1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_cpu_cfg(env)->epmp) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 133 { 134 /* 135 aaaa...aaa0 8-byte NAPOT range 136 aaaa...aa01 16-byte NAPOT range 137 aaaa...a011 32-byte NAPOT range 138 ... 139 aa01...1111 2^XLEN-byte NAPOT range 140 a011...1111 2^(XLEN+1)-byte NAPOT range 141 0111...1111 2^(XLEN+2)-byte NAPOT range 142 1111...1111 Reserved 143 */ 144 a = (a << 2) | 0x3; 145 *sa = a & (a + 1); 146 *ea = a | (a + 1); 147 } 148 149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 150 { 151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 153 target_ulong prev_addr = 0u; 154 target_ulong sa = 0u; 155 target_ulong ea = 0u; 156 157 if (pmp_index >= 1u) { 158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 159 } 160 161 switch (pmp_get_a_field(this_cfg)) { 162 case PMP_AMATCH_OFF: 163 sa = 0u; 164 ea = -1; 165 break; 166 167 case PMP_AMATCH_TOR: 168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 169 ea = (this_addr << 2) - 1u; 170 if (sa > ea) { 171 sa = ea = 0u; 172 } 173 break; 174 175 case PMP_AMATCH_NA4: 176 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 177 ea = (sa + 4u) - 1u; 178 break; 179 180 case PMP_AMATCH_NAPOT: 181 pmp_decode_napot(this_addr, &sa, &ea); 182 break; 183 184 default: 185 sa = 0u; 186 ea = 0u; 187 break; 188 } 189 190 env->pmp_state.addr[pmp_index].sa = sa; 191 env->pmp_state.addr[pmp_index].ea = ea; 192 } 193 194 void pmp_update_rule_nums(CPURISCVState *env) 195 { 196 int i; 197 198 env->pmp_state.num_rules = 0; 199 for (i = 0; i < MAX_RISCV_PMPS; i++) { 200 const uint8_t a_field = 201 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 202 if (PMP_AMATCH_OFF != a_field) { 203 env->pmp_state.num_rules++; 204 } 205 } 206 } 207 208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 209 * end address values. 210 * This function is called relatively infrequently whereas the check that 211 * an address is within a pmp rule is called often, so optimise that one 212 */ 213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 214 { 215 pmp_update_rule_addr(env, pmp_index); 216 pmp_update_rule_nums(env); 217 } 218 219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 220 { 221 int result = 0; 222 223 if ((addr >= env->pmp_state.addr[pmp_index].sa) && 224 (addr <= env->pmp_state.addr[pmp_index].ea)) { 225 result = 1; 226 } else { 227 result = 0; 228 } 229 230 return result; 231 } 232 233 /* 234 * Check if the address has required RWX privs when no PMP entry is matched. 235 */ 236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 237 target_ulong size, pmp_priv_t privs, 238 pmp_priv_t *allowed_privs, 239 target_ulong mode) 240 { 241 bool ret; 242 243 if (riscv_cpu_cfg(env)->epmp) { 244 if (MSECCFG_MMWP_ISSET(env)) { 245 /* 246 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 247 * so we default to deny all, even for M-mode. 248 */ 249 *allowed_privs = 0; 250 return false; 251 } else if (MSECCFG_MML_ISSET(env)) { 252 /* 253 * The Machine Mode Lockdown (mseccfg.MML) bit is set 254 * so we can only execute code in M-mode with an applicable 255 * rule. Other modes are disabled. 256 */ 257 if (mode == PRV_M && !(privs & PMP_EXEC)) { 258 ret = true; 259 *allowed_privs = PMP_READ | PMP_WRITE; 260 } else { 261 ret = false; 262 *allowed_privs = 0; 263 } 264 265 return ret; 266 } 267 } 268 269 if (!riscv_cpu_cfg(env)->pmp || (mode == PRV_M)) { 270 /* 271 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 272 * or no PMP entry matches an M-Mode access, the access succeeds. 273 */ 274 ret = true; 275 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 276 } else { 277 /* 278 * Other modes are not allowed to succeed if they don't * match a rule, 279 * but there are rules. We've checked for no rule earlier in this 280 * function. 