1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 133 { 134 /* 135 aaaa...aaa0 8-byte NAPOT range 136 aaaa...aa01 16-byte NAPOT range 137 aaaa...a011 32-byte NAPOT range 138 ... 139 aa01...1111 2^XLEN-byte NAPOT range 140 a011...1111 2^(XLEN+1)-byte NAPOT range 141 0111...1111 2^(XLEN+2)-byte NAPOT range 142 1111...1111 Reserved 143 */ 144 a = (a << 2) | 0x3; 145 *sa = a & (a + 1); 146 *ea = a | (a + 1); 147 } 148 149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 150 { 151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 153 target_ulong prev_addr = 0u; 154 target_ulong sa = 0u; 155 target_ulong ea = 0u; 156 157 if (pmp_index >= 1u) { 158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 159 } 160 161 switch (pmp_get_a_field(this_cfg)) { 162 case PMP_AMATCH_OFF: 163 sa = 0u; 164 ea = -1; 165 break; 166 167 case PMP_AMATCH_TOR: 168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 169 ea = (this_addr << 2) - 1u; 170 if (sa > ea) { 171 sa = ea = 0u; 172 } 173 break; 174 175 case PMP_AMATCH_NA4: 176 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 177 ea = (sa + 4u) - 1u; 178 break; 179 180 case PMP_AMATCH_NAPOT: 181 pmp_decode_napot(this_addr, &sa, &ea); 182 break; 183 184 default: 185 sa = 0u; 186 ea = 0u; 187 break; 188 } 189 190 env->pmp_state.addr[pmp_index].sa = sa; 191 env->pmp_state.addr[pmp_index].ea = ea; 192 } 193 194 void pmp_update_rule_nums(CPURISCVState *env) 195 { 196 int i; 197 198 env->pmp_state.num_rules = 0; 199 for (i = 0; i < MAX_RISCV_PMPS; i++) { 200 const uint8_t a_field = 201 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 202 if (PMP_AMATCH_OFF != a_field) { 203 env->pmp_state.num_rules++; 204 } 205 } 206 } 207 208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 209 * end address values. 210 * This function is called relatively infrequently whereas the check that 211 * an address is within a pmp rule is called often, so optimise that one 212 */ 213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 214 { 215 pmp_update_rule_addr(env, pmp_index); 216 pmp_update_rule_nums(env); 217 } 218 219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 220 { 221 int result = 0; 222 223 if ((addr >= env->pmp_state.addr[pmp_index].sa) 224 && (addr <= env->pmp_state.addr[pmp_index].ea)) { 225 result = 1; 226 } else { 227 result = 0; 228 } 229 230 return result; 231 } 232 233 /* 234 * Check if the address has required RWX privs when no PMP entry is matched. 235 */ 236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 237 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 238 target_ulong mode) 239 { 240 bool ret; 241 242 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 243 if (MSECCFG_MMWP_ISSET(env)) { 244 /* 245 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 246 * so we default to deny all, even for M-mode. 247 */ 248 *allowed_privs = 0; 249 return false; 250 } else if (MSECCFG_MML_ISSET(env)) { 251 /* 252 * The Machine Mode Lockdown (mseccfg.MML) bit is set 253 * so we can only execute code in M-mode with an applicable 254 * rule. Other modes are disabled. 255 */ 256 if (mode == PRV_M && !(privs & PMP_EXEC)) { 257 ret = true; 258 *allowed_privs = PMP_READ | PMP_WRITE; 259 } else { 260 ret = false; 261 *allowed_privs = 0; 262 } 263 264 return ret; 265 } 266 } 267 268 if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) { 269 /* 270 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 271 * or no PMP entry matches an M-Mode access, the access succeeds. 272 */ 273 ret = true; 274 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 275 } else { 276 /* 277 * Other modes are not allowed to succeed if they don't * match a rule, 278 * but there are rules. We've checked for no rule earlier in this 279 * function. 