1 /* 2 * RISC-V PMU file. 3 * 4 * Copyright (c) 2021 Western Digital Corporation or its affiliates. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "pmu.h" 22 #include "sysemu/cpu-timers.h" 23 #include "sysemu/device_tree.h" 24 25 #define RISCV_TIMEBASE_FREQ 1000000000 /* 1Ghz */ 26 #define MAKE_32BIT_MASK(shift, length) \ 27 (((uint32_t)(~0UL) >> (32 - (length))) << (shift)) 28 29 /* 30 * To keep it simple, any event can be mapped to any programmable counters in 31 * QEMU. The generic cycle & instruction count events can also be monitored 32 * using programmable counters. In that case, mcycle & minstret must continue 33 * to provide the correct value as well. Heterogeneous PMU per hart is not 34 * supported yet. Thus, number of counters are same across all harts. 35 */ 36 void riscv_pmu_generate_fdt_node(void *fdt, int num_ctrs, char *pmu_name) 37 { 38 uint32_t fdt_event_ctr_map[15] = {}; 39 uint32_t cmask; 40 41 /* All the programmable counters can map to any event */ 42 cmask = MAKE_32BIT_MASK(3, num_ctrs); 43 44 /* 45 * The event encoding is specified in the SBI specification 46 * Event idx is a 20bits wide number encoded as follows: 47 * event_idx[19:16] = type 48 * event_idx[15:0] = code 49 * The code field in cache events are encoded as follows: 50 * event_idx.code[15:3] = cache_id 51 * event_idx.code[2:1] = op_id 52 * event_idx.code[0:0] = result_id 53 */ 54 55 /* SBI_PMU_HW_CPU_CYCLES: 0x01 : type(0x00) */ 56 fdt_event_ctr_map[0] = cpu_to_be32(0x00000001); 57 fdt_event_ctr_map[1] = cpu_to_be32(0x00000001); 58 fdt_event_ctr_map[2] = cpu_to_be32(cmask | 1 << 0); 59 60 /* SBI_PMU_HW_INSTRUCTIONS: 0x02 : type(0x00) */ 61 fdt_event_ctr_map[3] = cpu_to_be32(0x00000002); 62 fdt_event_ctr_map[4] = cpu_to_be32(0x00000002); 63 fdt_event_ctr_map[5] = cpu_to_be32(cmask | 1 << 2); 64 65 /* SBI_PMU_HW_CACHE_DTLB : 0x03 READ : 0x00 MISS : 0x00 type(0x01) */ 66 fdt_event_ctr_map[6] = cpu_to_be32(0x00010019); 67 fdt_event_ctr_map[7] = cpu_to_be32(0x00010019); 68 fdt_event_ctr_map[8] = cpu_to_be32(cmask); 69 70 /* SBI_PMU_HW_CACHE_DTLB : 0x03 WRITE : 0x01 MISS : 0x00 type(0x01) */ 71 fdt_event_ctr_map[9] = cpu_to_be32(0x0001001B); 72 fdt_event_ctr_map[10] = cpu_to_be32(0x0001001B); 73 fdt_event_ctr_map[11] = cpu_to_be32(cmask); 74 75 /* SBI_PMU_HW_CACHE_ITLB : 0x04 READ : 0x00 MISS : 0x00 type(0x01) */ 76 fdt_event_ctr_map[12] = cpu_to_be32(0x00010021); 77 fdt_event_ctr_map[13] = cpu_to_be32(0x00010021); 78 fdt_event_ctr_map[14] = cpu_to_be32(cmask); 79 80 /* This a OpenSBI specific DT property documented in OpenSBI docs */ 81 qemu_fdt_setprop(fdt, pmu_name, "riscv,event-to-mhpmcounters", 82 fdt_event_ctr_map, sizeof(fdt_event_ctr_map)); 83 } 84 85 static bool riscv_pmu_counter_valid(RISCVCPU *cpu, uint32_t ctr_idx) 86 { 87 if (ctr_idx < 3 || ctr_idx >= RV_MAX_MHPMCOUNTERS || 88 !