1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_cpu_cfg(env)->epmp) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, 133 target_ulong *ea) 134 { 135 /* 136 * aaaa...aaa0 8-byte NAPOT range 137 * aaaa...aa01 16-byte NAPOT range 138 * aaaa...a011 32-byte NAPOT range 139 * ... 140 * aa01...1111 2^XLEN-byte NAPOT range 141 * a011...1111 2^(XLEN+1)-byte NAPOT range 142 * 0111...1111 2^(XLEN+2)-byte NAPOT range 143 * 1111...1111 Reserved 144 */ 145 a = (a << 2) | 0x3; 146 *sa = a & (a + 1); 147 *ea = a | (a + 1); 148 } 149 150 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 151 { 152 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 153 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 154 target_ulong prev_addr = 0u; 155 target_ulong sa = 0u; 156 target_ulong ea = 0u; 157 158 if (pmp_index >= 1u) { 159 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 160 } 161 162 switch (pmp_get_a_field(this_cfg)) { 163 case PMP_AMATCH_OFF: 164 sa = 0u; 165 ea = -1; 166 break; 167 168 case PMP_AMATCH_TOR: 169 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 170 ea = (this_addr << 2) - 1u; 171 if (sa > ea) { 172 sa = ea = 0u; 173 } 174 break; 175 176 case PMP_AMATCH_NA4: 177 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 178 ea = (sa + 4u) - 1u; 179 break; 180 181 case PMP_AMATCH_NAPOT: 182 pmp_decode_napot(this_addr, &sa, &ea); 183 break; 184 185 default: 186 sa = 0u; 187 ea = 0u; 188 break; 189 } 190 191 env->pmp_state.addr[pmp_index].sa = sa; 192 env->pmp_state.addr[pmp_index].ea = ea; 193 } 194 195 void pmp_update_rule_nums(CPURISCVState *env) 196 { 197 int i; 198 199 env->pmp_state.num_rules = 0; 200 for (i = 0; i < MAX_RISCV_PMPS; i++) { 201 const uint8_t a_field = 202 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 203 if (PMP_AMATCH_OFF != a_field) { 204 env->pmp_state.num_rules++; 205 } 206 } 207 } 208 209 /* 210 * Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 211 * end address values. 212 * This function is called relatively infrequently whereas the check that 213 * an address is within a pmp rule is called often, so optimise that one 214 */ 215 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 216 { 217 pmp_update_rule_addr(env, pmp_index); 218 pmp_update_rule_nums(env); 219 } 220 221 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, 222 target_ulong addr) 223 { 224 int result = 0; 225 226 if ((addr >= env->pmp_state.addr[pmp_index].sa) && 227 (addr <= env->pmp_state.addr[pmp_index].ea)) { 228 result = 1; 229 } else { 230 result = 0; 231 } 232 233 return result; 234 } 235 236 /* 237 * Check if the address has required RWX privs when no PMP entry is matched. 238 */ 239 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 240 target_ulong size, pmp_priv_t privs, 241 pmp_priv_t *allowed_privs, 242 target_ulong mode) 243 { 244 bool ret; 245 246 if (MSECCFG_MMWP_ISSET(env)) { 247 /* 248 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 249 * so we default to deny all, even for M-mode. 250 */ 251 *allowed_privs = 0; 252 return false; 253 } else if (MSECCFG_MML_ISSET(env)) { 254 /* 255 * The Machine Mode Lockdown (mseccfg.MML) bit is set 256 * so we can only execute code in M-mode with an applicable 257 * rule. Other modes are disabled. 258 */ 259 if (mode == PRV_M && !(privs & PMP_EXEC)) { 260 ret = true; 261 *allowed_privs = PMP_READ | PMP_WRITE; 262 } else { 263 ret = false; 264 *allowed_privs = 0; 265 } 266 267 return ret; 268 } 269 270 if (!riscv_cpu_cfg(env)->pmp || (mode == PRV_M)) { 271 /* 272 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 273 * or no PMP entry matches an M-Mode access, the access succeeds. 274 */ 275 ret = true; 276 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 277 } else { 278 /* 279 * Other modes are not allowed to succeed if they don't * match a rule, 280 * but there are rules. We've checked for no rule earlier in this 281 * function. 282 */ 283 ret = false; 284 *allowed_privs = 0; 285 } 286 287 return ret; 288 } 289 290 291 /* 292 * Public Interface 293 */ 294 295 /* 296 * Check if the address has required RWX privs to complete desired operation 297 * Return true if a pmp rule match or default match 298 * Return false if no match 299 */ 300 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 301 target_ulong size, pmp_priv_t privs, 302 pmp_priv_t *allowed_privs, target_ulong mode) 303 { 304 int i = 0; 305 bool ret = false; 306 int pmp_size = 0; 307 target_ulong s = 0; 308 target_ulong e = 0; 309 310 /* Short cut if no rules */ 311 if (0 == pmp_get_num_rules(env)) { 312 return pmp_hart_has_privs_default(env, addr, size, privs, 313 allowed_privs, mode); 314 } 315 316 if (size == 0) { 317 if (riscv_cpu_cfg(env)->mmu) { 318 /* 319 * If size is unknown (0), assume that all bytes 320 * from addr to the end of the page will be accessed. 