_new(); 333 tcg_gen_ext32u_tl(t, cpu_gpr[reg_num]); 334 return t; 335 default: 336 g_assert_not_reached(); 337 } 338 break; 339 case MXL_RV64: 340 case MXL_RV128: 341 break; 342 default: 343 g_assert_not_reached(); 344 } 345 return cpu_gpr[reg_num]; 346 } 347 348 static TCGv get_gprh(DisasContext *ctx, int reg_num) 349 { 350 assert(get_xl(ctx) == MXL_RV128); 351 if (reg_num == 0) { 352 return ctx->zero; 353 } 354 return cpu_gprh[reg_num]; 355 } 356 357 static TCGv dest_gpr(DisasContext *ctx, int reg_num) 358 { 359 if (reg_num == 0 || get_olen(ctx) < TARGET_LONG_BITS) { 360 return tcg_temp_new(); 361 } 362 return cpu_gpr[reg_num]; 363 } 364 365 static TCGv dest_gprh(DisasContext *ctx, int reg_num) 366 { 367 if (reg_num == 0) { 368 return tcg_temp_new(); 369 } 370 return cpu_gprh[reg_num]; 371 } 372 373 static void gen_set_gpr(DisasContext *ctx, int reg_num, TCGv t) 374 { 375 if (reg_num != 0) { 376 switch (get_ol(ctx)) { 377 case MXL_RV32: 378 tcg_gen_ext32s_tl(cpu_gpr[reg_num], t); 379 break; 380 case MXL_RV64: 381 case MXL_RV128: 382 tcg_gen_mov_tl(cpu_gpr[reg_num], t); 383 break; 384 default: 385 g_assert_not_reached(); 386 } 387 388 if (get_xl_max(ctx) == MXL_RV128) { 389 tcg_gen_sari_tl(cpu_gprh[reg_num], cpu_gpr[reg_num], 63); 390 } 391 } 392 } 393 394 static void gen_set_gpri(DisasContext *ctx, int reg_num, target_long imm) 395 { 396 if (reg_num != 0) { 397 switch (get_ol(ctx)) { 398 case MXL_RV32: 399 tcg_gen_movi_tl(cpu_gpr[reg_num], (int32_t)imm); 400 break; 401 case MXL_RV64: 402 case MXL_RV128: 403 tcg_gen_movi_tl(cpu_gpr[reg_num], imm); 404 break; 405 default: 406 g_assert_not_reached(); 407 } 408 409 if (get_xl_max(ctx) == MXL_RV128) { 410 tcg_gen_movi_tl(cpu_gprh[reg_num], -(imm < 0)); 411 } 412 } 413 } 414 415 static void gen_set_gpr128(DisasContext *ctx, int reg_num, TCGv rl, TCGv rh) 416 { 417 assert(get_ol(ctx) == MXL_RV128); 418 if (reg_num != 0) { 419 tcg_gen_mov_tl(cpu_gpr[reg_num], rl); 420 tcg_gen_mov_tl(cpu_gprh[reg_num], rh); 421 } 422 } 423 424 static TCGv_i64 get_fpr_hs(DisasContext *ctx, int reg_num) 425 { 426 if (!ctx->cfg_ptr->ext_zfinx) { 427 return cpu_fpr[reg_num]; 428 } 429 430 if (reg_num == 0) { 431 return tcg_constant_i64(0); 432 } 433 switch (get_xl(ctx)) { 434 case MXL_RV32: 435 #ifdef TARGET_RISCV32 436 { 437 TCGv_i64 t = tcg_temp_new_i64(); 438 tcg_gen_ext_i32_i64(t, cpu_gpr[reg_num]); 439 return t; 440 } 441 #else 442 /* fall through */ 443 case MXL_RV64: 444 return cpu_gpr[reg_num]; 445 #endif 446 default: 447 g_assert_not_reached(); 448 } 449 } 450 451 static TCGv_i64 get_fpr_d(DisasContext *ctx, int reg_num) 452 { 453 if (!ctx->cfg_ptr->ext_zfinx) { 454 return cpu_fpr[reg_num]; 455 } 456 457 if (reg_num == 0) { 458 return tcg_constant_i64(0); 459 } 460 switch (get_xl(ctx)) { 461 case MXL_RV32: 462 { 463 TCGv_i64 t = tcg_temp_new_i64(); 464 tcg_gen_concat_tl_i64(t, cpu_gpr[reg_num], cpu_gpr[reg_num + 1]); 465 return t; 466 } 467 #ifdef TARGET_RISCV64 468 case MXL_RV64: 469 return cpu_gpr[reg_num]; 470 #endif 471 default: 472 g_assert_not_reached(); 473 } 474 } 475 476 static TCGv_i64 dest_fpr(DisasContext *ctx, int reg_num) 477 { 478 if (!ctx->cfg_ptr->ext_zfinx) { 479 return cpu_fpr[reg_num]; 480 } 481 482 if (reg_num == 0) { 483 return tcg_temp_new_i64(); 484 } 485 486 switch (get_xl(ctx)) { 487 case MXL_RV32: 488 return tcg_temp_new_i64(); 489 #ifdef TARGET_RISCV64 490 case MXL_RV64: 491 