xref: /openbmc/qemu/target/riscv/pmp.c (revision b297129a)
1 /*
2  * QEMU RISC-V PMP (Physical Memory Protection)
3  *
4  * Author: Daire McNamara, daire.mcnamara@emdalo.com
5  *         Ivan Griffin, ivan.griffin@emdalo.com
6  *
7  * This provides a RISC-V Physical Memory Protection implementation
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2 or later, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 /*
23  * PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #include "trace.h"
31 
32 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
33     uint8_t val);
34 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
35 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
36 
37 /*
38  * Accessor method to extract address matching type 'a field' from cfg reg
39  */
40 static inline uint8_t pmp_get_a_field(uint8_t cfg)
41 {
42     uint8_t a = cfg >> 3;
43     return a & 0x3;
44 }
45 
46 /*
47  * Check whether a PMP is locked or not.
48  */
49 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
50 {
51 
52     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
53         return 1;
54     }
55 
56     /* Top PMP has no 'next' to check */
57     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
58         return 0;
59     }
60 
61     /* In TOR mode, need to check the lock bit of the next pmp
62      * (if there is a next)
63      */
64     const uint8_t a_field =
65         pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg);
66     if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) &&
67          (PMP_AMATCH_TOR == a_field)) {
68         return 1;
69     }
70 
71     return 0;
72 }
73 
74 /*
75  * Count the number of active rules.
76  */
77 uint32_t pmp_get_num_rules(CPURISCVState *env)
78 {
79      return env->pmp_state.num_rules;
80 }
81 
82 /*
83  * Accessor to get the cfg reg for a specific PMP/HART
84  */
85 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
86 {
87     if (pmp_index < MAX_RISCV_PMPS) {
88         return env->pmp_state.pmp[pmp_index].cfg_reg;
89     }
90 
91     return 0;
92 }
93 
94 
95 /*
96  * Accessor to set the cfg reg for a specific PMP/HART
97  * Bounds checks and relevant lock bit.
98  */
99 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
100 {
101     if (pmp_index < MAX_RISCV_PMPS) {
102         if (!pmp_is_locked(env, pmp_index)) {
103             env->pmp_state.pmp[pmp_index].cfg_reg = val;
104             pmp_update_rule(env, pmp_index);
105         } else {
106             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
107         }
108     } else {
109         qemu_log_mask(LOG_GUEST_ERROR,
110                       "ignoring pmpcfg write - out of bounds\n");
111     }
112 }
113 
114 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
115 {
116     /*
117        aaaa...aaa0   8-byte NAPOT range
118        aaaa...aa01   16-byte NAPOT range
119        aaaa...a011   32-byte NAPOT range
120        ...
121        aa01...1111   2^XLEN-byte NAPOT range
122        a011...1111   2^(XLEN+1)-byte NAPOT range
123        0111...1111   2^(XLEN+2)-byte NAPOT range
124        1111...1111   Reserved
125     */
126     if (a == -1) {
127         *sa = 0u;
128         *ea = -1;
129         return;
130     } else {
131         target_ulong t1 = ctz64(~a);
132         target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
133         target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
134         *sa = base;
135         *ea = base + range;
136     }
137 }
138 
139 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
140 {
141     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
142     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
143     target_ulong prev_addr = 0u;
144     target_ulong sa = 0u;
145     target_ulong ea = 0u;
146 
147     if (pmp_index >= 1u) {
148         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
149     }
150 
151     switch (pmp_get_a_field(this_cfg)) {
152     case PMP_AMATCH_OFF:
153         sa = 0u;
154         ea = -1;
155         break;
156 
157     case PMP_AMATCH_TOR:
158         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
159         ea = (this_addr << 2) - 1u;
160         break;
161 
162     case PMP_AMATCH_NA4:
163         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
164         ea = (sa + 4u) - 1u;
165         break;
166 
167     case PMP_AMATCH_NAPOT:
168         pmp_decode_napot(this_addr, &sa, &ea);
169         break;
170 
171     default:
172         sa = 0u;
173         ea = 0u;
174         break;
175     }
176 
177     env->pmp_state.addr[pmp_index].sa = sa;
178     env->pmp_state.addr[pmp_index].ea = ea;
179 }
180 
181 void pmp_update_rule_nums(CPURISCVState *env)
182 {
183     int i;
184 
185     env->pmp_state.num_rules = 0;
186     for (i = 0; i < MAX_RISCV_PMPS; i++) {
187         const uint8_t a_field =
188             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
189         if (PMP_AMATCH_OFF != a_field) {
190             env->pmp_state.num_rules++;
191         }
192     }
193 }
194 
195 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
196  *   end address values.