321 */ 322 pmp_size = -(addr | TARGET_PAGE_MASK); 323 } else { 324 pmp_size = sizeof(target_ulong); 325 } 326 } else { 327 pmp_size = size; 328 } 329 330 /* 331 * 1.10 draft priv spec states there is an implicit order 332 * from low to high 333 */ 334 for (i = 0; i < MAX_RISCV_PMPS; i++) { 335 s = pmp_is_in_range(env, i, addr); 336 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 337 338 /* partially inside */ 339 if ((s + e) == 1) { 340 qemu_log_mask(LOG_GUEST_ERROR, 341 "pmp violation - access is partially inside\n"); 342 ret = false; 343 break; 344 } 345 346 /* fully inside */ 347 const uint8_t a_field = 348 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 349 350 /* 351 * Convert the PMP permissions to match the truth table in the 352 * ePMP spec. 353 */ 354 const uint8_t epmp_operation = 355 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 356 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 357 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 358 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 359 360 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 361 /* 362 * If the PMP entry is not off and the address is in range, 363 * do the priv check 364 */ 365 if (!MSECCFG_MML_ISSET(env)) { 366 /* 367 * If mseccfg.MML Bit is not set, do pmp priv check 368 * This will always apply to regular PMP. 369 */ 370 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 371 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 372 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 373 } 374 } else { 375 /* 376 * If mseccfg.MML Bit set, do the enhanced pmp priv check 377 */ 378 if (mode == PRV_M) { 379 switch (epmp_operation) { 380 case 0: 381 case 1: 382 case 4: 383 case 5: 384 case 6: 385 case 7: 386 case 8: 387 *allowed_privs = 0; 388 break; 389 case 2: 390 case 3: 391 case 14: 392 *allowed_privs = PMP_READ | PMP_WRITE; 393 break; 394 case 9: 395 case 10: 396 *allowed_privs = PMP_EXEC; 397 break; 398 case 11: 399 case 13: 400 *allowed_privs = PMP_READ | PMP_EXEC; 401 break; 402 case 12: 403 case 15: 404 *allowed_privs = PMP_READ; 405 break; 406 default: 407 g_assert_not_reached(); 408 } 409 } else { 410 switch (epmp_operation) { 411 case 0: 412 case 8: 413 case 9: 414 case 12: 415 case 13: 416 case 14: 417 *allowed_privs = 0; 418 break; 419 case 1: 420 case 10: 421 case 11: 422 *allowed_privs = PMP_EXEC; 423 break; 424 case 2: 425 case 4: 426 case 15: 427 *allowed_privs = PMP_READ; 428 break; 429 case 3: 430 case 6: 431 *allowed_privs = PMP_READ | PMP_WRITE; 432 break; 433 case 5: 434 *allowed_privs = PMP_READ | PMP_EXEC; 435 break; 436 case 7: 437 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 438 break; 439 default: 440 g_assert_not_reached(); 441 } 442 } 443 } 444 445 /* 446 * If matching address range was found, the protection bits 447 * defined with PMP must be used. We shouldn't fallback on 448 * finding default privileges. 449 */ 450 ret = true; 451 break; 452 } 453 } 454 455 /* No rule matched */ 456 if (!ret) { 457 ret = pmp_hart_has_privs_default(env, addr, size, privs, 458 allowed_privs, mode); 459 } 460 461 return ret; 462 } 463 464 /* 465 * Handle a write to a pmpcfg CSR 466 */ 467 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 468 target_ulong val) 469 { 470 int i; 471 uint8_t cfg_val; 472 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 473 474 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 475 476 for (i = 0; i < pmpcfg_nums; i++) { 477 cfg_val = (val >> 8 * i) & 0xff; 478 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 479 } 480 481 /* If PMP permission of any addr has been changed, flush TLB pages. */ 482 tlb_flush(env_cpu(env)); 483 } 484 485 486 /* 487 * Handle a read from a pmpcfg CSR 488 */ 489 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 490 { 491 int i; 492 target_ulong cfg_val = 0; 493 target_ulong val = 0; 494 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 495 496 for (i = 0; i < pmpcfg_nums; i++) { 497 val = pmp_read_cfg(env, (reg_index * 4) + i); 498 cfg_val |= (val << (i * 8)); 499 } 500 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 501 502 return cfg_val; 503 } 504 505 506 /* 507 * Handle a write to a pmpaddr CSR 508 */ 509 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 510 target_ulong val) 511 { 512 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 513 514 if (addr_index < MAX_RISCV_PMPS) { 515 /* 516 * In TOR mode, need to check the lock bit of the next pmp 517 * (if there is a next). 