return cpu_gpr[reg_num]; 492 #endif 493 default: 494 g_assert_not_reached(); 495 } 496 } 497 498 /* assume it is nanboxing (for normal) or sign-extended (for zfinx) */ 499 static void gen_set_fpr_hs(DisasContext *ctx, int reg_num, TCGv_i64 t) 500 { 501 if (!ctx->cfg_ptr->ext_zfinx) { 502 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 503 return; 504 } 505 if (reg_num != 0) { 506 switch (get_xl(ctx)) { 507 case MXL_RV32: 508 #ifdef TARGET_RISCV32 509 tcg_gen_extrl_i64_i32(cpu_gpr[reg_num], t); 510 break; 511 #else 512 /* fall through */ 513 case MXL_RV64: 514 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 515 break; 516 #endif 517 default: 518 g_assert_not_reached(); 519 } 520 } 521 } 522 523 static void gen_set_fpr_d(DisasContext *ctx, int reg_num, TCGv_i64 t) 524 { 525 if (!ctx->cfg_ptr->ext_zfinx) { 526 tcg_gen_mov_i64(cpu_fpr[reg_num], t); 527 return; 528 } 529 530 if (reg_num != 0) { 531 switch (get_xl(ctx)) { 532 case MXL_RV32: 533 #ifdef TARGET_RISCV32 534 tcg_gen_extr_i64_i32(cpu_gpr[reg_num], cpu_gpr[reg_num + 1], t); 535 break; 536 #else 537 tcg_gen_ext32s_i64(cpu_gpr[reg_num], t); 538 tcg_gen_sari_i64(cpu_gpr[reg_num + 1], t, 32); 539 break; 540 case MXL_RV64: 541 tcg_gen_mov_i64(cpu_gpr[reg_num], t); 542 break; 543 #endif 544 default: 545 g_assert_not_reached(); 546 } 547 } 548 } 549 550 static void gen_jal(DisasContext *ctx, int rd, target_ulong imm) 551 { 552 /* check misaligned: */ 553 if (!has_ext(ctx, RVC) && !ctx->cfg_ptr->ext_zca) { 554 if ((imm & 0x3) != 0) { 555 TCGv target_pc = tcg_temp_new(); 556 gen_pc_plus_diff(target_pc, ctx, imm); 557 gen_exception_inst_addr_mis(ctx, target_pc); 558 return; 559 } 560 } 561 562 gen_set_gpri(ctx, rd, ctx->pc_succ_insn); 563 gen_goto_tb(ctx, 0, imm); /* must use this for safety */ 564 ctx->base.is_jmp = DISAS_NORETURN; 565 } 566 567 /* Compute a canonical address from a register plus offset. */ 568 static TCGv get_address(DisasContext *ctx, int rs1, int imm) 569 { 570 TCGv addr = tcg_temp_new(); 571 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 572 573 tcg_gen_addi_tl(addr, src1, imm); 574 if (ctx->pm_mask_enabled) { 575 tcg_gen_andc_tl(addr, addr, pm_mask); 576 } else if (get_xl(ctx) == MXL_RV32) { 577 tcg_gen_ext32u_tl(addr, addr); 578 } 579 if (ctx->pm_base_enabled) { 580 tcg_gen_or_tl(addr, addr, pm_base); 581 } 582 return addr; 583 } 584 585 /* Compute a canonical address from a register plus reg offset. */ 586 static TCGv get_address_indexed(DisasContext *ctx, int rs1, TCGv offs) 587 { 588 TCGv addr = tcg_temp_new(); 589 TCGv src1 = get_gpr(ctx, rs1, EXT_NONE); 590 591 tcg_gen_add_tl(addr, src1, offs); 592 if (ctx->pm_mask_enabled) { 593 tcg_gen_andc_tl(addr, addr, pm_mask); 594 } else if (get_xl(ctx) == MXL_RV32) { 595 tcg_gen_ext32u_tl(addr, addr); 596 } 597 if (ctx->pm_base_enabled) { 598 tcg_gen_or_tl(addr, addr, pm_base); 599 } 600 return addr; 601 } 602 603 #ifndef CONFIG_USER_ONLY 604 /* 605 * We will have already diagnosed disabled state, 606 * and need to turn initial/clean into dirty. 