1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 133 { 134 /* 135 aaaa...aaa0 8-byte NAPOT range 136 aaaa...aa01 16-byte NAPOT range 137 aaaa...a011 32-byte NAPOT range 138 ... 139 aa01...1111 2^XLEN-byte NAPOT range 140 a011...1111 2^(XLEN+1)-byte NAPOT range 141 0111...1111 2^(XLEN+2)-byte NAPOT range 142 1111...1111 Reserved 143 */ 144 if (a == -1) { 145 *sa = 0u; 146 *ea = -1; 147 return; 148 } else { 149 target_ulong t1 = ctz64(~a); 150 target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2; 151 target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1; 152 *sa = base; 153 *ea = base + range; 154 } 155 } 156 157 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 158 { 159 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 160 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 161 target_ulong prev_addr = 0u; 162 target_ulong sa = 0u; 163 target_ulong ea = 0u; 164 165 if (pmp_index >= 1u) { 166 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 167 } 168 169 switch (pmp_get_a_field(this_cfg)) { 170 case PMP_AMATCH_OFF: 171 sa = 0u; 172 ea = -1; 173 break; 174 175 case PMP_AMATCH_TOR: 176 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 177 ea = (this_addr << 2) - 1u; 178 break; 179 180 case PMP_AMATCH_NA4: 181 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 182 ea = (sa + 4u) - 1u; 183 break; 184 185 case PMP_AMATCH_NAPOT: 186 pmp_decode_napot(this_addr, &sa, &ea); 187 break; 188 189 default: 190 sa = 0u; 191 ea = 0u; 192 break; 193 } 194 195 env->pmp_state.addr[pmp_index].sa = sa; 196 env->pmp_state.addr[pmp_index].ea = ea; 197 } 198 199 void pmp_update_rule_nums(CPURISCVState *env) 200 { 201 int i; 202 203 env->pmp_state.num_rules = 0; 204 for (i = 0; i < MAX_RISCV_PMPS; i++) { 205 const uint8_t a_field = 206 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 207 if (PMP_AMATCH_OFF != a_field) { 208 env->pmp_state.num_rules++; 209 } 210 } 211 } 212 213 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 214 * end address values. 215 * This function is called relatively infrequently whereas the check that 216 * an address is within a pmp rule is called often, so optimise that one 217 */ 218 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 219 { 220 pmp_update_rule_addr(env, pmp_index); 221 pmp_update_rule_nums(env); 222 } 223 224 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 225 { 226 int result = 0; 227 228 if ((addr >= env->pmp_state.addr[pmp_index].sa) 229 && (addr <= env->pmp_state.addr[pmp_index].ea)) { 230 result = 1; 231 } else { 232 result = 0; 233 } 234 235 return result; 236 } 237 238 /* 239 * Check if the address has required RWX privs when no PMP entry is matched. 240 */ 241 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 242 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 243 target_ulong mode) 244 { 245 bool ret; 246 247 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 248 if (MSECCFG_MMWP_ISSET(env)) { 249 /* 250 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 251 * so we default to deny all, even for M-mode. 252 */ 253 *allowed_privs = 0; 254 return false; 255 } else if (MSECCFG_MML_ISSET(env)) { 256 /* 257 * The Machine Mode Lockdown (mseccfg.MML) bit is set 258 * so we can only execute code in M-mode with an applicable 259 * rule. Other modes are disabled. 260 */ 261 if (mode == PRV_M && !(privs & PMP_EXEC)) { 262 ret = true; 263 *allowed_privs = PMP_READ | PMP_WRITE; 264 } else { 265 ret = false; 266 *allowed_privs = 0; 267 } 268 269 return ret; 270 } 271 } 272 273 if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) { 274 /* 275 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 276 * or no PMP entry matches an M-Mode access, the access succeeds. 277 */ 278 ret = true; 279 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 280 } else { 281 /* 282 * Other modes are not allowed to succeed if they don't * match a rule, 283 * but there are rules. We've checked for no rule earlier in this 284 * function. 