1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 133 { 134 /* 135 aaaa...aaa0 8-byte NAPOT range 136 aaaa...aa01 16-byte NAPOT range 137 aaaa...a011 32-byte NAPOT range 138 ... 139 aa01...1111 2^XLEN-byte NAPOT range 140 a011...1111 2^(XLEN+1)-byte NAPOT range 141 0111...1111 2^(XLEN+2)-byte NAPOT range 142 1111...1111 Reserved 143 */ 144 a = (a << 2) | 0x3; 145 *sa = a & (a + 1); 146 *ea = a | (a + 1); 147 } 148 149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 150 { 151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 153 target_ulong prev_addr = 0u; 154 target_ulong sa = 0u; 155 target_ulong ea = 0u; 156 157 if (pmp_index >= 1u) { 158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 159 } 160 161 switch (pmp_get_a_field(this_cfg)) { 162 case PMP_AMATCH_OFF: 163 sa = 0u; 164 ea = -1; 165 break; 166 167 case PMP_AMATCH_TOR: 168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 169 ea = (this_addr << 2) - 1u; 170 if (sa > ea) { 171 sa = ea = 0u; 172 } 173 break; 174 175 case PMP_AMATCH_NA4: 176 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 177 ea = (sa + 4u) - 1u; 178 break; 179 180 case PMP_AMATCH_NAPOT: 181 pmp_decode_napot(this_addr, &sa, &ea); 182 break; 183 184 default: 185 sa = 0u; 186 ea = 0u; 187 break; 188 } 189 190 env->pmp_state.addr[pmp_index].sa = sa; 191 env->pmp_state.addr[pmp_index].ea = ea; 192 } 193 194 void pmp_update_rule_nums(CPURISCVState *env) 195 { 196 int i; 197 198 env->pmp_state.num_rules = 0; 199 for (i = 0; i < MAX_RISCV_PMPS; i++) { 200 const uint8_t a_field = 201 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 202 if (PMP_AMATCH_OFF != a_field) { 203 env->pmp_state.num_rules++; 204 } 205 } 206 } 207 208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 209 * end address values. 210 * This function is called relatively infrequently whereas the check that 211 * an address is within a pmp rule is called often, so optimise that one 212 */ 213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 214 { 215 pmp_update_rule_addr(env, pmp_index); 216 pmp_update_rule_nums(env); 217 } 218 219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 220 { 221 int result = 0; 222 223 if ((addr >= env->pmp_state.addr[pmp_index].sa) 224 && (addr <= env->pmp_state.addr[pmp_index].ea)) { 225 result = 1; 226 } else { 227 result = 0; 228 } 229 230 return result; 231 } 232 233 /* 234 * Check if the address has required RWX privs when no PMP entry is matched. 235 */ 236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 237 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 238 target_ulong mode) 239 { 240 bool ret; 241 242 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 243 if (MSECCFG_MMWP_ISSET(env)) { 244 /* 245 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 246 * so we default to deny all, even for M-mode. 247 */ 248 *allowed_privs = 0; 249 return false; 250 } else if (MSECCFG_MML_ISSET(env)) { 251 /* 252 * The Machine Mode Lockdown (mseccfg.MML) bit is set 253 * so we can only execute code in M-mode with an applicable 254 * rule. Other modes are disabled. 255 */ 256 if (mode == PRV_M && !(privs & PMP_EXEC)) { 257 ret = true; 258 *allowed_privs = PMP_READ | PMP_WRITE; 259 } else { 260 ret = false; 261 *allowed_privs = 0; 262 } 263 264 return ret; 265 } 266 } 267 268 if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) { 269 /* 270 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 271 * or no PMP entry matches an M-Mode access, the access succeeds. 272 */ 273 ret = true; 274 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 275 } else { 276 /* 277 * Other modes are not allowed to succeed if they don't * match a rule, 278 * but there are rules. We've checked for no rule earlier in this 279 * function. 280 */ 281 ret = false; 282 *allowed_privs = 0; 283 } 284 285 return ret; 286 } 287 288 289 /* 290 * Public Interface 291 */ 292 293 /* 294 * Check if the address has required RWX privs to complete desired operation 295 */ 296 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 297 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 298 target_ulong mode) 299 { 300 int i = 0; 301 int ret = -1; 302 int pmp_size = 0; 303 target_ulong s = 0; 304 target_ulong e = 0; 305 306 /* Short cut if no rules */ 307 if (0 == pmp_get_num_rules(env)) { 308 return pmp_hart_has_privs_default(env, addr, size, privs, 309 allowed_privs, mode); 310 } 311 312 if (size == 0) { 313 if (riscv_feature(env, RISCV_FEATURE_MMU)) { 314 /* 315 * If size is unknown (0), assume that all bytes 316 * from addr to the end of the page will be accessed. 