607 */ 608 static void mark_fs_dirty(DisasContext *ctx) 609 { 610 TCGv tmp; 611 612 if (!has_ext(ctx, RVF)) { 613 return; 614 } 615 616 if (ctx->mstatus_fs != EXT_STATUS_DIRTY) { 617 /* Remember the state change for the rest of the TB. */ 618 ctx->mstatus_fs = EXT_STATUS_DIRTY; 619 620 tmp = tcg_temp_new(); 621 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 622 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 623 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 624 625 if (ctx->virt_enabled) { 626 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 627 tcg_gen_ori_tl(tmp, tmp, MSTATUS_FS); 628 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 629 } 630 } 631 } 632 #else 633 static inline void mark_fs_dirty(DisasContext *ctx) { } 634 #endif 635 636 #ifndef CONFIG_USER_ONLY 637 /* 638 * We will have already diagnosed disabled state, 639 * and need to turn initial/clean into dirty. 640 */ 641 static void mark_vs_dirty(DisasContext *ctx) 642 { 643 TCGv tmp; 644 645 if (ctx->mstatus_vs != EXT_STATUS_DIRTY) { 646 /* Remember the state change for the rest of the TB. */ 647 ctx->mstatus_vs = EXT_STATUS_DIRTY; 648 649 tmp = tcg_temp_new(); 650 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 651 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 652 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus)); 653 654 if (ctx->virt_enabled) { 655 tcg_gen_ld_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 656 tcg_gen_ori_tl(tmp, tmp, MSTATUS_VS); 657 tcg_gen_st_tl(tmp, cpu_env, offsetof(CPURISCVState, mstatus_hs)); 658 } 659 } 660 } 661 #else 662 static inline void mark_vs_dirty(DisasContext *ctx) { } 663 #endif 664 665 static void gen_set_rm(DisasContext *ctx, int rm) 666 { 667 if (ctx->frm == rm) { 668 return; 669 } 670 ctx->frm = rm; 671 672 if (rm == RISCV_FRM_DYN) { 673 /* The helper will return only if frm valid. */ 674 ctx->frm_valid = true; 675 } 676 677 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 678 decode_save_opc(ctx); 679 gen_helper_set_rounding_mode(cpu_env, tcg_constant_i32(rm)); 680 } 681 682 static void gen_set_rm_chkfrm(DisasContext *ctx, int rm) 683 { 684 if (ctx->frm == rm && ctx->frm_valid) { 685 return; 686 } 687 ctx->frm = rm; 688 ctx->frm_valid = true; 689 690 /* The helper may raise ILLEGAL_INSN -- record binv for unwind. */ 691 decode_save_opc(ctx); 692 gen_helper_set_rounding_mode_chkfrm(cpu_env, tcg_constant_i32(rm)); 693 } 694 695 static int ex_plus_1(DisasContext *ctx, int nf) 696 { 697 return nf + 1; 698 } 699 700 #define EX_SH(amount) \ 701 static int ex_shift_##amount(DisasContext *ctx, int imm) \ 702 { \ 703 return imm << amount; \ 704 } 705 EX_SH(1) 706 EX_SH(2) 707 EX_SH(3) 708 EX_SH(4) 709 EX_SH(12) 710 711 #define REQUIRE_EXT(ctx, ext) do { \ 712 if (!has_ext(ctx, ext)) { \ 713 return false; \ 714 } \ 715 } while (0) 716 717 #define REQUIRE_32BIT(ctx) do { \ 718 if (get_xl(ctx) != MXL_RV32) { \ 719 return false; \ 720 } \ 721 } while (0) 722 723 #define REQUIRE_64BIT(ctx) do { \ 724 if (get_xl(ctx) != MXL_RV64) { \ 725 return false; \ 726 } \ 727 } while (0) 728 729 #define REQUIRE_128BIT(ctx) do { \ 730 if (get_xl(ctx) != MXL_RV128) { \ 731 return false; \ 732 } \ 733 } while (0) 734 735 #define REQUIRE_64_OR_128BIT(ctx) do { \ 736 if (get_xl(ctx) == MXL_RV32) { \ 737 return false; \ 738 } \ 739 } while (0) 740 741 #define REQUIRE_EITHER_EXT(ctx, A, B) do { \ 742 if (!ctx->cfg_ptr->ext_##A && \ 743 !ctx->cfg_ptr->ext_##B) { \ 744 return false; \ 745 } \ 746 } while (0) 747 748 static int ex_rvc_register(DisasContext *ctx, int reg) 749 { 750 return 8 + reg; 751 } 752 753 static int ex_sreg_register(DisasContext *ctx, int reg) 754 { 755 return reg < 2 ? reg + 8 : reg + 16; 756 } 757 758 static int ex_rvc_shiftli(DisasContext *ctx, int imm) 759 { 760 /* For RV128 a shamt of 0 means a shift by 64. */ 761 if (get_ol(ctx) == MXL_RV128) { 762 imm = imm ? imm : 64; 763 } 764 return imm; 765 } 766 767 static int ex_rvc_shiftri(DisasContext *ctx, int imm) 768 { 769 /* 770 * For RV128 a shamt of 0 means a shift by 64, furthermore, for right 771 * shifts, the shamt is sign-extended. 