(cpu->pmu_avail_ctrs & BIT(ctr_idx))) { 89 return false; 90 } else { 91 return true; 92 } 93 } 94 95 static bool riscv_pmu_counter_enabled(RISCVCPU *cpu, uint32_t ctr_idx) 96 { 97 CPURISCVState *env = &cpu->env; 98 99 if (riscv_pmu_counter_valid(cpu, ctr_idx) && 100 !get_field(env->mcountinhibit, BIT(ctr_idx))) { 101 return true; 102 } else { 103 return false; 104 } 105 } 106 107 static int riscv_pmu_incr_ctr_rv32(RISCVCPU *cpu, uint32_t ctr_idx) 108 { 109 CPURISCVState *env = &cpu->env; 110 target_ulong max_val = UINT32_MAX; 111 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 112 bool virt_on = env->virt_enabled; 113 114 /* Privilege mode filtering */ 115 if ((env->priv == PRV_M && 116 (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_MINH)) || 117 (env->priv == PRV_S && virt_on && 118 (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VSINH)) || 119 (env->priv == PRV_U && virt_on && 120 (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VUINH)) || 121 (env->priv == PRV_S && !virt_on && 122 (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_SINH)) || 123 (env->priv == PRV_U && !virt_on && 124 (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_UINH))) { 125 return 0; 126 } 127 128 /* Handle the overflow scenario */ 129 if (counter->mhpmcounter_val == max_val) { 130 if (counter->mhpmcounterh_val == max_val) { 131 counter->mhpmcounter_val = 0; 132 counter->mhpmcounterh_val = 0; 133 /* Generate interrupt only if OF bit is clear */ 134 if (!(env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_OF)) { 135 env->mhpmeventh_val[ctr_idx] |= MHPMEVENTH_BIT_OF; 136 riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1)); 137 } 138 } else { 139 counter->mhpmcounterh_val++; 140 } 141 } else { 142 counter->mhpmcounter_val++; 143 } 144 145 return 0; 146 } 147 148 static int riscv_pmu_incr_ctr_rv64(RISCVCPU *cpu, uint32_t ctr_idx) 149 { 150 CPURISCVState *env = &cpu->env; 151 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 152 uint64_t max_val = UINT64_MAX; 153 bool virt_on = env->virt_enabled; 154 155 /* Privilege mode filtering */ 156 if ((env->priv == PRV_M && 157 (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_MINH)) || 158 (env->priv == PRV_S && virt_on && 159 (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VSINH)) || 160 (env->priv == PRV_U && virt_on && 161 (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VUINH)) || 162 (env->priv == PRV_S && !virt_on && 163 (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_SINH)) || 164 (env->priv == PRV_U && !virt_on && 165 (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_UINH))) { 166 return 0; 167 } 168 169 /* Handle the overflow scenario */ 170 if (counter->mhpmcounter_val == max_val) { 171 counter->mhpmcounter_val = 0; 172 /* Generate interrupt only if OF bit is clear */ 173 if (!(env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_OF)) { 174 env->mhpmevent_val[ctr_idx] |= MHPMEVENT_BIT_OF; 175 riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1)); 176 } 177 } else { 178 counter->mhpmcounter_val++; 179 } 180 return 0; 181 } 182 183 int riscv_pmu_incr_ctr(RISCVCPU *cpu, enum riscv_pmu_event_idx event_idx) 184 { 185 uint32_t ctr_idx; 186 int ret; 187 CPURISCVState *env = &cpu->env; 188 gpointer value; 189 190 if (!cpu->cfg.pmu_num) { 191 return 0; 192 } 193 value = g_hash_table_lookup(cpu->pmu_event_ctr_map, 194 GUINT_TO_POINTER(event_idx)); 195 if (!value) { 196 return -1; 197 } 198 199 ctr_idx = GPOINTER_TO_UINT(value); 200 if (!riscv_pmu_counter_enabled(cpu, ctr_idx) || 201 get_field(env->mcountinhibit, BIT(ctr_idx))) { 202 return -1; 203 } 204 205 if (riscv_cpu_mxl(env) == MXL_RV32) { 206 ret = riscv_pmu_incr_ctr_rv32(cpu, ctr_idx); 207 } else { 208 ret = riscv_pmu_incr_ctr_rv64(cpu, ctr_idx); 209 } 210 211 return