281 */ 282 ret = false; 283 *allowed_privs = 0; 284 } 285 286 return ret; 287 } 288 289 290 /* 291 * Public Interface 292 */ 293 294 /* 295 * Check if the address has required RWX privs to complete desired operation 296 * Return PMP rule index if a pmp rule match 297 * Return MAX_RISCV_PMPS if default match 298 * Return negtive value if no match 299 */ 300 int pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 301 target_ulong size, pmp_priv_t privs, 302 pmp_priv_t *allowed_privs, target_ulong mode) 303 { 304 int i = 0; 305 int ret = -1; 306 int pmp_size = 0; 307 target_ulong s = 0; 308 target_ulong e = 0; 309 310 /* Short cut if no rules */ 311 if (0 == pmp_get_num_rules(env)) { 312 if (pmp_hart_has_privs_default(env, addr, size, privs, 313 allowed_privs, mode)) { 314 ret = MAX_RISCV_PMPS; 315 } 316 } 317 318 if (size == 0) { 319 if (riscv_cpu_cfg(env)->mmu) { 320 /* 321 * If size is unknown (0), assume that all bytes 322 * from addr to the end of the page will be accessed. 323 */ 324 pmp_size = -(addr | TARGET_PAGE_MASK); 325 } else { 326 pmp_size = sizeof(target_ulong); 327 } 328 } else { 329 pmp_size = size; 330 } 331 332 /* 1.10 draft priv spec states there is an implicit order 333 from low to high */ 334 for (i = 0; i < MAX_RISCV_PMPS; i++) { 335 s = pmp_is_in_range(env, i, addr); 336 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 337 338 /* partially inside */ 339 if ((s + e) == 1) { 340 qemu_log_mask(LOG_GUEST_ERROR, 341 "pmp violation - access is partially inside\n"); 342 ret = -1; 343 break; 344 } 345 346 /* fully inside */ 347 const uint8_t a_field = 348 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 349 350 /* 351 * Convert the PMP permissions to match the truth table in the 352 * ePMP spec. 353 */ 354 const uint8_t epmp_operation = 355 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 356 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 357 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 358 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 359 360 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 361 /* 362 * If the PMP entry is not off and the address is in range, 363 * do the priv check 364 */ 365 if (!MSECCFG_MML_ISSET(env)) { 366 /* 367 * If mseccfg.MML Bit is not set, do pmp priv check 368 * This will always apply to regular PMP. 369 */ 370 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 371 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 372 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 373 } 374 } else { 375 /* 376 * If mseccfg.MML Bit set, do the enhanced pmp priv check 377 */ 378 if (mode == PRV_M) { 379 switch (epmp_operation) { 380 case 0: 381 case 1: 382 case 4: 383 case 5: 384 case 6: 385 case 7: 386 case 8: 387 *allowed_privs = 0; 388 break; 389 case 2: 390 case 3: 391 case 14: 392 *allowed_privs = PMP_READ | PMP_WRITE; 393 break; 394 case 9: 395 case 10: 396 *allowed_privs = PMP_EXEC; 397 break; 398 case 11: 399 case 13: 400 *allowed_privs = PMP_READ | PMP_EXEC; 401 break; 402 case 12: 403 case 15: 404 *allowed_privs = PMP_READ; 405 break; 406 default: 407 g_assert_not_reached(); 408 } 409 } else { 410 switch (epmp_operation) { 411 case 0: 412 case 8: 413 case 9: 414 case 12: 415 case 13: 416 case 14: 417 *allowed_privs = 0; 418 break; 419 case 1: 420 case 10: 421 case 11: 422 *allowed_privs = PMP_EXEC; 423 break; 424 case 2: 425 case 4: 426 case 15: 427 *allowed_privs = PMP_READ; 428 break; 429 case 3: 430 case 6: 431 *allowed_privs = PMP_READ | PMP_WRITE; 432 break; 433 case 5: 434 *allowed_privs = PMP_READ | PMP_EXEC; 435 break; 436 case 7: 437 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 438 break; 439 default: 440 g_assert_not_reached(); 441 } 442 } 443 } 444 445 /* 446 * If matching address range was found, the protection bits 447 * defined with PMP must be used. We shouldn't fallback on 448 * finding default privileges. 