772 */ 773 if (get_ol(ctx) == MXL_RV128) { 774 imm = imm | (imm & 32) << 1; 775 imm = imm ? imm : 64; 776 } 777 return imm; 778 } 779 780 /* Include the auto-generated decoder for 32 bit insn */ 781 #include "decode-insn32.c.inc" 782 783 static bool gen_logic_imm_fn(DisasContext *ctx, arg_i *a, 784 void (*func)(TCGv, TCGv, target_long)) 785 { 786 TCGv dest = dest_gpr(ctx, a->rd); 787 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 788 789 func(dest, src1, a->imm); 790 791 if (get_xl(ctx) == MXL_RV128) { 792 TCGv src1h = get_gprh(ctx, a->rs1); 793 TCGv desth = dest_gprh(ctx, a->rd); 794 795 func(desth, src1h, -(a->imm < 0)); 796 gen_set_gpr128(ctx, a->rd, dest, desth); 797 } else { 798 gen_set_gpr(ctx, a->rd, dest); 799 } 800 801 return true; 802 } 803 804 static bool gen_logic(DisasContext *ctx, arg_r *a, 805 void (*func)(TCGv, TCGv, TCGv)) 806 { 807 TCGv dest = dest_gpr(ctx, a->rd); 808 TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE); 809 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 810 811 func(dest, src1, src2); 812 813 if (get_xl(ctx) == MXL_RV128) { 814 TCGv src1h = get_gprh(ctx, a->rs1); 815 TCGv src2h = get_gprh(ctx, a->rs2); 816 TCGv desth = dest_gprh(ctx, a->rd); 817 818 func(desth, src1h, src2h); 819 gen_set_gpr128(ctx, a->rd, dest, desth); 820 } else { 821 gen_set_gpr(ctx, a->rd, dest); 822 } 823 824 return true; 825 } 826 827 static bool gen_arith_imm_fn(DisasContext *ctx, arg_i *a, DisasExtend ext, 828 void (*func)(TCGv, TCGv, target_long), 829 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 830 { 831 TCGv dest = dest_gpr(ctx, a->rd); 832 TCGv src1 = get_gpr(ctx, a->rs1, ext); 833 834 if (get_ol(ctx) < MXL_RV128) { 835 func(dest, src1, a->imm); 836 gen_set_gpr(ctx, a->rd, dest); 837 } else { 838 if (f128 == NULL) { 839 return false; 840 } 841 842 TCGv src1h = get_gprh(ctx, a->rs1); 843 TCGv desth = dest_gprh(ctx, a->rd); 844 845 f128(dest, desth, src1, src1h, a->imm); 846 gen_set_gpr128(ctx, a->rd, dest, desth); 847 } 848 return true; 849 } 850 851 static bool gen_arith_imm_tl(DisasContext *ctx, arg_i *a, DisasExtend ext, 852 void (*func)(TCGv, TCGv, TCGv), 853 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 854 { 855 TCGv dest = dest_gpr(ctx, a->rd); 856 TCGv src1 = get_gpr(ctx, a->rs1, ext); 857 TCGv src2 = tcg_constant_tl(a->imm); 858 859 if (get_ol(ctx) < MXL_RV128) { 860 func(dest, src1, src2); 861 gen_set_gpr(ctx, a->rd, dest); 862 } else { 863 if (f128 == NULL) { 864 return false; 865 } 866 867 TCGv src1h = get_gprh(ctx, a->rs1); 868 TCGv src2h = tcg_constant_tl(-(a->imm < 0)); 869 TCGv desth = dest_gprh(ctx, a->rd); 870 871 f128(dest, desth, src1, src1h, src2, src2h); 872 gen_set_gpr128(ctx, a->rd, dest, desth); 873 } 874 return true; 875 } 876 877 static bool gen_arith(DisasContext *ctx, arg_r *a, DisasExtend ext, 878 void (*func)(TCGv, TCGv, TCGv), 879 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 880 { 881 TCGv dest = dest_gpr(ctx, a->rd); 882 TCGv src1 = get_gpr(ctx, a->rs1, ext); 883 TCGv src2 = get_gpr(ctx, a->rs2, ext); 884 885 if (get_ol(ctx) < MXL_RV128) { 886 func(dest, src1, src2); 887 gen_set_gpr(ctx, a->rd, dest); 888 } else { 889 if (f128 == NULL) { 890 return false; 891 } 892 893 TCGv src1h = get_gprh(ctx, a->rs1); 894 TCGv src2h = get_gprh(ctx, a->rs2); 895 TCGv desth = dest_gprh(ctx, a->rd); 896 897 f128(dest, desth, src1, src1h, src2, src2h); 898 gen_set_gpr128(ctx, a->rd, dest, desth); 899 } 900 return true; 901 } 902 903 static bool gen_arith_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 904 void (*f_tl)(TCGv, TCGv, TCGv), 905 void (*f_32)(TCGv, TCGv, TCGv), 906 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv, TCGv)) 907 { 908 int olen = get_olen(ctx); 909 910 if (olen != TARGET_LONG_BITS) { 911 if (olen == 32) { 912 f_tl = f_32; 913 } else if (olen != 128) { 914 g_assert_not_reached(); 915 } 916 } 917 return gen_arith(ctx, a, ext, f_tl, f_128); 918 } 919 920 static bool gen_shift_imm_fn(DisasContext *ctx, arg_shift *a, DisasExtend ext, 921 void (*func)(TCGv, TCGv, target_long), 922 void (*f128)(TCGv, TCGv, TCGv, TCGv, target_long)) 923 { 924 TCGv dest, src1; 925 int max_len = get_olen(ctx); 926 927 if (a->shamt >= max_len) { 928 return false; 929 } 930 931 dest = dest_gpr(ctx, a->rd); 932 src1 = get_gpr(ctx, a->rs1, ext); 933 934 if (max_len < 128) { 935 func(dest, src1, a->shamt); 936 gen_set_gpr(ctx, a->rd, dest); 937 } else { 938 TCGv src1h = get_gprh(ctx, a->rs1); 939 TCGv desth = dest_gprh(ctx, a->rd); 940 941 if (f128 == NULL) { 942 return false; 943 } 944 f128(dest, desth, src1, src1h, a->shamt); 945 gen_set_gpr128(ctx, a->rd, dest, desth); 946 } 947 return true; 948 } 949 950 static bool gen_shift_imm_fn_per_ol(DisasContext *ctx, arg_shift *a, 951 DisasExtend ext, 952 void (*f_tl)(TCGv, TCGv, target_long), 953 void (*f_32)(TCGv, TCGv, target_long), 954 void (*f_128)(TCGv, TCGv, TCGv, TCGv, 955 target_long)) 956 { 957 int olen = get_olen(ctx); 958 if (olen != TARGET_LONG_BITS) { 959 if (olen == 32) { 960 f_tl = f_32; 961 } else if (olen != 128) { 962 g_assert_not_reached(); 963 } 964 } 965 return gen_shift_imm_fn(ctx, a, ext, f_tl, f_128); 966 } 967 968 static bool gen_shift_imm_tl(DisasContext *ctx, arg_shift *a, DisasExtend ext, 969 void (*func)(TCGv, TCGv, TCGv)) 970 { 971 TCGv dest, src1, src2; 972 int max_len = get_olen(ctx); 973 974 if (a->shamt >= max_len) { 975 return false; 976 } 977 978 dest = dest_gpr(ctx, a->rd); 979 src1 = get_gpr(ctx, a->rs1, ext); 980 src2 = tcg_constant_tl(a->shamt); 981 982 func(dest, src1, src2); 983 984 gen_set_gpr(ctx, a->rd, dest); 985 return true; 986 } 987 988 static bool gen_shift(DisasContext *ctx, arg_r *a, DisasExtend ext, 989 void (*func)(TCGv, TCGv, TCGv), 990 void (*f128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 991 { 992 TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE); 993 TCGv ext2 = tcg_temp_new(); 994 int max_len = get_olen(ctx); 995 996 tcg_gen_andi_tl(ext2, src2, max_len - 1); 997 998 TCGv dest = dest_gpr(ctx, a->rd); 999 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1000 1001 if (max_len < 128) { 1002 func(dest, src1, ext2); 1003 gen_set_gpr(ctx, a->rd, dest); 1004 } else { 1005 TCGv src1h = get_gprh(ctx, a->rs1); 1006 TCGv desth = dest_gprh(ctx, a->rd); 1007 1008 if (f128 == NULL) { 1009 return false; 1010 } 1011 f128(dest, desth, src1, src1h, ext2); 1012 gen_set_gpr128(ctx, a->rd, dest, desth); 1013 } 1014 return