197  *   This function is called relatively infrequently whereas the check that
198  *   an address is within a pmp rule is called often, so optimise that one
199  */
200 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
201 {
202     pmp_update_rule_addr(env, pmp_index);
203     pmp_update_rule_nums(env);
204 }
205 
206 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
207 {
208     int result = 0;
209 
210     if ((addr >= env->pmp_state.addr[pmp_index].sa)
211         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
212         result = 1;
213     } else {
214         result = 0;
215     }
216 
217     return result;
218 }
219 
220 /*
221  * Check if the address has required RWX privs when no PMP entry is matched.
222  */
223 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
224     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
225     target_ulong mode)
226 {
227     bool ret;
228 
229     if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
230         /*
231          * Privileged spec v1.10 states if HW doesn't implement any PMP entry
232          * or no PMP entry matches an M-Mode access, the access succeeds.
233          */
234         ret = true;
235         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
236     } else {
237         /*
238          * Other modes are not allowed to succeed if they don't * match a rule,
239          * but there are rules. We've checked for no rule earlier in this
240          * function.
241          */
242         ret = false;
243         *allowed_privs = 0;
244     }
245 
246     return ret;
247 }
248 
249 
250 /*
251  * Public Interface
252  */
253 
254 /*
255  * Check if the address has required RWX privs to complete desired operation
256  */
257 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
258     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
259     target_ulong mode)
260 {
261     int i = 0;
262     int ret = -1;
263     int pmp_size = 0;
264     target_ulong s = 0;
265     target_ulong e = 0;
266 
267     /* Short cut if no rules */
268     if (0 == pmp_get_num_rules(env)) {
269         return pmp_hart_has_privs_default(env, addr, size, privs,
270                                           allowed_privs, mode);
271     }
272 
273     if (size == 0) {
274         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
275             /*
276              * If size is unknown (0), assume that all bytes
277              * from addr to the end of the page will be accessed.
278              */
279             pmp_size = -(addr | TARGET_PAGE_MASK);
280         } else {
281             pmp_size = sizeof(target_ulong);
282         }
283     } else {
284         pmp_size = size;
285     }
286 
287     /* 1.10 draft priv spec states there is an implicit order
288          from low to high */
289     for (i = 0; i < MAX_RISCV_PMPS; i++) {
290         s = pmp_is_in_range(env, i, addr);
291         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
292 
293         /* partially inside */
294         if ((s + e) == 1) {
295             qemu_log_mask(LOG_GUEST_ERROR,
296                           "pmp violation - access is partially inside\n");
297             ret = 0;
298             break;
299         }
300 
301         /* fully inside */
302         const uint8_t a_field =
303             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
304 
305         /*
306          * If the PMP entry is not off and the address is in range, do the priv
307          * check
308          */
309         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
310             *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
311             if ((mode != PRV_M) || pmp_is_locked(env, i)) {
312                 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
313             }
314 
315             ret = ((privs & *allowed_privs) == privs);
316             break;
317         }
318     }
319 
320     /* No rule matched */
321     if (ret == -1) {
322         return pmp_hart_has_privs_default(env, addr, size, privs,
323                                           allowed_privs, mode);
324     }
325 
326     return ret == 1 ? true : false;
327 }
328 
329 /*
330  * Handle a write to a pmpcfg CSP
331  */