449 */ 450 ret = i; 451 break; 452 } 453 } 454 455 /* No rule matched */ 456 if (ret == -1) { 457 if (pmp_hart_has_privs_default(env, addr, size, privs, 458 allowed_privs, mode)) { 459 ret = MAX_RISCV_PMPS; 460 } 461 } 462 463 return ret; 464 } 465 466 /* 467 * Handle a write to a pmpcfg CSR 468 */ 469 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 470 target_ulong val) 471 { 472 int i; 473 uint8_t cfg_val; 474 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 475 476 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 477 478 for (i = 0; i < pmpcfg_nums; i++) { 479 cfg_val = (val >> 8 * i) & 0xff; 480 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 481 } 482 483 /* If PMP permission of any addr has been changed, flush TLB pages. */ 484 tlb_flush(env_cpu(env)); 485 } 486 487 488 /* 489 * Handle a read from a pmpcfg CSR 490 */ 491 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 492 { 493 int i; 494 target_ulong cfg_val = 0; 495 target_ulong val = 0; 496 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 497 498 for (i = 0; i < pmpcfg_nums; i++) { 499 val = pmp_read_cfg(env, (reg_index * 4) + i); 500 cfg_val |= (val << (i * 8)); 501 } 502 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 503 504 return cfg_val; 505 } 506 507 508 /* 509 * Handle a write to a pmpaddr CSR 510 */ 511 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 512 target_ulong val) 513 { 514 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 515 516 if (addr_index < MAX_RISCV_PMPS) { 517 /* 518 * In TOR mode, need to check the lock bit of the next pmp 519 * (if there is a next). 520 */ 521 if (addr_index + 1 < MAX_RISCV_PMPS) { 522 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 523 524 if (pmp_cfg & PMP_LOCK && 525 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 526 qemu_log_mask(LOG_GUEST_ERROR, 527 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 528 return; 529 } 530 } 531 532 if (!pmp_is_locked(env, addr_index)) { 533 env->pmp_state.pmp[addr_index].addr_reg = val; 534 pmp_update_rule(env, addr_index); 535 } else { 536 qemu_log_mask(LOG_GUEST_ERROR, 537 "ignoring pmpaddr write - locked\n"); 538 } 539 } else { 540 qemu_log_mask(LOG_GUEST_ERROR, 541 "ignoring pmpaddr write - out of bounds\n"); 542 } 543 } 544 545 546 /* 547 * Handle a read from a pmpaddr CSR 548 */ 549 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 550 { 551 target_ulong val = 0; 552 553 if (addr_index < MAX_RISCV_PMPS) { 554 val = env->pmp_state.pmp[addr_index].addr_reg; 555 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 556 } else { 557 qemu_log_mask(LOG_GUEST_ERROR, 558 "ignoring pmpaddr read - out of bounds\n"); 559 } 560 561 return val; 562 } 563 564 /* 565 * Handle a write to a mseccfg CSR 566 */ 567 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 568 { 569 int i; 570 571 trace_mseccfg_csr_write(env->mhartid, val); 572 573 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 574 if (!MSECCFG_RLB_ISSET(env)) { 575 for (i = 0; i < MAX_RISCV_PMPS; i++) { 576 if (pmp_is_locked(env, i)) { 577 val &= ~MSECCFG_RLB; 578 break; 579 } 580 } 581 } 582 583 /* Sticky bits */ 584 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 585 586 env->mseccfg = val; 587 } 588 589 /* 590 * Handle a read from a mseccfg CSR 591 */ 592 target_ulong mseccfg_csr_read(CPURISCVState *env) 593 { 594 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 595 return env->mseccfg; 596 } 597 598 /* 599 * Calculate the TLB size if the start address or the end address of 600 * PMP entry is presented in the TLB page. 601 */ 602 target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 603 target_ulong tlb_sa, target_ulong tlb_ea) 604 { 605 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 606 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 607 608 if (pmp_sa <= tlb_sa && pmp_ea >= tlb_ea) { 609 return TARGET_PAGE_SIZE; 610 } else { 611 /* 612 * At this point we have a tlb_size that is the smallest possible size 613 * That fits within a TARGET_PAGE_SIZE and the PMP region. 614 * 615 * If the size is less then TARGET_PAGE_SIZE we drop the size to 1. 616 * This means the result isn't cached in the TLB and is only used for 617 * a single translation. 618 */ 619 return 1; 620 } 621 } 622 623 /* 624 * Convert PMP privilege to TLB page privilege. 625 */ 626 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 627 { 628 int prot = 0; 629 630 if (pmp_priv & PMP_READ) { 631 prot |= PAGE_READ; 632 } 633 if (pmp_priv & PMP_WRITE) { 634 prot |= PAGE_WRITE; 635 } 636 if (pmp_priv & PMP_EXEC) { 637 prot |= PAGE_EXEC; 638 } 639 640 return prot; 641 } 642