true; 1015 } 1016 1017 static bool gen_shift_per_ol(DisasContext *ctx, arg_r *a, DisasExtend ext, 1018 void (*f_tl)(TCGv, TCGv, TCGv), 1019 void (*f_32)(TCGv, TCGv, TCGv), 1020 void (*f_128)(TCGv, TCGv, TCGv, TCGv, TCGv)) 1021 { 1022 int olen = get_olen(ctx); 1023 if (olen != TARGET_LONG_BITS) { 1024 if (olen == 32) { 1025 f_tl = f_32; 1026 } else if (olen != 128) { 1027 g_assert_not_reached(); 1028 } 1029 } 1030 return gen_shift(ctx, a, ext, f_tl, f_128); 1031 } 1032 1033 static bool gen_unary(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1034 void (*func)(TCGv, TCGv)) 1035 { 1036 TCGv dest = dest_gpr(ctx, a->rd); 1037 TCGv src1 = get_gpr(ctx, a->rs1, ext); 1038 1039 func(dest, src1); 1040 1041 gen_set_gpr(ctx, a->rd, dest); 1042 return true; 1043 } 1044 1045 static bool gen_unary_per_ol(DisasContext *ctx, arg_r2 *a, DisasExtend ext, 1046 void (*f_tl)(TCGv, TCGv), 1047 void (*f_32)(TCGv, TCGv)) 1048 { 1049 int olen = get_olen(ctx); 1050 1051 if (olen != TARGET_LONG_BITS) { 1052 if (olen == 32) { 1053 f_tl = f_32; 1054 } else { 1055 g_assert_not_reached(); 1056 } 1057 } 1058 return gen_unary(ctx, a, ext, f_tl); 1059 } 1060 1061 static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc) 1062 { 1063 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1064 CPUState *cpu = ctx->cs; 1065 CPURISCVState *env = cpu->env_ptr; 1066 1067 return cpu_ldl_code(env, pc); 1068 } 1069 1070 /* Include insn module translation function */ 1071 #include "insn_trans/trans_rvi.c.inc" 1072 #include "insn_trans/trans_rvm.c.inc" 1073 #include "insn_trans/trans_rva.c.inc" 1074 #include "insn_trans/trans_rvf.c.inc" 1075 #include "insn_trans/trans_rvd.c.inc" 1076 #include "insn_trans/trans_rvh.c.inc" 1077 #include "insn_trans/trans_rvv.c.inc" 1078 #include "insn_trans/trans_rvb.c.inc" 1079 #include "insn_trans/trans_rvzicond.c.inc" 1080 #include "insn_trans/trans_rvzawrs.c.inc" 1081 #include "insn_trans/trans_rvzicbo.c.inc" 1082 #include "insn_trans/trans_rvzfh.c.inc" 1083 #include "insn_trans/trans_rvk.c.inc" 1084 #include "insn_trans/trans_privileged.c.inc" 1085 #include "insn_trans/trans_svinval.c.inc" 1086 #include "decode-xthead.c.inc" 1087 #include "insn_trans/trans_xthead.c.inc" 1088 #include "insn_trans/trans_xventanacondops.c.inc" 1089 1090 /* Include the auto-generated decoder for 16 bit insn */ 1091 #include "decode-insn16.c.inc" 1092 #include "insn_trans/trans_rvzce.c.inc" 1093 1094 /* Include decoders for factored-out extensions */ 1095 #include "decode-XVentanaCondOps.c.inc" 1096 1097 /* The specification allows for longer insns, but not supported by qemu. */ 1098 #define MAX_INSN_LEN 4 1099 1100 static inline int insn_len(uint16_t first_word) 1101 { 1102 return (first_word & 3) == 3 ? 4 : 2; 1103 } 1104 1105 static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) 1106 { 1107 /* 1108 * A table with predicate (i.e., guard) functions and decoder functions 1109 * that are tested in-order until a decoder matches onto the opcode. 