332 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
333     target_ulong val)
334 {
335     int i;
336     uint8_t cfg_val;
337 
338     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
339 
340     if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
341         qemu_log_mask(LOG_GUEST_ERROR,
342                       "ignoring pmpcfg write - incorrect address\n");
343         return;
344     }
345 
346     for (i = 0; i < sizeof(target_ulong); i++) {
347         cfg_val = (val >> 8 * i)  & 0xff;
348         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
349     }
350 }
351 
352 
353 /*
354  * Handle a read from a pmpcfg CSP
355  */
356 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
357 {
358     int i;
359     target_ulong cfg_val = 0;
360     target_ulong val = 0;
361 
362     for (i = 0; i < sizeof(target_ulong); i++) {
363         val = pmp_read_cfg(env, (reg_index * 4) + i);
364         cfg_val |= (val << (i * 8));
365     }
366     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
367 
368     return cfg_val;
369 }
370 
371 
372 /*
373  * Handle a write to a pmpaddr CSP
374  */
375 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
376     target_ulong val)
377 {
378     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
379     if (addr_index < MAX_RISCV_PMPS) {
380         if (!pmp_is_locked(env, addr_index)) {
381             env->pmp_state.pmp[addr_index].addr_reg = val;
382             pmp_update_rule(env, addr_index);
383         } else {
384             qemu_log_mask(LOG_GUEST_ERROR,
385                           "ignoring pmpaddr write - locked\n");
386         }
387     } else {
388         qemu_log_mask(LOG_GUEST_ERROR,
389                       "ignoring pmpaddr write - out of bounds\n");
390     }
391 }
392 
393 
394 /*
395  * Handle a read from a pmpaddr CSP
396  */
397 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
398 {
399     target_ulong val = 0;
400 
401     if (addr_index < MAX_RISCV_PMPS) {
402         val = env->pmp_state.pmp[addr_index].addr_reg;
403         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
404     } else {
405         qemu_log_mask(LOG_GUEST_ERROR,
406                       "ignoring pmpaddr read - out of bounds\n");
407     }
408 
409     return val;
410 }
411 
412 /*
413  * Calculate the TLB size if the start address or the end address of
414  * PMP entry is presented in thie TLB page.
415  */
416 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
417                                      target_ulong tlb_sa, target_ulong tlb_ea)
418 {
419     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
420     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
421 
422     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
423         return pmp_ea - pmp_sa + 1;
424     }
425 
426     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
427         return tlb_ea - pmp_sa + 1;
428     }
429 
430     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
431         return pmp_ea - tlb_sa + 1;
432     }
433 
434     return 0;
435 }
436 
437 /*
438  * Check is there a PMP entry which range covers this page. If so,
439  * try to find the minimum granularity for the TLB size.
440  */
441 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
442                          target_ulong *tlb_size)
443 {
444     int i;
445     target_ulong val;
446     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
447 
448     for (i = 0; i < MAX_RISCV_PMPS; i++) {
449         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
450         if (val) {
451             if (*tlb_size == 0 || *tlb_size > val) {
452                 *tlb_size = val;
453             }
454         }
455     }
456 
457     if (*tlb_size != 0) {
458         return true;
459     }
460 
461     return false;
462 }
463 
464 /*
465  * Convert PMP privilege to TLB page privilege.
466  */
467 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
468 {
469     int prot = 0;
470 
471     if (pmp_priv & PMP_READ) {
472         prot |= PAGE_READ;
473     }
474     if (pmp_priv & PMP_WRITE) {
475         prot |= PAGE_WRITE;
476     }
477     if (pmp_priv & PMP_EXEC) {
478         prot |= PAGE_EXEC;
479     }
480 
481     return prot;
482 }
483