280 */ 281 ret = false; 282 *allowed_privs = 0; 283 } 284 285 return ret; 286 } 287 288 289 /* 290 * Public Interface 291 */ 292 293 /* 294 * Check if the address has required RWX privs to complete desired operation 295 * Return PMP rule index if a pmp rule match 296 * Return MAX_RISCV_PMPS if default match 297 * Return negtive value if no match 298 */ 299 int pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 300 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 301 target_ulong mode) 302 { 303 int i = 0; 304 int ret = -1; 305 int pmp_size = 0; 306 target_ulong s = 0; 307 target_ulong e = 0; 308 309 /* Short cut if no rules */ 310 if (0 == pmp_get_num_rules(env)) { 311 if (pmp_hart_has_privs_default(env, addr, size, privs, 312 allowed_privs, mode)) { 313 ret = MAX_RISCV_PMPS; 314 } 315 } 316 317 if (size == 0) { 318 if (riscv_feature(env, RISCV_FEATURE_MMU)) { 319 /* 320 * If size is unknown (0), assume that all bytes 321 * from addr to the end of the page will be accessed. 322 */ 323 pmp_size = -(addr | TARGET_PAGE_MASK); 324 } else { 325 pmp_size = sizeof(target_ulong); 326 } 327 } else { 328 pmp_size = size; 329 } 330 331 /* 1.10 draft priv spec states there is an implicit order 332 from low to high */ 333 for (i = 0; i < MAX_RISCV_PMPS; i++) { 334 s = pmp_is_in_range(env, i, addr); 335 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 336 337 /* partially inside */ 338 if ((s + e) == 1) { 339 qemu_log_mask(LOG_GUEST_ERROR, 340 "pmp violation - access is partially inside\n"); 341 ret = -1; 342 break; 343 } 344 345 /* fully inside */ 346 const uint8_t a_field = 347 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 348 349 /* 350 * Convert the PMP permissions to match the truth table in the 351 * ePMP spec. 352 */ 353 const uint8_t epmp_operation = 354 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 355 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 356 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 357 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 358 359 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 360 /* 361 * If the PMP entry is not off and the address is in range, 362 * do the priv check 363 */ 364 if (!MSECCFG_MML_ISSET(env)) { 365 /* 366 * If mseccfg.MML Bit is not set, do pmp priv check 367 * This will always apply to regular PMP. 368 */ 369 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 370 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 371 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 372 } 373 } else { 374 /* 375 * If mseccfg.MML Bit set, do the enhanced pmp priv check 376 */ 377 if (mode == PRV_M) { 378 switch (epmp_operation) { 379 case 0: 380 case 1: 381 case 4: 382 case 5: 383 case 6: 384 case 7: 385 case 8: 386 *allowed_privs = 0; 387 break; 388 case 2: 389 case 3: 390 case 14: 391 *allowed_privs = PMP_READ | PMP_WRITE; 392 break; 393 case 9: 394 case 10: 395 *allowed_privs = PMP_EXEC; 396 break; 397 case 11: 398 case 13: 399 *allowed_privs = PMP_READ | PMP_EXEC; 400 break; 401 case 12: 402 case 15: 403 *allowed_privs = PMP_READ; 404 break; 405 default: 406 g_assert_not_reached(); 407 } 408 } else { 409 switch (epmp_operation) { 410 case 0: 411 case 8: 412 case 9: 413 case 12: 414 case 13: 415 case 14: 416 *allowed_privs = 0; 417 break; 418 case 1: 419 case 10: 420 case 11: 421 *allowed_privs = PMP_EXEC; 422 break; 423 case 2: 424 case 4: 425 case 15: 426 *allowed_privs = PMP_READ; 427 break; 428 case 3: 429 case 6: 430 *allowed_privs = PMP_READ | PMP_WRITE; 431 break; 432 case 5: 433 *allowed_privs = PMP_READ | PMP_EXEC; 434 break; 435 case 7: 436 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 437 break; 438 default: 439 g_assert_not_reached(); 440 } 441 } 442 } 443 444 if ((privs & *allowed_privs) == privs) { 445 ret = i; 446 } 447 break; 448 } 449 } 450 451 /* No rule matched */ 452 if (ret == -1) { 453 if (pmp_hart_has_privs_default(env, addr, size, privs, 454 allowed_privs, mode)) { 455 ret = MAX_RISCV_PMPS; 456 } 457 } 458 459 return ret; 460 } 461 462 /* 463 * Handle a write to a pmpcfg CSR 464 */ 465 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 466 target_ulong val) 467 { 468 int i; 469 uint8_t cfg_val; 470 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 471 472 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 473 474 for (i = 0; i < pmpcfg_nums; i++) { 475 cfg_val = (val >> 8 * i) & 0xff; 476 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 477 } 478 479 /* If PMP permission of any addr has been changed, flush TLB pages. */ 480 tlb_flush(env_cpu(env)); 481 } 482 483 484 /* 485 * Handle a read from a pmpcfg CSR 486 */ 487 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 488 { 489 int i; 490 target_ulong cfg_val = 0; 491 target_ulong val = 0; 492 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 493 494 for (i = 0; i < pmpcfg_nums; i++) { 495 val = pmp_read_cfg(env, (reg_index * 4) + i); 496 cfg_val |= (val << (i * 8)); 497 } 498 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 499 500 return cfg_val; 501 } 502 503 504 /* 505 * Handle a write to a pmpaddr CSR 506 */ 507 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 508 target_ulong val) 509 { 510 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 511 512 if (addr_index < MAX_RISCV_PMPS) { 513 /* 514 * In TOR mode, need to check the lock bit of the next pmp 515 * (if there is a next). 516 */ 517 if (addr_index + 1 < MAX_RISCV_PMPS) { 518 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 519 520 if (pmp_cfg & PMP_LOCK && 521 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 522 qemu_log_mask(LOG_GUEST_ERROR, 523 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 524 return; 525 } 526 } 527 528 if (!pmp_is_locked(env, addr_index)) { 529 env->pmp_state.pmp[addr_index].addr_reg = val; 530 pmp_update_rule(env, addr_index); 531 } else { 532 qemu_log_mask(LOG_GUEST_ERROR, 533 "ignoring pmpaddr write - locked\n"); 534 } 535 } else { 536 qemu_log_mask(LOG_GUEST_ERROR, 537 "ignoring pmpaddr write - out of bounds\n"); 538 } 539 } 540 541 542 /* 543 * Handle a read from a pmpaddr CSR 544 */ 545 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 546 { 547 target_ulong val = 0; 548 549 if (addr_index < MAX_RISCV_PMPS) { 550 val = env->pmp_state.pmp[addr_index].addr_reg; 551 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 552 } else { 553 qemu_log_mask(LOG_GUEST_ERROR, 554 "ignoring pmpaddr read - out of bounds\n"); 555 } 556 557 return val; 558 } 559 560 /* 561 * Handle a write to a mseccfg CSR 562 */ 563 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 564 { 565 int i; 566 567 trace_mseccfg_csr_write(env->mhartid, val); 568 569 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 570 if (!MSECCFG_RLB_ISSET(env)) { 571 for (i = 0; i < MAX_RISCV_PMPS; i++) { 572 if (pmp_is_locked(env, i)) { 573 val &= ~MSECCFG_RLB; 574 break; 575 } 576 } 577 } 578 579 /* Sticky bits */ 580 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 581 582 env->mseccfg = val; 583 } 584 585 /* 586 * Handle a read from a mseccfg CSR 587 */ 588 target_ulong mseccfg_csr_read(CPURISCVState *env) 589 { 590 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 591 return env->mseccfg; 592 } 593 594 /* 595 * Calculate the TLB size if the start address or the end address of 596 * PMP entry is presented in the TLB page. 597 */ 598 target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 599 target_ulong tlb_sa, target_ulong tlb_ea) 600 { 601 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 602 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 603 604 if (pmp_sa <= tlb_sa && pmp_ea >= tlb_ea) { 605 return TARGET_PAGE_SIZE; 606 } else { 607 /* 608 * At this point we have a tlb_size that is the smallest possible size 609 * That fits within a TARGET_PAGE_SIZE and the PMP region. 610 * 611 * If the size is less then TARGET_PAGE_SIZE we drop the size to 1. 612 * This means the result isn't cached in the TLB and is only used for 613 * a single translation. 614 */ 615 return 1; 616 } 617 } 618 619 /* 620 * Convert PMP privilege to TLB page privilege. 621 */ 622 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 623 { 624 int prot = 0; 625 626 if (pmp_priv & PMP_READ) { 627 prot |= PAGE_READ; 628 } 629 if (pmp_priv & PMP_WRITE) { 630 prot |= PAGE_WRITE; 631 } 632 if (pmp_priv & PMP_EXEC) { 633 prot |= PAGE_EXEC; 634 } 635 636 return prot; 637 } 638