xref: /openbmc/qemu/target/riscv/pmu.c (revision 2e1cacfb)
1 /*
2  * RISC-V PMU file.
3  *
4  * Copyright (c) 2021 Western Digital Corporation or its affiliates.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "qemu/error-report.h"
22 #include "qemu/timer.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "sysemu/cpu-timers.h"
26 #include "sysemu/device_tree.h"
27 
28 #define RISCV_TIMEBASE_FREQ 1000000000 /* 1Ghz */
29 
30 /*
31  * To keep it simple, any event can be mapped to any programmable counters in
32  * QEMU. The generic cycle & instruction count events can also be monitored
33  * using programmable counters. In that case, mcycle & minstret must continue
34  * to provide the correct value as well. Heterogeneous PMU per hart is not
35  * supported yet. Thus, number of counters are same across all harts.
36  */
37 void riscv_pmu_generate_fdt_node(void *fdt, uint32_t cmask, char *pmu_name)
38 {
39     uint32_t fdt_event_ctr_map[15] = {};
40 
41    /*
42     * The event encoding is specified in the SBI specification
43     * Event idx is a 20bits wide number encoded as follows:
44     * event_idx[19:16] = type
45     * event_idx[15:0] = code
46     * The code field in cache events are encoded as follows:
47     * event_idx.code[15:3] = cache_id
48     * event_idx.code[2:1] = op_id
49     * event_idx.code[0:0] = result_id
50     */
51 
52    /* SBI_PMU_HW_CPU_CYCLES: 0x01 : type(0x00) */
53    fdt_event_ctr_map[0] = cpu_to_be32(0x00000001);
54    fdt_event_ctr_map[1] = cpu_to_be32(0x00000001);
55    fdt_event_ctr_map[2] = cpu_to_be32(cmask | 1 << 0);
56 
57    /* SBI_PMU_HW_INSTRUCTIONS: 0x02 : type(0x00) */
58    fdt_event_ctr_map[3] = cpu_to_be32(0x00000002);
59    fdt_event_ctr_map[4] = cpu_to_be32(0x00000002);
60    fdt_event_ctr_map[5] = cpu_to_be32(cmask | 1 << 2);
61 
62    /* SBI_PMU_HW_CACHE_DTLB : 0x03 READ : 0x00 MISS : 0x00 type(0x01) */
63    fdt_event_ctr_map[6] = cpu_to_be32(0x00010019);
64    fdt_event_ctr_map[7] = cpu_to_be32(0x00010019);
65    fdt_event_ctr_map[8] = cpu_to_be32(cmask);
66 
67    /* SBI_PMU_HW_CACHE_DTLB : 0x03 WRITE : 0x01 MISS : 0x00 type(0x01) */
68    fdt_event_ctr_map[9] = cpu_to_be32(0x0001001B);
69    fdt_event_ctr_map[10] = cpu_to_be32(0x0001001B);
70    fdt_event_ctr_map[11] = cpu_to_be32(cmask);
71 
72    /* SBI_PMU_HW_CACHE_ITLB : 0x04 READ : 0x00 MISS : 0x00 type(0x01) */
73    fdt_event_ctr_map[12] = cpu_to_be32(0x00010021);
74    fdt_event_ctr_map[13] = cpu_to_be32(0x00010021);
75    fdt_event_ctr_map[14] = cpu_to_be32(cmask);
76 
77    /* This a OpenSBI specific DT property documented in OpenSBI docs */
78    qemu_fdt_setprop(fdt, pmu_name, "riscv,event-to-mhpmcounters",
79                     fdt_event_ctr_map, sizeof(fdt_event_ctr_map));
80 }
81 
82 static bool riscv_pmu_counter_valid(RISCVCPU *cpu, uint32_t ctr_idx)
83 {
84     if (ctr_idx < 3 || ctr_idx >= RV_MAX_MHPMCOUNTERS ||
85         !(cpu->pmu_avail_ctrs & BIT(ctr_idx))) {
86         return false;
87     } else {
88         return true;
89     }
90 }
91 
92 static bool riscv_pmu_counter_enabled(RISCVCPU *cpu, uint32_t ctr_idx)
93 {
94     CPURISCVState *env = &cpu->env;
95 
96     if (riscv_pmu_counter_valid(cpu, ctr_idx) &&
97         !get_field(env->mcountinhibit, BIT(ctr_idx))) {
98         return true;
99     } else {
100         return false;
101     }
102 }
103 
104 static int riscv_pmu_incr_ctr_rv32(RISCVCPU *cpu, uint32_t ctr_idx)
105 {
106     CPURISCVState *env = &cpu->env;
107     target_ulong max_val = UINT32_MAX;
108     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
109     bool virt_on = env->virt_enabled;
110 
111     /* Privilege mode filtering */
112     if ((env->priv == PRV_M &&
113         (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_MINH)) ||
114         (env->priv == PRV_S && virt_on &&
115         (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VSINH)) ||
116         (env->priv == PRV_U && virt_on &&
117         (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VUINH)) ||
118         (env->priv == PRV_S && !virt_on &&
119         (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_SINH)) ||
120         (env->priv == PRV_U && !virt_on &&