518 */ 519 if (addr_index + 1 < MAX_RISCV_PMPS) { 520 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 521 522 if (pmp_cfg & PMP_LOCK && 523 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 524 qemu_log_mask(LOG_GUEST_ERROR, 525 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 526 return; 527 } 528 } 529 530 if (!pmp_is_locked(env, addr_index)) { 531 env->pmp_state.pmp[addr_index].addr_reg = val; 532 pmp_update_rule(env, addr_index); 533 } else { 534 qemu_log_mask(LOG_GUEST_ERROR, 535 "ignoring pmpaddr write - locked\n"); 536 } 537 } else { 538 qemu_log_mask(LOG_GUEST_ERROR, 539 "ignoring pmpaddr write - out of bounds\n"); 540 } 541 } 542 543 544 /* 545 * Handle a read from a pmpaddr CSR 546 */ 547 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 548 { 549 target_ulong val = 0; 550 551 if (addr_index < MAX_RISCV_PMPS) { 552 val = env->pmp_state.pmp[addr_index].addr_reg; 553 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 554 } else { 555 qemu_log_mask(LOG_GUEST_ERROR, 556 "ignoring pmpaddr read - out of bounds\n"); 557 } 558 559 return val; 560 } 561 562 /* 563 * Handle a write to a mseccfg CSR 564 */ 565 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 566 { 567 int i; 568 569 trace_mseccfg_csr_write(env->mhartid, val); 570 571 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 572 if (!MSECCFG_RLB_ISSET(env)) { 573 for (i = 0; i < MAX_RISCV_PMPS; i++) { 574 if (pmp_is_locked(env, i)) { 575 val &= ~MSECCFG_RLB; 576 break; 577 } 578 } 579 } 580 581 if (riscv_cpu_cfg(env)->epmp) { 582 /* Sticky bits */ 583 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 584 } else { 585 val &= ~(MSECCFG_MMWP | MSECCFG_MML | MSECCFG_RLB); 586 } 587 588 env->mseccfg = val; 589 } 590 591 /* 592 * Handle a read from a mseccfg CSR 593 */ 594 target_ulong mseccfg_csr_read(CPURISCVState *env) 595 { 596 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 597 return env->mseccfg; 598 } 599 600 /* 601 * Calculate the TLB size. 602 * It's possible that PMP regions only cover partial of the TLB page, and 603 * this may split the page into regions with different permissions. 604 * For example if PMP0 is (0x80000008~0x8000000F, R) and PMP1 is (0x80000000 605 * ~0x80000FFF, RWX), then region 0x80000008~0x8000000F has R permission, and 606 * the other regions in this page have RWX permissions. 607 * A write access to 0x80000000 will match PMP1. However we cannot cache the 608 * translation result in the TLB since this will make the write access to 609 * 0x80000008 bypass the check of PMP0. 610 * To avoid this we return a size of 1 (which means no caching) if the PMP 611 * region only covers partial of the TLB page. 612 */ 613 target_ulong pmp_get_tlb_size(CPURISCVState *env, target_ulong addr) 614 { 615 target_ulong pmp_sa; 616 target_ulong pmp_ea; 617 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1); 618 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1; 619 int i; 620 621 /* 622 * If PMP is not supported or there are no PMP rules, the TLB page will not 623 * be split into regions with different permissions by PMP so we set the 624 * size to TARGET_PAGE_SIZE. 625 */ 626 if (!riscv_cpu_cfg(env)->pmp || !pmp_get_num_rules(env)) { 627 return TARGET_PAGE_SIZE; 628 } 629 630 for (i = 0; i < MAX_RISCV_PMPS; i++) { 631 if (pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg) == PMP_AMATCH_OFF) { 632 continue; 633 } 634 635 pmp_sa = env->pmp_state.addr[i].sa; 636 pmp_ea = env->pmp_state.addr[i].ea; 637 638 /* 639 * Only the first PMP entry that covers (whole or partial of) the TLB 640 * page really matters: 641 * If it covers the whole TLB page, set the size to TARGET_PAGE_SIZE, 642 * since the following PMP entries have lower priority and will not 643 * affect the permissions of the page. 644 * If it only covers partial of the TLB page, set the size to 1 since 645 * the allowed permissions of the region may be different from other 646 * region of the page. 647 */ 648 if (pmp_sa <= tlb_sa && pmp_ea >= tlb_ea) { 649 return TARGET_PAGE_SIZE; 650 } else if ((pmp_sa >= tlb_sa && pmp_sa <= tlb_ea) || 651 (pmp_ea >= tlb_sa && pmp_ea <= tlb_ea)) { 652 return 1; 653 } 654 } 655 656 /* 657 * If no PMP entry matches the TLB page, the TLB page will also not be 658 * split into regions with different permissions by PMP so we set the size 659 * to TARGET_PAGE_SIZE. 660 */ 661 return TARGET_PAGE_SIZE; 662 } 663 664 /* 665 * Convert PMP privilege to TLB page privilege. 666 */ 667 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 668 { 669 int prot = 0; 670 671 if (pmp_priv & PMP_READ) { 672 prot |= PAGE_READ; 673 } 674 if (pmp_priv & PMP_WRITE) { 675 prot |= PAGE_WRITE; 676 } 677 if (pmp_priv & PMP_EXEC) { 678 prot |= PAGE_EXEC; 679 } 680 681 return prot; 682 } 683