1110 */ 1111 static const struct { 1112 bool (*guard_func)(DisasContext *); 1113 bool (*decode_func)(DisasContext *, uint32_t); 1114 } decoders[] = { 1115 { always_true_p, decode_insn32 }, 1116 { has_xthead_p, decode_xthead }, 1117 { has_XVentanaCondOps_p, decode_XVentanaCodeOps }, 1118 }; 1119 1120 ctx->virt_inst_excp = false; 1121 ctx->cur_insn_len = insn_len(opcode); 1122 /* Check for compressed insn */ 1123 if (ctx->cur_insn_len == 2) { 1124 ctx->opcode = opcode; 1125 ctx->pc_succ_insn = ctx->base.pc_next + 2; 1126 /* 1127 * The Zca extension is added as way to refer to instructions in the C 1128 * extension that do not include the floating-point loads and stores 1129 */ 1130 if ((has_ext(ctx, RVC) || ctx->cfg_ptr->ext_zca) && 1131 decode_insn16(ctx, opcode)) { 1132 return; 1133 } 1134 } else { 1135 uint32_t opcode32 = opcode; 1136 opcode32 = deposit32(opcode32, 16, 16, 1137 translator_lduw(env, &ctx->base, 1138 ctx->base.pc_next + 2)); 1139 ctx->opcode = opcode32; 1140 ctx->pc_succ_insn = ctx->base.pc_next + 4; 1141 1142 for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) { 1143 if (decoders[i].guard_func(ctx) && 1144 decoders[i].decode_func(ctx, opcode32)) { 1145 return; 1146 } 1147 } 1148 } 1149 1150 gen_exception_illegal(ctx); 1151 } 1152 1153 static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) 1154 { 1155 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1156 CPURISCVState *env = cs->env_ptr; 1157 RISCVCPU *cpu = RISCV_CPU(cs); 1158 uint32_t tb_flags = ctx->base.tb->flags; 1159 1160 ctx->pc_succ_insn = ctx->base.pc_first; 1161 ctx->priv = FIELD_EX32(tb_flags, TB_FLAGS, PRIV); 1162 ctx->mem_idx = FIELD_EX32(tb_flags, TB_FLAGS, MEM_IDX); 1163 ctx->mstatus_fs = FIELD_EX32(tb_flags, TB_FLAGS, FS); 1164 ctx->mstatus_vs = FIELD_EX32(tb_flags, TB_FLAGS, VS); 1165 ctx->priv_ver = env->priv_ver; 1166 ctx->virt_enabled = FIELD_EX32(tb_flags, TB_FLAGS, VIRT_ENABLED); 1167 ctx->misa_ext = env->misa_ext; 1168 ctx->frm = -1; /* unknown rounding mode */ 1169 ctx->cfg_ptr = &(cpu->cfg); 1170 ctx->vill = FIELD_EX32(tb_flags, TB_FLAGS, VILL); 1171 ctx->sew = FIELD_EX32(tb_flags, TB_FLAGS, SEW); 1172 ctx->lmul = sextract32(FIELD_EX32(tb_flags, TB_FLAGS, LMUL), 0, 3); 1173 ctx->vta = FIELD_EX32(tb_flags, TB_FLAGS, VTA) && cpu->cfg.rvv_ta_all_1s; 1174 ctx->vma = FIELD_EX32(tb_flags, TB_FLAGS, VMA) && cpu->cfg.rvv_ma_all_1s; 1175 ctx->cfg_vta_all_1s = cpu->cfg.rvv_ta_all_1s; 1176 ctx->vstart_eq_zero = FIELD_EX32(tb_flags, TB_FLAGS, VSTART_EQ_ZERO); 1177 ctx->vl_eq_vlmax = FIELD_EX32(tb_flags, TB_FLAGS, VL_EQ_VLMAX); 1178 ctx->misa_mxl_max = env->misa_mxl_max; 1179 ctx->xl = FIELD_EX32(tb_flags, TB_FLAGS, XL); 1180 ctx->cs = cs; 1181 ctx->pm_mask_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_MASK_ENABLED); 1182 ctx->pm_base_enabled = FIELD_EX32(tb_flags, TB_FLAGS, PM_BASE_ENABLED); 1183 ctx->itrigger = FIELD_EX32(tb_flags, TB_FLAGS, ITRIGGER); 1184 ctx->zero = tcg_constant_tl(0); 1185 ctx->virt_inst_excp = false; 1186 } 1187 1188 static void riscv_tr_tb_start(DisasContextBase *db, CPUState *cpu) 1189 { 1190 } 1191 1192 static void riscv_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) 1193 { 1194 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1195 1196 tcg_gen_insn_start(ctx->base.pc_next, 0); 1197 ctx->insn_start = tcg_last_op(); 1198 } 1199 1200 static void riscv_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) 1201 { 1202 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1203 CPURISCVState *env = cpu->env_ptr; 1204 uint16_t opcode16 = translator_lduw(env, &ctx->base, ctx->base.pc_next); 1205 1206 ctx->ol = ctx->xl; 1207 decode_opc(env, ctx, opcode16); 1208 ctx->base.pc_next = ctx->pc_succ_insn; 1209 1210 /* Only the first insn within a TB is allowed to cross a page boundary. */ 1211 if (ctx->base.is_jmp == DISAS_NEXT) { 1212 if (ctx->itrigger || !is_same_page(&ctx->base, ctx->base.pc_next)) { 1213 ctx->base.is_jmp = DISAS_TOO_MANY; 1214 } else { 1215 unsigned page_ofs = ctx->base.pc_next & ~TARGET_PAGE_MASK; 1216 1217 if (page_ofs > TARGET_PAGE_SIZE - MAX_INSN_LEN) { 1218 uint16_t next_insn = cpu_lduw_code(env, ctx->base.pc_next); 1219 int len = insn_len(next_insn); 1220 1221 if (!is_same_page(&ctx->base, ctx->base.pc_next + len - 1)) { 1222 ctx->base.is_jmp = DISAS_TOO_MANY; 1223 } 1224 } 1225 } 1226 } 1227 } 1228 1229 static void riscv_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) 1230 { 1231 DisasContext *ctx = container_of(dcbase, DisasContext, base); 1232 1233 switch (ctx->base.is_jmp) { 1234 case DISAS_TOO_MANY: 1235 gen_goto_tb(ctx, 0, 0); 1236 break; 1237 case DISAS_NORETURN: 1238 break; 1239 default: 1240 g_assert_not_reached(); 1241 } 1242 } 1243 1244 static void riscv_tr_disas_log(const DisasContextBase *dcbase, 1245 CPUState *cpu, FILE *logfile) 1246 { 1247 #ifndef CONFIG_USER_ONLY 1248 RISCVCPU *rvcpu = RISCV_CPU(cpu); 1249 CPURISCVState *env = &rvcpu->env; 1250 #endif 1251 1252 fprintf(logfile, "IN: %s\n", lookup_symbol(dcbase->pc_first)); 1253 #ifndef CONFIG_USER_ONLY 1254 fprintf(logfile, "Priv: "TARGET_FMT_ld"; Virt: %d\n", 1255 env->priv, env->virt_enabled); 1256 #endif 1257 target_disas(logfile, cpu, dcbase->pc_first, dcbase->tb->size); 1258 } 1259 1260 static const TranslatorOps riscv_tr_ops = { 1261 .init_disas_context = riscv_tr_init_disas_context, 1262 .tb_start = riscv_tr_tb_start, 1263 .insn_start = riscv_tr_insn_start, 1264 .translate_insn = riscv_tr_translate_insn, 1265 .tb_stop = riscv_tr_tb_stop, 1266 .disas_log = riscv_tr_disas_log, 1267 }; 1268 1269 void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int *max_insns, 1270 target_ulong pc, void *host_pc) 1271 { 1272 DisasContext ctx; 1273 1274 translator_loop(cs, tb, max_insns, pc, host_pc, &riscv_tr_ops, &ctx.base); 1275 } 1276 1277 void riscv_translate_init(void) 1278 { 1279 int i; 1280 1281 /* 1282 * cpu_gpr[0] is a placeholder for the zero register. Do not use it. 1283 * Use the gen_set_gpr and get_gpr helper functions when accessing regs, 1284 * unless you specifically block reads/writes to reg 0. 1285 */ 1286 cpu_gpr[0] = NULL; 1287 cpu_gprh[0] = NULL; 1288 1289 for (i = 1; i < 32; i++) { 1290 cpu_gpr[i] = tcg_global_mem_new(cpu_env, 1291 offsetof(CPURISCVState, gpr[i]), riscv_int_regnames[i]); 1292 cpu_gprh[i] = tcg_global_mem_new(cpu_env, 1293 offsetof(CPURISCVState, gprh[i]), riscv_int_regnamesh[i]); 1294 } 1295 1296 for (i = 0; i < 32; i++) { 1297 cpu_fpr[i] = tcg_global_mem_new_i64(cpu_env, 1298 offsetof(CPURISCVState, fpr[i]), riscv_fpr_regnames[i]); 1299 } 1300 1301 cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, pc), "pc"); 1302 cpu_vl = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vl), "vl"); 1303 cpu_vstart = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, vstart), 1304 "vstart"); 1305 load_res = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_res), 1306 "load_res"); 1307 load_val = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, load_val), 1308 "load_val"); 1309 /* Assign PM CSRs to tcg globals */ 1310 pm_mask = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmmask), 1311 "pmmask"); 1312 pm_base = tcg_global_mem_new(cpu_env, offsetof(CPURISCVState, cur_pmbase), 1313 "pmbase"); 1314 } 1315