121         (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_UINH))) {
122         return 0;
123     }
124 
125     /* Handle the overflow scenario */
126     if (counter->mhpmcounter_val == max_val) {
127         if (counter->mhpmcounterh_val == max_val) {
128             counter->mhpmcounter_val = 0;
129             counter->mhpmcounterh_val = 0;
130             /* Generate interrupt only if OF bit is clear */
131             if (!(env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_OF)) {
132                 env->mhpmeventh_val[ctr_idx] |= MHPMEVENTH_BIT_OF;
133                 riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1));
134             }
135         } else {
136             counter->mhpmcounterh_val++;
137         }
138     } else {
139         counter->mhpmcounter_val++;
140     }
141 
142     return 0;
143 }
144 
145 static int riscv_pmu_incr_ctr_rv64(RISCVCPU *cpu, uint32_t ctr_idx)
146 {
147     CPURISCVState *env = &cpu->env;
148     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
149     uint64_t max_val = UINT64_MAX;
150     bool virt_on = env->virt_enabled;
151 
152     /* Privilege mode filtering */
153     if ((env->priv == PRV_M &&
154         (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_MINH)) ||
155         (env->priv == PRV_S && virt_on &&
156         (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VSINH)) ||
157         (env->priv == PRV_U && virt_on &&
158         (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VUINH)) ||
159         (env->priv == PRV_S && !virt_on &&
160         (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_SINH)) ||
161         (env->priv == PRV_U && !virt_on &&
162         (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_UINH))) {
163         return 0;
164     }
165 
166     /* Handle the overflow scenario */
167     if (counter->mhpmcounter_val == max_val) {
168         counter->mhpmcounter_val = 0;
169         /* Generate interrupt only if OF bit is clear */
170         if (!(env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_OF)) {
171             env->mhpmevent_val[ctr_idx] |= MHPMEVENT_BIT_OF;
172             riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1));
173         }
174     } else {
175         counter->mhpmcounter_val++;
176     }
177     return 0;
178 }
179 
180 /*
181  * Information needed to update counters:
182  *  new_priv, new_virt: To correctly save starting snapshot for the newly
183  *                      started mode. Look at array being indexed with newprv.
184  *  old_priv, old_virt: To correctly select previous snapshot for old priv
185  *                      and compute delta. Also to select correct counter
186  *                      to inc. Look at arrays being indexed with env->priv.
187  *
188  *  To avoid the complexity of calling this function, we assume that
189  *  env->priv and env->virt_enabled contain old priv and old virt and
190  *  new priv and new virt values are passed in as arguments.
191  */
192 static void riscv_pmu_icount_update_priv(CPURISCVState *env,
193                                          target_ulong newpriv, bool new_virt)
194 {
195     uint64_t *snapshot_prev, *snapshot_new;
196     uint64_t current_icount;
197     uint64_t *counter_arr;
198     uint64_t delta;
199 
200     if (icount_enabled()) {
201         current_icount = icount_get_raw();
202     } else {
203         current_icount = cpu_get_host_ticks();
204     }
205 
206     if (env->virt_enabled) {
207         g_assert(env->priv <= PRV_S);
208         counter_arr = env->pmu_fixed_ctrs[1].counter_virt;
209         snapshot_prev = env->pmu_fixed_ctrs[1].counter_virt_prev;
210     } else {
211         counter_arr = env->pmu_fixed_ctrs[1].counter;
212         snapshot_prev = env->pmu_fixed_ctrs[1].counter_prev;
213     }
214 
215     if (new_virt) {
216         g_assert(newpriv <= PRV_S);
217         snapshot_new = env->pmu_fixed_ctrs[1].counter_virt_prev;
218     } else {
219         snapshot_new = env->pmu_fixed_ctrs[1].counter_prev;
220     }
221 
222      /*
223       * new_priv can be same as env->priv. So we need to calculate
224       * delta first before updating snapshot_new[new_priv].
