1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 133 { 134 /* 135 aaaa...aaa0 8-byte NAPOT range 136 aaaa...aa01 16-byte NAPOT range 137 aaaa...a011 32-byte NAPOT range 138 ... 139 aa01...1111 2^XLEN-byte NAPOT range 140 a011...1111 2^(XLEN+1)-byte NAPOT range 141 0111...1111 2^(XLEN+2)-byte NAPOT range 142 1111...1111 Reserved 143 */ 144 a = (a << 2) | 0x3; 145 *sa = a & (a + 1); 146 *ea = a | (a + 1); 147 } 148 149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 150 { 151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 153 target_ulong prev_addr = 0u; 154 target_ulong sa = 0u; 155 target_ulong ea = 0u; 156 157 if (pmp_index >= 1u) { 158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 159 } 160 161 switch (pmp_get_a_field(this_cfg)) { 162 case PMP_AMATCH_OFF: 163 sa = 0u; 164 ea = -1; 165 break; 166 167 case PMP_AMATCH_TOR: 168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 169 ea = (this_addr << 2) - 1u; 170 break; 171 172 case PMP_AMATCH_NA4: 173 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 174 ea = (sa + 4u) - 1u; 175 break; 176 177 case PMP_AMATCH_NAPOT: 178 pmp_decode_napot(this_addr, &sa, &ea); 179 break; 180 181 default: 182 sa = 0u; 183 ea = 0u; 184 break; 185 } 186 187 env->pmp_state.addr[pmp_index].sa = sa; 188 env->pmp_state.addr[pmp_index].ea = ea; 189 } 190 191 void pmp_update_rule_nums(CPURISCVState *env) 192 { 193 int i; 194 195 env->pmp_state.num_rules = 0; 196 for (i = 0; i < MAX_RISCV_PMPS; i++) { 197 const uint8_t a_field = 198 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 199 if (PMP_AMATCH_OFF != a_field) { 200 env->pmp_state.num_rules++; 201 } 202 } 203 } 204 205 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 206 * end address values. 207 * This function is called relatively infrequently whereas the check that 208 * an address is within a pmp rule is called often, so optimise that one 209 */ 210 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 211 { 212 pmp_update_rule_addr(env, pmp_index); 213 pmp_update_rule_nums(env); 214 } 215 216 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 217 { 218 int result = 0; 219 220 if ((addr >= env->pmp_state.addr[pmp_index].sa) 221 && (addr <= env->pmp_state.addr[pmp_index].ea)) { 222 result = 1; 223 } else { 224 result = 0; 225 } 226 227 return result; 228 } 229 230 /* 231 * Check if the address has required RWX privs when no PMP entry is matched. 232 */ 233 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 234 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 235 target_ulong mode) 236 { 237 bool ret; 238 239 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 240 if (MSECCFG_MMWP_ISSET(env)) { 241 /* 242 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 243 * so we default to deny all, even for M-mode. 244 */ 245 *allowed_privs = 0; 246 return false; 247 } else if (MSECCFG_MML_ISSET(env)) { 248 /* 249 * The Machine Mode Lockdown (mseccfg.MML) bit is set 250 * so we can only execute code in M-mode with an applicable 251 * rule. Other modes are disabled. 252 */ 253 if (mode == PRV_M && !(privs & PMP_EXEC)) { 254 ret = true; 255 *allowed_privs = PMP_READ | PMP_WRITE; 256 } else { 257 ret = false; 258 *allowed_privs = 0; 259 } 260 261 return ret; 262 } 263 } 264 265 if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) { 266 /* 267 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 268 * or no PMP entry matches an M-Mode access, the access succeeds. 269 */ 270 ret = true; 271 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 272 } else { 273 /* 274 * Other modes are not allowed to succeed if they don't * match a rule, 275 * but there are rules. We've checked for no rule earlier in this 276 * function. 277 */ 278 ret = false; 279 *allowed_privs = 0; 280 } 281 282 return ret; 283 } 284 285 286 /* 287 * Public Interface 288 */ 289 290 /* 291 * Check if the address has required RWX privs to complete desired operation 292 */ 293 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 294 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 295 target_ulong mode) 296 { 297 int i = 0; 298 int ret = -1; 299 int pmp_size = 0; 300 target_ulong s = 0; 301 target_ulong e = 0; 302 303 /* Short cut if no rules */ 304 if (0 == pmp_get_num_rules(env)) { 305 return pmp_hart_has_privs_default(env, addr, size, privs, 306 allowed_privs, mode); 307 } 308 309 if (size == 0) { 310 if (riscv_feature(env, RISCV_FEATURE_MMU)) { 311 /* 312 * If size is unknown (0), assume that all bytes 313 * from addr to the end of the page will be accessed. 