317 */ 318 pmp_size = -(addr | TARGET_PAGE_MASK); 319 } else { 320 pmp_size = sizeof(target_ulong); 321 } 322 } else { 323 pmp_size = size; 324 } 325 326 /* 1.10 draft priv spec states there is an implicit order 327 from low to high */ 328 for (i = 0; i < MAX_RISCV_PMPS; i++) { 329 s = pmp_is_in_range(env, i, addr); 330 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 331 332 /* partially inside */ 333 if ((s + e) == 1) { 334 qemu_log_mask(LOG_GUEST_ERROR, 335 "pmp violation - access is partially inside\n"); 336 ret = 0; 337 break; 338 } 339 340 /* fully inside */ 341 const uint8_t a_field = 342 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 343 344 /* 345 * Convert the PMP permissions to match the truth table in the 346 * ePMP spec. 347 */ 348 const uint8_t epmp_operation = 349 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 350 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 351 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 352 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 353 354 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 355 /* 356 * If the PMP entry is not off and the address is in range, 357 * do the priv check 358 */ 359 if (!MSECCFG_MML_ISSET(env)) { 360 /* 361 * If mseccfg.MML Bit is not set, do pmp priv check 362 * This will always apply to regular PMP. 363 */ 364 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 365 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 366 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 367 } 368 } else { 369 /* 370 * If mseccfg.MML Bit set, do the enhanced pmp priv check 371 */ 372 if (mode == PRV_M) { 373 switch (epmp_operation) { 374 case 0: 375 case 1: 376 case 4: 377 case 5: 378 case 6: 379 case 7: 380 case 8: 381 *allowed_privs = 0; 382 break; 383 case 2: 384 case 3: 385 case 14: 386 *allowed_privs = PMP_READ | PMP_WRITE; 387 break; 388 case 9: 389 case 10: 390 *allowed_privs = PMP_EXEC; 391 break; 392 case 11: 393 case 13: 394 *allowed_privs = PMP_READ | PMP_EXEC; 395 break; 396 case 12: 397 case 15: 398 *allowed_privs = PMP_READ; 399 break; 400 default: 401 g_assert_not_reached(); 402 } 403 } else { 404 switch (epmp_operation) { 405 case 0: 406 case 8: 407 case 9: 408 case 12: 409 case 13: 410 case 14: 411 *allowed_privs = 0; 412 break; 413 case 1: 414 case 10: 415 case 11: 416 *allowed_privs = PMP_EXEC; 417 break; 418 case 2: 419 case 4: 420 case 15: 421 *allowed_privs = PMP_READ; 422 break; 423 case 3: 424 case 6: 425 *allowed_privs = PMP_READ | PMP_WRITE; 426 break; 427 case 5: 428 *allowed_privs = PMP_READ | PMP_EXEC; 429 break; 430 case 7: 431 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 432 break; 433 default: 434 g_assert_not_reached(); 435 } 436 } 437 } 438 439 ret = ((privs & *allowed_privs) == privs); 440 break; 441 } 442 } 443 444 /* No rule matched */ 445 if (ret == -1) { 446 return pmp_hart_has_privs_default(env, addr, size, privs, 447 allowed_privs, mode); 448 } 449 450 return ret == 1 ? true : false; 451 } 452 453 /* 454 * Handle a write to a pmpcfg CSR 455 */ 456 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 457 target_ulong val) 458 { 459 int i; 460 uint8_t cfg_val; 461 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 462 463 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 464 465 for (i = 0; i < pmpcfg_nums; i++) { 466 cfg_val = (val >> 8 * i) & 0xff; 467 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 468 } 469 470 /* If PMP permission of any addr has been changed, flush TLB pages. */ 471 tlb_flush(env_cpu(env)); 472 } 473 474 475 /* 476 * Handle a read from a pmpcfg CSR 477 */ 478 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 479 { 480 int i; 481 target_ulong cfg_val = 0; 482 target_ulong val = 0; 483 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 484 485 for (i = 0; i < pmpcfg_nums; i++) { 486 val = pmp_read_cfg(env, (reg_index * 4) + i); 487 cfg_val |= (val << (i * 8)); 488 } 489 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 490 491 return cfg_val; 492 } 493 494 495 /* 496 * Handle a write to a pmpaddr CSR 497 */ 498 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 499 target_ulong val) 500 { 501 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 502 503 if (addr_index < MAX_RISCV_PMPS) { 504 /* 505 * In TOR mode, need to check the lock bit of the next pmp 506 * (if there is a next). 