225       */
226     delta = current_icount - snapshot_prev[env->priv];
227     snapshot_new[newpriv] = current_icount;
228 
229     counter_arr[env->priv] += delta;
230 }
231 
232 static void riscv_pmu_cycle_update_priv(CPURISCVState *env,
233                                         target_ulong newpriv, bool new_virt)
234 {
235     uint64_t *snapshot_prev, *snapshot_new;
236     uint64_t current_ticks;
237     uint64_t *counter_arr;
238     uint64_t delta;
239 
240     if (icount_enabled()) {
241         current_ticks = icount_get();
242     } else {
243         current_ticks = cpu_get_host_ticks();
244     }
245 
246     if (env->virt_enabled) {
247         g_assert(env->priv <= PRV_S);
248         counter_arr = env->pmu_fixed_ctrs[0].counter_virt;
249         snapshot_prev = env->pmu_fixed_ctrs[0].counter_virt_prev;
250     } else {
251         counter_arr = env->pmu_fixed_ctrs[0].counter;
252         snapshot_prev = env->pmu_fixed_ctrs[0].counter_prev;
253     }
254 
255     if (new_virt) {
256         g_assert(newpriv <= PRV_S);
257         snapshot_new = env->pmu_fixed_ctrs[0].counter_virt_prev;
258     } else {
259         snapshot_new = env->pmu_fixed_ctrs[0].counter_prev;
260     }
261 
262     delta = current_ticks - snapshot_prev[env->priv];
263     snapshot_new[newpriv] = current_ticks;
264 
265     counter_arr[env->priv] += delta;
266 }
267 
268 void riscv_pmu_update_fixed_ctrs(CPURISCVState *env, target_ulong newpriv,
269                                  bool new_virt)
270 {
271     riscv_pmu_cycle_update_priv(env, newpriv, new_virt);
272     riscv_pmu_icount_update_priv(env, newpriv, new_virt);
273 }
274 
275 int riscv_pmu_incr_ctr(RISCVCPU *cpu, enum riscv_pmu_event_idx event_idx)
276 {
277     uint32_t ctr_idx;
278     int ret;
279     CPURISCVState *env = &cpu->env;
280     gpointer value;
281 
282     if (!cpu->cfg.pmu_mask) {
283         return 0;
284     }
285     value = g_hash_table_lookup(cpu->pmu_event_ctr_map,
286                                 GUINT_TO_POINTER(event_idx));
287     if (!value) {
288         return -1;
289     }
290 
291     ctr_idx = GPOINTER_TO_UINT(value);
292     if (!riscv_pmu_counter_enabled(cpu, ctr_idx)) {
293         return -1;
294     }
295 
296     if (riscv_cpu_mxl(env) == MXL_RV32) {
297         ret = riscv_pmu_incr_ctr_rv32(cpu, ctr_idx);
298     } else {
299         ret = riscv_pmu_incr_ctr_rv64(cpu, ctr_idx);
300     }
301 
302     return ret;
303 }
304 
305 bool riscv_pmu_ctr_monitor_instructions(CPURISCVState *env,
306                                         uint32_t target_ctr)
307 {
308     RISCVCPU *cpu;
309     uint32_t event_idx;
310     uint32_t ctr_idx;
311 
312     /* Fixed instret counter */
313     if (target_ctr == 2) {
314         return true;
315     }
316 
317     cpu = env_archcpu(env);
318     if (!cpu->pmu_event_ctr_map) {
319         return false;
320     }
321 
322     event_idx = RISCV_PMU_EVENT_HW_INSTRUCTIONS;
323     ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map,
324                                GUINT_TO_POINTER(event_idx)));
325     if (!ctr_idx) {
326         return false;
327     }
328 
329     return target_ctr == ctr_idx ? true : false;
330 }
331 
332 bool riscv_pmu_ctr_monitor_cycles(CPURISCVState *env, uint32_t target_ctr)
333 {
334     RISCVCPU *cpu;
335     uint32_t event_idx;
336     uint32_t ctr_idx;
337 
338     /* Fixed mcycle counter */
339     if (target_ctr == 0) {
340         return true;
341     }
342 
343     cpu = env_archcpu(env);
344     if (!cpu->pmu_event_ctr_map) {
345         return false;
346     }
347 
348     event_idx = RISCV_PMU_EVENT_HW_CPU_CYCLES;
349     ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map,
350                                GUINT_TO_POINTER(event_idx)));
351 
352     /* Counter zero is not used for event_ctr_map */
353     if (!ctr_idx) {
354         return false;
355     }
356 
357     return (target_ctr == ctr_idx) ? true : false;
358 }
359 
360 static gboolean pmu_remove_event_map(gpointer key, gpointer value,
361                                      gpointer udata)
362 {
363     return (GPOINTER_TO_UINT(value) == GPOINTER_TO_UINT(udata)) ? true : false;
364 }
365 
366 static int64_t pmu_icount_ticks_to_ns(int64_t value)
367 {
368     int64_t ret = 0;
369 
370     if (icount_enabled()) {
371         ret = icount_to_ns(value);
372     } else {
373         ret = (NANOSECONDS_PER_SECOND / RISCV_TIMEBASE_FREQ) * value;
374     }
375 
376     return ret;
377 }
378 
379 int riscv_pmu_update_event_map(CPURISCVState *env, uint64_t value,
380                                uint32_t ctr_idx)
381 {
382     uint32_t event_idx;
383     RISCVCPU *cpu = env_archcpu(env);
384 
385     if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->pmu_event_ctr_map) {
386         return -1;
387     }
388 
389     /*
390      * Expected mhpmevent value is zero for reset case. Remove the current
391      * mapping.