285 */ 286 ret = false; 287 *allowed_privs = 0; 288 } 289 290 return ret; 291 } 292 293 294 /* 295 * Public Interface 296 */ 297 298 /* 299 * Check if the address has required RWX privs to complete desired operation 300 */ 301 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 302 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 303 target_ulong mode) 304 { 305 int i = 0; 306 int ret = -1; 307 int pmp_size = 0; 308 target_ulong s = 0; 309 target_ulong e = 0; 310 311 /* Short cut if no rules */ 312 if (0 == pmp_get_num_rules(env)) { 313 return pmp_hart_has_privs_default(env, addr, size, privs, 314 allowed_privs, mode); 315 } 316 317 if (size == 0) { 318 if (riscv_feature(env, RISCV_FEATURE_MMU)) { 319 /* 320 * If size is unknown (0), assume that all bytes 321 * from addr to the end of the page will be accessed. 322 */ 323 pmp_size = -(addr | TARGET_PAGE_MASK); 324 } else { 325 pmp_size = sizeof(target_ulong); 326 } 327 } else { 328 pmp_size = size; 329 } 330 331 /* 1.10 draft priv spec states there is an implicit order 332 from low to high */ 333 for (i = 0; i < MAX_RISCV_PMPS; i++) { 334 s = pmp_is_in_range(env, i, addr); 335 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 336 337 /* partially inside */ 338 if ((s + e) == 1) { 339 qemu_log_mask(LOG_GUEST_ERROR, 340 "pmp violation - access is partially inside\n"); 341 ret = 0; 342 break; 343 } 344 345 /* fully inside */ 346 const uint8_t a_field = 347 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 348 349 /* 350 * Convert the PMP permissions to match the truth table in the 351 * ePMP spec. 352 */ 353 const uint8_t epmp_operation = 354 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 355 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 356 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 357 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 358 359 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 360 /* 361 * If the PMP entry is not off and the address is in range, 362 * do the priv check 363 */ 364 if (!MSECCFG_MML_ISSET(env)) { 365 /* 366 * If mseccfg.MML Bit is not set, do pmp priv check 367 * This will always apply to regular PMP. 368 */ 369 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 370 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 371 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 372 } 373 } else { 374 /* 375 * If mseccfg.MML Bit set, do the enhanced pmp priv check 376 */ 377 if (mode == PRV_M) { 378 switch (epmp_operation) { 379 case 0: 380 case 1: 381 case 4: 382 case 5: 383 case 6: 384 case 7: 385 case 8: 386 *allowed_privs = 0; 387 break; 388 case 2: 389 case 3: 390 case 14: 391 *allowed_privs = PMP_READ | PMP_WRITE; 392 break; 393 case 9: 394 case 10: 395 *allowed_privs = PMP_EXEC; 396 break; 397 case 11: 398 case 13: 399 *allowed_privs = PMP_READ | PMP_EXEC; 400 break; 401 case 12: 402 case 15: 403 *allowed_privs = PMP_READ; 404 break; 405 default: 406 g_assert_not_reached(); 407 } 408 } else { 409 switch (epmp_operation) { 410 case 0: 411 case 8: 412 case 9: 413 case 12: 414 case 13: 415 case 14: 416 *allowed_privs = 0; 417 break; 418 case 1: 419 case 10: 420 case 11: 421 *allowed_privs = PMP_EXEC; 422 break; 423 case 2: 424 case 4: 425 case 15: 426 *allowed_privs = PMP_READ; 427 break; 428 case 3: 429 case 6: 430 *allowed_privs = PMP_READ | PMP_WRITE; 431 break; 432 case 5: 433 *allowed_privs = PMP_READ | PMP_EXEC; 434 break; 435 case 7: 436 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 437 break; 438 default: 439 g_assert_not_reached(); 440 } 441 } 442 } 443 444 ret = ((privs & *allowed_privs) == privs); 445 break; 446 } 447 } 448 449 /* No rule matched */ 450 if (ret == -1) { 451 return pmp_hart_has_privs_default(env, addr, size, privs, 452 allowed_privs, mode); 453 } 454 455 return ret == 1 ? true : false; 456 } 457 458 /* 459 * Handle a write to a pmpcfg CSP 460 */ 461 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 462 target_ulong val) 463 { 464 int i; 465 uint8_t cfg_val; 466 467 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 468 469 if ((reg_index & 1) && (sizeof(target_ulong) == 8)) { 470 qemu_log_mask(LOG_GUEST_ERROR, 471 "ignoring pmpcfg write - incorrect address\n"); 472 return; 473 } 474 475 for (i = 0; i < sizeof(target_ulong); i++) { 476 cfg_val = (val >> 8 * i) & 0xff; 477 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 478 } 479 480 /* If PMP permission of any addr has been changed, flush TLB pages. */ 481 tlb_flush(env_cpu(env)); 482 } 483 484 485 /* 486 * Handle a read