507 */ 508 if (addr_index + 1 < MAX_RISCV_PMPS) { 509 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 510 511 if (pmp_cfg & PMP_LOCK && 512 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 513 qemu_log_mask(LOG_GUEST_ERROR, 514 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 515 return; 516 } 517 } 518 519 if (!pmp_is_locked(env, addr_index)) { 520 env->pmp_state.pmp[addr_index].addr_reg = val; 521 pmp_update_rule(env, addr_index); 522 } else { 523 qemu_log_mask(LOG_GUEST_ERROR, 524 "ignoring pmpaddr write - locked\n"); 525 } 526 } else { 527 qemu_log_mask(LOG_GUEST_ERROR, 528 "ignoring pmpaddr write - out of bounds\n"); 529 } 530 } 531 532 533 /* 534 * Handle a read from a pmpaddr CSR 535 */ 536 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 537 { 538 target_ulong val = 0; 539 540 if (addr_index < MAX_RISCV_PMPS) { 541 val = env->pmp_state.pmp[addr_index].addr_reg; 542 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 543 } else { 544 qemu_log_mask(LOG_GUEST_ERROR, 545 "ignoring pmpaddr read - out of bounds\n"); 546 } 547 548 return val; 549 } 550 551 /* 552 * Handle a write to a mseccfg CSR 553 */ 554 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 555 { 556 int i; 557 558 trace_mseccfg_csr_write(env->mhartid, val); 559 560 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 561 if (!MSECCFG_RLB_ISSET(env)) { 562 for (i = 0; i < MAX_RISCV_PMPS; i++) { 563 if (pmp_is_locked(env, i)) { 564 val &= ~MSECCFG_RLB; 565 break; 566 } 567 } 568 } 569 570 /* Sticky bits */ 571 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 572 573 env->mseccfg = val; 574 } 575 576 /* 577 * Handle a read from a mseccfg CSR 578 */ 579 target_ulong mseccfg_csr_read(CPURISCVState *env) 580 { 581 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 582 return env->mseccfg; 583 } 584 585 /* 586 * Calculate the TLB size if the start address or the end address of 587 * PMP entry is presented in the TLB page. 588 */ 589 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 590 target_ulong tlb_sa, target_ulong tlb_ea) 591 { 592 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 593 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 594 595 if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) { 596 return pmp_ea - pmp_sa + 1; 597 } 598 599 if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) { 600 return tlb_ea - pmp_sa + 1; 601 } 602 603 if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) { 604 return pmp_ea - tlb_sa + 1; 605 } 606 607 return 0; 608 } 609 610 /* 611 * Check is there a PMP entry which range covers this page. If so, 612 * try to find the minimum granularity for the TLB size. 613 */ 614 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa, 615 target_ulong *tlb_size) 616 { 617 int i; 618 target_ulong val; 619 target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1); 620 621 for (i = 0; i < MAX_RISCV_PMPS; i++) { 622 val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea); 623 if (val) { 624 if (*tlb_size == 0 || *tlb_size > val) { 625 *tlb_size = val; 626 } 627 } 628 } 629 630 if (*tlb_size != 0) { 631 /* 632 * At this point we have a tlb_size that is the smallest possible size 633 * That fits within a TARGET_PAGE_SIZE and the PMP region. 634 * 635 * If the size is less then TARGET_PAGE_SIZE we drop the size to 1. 636 * This means the result isn't cached in the TLB and is only used for 637 * a single translation. 638 */ 639 if (*tlb_size < TARGET_PAGE_SIZE) { 640 *tlb_size = 1; 641 } 642 643 return true; 644 } 645 646 return false; 647 } 648 649 /* 650 * Convert PMP privilege to TLB page privilege. 651 */ 652 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 653 { 654 int prot = 0; 655 656 if (pmp_priv & PMP_READ) { 657 prot |= PAGE_READ; 658 } 659 if (pmp_priv & PMP_WRITE) { 660 prot |= PAGE_WRITE; 661 } 662 if (pmp_priv & PMP_EXEC) { 663 prot |= PAGE_EXEC; 664 } 665 666 return prot; 667 } 668