1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 /* 23 * PMP (Physical Memory Protection) is as-of-yet unused and needs testing. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/log.h" 28 #include "qapi/error.h" 29 #include "cpu.h" 30 #include "trace.h" 31 #include "exec/exec-all.h" 32 33 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 34 uint8_t val); 35 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 36 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 37 38 /* 39 * Accessor method to extract address matching type 'a field' from cfg reg 40 */ 41 static inline uint8_t pmp_get_a_field(uint8_t cfg) 42 { 43 uint8_t a = cfg >> 3; 44 return a & 0x3; 45 } 46 47 /* 48 * Check whether a PMP is locked or not. 49 */ 50 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 51 { 52 53 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 54 return 1; 55 } 56 57 /* Top PMP has no 'next' to check */ 58 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 59 return 0; 60 } 61 62 return 0; 63 } 64 65 /* 66 * Count the number of active rules. 67 */ 68 uint32_t pmp_get_num_rules(CPURISCVState *env) 69 { 70 return env->pmp_state.num_rules; 71 } 72 73 /* 74 * Accessor to get the cfg reg for a specific PMP/HART 75 */ 76 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 77 { 78 if (pmp_index < MAX_RISCV_PMPS) { 79 return env->pmp_state.pmp[pmp_index].cfg_reg; 80 } 81 82 return 0; 83 } 84 85 86 /* 87 * Accessor to set the cfg reg for a specific PMP/HART 88 * Bounds checks and relevant lock bit. 89 */ 90 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 91 { 92 if (pmp_index < MAX_RISCV_PMPS) { 93 bool locked = true; 94 95 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 96 /* mseccfg.RLB is set */ 97 if (MSECCFG_RLB_ISSET(env)) { 98 locked = false; 99 } 100 101 /* mseccfg.MML is not set */ 102 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 103 locked = false; 104 } 105 106 /* mseccfg.MML is set */ 107 if (MSECCFG_MML_ISSET(env)) { 108 /* not adding execute bit */ 109 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 110 locked = false; 111 } 112 /* shared region and not adding X bit */ 113 if ((val & PMP_LOCK) != PMP_LOCK && 114 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 115 locked = false; 116 } 117 } 118 } else { 119 if (!pmp_is_locked(env, pmp_index)) { 120 locked = false; 121 } 122 } 123 124 if (locked) { 125 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 126 } else { 127 env->pmp_state.pmp[pmp_index].cfg_reg = val; 128 pmp_update_rule(env, pmp_index); 129 } 130 } else { 131 qemu_log_mask(LOG_GUEST_ERROR, 132 "ignoring pmpcfg write - out of bounds\n"); 133 } 134 } 135 136 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 137 { 138 /* 139 aaaa...aaa0 8-byte NAPOT range 140 aaaa...aa01 16-byte NAPOT range 141 aaaa...a011 32-byte NAPOT range 142 ... 143 aa01...1111 2^XLEN-byte NAPOT range 144 a011...1111 2^(XLEN+1)-byte NAPOT range 145 0111...1111 2^(XLEN+2)-byte NAPOT range 146 1111...1111 Reserved 147 */ 148 if (a == -1) { 149 *sa = 0u; 150 *ea = -1; 151 return; 152 } else { 153 target_ulong t1 = ctz64(~a); 154 target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2; 155 target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1; 156 *sa = base; 157 *ea = base + range; 158 } 159 } 160 161 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 162 { 163 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 164 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 165 target_ulong prev_addr = 0u; 166 target_ulong sa = 0u; 167 target_ulong ea = 0u; 168 169 if (pmp_index >= 1u) { 170 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 171 } 172 173 switch (pmp_get_a_field(this_cfg)) { 174 case PMP_AMATCH_OFF: 175 sa = 0u; 176 ea = -1; 177 break; 178 179 case PMP_AMATCH_TOR: 180 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 181 ea = (this_addr << 2) - 1u; 182 break; 183 184 case PMP_AMATCH_NA4: 185 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 186 ea = (sa + 4u) - 1u; 187 break; 188 189 case PMP_AMATCH_NAPOT: 190 pmp_decode_napot(this_addr, &sa, &ea); 191 break; 192 193 default: 194 sa = 0u; 195 ea = 0u; 196 break; 197 } 198 199 env->pmp_state.addr[pmp_index].sa = sa; 200 env->pmp_state.addr[pmp_index].ea = ea; 201 } 202 203 void pmp_update_rule_nums(CPURISCVState *env) 204 { 205 int i; 206 207 env->pmp_state.num_rules = 0; 208 for (i = 0; i < MAX_RISCV_PMPS; i++) { 209 const uint8_t a_field = 210 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 211 if (PMP_AMATCH_OFF != a_field) { 212 env->pmp_state.num_rules++; 213 } 214 } 215 } 216 217 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 218 * end address values. 219 * This function is called relatively infrequently whereas the check that 220 * an address is within a pmp rule is called often, so optimise that one 221 */ 222 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 223 { 224 pmp_update_rule_addr(env, pmp_index); 225 pmp_update_rule_nums(env); 226 } 227 228 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 229 { 230 int result = 0; 231 232 if ((addr >= env->pmp_state.addr[pmp_index].sa) 233 && (addr <= env->pmp_state.addr[pmp_index].ea)) { 234 result = 1; 235 } else { 236 result = 0; 237 } 238 239 return result; 240 } 241 242 /* 243 * Check if the address has required RWX privs when no PMP entry is matched. 