314 */ 315 pmp_size = -(addr | TARGET_PAGE_MASK); 316 } else { 317 pmp_size = sizeof(target_ulong); 318 } 319 } else { 320 pmp_size = size; 321 } 322 323 /* 1.10 draft priv spec states there is an implicit order 324 from low to high */ 325 for (i = 0; i < MAX_RISCV_PMPS; i++) { 326 s = pmp_is_in_range(env, i, addr); 327 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 328 329 /* partially inside */ 330 if ((s + e) == 1) { 331 qemu_log_mask(LOG_GUEST_ERROR, 332 "pmp violation - access is partially inside\n"); 333 ret = 0; 334 break; 335 } 336 337 /* fully inside */ 338 const uint8_t a_field = 339 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 340 341 /* 342 * Convert the PMP permissions to match the truth table in the 343 * ePMP spec. 344 */ 345 const uint8_t epmp_operation = 346 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 347 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 348 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 349 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 350 351 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 352 /* 353 * If the PMP entry is not off and the address is in range, 354 * do the priv check 355 */ 356 if (!MSECCFG_MML_ISSET(env)) { 357 /* 358 * If mseccfg.MML Bit is not set, do pmp priv check 359 * This will always apply to regular PMP. 360 */ 361 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 362 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 363 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 364 } 365 } else { 366 /* 367 * If mseccfg.MML Bit set, do the enhanced pmp priv check 368 */ 369 if (mode == PRV_M) { 370 switch (epmp_operation) { 371 case 0: 372 case 1: 373 case 4: 374 case 5: 375 case 6: 376 case 7: 377 case 8: 378 *allowed_privs = 0; 379 break; 380 case 2: 381 case 3: 382 case 14: 383 *allowed_privs = PMP_READ | PMP_WRITE; 384 break; 385 case 9: 386 case 10: 387 *allowed_privs = PMP_EXEC; 388 break; 389 case 11: 390 case 13: 391 *allowed_privs = PMP_READ | PMP_EXEC; 392 break; 393 case 12: 394 case 15: 395 *allowed_privs = PMP_READ; 396 break; 397 default: 398 g_assert_not_reached(); 399 } 400 } else { 401 switch (epmp_operation) { 402 case 0: 403 case 8: 404 case 9: 405 case 12: 406 case 13: 407 case 14: 408 *allowed_privs = 0; 409 break; 410 case 1: 411 case 10: 412 case 11: 413 *allowed_privs = PMP_EXEC; 414 break; 415 case 2: 416 case 4: 417 case 15: 418 *allowed_privs = PMP_READ; 419 break; 420 case 3: 421 case 6: 422 *allowed_privs = PMP_READ | PMP_WRITE; 423 break; 424 case 5: 425 *allowed_privs = PMP_READ | PMP_EXEC; 426 break; 427 case 7: 428 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 429 break; 430 default: 431 g_assert_not_reached(); 432 } 433 } 434 } 435 436 ret = ((privs & *allowed_privs) == privs); 437 break; 438 } 439 } 440 441 /* No rule matched */ 442 if (ret == -1) { 443 return pmp_hart_has_privs_default(env, addr, size, privs, 444 allowed_privs, mode); 445 } 446 447 return ret == 1 ? true : false; 448 } 449 450 /* 451 * Handle a write to a pmpcfg CSR 452 */ 453 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 454 target_ulong val) 455 { 456 int i; 457 uint8_t cfg_val; 458 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 459 460 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 461 462 for (i = 0; i < pmpcfg_nums; i++) { 463 cfg_val = (val >> 8 * i) & 0xff; 464 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 465 } 466 467 /* If PMP permission of any addr has been changed, flush TLB pages. */ 468 tlb_flush(env_cpu(env)); 469 } 470 471 472 /* 473 * Handle a read from a pmpcfg CSR 474 */ 475 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 476 { 477 int i; 478 target_ulong cfg_val = 0; 479 target_ulong val = 0; 480 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 481 482 for (i = 0; i < pmpcfg_nums; i++) { 483 val = pmp_read_cfg(env, (reg_index * 4) + i); 484 cfg_val |= (val << (i * 8)); 485 } 486 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 487 488 return cfg_val; 489 } 490 491 492 /* 493 * Handle a write to a pmpaddr CSR 494 */ 495 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 496 target_ulong val) 497 { 498 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 499 500 if (addr_index < MAX_RISCV_PMPS) { 501 /* 502 * In TOR mode, need to check the lock bit of the next pmp 503 * (if there is a next). 