from a pmpcfg CSP 487 */ 488 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 489 { 490 int i; 491 target_ulong cfg_val = 0; 492 target_ulong val = 0; 493 494 for (i = 0; i < sizeof(target_ulong); i++) { 495 val = pmp_read_cfg(env, (reg_index * 4) + i); 496 cfg_val |= (val << (i * 8)); 497 } 498 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 499 500 return cfg_val; 501 } 502 503 504 /* 505 * Handle a write to a pmpaddr CSP 506 */ 507 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 508 target_ulong val) 509 { 510 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 511 512 if (addr_index < MAX_RISCV_PMPS) { 513 /* 514 * In TOR mode, need to check the lock bit of the next pmp 515 * (if there is a next). 516 */ 517 if (addr_index + 1 < MAX_RISCV_PMPS) { 518 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 519 520 if (pmp_cfg & PMP_LOCK && 521 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 522 qemu_log_mask(LOG_GUEST_ERROR, 523 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 524 return; 525 } 526 } 527 528 if (!pmp_is_locked(env, addr_index)) { 529 env->pmp_state.pmp[addr_index].addr_reg = val; 530 pmp_update_rule(env, addr_index); 531 } else { 532 qemu_log_mask(LOG_GUEST_ERROR, 533 "ignoring pmpaddr write - locked\n"); 534 } 535 } else { 536 qemu_log_mask(LOG_GUEST_ERROR, 537 "ignoring pmpaddr write - out of bounds\n"); 538 } 539 } 540 541 542 /* 543 * Handle a read from a pmpaddr CSP 544 */ 545 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 546 { 547 target_ulong val = 0; 548 549 if (addr_index < MAX_RISCV_PMPS) { 550 val = env->pmp_state.pmp[addr_index].addr_reg; 551 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 552 } else { 553 qemu_log_mask(LOG_GUEST_ERROR, 554 "ignoring pmpaddr read - out of bounds\n"); 555 } 556 557 return val; 558 } 559 560 /* 561 * Handle a write to a mseccfg CSR 562 */ 563 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 564 { 565 int i; 566 567 trace_mseccfg_csr_write(env->mhartid, val); 568 569 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 570 if (!MSECCFG_RLB_ISSET(env)) { 571 for (i = 0; i < MAX_RISCV_PMPS; i++) { 572 if (pmp_is_locked(env, i)) { 573 val &= ~MSECCFG_RLB; 574 break; 575 } 576 } 577 } 578 579 /* Sticky bits */ 580 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 581 582 env->mseccfg = val; 583 } 584 585 /* 586 * Handle a read from a mseccfg CSR 587 */ 588 target_ulong mseccfg_csr_read(CPURISCVState *env) 589 { 590 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 591 return env->mseccfg; 592 } 593 594 /* 595 * Calculate the TLB size if the start address or the end address of 596 * PMP entry is presented in thie TLB page. 597 */ 598 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 599 target_ulong tlb_sa, target_ulong tlb_ea) 600 { 601 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 602 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 603 604 if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) { 605 return pmp_ea - pmp_sa + 1; 606 } 607 608 if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) { 609 return tlb_ea - pmp_sa + 1; 610 } 611 612 if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) { 613 return pmp_ea - tlb_sa + 1; 614 } 615 616 return 0; 617 } 618 619 /* 620 * Check is there a PMP entry which range covers this page. If so, 621 * try to find the minimum granularity for the TLB size. 622 */ 623 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa, 624 target_ulong *tlb_size) 625 { 626 int i; 627 target_ulong val; 628 target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1); 629 630 for (i = 0; i < MAX_RISCV_PMPS; i++) { 631 val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea); 632 if (val) { 633 if (*tlb_size == 0 || *tlb_size > val) { 634 *tlb_size = val; 635 } 636 } 637 } 638 639 if (*tlb_size != 0) { 640 return true; 641 } 642 643 return false; 644 } 645 646 /* 647 * Convert PMP privilege to TLB page privilege. 648 */ 649 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 650 { 651 int prot = 0; 652 653 if (pmp_priv & PMP_READ) { 654 prot |= PAGE_READ; 655 } 656 if (pmp_priv & PMP_WRITE) { 657 prot |= PAGE_WRITE; 658 } 659 if (pmp_priv & PMP_EXEC) { 660 prot |= PAGE_EXEC; 661 } 662 663 return prot; 664 } 665