392      */
393     if (!value) {
394         g_hash_table_foreach_remove(cpu->pmu_event_ctr_map,
395                                     pmu_remove_event_map,
396                                     GUINT_TO_POINTER(ctr_idx));
397         return 0;
398     }
399 
400     event_idx = value & MHPMEVENT_IDX_MASK;
401     if (g_hash_table_lookup(cpu->pmu_event_ctr_map,
402                             GUINT_TO_POINTER(event_idx))) {
403         return 0;
404     }
405 
406     switch (event_idx) {
407     case RISCV_PMU_EVENT_HW_CPU_CYCLES:
408     case RISCV_PMU_EVENT_HW_INSTRUCTIONS:
409     case RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS:
410     case RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS:
411     case RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS:
412         break;
413     default:
414         /* We don't support any raw events right now */
415         return -1;
416     }
417     g_hash_table_insert(cpu->pmu_event_ctr_map, GUINT_TO_POINTER(event_idx),
418                         GUINT_TO_POINTER(ctr_idx));
419 
420     return 0;
421 }
422 
423 static bool pmu_hpmevent_is_of_set(CPURISCVState *env, uint32_t ctr_idx)
424 {
425     target_ulong mhpmevent_val;
426     uint64_t of_bit_mask;
427 
428     if (riscv_cpu_mxl(env) == MXL_RV32) {
429         mhpmevent_val = env->mhpmeventh_val[ctr_idx];
430         of_bit_mask = MHPMEVENTH_BIT_OF;
431      } else {
432         mhpmevent_val = env->mhpmevent_val[ctr_idx];
433         of_bit_mask = MHPMEVENT_BIT_OF;
434     }
435 
436     return get_field(mhpmevent_val, of_bit_mask);
437 }
438 
439 static bool pmu_hpmevent_set_of_if_clear(CPURISCVState *env, uint32_t ctr_idx)
440 {
441     target_ulong *mhpmevent_val;
442     uint64_t of_bit_mask;
443 
444     if (riscv_cpu_mxl(env) == MXL_RV32) {
445         mhpmevent_val = &env->mhpmeventh_val[ctr_idx];
446         of_bit_mask = MHPMEVENTH_BIT_OF;
447      } else {
448         mhpmevent_val = &env->mhpmevent_val[ctr_idx];
449         of_bit_mask = MHPMEVENT_BIT_OF;
450     }
451 
452     if (!get_field(*mhpmevent_val, of_bit_mask)) {
453         *mhpmevent_val |= of_bit_mask;
454         return true;
455     }
456 
457     return false;
458 }
459 
460 static void pmu_timer_trigger_irq(RISCVCPU *cpu,
461                                   enum riscv_pmu_event_idx evt_idx)
462 {
463     uint32_t ctr_idx;
464     CPURISCVState *env = &cpu->env;
465     PMUCTRState *counter;
466     int64_t irq_trigger_at;
467     uint64_t curr_ctr_val, curr_ctrh_val;
468     uint64_t ctr_val;
469 
470     if (evt_idx != RISCV_PMU_EVENT_HW_CPU_CYCLES &&
471         evt_idx != RISCV_PMU_EVENT_HW_INSTRUCTIONS) {
472         return;
473     }
474 
475     ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map,
476                                GUINT_TO_POINTER(evt_idx)));
477     if (!riscv_pmu_counter_enabled(cpu, ctr_idx)) {
478         return;
479     }
480 
481     /* Generate interrupt only if OF bit is clear */
482     if (pmu_hpmevent_is_of_set(env, ctr_idx)) {
483         return;
484     }
485 
486     counter = &env->pmu_ctrs[ctr_idx];
487     if (counter->irq_overflow_left > 0) {
488         irq_trigger_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
489                         counter->irq_overflow_left;
490         timer_mod_anticipate_ns(cpu->pmu_timer, irq_trigger_at);
491         counter->irq_overflow_left = 0;
492         return;
493     }
494 
495     riscv_pmu_read_ctr(env, (target_ulong *)&curr_ctr_val, false, ctr_idx);
496     ctr_val = counter->mhpmcounter_val;
497     if (riscv_cpu_mxl(env) == MXL_RV32) {
498         riscv_pmu_read_ctr(env, (target_ulong *)&curr_ctrh_val, true, ctr_idx);
499         curr_ctr_val = curr_ctr_val | (curr_ctrh_val << 32);
500         ctr_val = ctr_val |
501                 ((uint64_t)counter->mhpmcounterh_val << 32);
502     }
503 
504     /*
505      * We can not accommodate for inhibited modes when setting up timer. Check
506      * if the counter has actually overflowed or not by comparing current
507      * counter value (accommodated for inhibited modes) with software written
508      * counter value.