504 */ 505 if (addr_index + 1 < MAX_RISCV_PMPS) { 506 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 507 508 if (pmp_cfg & PMP_LOCK && 509 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 510 qemu_log_mask(LOG_GUEST_ERROR, 511 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 512 return; 513 } 514 } 515 516 if (!pmp_is_locked(env, addr_index)) { 517 env->pmp_state.pmp[addr_index].addr_reg = val; 518 pmp_update_rule(env, addr_index); 519 } else { 520 qemu_log_mask(LOG_GUEST_ERROR, 521 "ignoring pmpaddr write - locked\n"); 522 } 523 } else { 524 qemu_log_mask(LOG_GUEST_ERROR, 525 "ignoring pmpaddr write - out of bounds\n"); 526 } 527 } 528 529 530 /* 531 * Handle a read from a pmpaddr CSR 532 */ 533 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 534 { 535 target_ulong val = 0; 536 537 if (addr_index < MAX_RISCV_PMPS) { 538 val = env->pmp_state.pmp[addr_index].addr_reg; 539 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 540 } else { 541 qemu_log_mask(LOG_GUEST_ERROR, 542 "ignoring pmpaddr read - out of bounds\n"); 543 } 544 545 return val; 546 } 547 548 /* 549 * Handle a write to a mseccfg CSR 550 */ 551 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 552 { 553 int i; 554 555 trace_mseccfg_csr_write(env->mhartid, val); 556 557 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 558 if (!MSECCFG_RLB_ISSET(env)) { 559 for (i = 0; i < MAX_RISCV_PMPS; i++) { 560 if (pmp_is_locked(env, i)) { 561 val &= ~MSECCFG_RLB; 562 break; 563 } 564 } 565 } 566 567 /* Sticky bits */ 568 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 569 570 env->mseccfg = val; 571 } 572 573 /* 574 * Handle a read from a mseccfg CSR 575 */ 576 target_ulong mseccfg_csr_read(CPURISCVState *env) 577 { 578 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 579 return env->mseccfg; 580 } 581 582 /* 583 * Calculate the TLB size if the start address or the end address of 584 * PMP entry is presented in the TLB page. 585 */ 586 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 587 target_ulong tlb_sa, target_ulong tlb_ea) 588 { 589 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 590 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 591 592 if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) { 593 return pmp_ea - pmp_sa + 1; 594 } 595 596 if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) { 597 return tlb_ea - pmp_sa + 1; 598 } 599 600 if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) { 601 return pmp_ea - tlb_sa + 1; 602 } 603 604 return 0; 605 } 606 607 /* 608 * Check is there a PMP entry which range covers this page. If so, 609 * try to find the minimum granularity for the TLB size. 610 */ 611 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa, 612 target_ulong *tlb_size) 613 { 614 int i; 615 target_ulong val; 616 target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1); 617 618 for (i = 0; i < MAX_RISCV_PMPS; i++) { 619 val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea); 620 if (val) { 621 if (*tlb_size == 0 || *tlb_size > val) { 622 *tlb_size = val; 623 } 624 } 625 } 626 627 if (*tlb_size != 0) { 628 return true; 629 } 630 631 return false; 632 } 633 634 /* 635 * Convert PMP privilege to TLB page privilege. 636 */ 637 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 638 { 639 int prot = 0; 640 641 if (pmp_priv & PMP_READ) { 642 prot |= PAGE_READ; 643 } 644 if (pmp_priv & PMP_WRITE) { 645 prot |= PAGE_WRITE; 646 } 647 if (pmp_priv & PMP_EXEC) { 648 prot |= PAGE_EXEC; 649 } 650 651 return prot; 652 } 653