ret; 212 } 213 214 bool riscv_pmu_ctr_monitor_instructions(CPURISCVState *env, 215 uint32_t target_ctr) 216 { 217 RISCVCPU *cpu; 218 uint32_t event_idx; 219 uint32_t ctr_idx; 220 221 /* Fixed instret counter */ 222 if (target_ctr == 2) { 223 return true; 224 } 225 226 cpu = env_archcpu(env); 227 if (!cpu->pmu_event_ctr_map) { 228 return false; 229 } 230 231 event_idx = RISCV_PMU_EVENT_HW_INSTRUCTIONS; 232 ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map, 233 GUINT_TO_POINTER(event_idx))); 234 if (!ctr_idx) { 235 return false; 236 } 237 238 return target_ctr == ctr_idx ? true : false; 239 } 240 241 bool riscv_pmu_ctr_monitor_cycles(CPURISCVState *env, uint32_t target_ctr) 242 { 243 RISCVCPU *cpu; 244 uint32_t event_idx; 245 uint32_t ctr_idx; 246 247 /* Fixed mcycle counter */ 248 if (target_ctr == 0) { 249 return true; 250 } 251 252 cpu = env_archcpu(env); 253 if (!cpu->pmu_event_ctr_map) { 254 return false; 255 } 256 257 event_idx = RISCV_PMU_EVENT_HW_CPU_CYCLES; 258 ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map, 259 GUINT_TO_POINTER(event_idx))); 260 261 /* Counter zero is not used for event_ctr_map */ 262 if (!ctr_idx) { 263 return false; 264 } 265 266 return (target_ctr == ctr_idx) ? true : false; 267 } 268 269 static gboolean pmu_remove_event_map(gpointer key, gpointer value, 270 gpointer udata) 271 { 272 return (GPOINTER_TO_UINT(value) == GPOINTER_TO_UINT(udata)) ? true : false; 273 } 274 275 static int64_t pmu_icount_ticks_to_ns(int64_t value) 276 { 277 int64_t ret = 0; 278 279 if (icount_enabled()) { 280 ret = icount_to_ns(value); 281 } else { 282 ret = (NANOSECONDS_PER_SECOND / RISCV_TIMEBASE_FREQ) * value; 283 } 284 285 return ret; 286 } 287 288 int riscv_pmu_update_event_map(CPURISCVState *env, uint64_t value, 289 uint32_t ctr_idx) 290 { 291 uint32_t event_idx; 292 RISCVCPU *cpu = env_archcpu(env); 293 294 if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->pmu_event_ctr_map) { 295 return -1; 296 } 297 298 /* 299 * Expected mhpmevent value is zero for reset case. Remove the current 300 * mapping. 301 */ 302 if (!value) { 303 g_hash_table_foreach_remove(cpu->pmu_event_ctr_map, 304 pmu_remove_event_map, 305 GUINT_TO_POINTER(ctr_idx)); 306 return 0; 307 } 308 309 event_idx = value & MHPMEVENT_IDX_MASK; 310 if (g_hash_table_lookup(cpu->pmu_event_ctr_map, 311 GUINT_TO_POINTER(event_idx))) { 312 return 0; 313 } 314 315 switch (event_idx) { 316 case RISCV_PMU_EVENT_HW_CPU_CYCLES: 317 case RISCV_PMU_EVENT_HW_INSTRUCTIONS: 318 case RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS: 319 case RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS: 320 case RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS: 321 break; 322 default: 323 /* We don't support any raw events right now */ 324 return -1; 325 } 326 g_hash_table_insert(cpu->pmu_event_ctr_map, GUINT_TO_POINTER(event_idx), 327 GUINT_TO_POINTER(ctr_idx)); 328 329 return 0; 330 } 331 332 static void pmu_timer_trigger_irq(RISCVCPU *cpu, 333 enum riscv_pmu_event_idx evt_idx) 334 { 335 uint32_t ctr_idx; 336 CPURISCVState *env = &cpu->env; 337 PMUCTRState *counter; 338 target_ulong *mhpmevent_val; 339 uint64_t of_bit_mask; 340 int64_t irq_trigger_at; 341 342 if (evt_idx != RISCV_PMU_EVENT_HW_CPU_CYCLES && 343 evt_idx != RISCV_PMU_EVENT_HW_INSTRUCTIONS) { 344 