509      */
510     if (curr_ctr_val >= ctr_val) {
511         riscv_pmu_setup_timer(env, curr_ctr_val, ctr_idx);
512         return;
513     }
514 
515     if (cpu->pmu_avail_ctrs & BIT(ctr_idx)) {
516         if (pmu_hpmevent_set_of_if_clear(env, ctr_idx)) {
517             riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1));
518         }
519     }
520 }
521 
522 /* Timer callback for instret and cycle counter overflow */
523 void riscv_pmu_timer_cb(void *priv)
524 {
525     RISCVCPU *cpu = priv;
526 
527     /* Timer event was triggered only for these events */
528     pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_CPU_CYCLES);
529     pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_INSTRUCTIONS);
530 }
531 
532 int riscv_pmu_setup_timer(CPURISCVState *env, uint64_t value, uint32_t ctr_idx)
533 {
534     uint64_t overflow_delta, overflow_at, curr_ns;
535     int64_t overflow_ns, overflow_left = 0;
536     RISCVCPU *cpu = env_archcpu(env);
537     PMUCTRState *counter = &env->pmu_ctrs[ctr_idx];
538 
539     /* No need to setup a timer if LCOFI is disabled when OF is set */
540     if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->cfg.ext_sscofpmf ||
541         pmu_hpmevent_is_of_set(env, ctr_idx)) {
542         return -1;
543     }
544 
545     if (value) {
546         overflow_delta = UINT64_MAX - value + 1;
547     } else {
548         overflow_delta = UINT64_MAX;
549     }
550 
551     /*
552      * QEMU supports only int64_t timers while RISC-V counters are uint64_t.
553      * Compute the leftover and save it so that it can be reprogrammed again
554      * when timer expires.
555      */
556     if (overflow_delta > INT64_MAX) {
557         overflow_left = overflow_delta - INT64_MAX;
558     }
559 
560     if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) ||
561         riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) {
562         overflow_ns = pmu_icount_ticks_to_ns((int64_t)overflow_delta);
563         overflow_left = pmu_icount_ticks_to_ns(overflow_left) ;
564     } else {
565         return -1;
566     }
567     curr_ns = (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
568     overflow_at =  curr_ns + overflow_ns;
569     if (overflow_at <= curr_ns)
570         overflow_at = UINT64_MAX;
571 
572     if (overflow_at > INT64_MAX) {
573         overflow_left += overflow_at - INT64_MAX;
574         counter->irq_overflow_left = overflow_left;
575         overflow_at = INT64_MAX;
576     }
577     timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
578 
579     return 0;
580 }
581 
582 
583 void riscv_pmu_init(RISCVCPU *cpu, Error **errp)
584 {
585     if (cpu->cfg.pmu_mask & (COUNTEREN_CY | COUNTEREN_TM | COUNTEREN_IR)) {
586         error_setg(errp, "\"pmu-mask\" contains invalid bits (0-2) set");
587         return;
588     }
589 
590     if (ctpop32(cpu->cfg.pmu_mask) > (RV_MAX_MHPMCOUNTERS - 3)) {
591         error_setg(errp, "Number of counters exceeds maximum available");
592         return;
593     }
594 
595     cpu->pmu_event_ctr_map = g_hash_table_new(g_direct_hash, g_direct_equal);
596     if (!cpu->pmu_event_ctr_map) {
597         error_setg(errp, "Unable to allocate PMU event hash table");
598         return;
599     }
600 
601     cpu->pmu_avail_ctrs = cpu->cfg.pmu_mask;
602 }
603