return; 345 } 346 347 ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map, 348 GUINT_TO_POINTER(evt_idx))); 349 if (!riscv_pmu_counter_enabled(cpu, ctr_idx)) { 350 return; 351 } 352 353 if (riscv_cpu_mxl(env) == MXL_RV32) { 354 mhpmevent_val = &env->mhpmeventh_val[ctr_idx]; 355 of_bit_mask = MHPMEVENTH_BIT_OF; 356 } else { 357 mhpmevent_val = &env->mhpmevent_val[ctr_idx]; 358 of_bit_mask = MHPMEVENT_BIT_OF; 359 } 360 361 counter = &env->pmu_ctrs[ctr_idx]; 362 if (counter->irq_overflow_left > 0) { 363 irq_trigger_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 364 counter->irq_overflow_left; 365 timer_mod_anticipate_ns(cpu->pmu_timer, irq_trigger_at); 366 counter->irq_overflow_left = 0; 367 return; 368 } 369 370 if (cpu->pmu_avail_ctrs & BIT(ctr_idx)) { 371 /* Generate interrupt only if OF bit is clear */ 372 if (!(*mhpmevent_val & of_bit_mask)) { 373 *mhpmevent_val |= of_bit_mask; 374 riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1)); 375 } 376 } 377 } 378 379 /* Timer callback for instret and cycle counter overflow */ 380 void riscv_pmu_timer_cb(void *priv) 381 { 382 RISCVCPU *cpu = priv; 383 384 /* Timer event was triggered only for these events */ 385 pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_CPU_CYCLES); 386 pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_INSTRUCTIONS); 387 } 388 389 int riscv_pmu_setup_timer(CPURISCVState *env, uint64_t value, uint32_t ctr_idx) 390 { 391 uint64_t overflow_delta, overflow_at; 392 int64_t overflow_ns, overflow_left = 0; 393 RISCVCPU *cpu = env_archcpu(env); 394 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 395 396 if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->cfg.ext_sscofpmf) { 397 return -1; 398 } 399 400 if (value) { 401 overflow_delta = UINT64_MAX - value + 1; 402 } else { 403 overflow_delta = UINT64_MAX; 404 } 405 406 /* 407 * QEMU supports only int64_t timers while RISC-V counters are uint64_t. 408 * Compute the leftover and save it so that it can be reprogrammed again 409 * when timer expires. 410 */ 411 if (overflow_delta > INT64_MAX) { 412 overflow_left = overflow_delta - INT64_MAX; 413 } 414 415 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 416 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 417 overflow_ns = pmu_icount_ticks_to_ns((int64_t)overflow_delta); 418 overflow_left = pmu_icount_ticks_to_ns(overflow_left) ; 419 } else { 420 return -1; 421 } 422 overflow_at = (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + overflow_ns; 423 424 if (overflow_at > INT64_MAX) { 425 overflow_left += overflow_at - INT64_MAX; 426 counter->irq_overflow_left = overflow_left; 427 overflow_at = INT64_MAX; 428 } 429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 430 431 return 0; 432 } 433 434 435 int riscv_pmu_init(RISCVCPU *cpu, int num_counters) 436 { 437 if (num_counters > (RV_MAX_MHPMCOUNTERS - 3)) { 438 return -1; 439 } 440 441 cpu->pmu_event_ctr_map = g_hash_table_new(g_direct_hash, g_direct_equal); 442 if (!cpu->pmu_event_ctr_map) { 443 /* PMU support can not be enabled */ 444 qemu_log_mask(LOG_UNIMP, "PMU events can't be supported\n"); 445 cpu->cfg.pmu_num = 0; 446 return -1; 447 } 448 449 /* Create a bitmask of available programmable counters */ 450 cpu->pmu_avail_ctrs = MAKE_32BIT_MASK(3, num_counters); 451 452 return 0; 453 } 454