244 */ 245 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 246 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 247 target_ulong mode) 248 { 249 bool ret; 250 251 if (riscv_feature(env, RISCV_FEATURE_EPMP)) { 252 if (MSECCFG_MMWP_ISSET(env)) { 253 /* 254 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 255 * so we default to deny all, even for M-mode. 256 */ 257 *allowed_privs = 0; 258 return false; 259 } else if (MSECCFG_MML_ISSET(env)) { 260 /* 261 * The Machine Mode Lockdown (mseccfg.MML) bit is set 262 * so we can only execute code in M-mode with an applicable 263 * rule. Other modes are disabled. 264 */ 265 if (mode == PRV_M && !(privs & PMP_EXEC)) { 266 ret = true; 267 *allowed_privs = PMP_READ | PMP_WRITE; 268 } else { 269 ret = false; 270 *allowed_privs = 0; 271 } 272 273 return ret; 274 } 275 } 276 277 if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) { 278 /* 279 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 280 * or no PMP entry matches an M-Mode access, the access succeeds. 281 */ 282 ret = true; 283 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 284 } else { 285 /* 286 * Other modes are not allowed to succeed if they don't * match a rule, 287 * but there are rules. We've checked for no rule earlier in this 288 * function. 289 */ 290 ret = false; 291 *allowed_privs = 0; 292 } 293 294 return ret; 295 } 296 297 298 /* 299 * Public Interface 300 */ 301 302 /* 303 * Check if the address has required RWX privs to complete desired operation 304 */ 305 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 306 target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs, 307 target_ulong mode) 308 { 309 int i = 0; 310 int ret = -1; 311 int pmp_size = 0; 312 target_ulong s = 0; 313 target_ulong e = 0; 314 315 /* Short cut if no rules */ 316 if (0 == pmp_get_num_rules(env)) { 317 return pmp_hart_has_privs_default(env, addr, size, privs, 318 allowed_privs, mode); 319 } 320 321 if (size == 0) { 322 if (riscv_feature(env, RISCV_FEATURE_MMU)) { 323 /* 324 * If size is unknown (0), assume that all bytes 325 * from addr to the end of the page will be accessed. 326 */ 327 pmp_size = -(addr | TARGET_PAGE_MASK); 328 } else { 329 pmp_size = sizeof(target_ulong); 330 } 331 } else { 332 pmp_size = size; 333 } 334 335 /* 1.10 draft priv spec states there is an implicit order 336 from low to high */ 337 for (i = 0; i < MAX_RISCV_PMPS; i++) { 338 s = pmp_is_in_range(env, i, addr); 339 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 340 341 /* partially inside */ 342 if ((s + e) == 1) { 343 qemu_log_mask(LOG_GUEST_ERROR, 344 "pmp violation - access is partially inside\n"); 345 ret = 0; 346 break; 347 } 348 349 /* fully inside */ 350 const uint8_t a_field = 351 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 352 353 /* 354 * Convert the PMP permissions to match the truth table in the 355 * ePMP spec. 356 */ 357 const uint8_t epmp_operation = 358 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 359 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 360 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 361 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 362 363 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 364 /* 365 * If the PMP entry is not off and the address is in range, 366 * do the priv check 367 */ 368 if (!MSECCFG_MML_ISSET(env)) { 369 /* 370 * If mseccfg.MML Bit is not set, do pmp priv check 371 * This will always apply to regular PMP. 372 */ 373 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 374 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 375 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 376 } 377 } else { 378 /* 379 * If mseccfg.MML Bit set, do the enhanced pmp priv check 380 */ 381 if (mode == PRV_M) { 382 switch (epmp_operation) { 383 case 0: 384 case 1: 385 case 4: 386 case 5: 387 case 6: 388 case 7: 389 case 8: 390 *allowed_privs = 0; 391 break; 392 case 2: 393 case 3: 394 case 14: 395 *allowed_privs = PMP_READ | PMP_WRITE; 396 break; 397 case 9: 398 case 10: 399 *allowed_privs = PMP_EXEC; 400 break; 401 case 11: 402 case 13: 403 *allowed_privs = PMP_READ | PMP_EXEC; 404 break; 405 case 12: 406 case 15: 407 *allowed_privs = PMP_READ; 408 break; 409 } 410 } else { 411 switch (epmp_operation) { 412 case 0: 413 case 8: 414 case 9: 415 case 12: 416 case 13: 417 case 14: 418 *allowed_privs = 0; 419 break; 420 case 1: 421 case 10: 422 case 11: 423 *allowed_privs = PMP_EXEC; 424 break; 425 case 2: 426 case 4: 427 case 15: 428 *allowed_privs = PMP_READ; 429 break; 430 case 3: 431 case 6: 432 *allowed_privs = PMP_READ | PMP_WRITE; 433 break; 434 case 5: 435 *allowed_privs = PMP_READ | PMP_EXEC; 436 break; 437 case 7: 438 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 439 break; 440 } 441 } 442 } 443 444 ret = ((privs & *allowed_privs) == privs); 445 break; 446 } 447 } 448 449 /* No rule matched */ 450 if (ret == -1) { 451 return pmp_hart_has_privs_default(env, addr, size, privs, 452 allowed_privs, mode); 453 } 454 455 return ret == 1 ? true : false; 456 } 457 458 /* 459 * Handle a write to a pmpcfg CSP 460 */ 461 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 462 target_ulong val) 463 { 464 int i; 465 uint8_t cfg_val; 466 467 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 468 469 if ((reg_index & 1) && (sizeof(target_ulong) == 8)) { 470 qemu_log_mask(LOG_GUEST_ERROR, 471 "ignoring pmpcfg write - incorrect address\n"); 472 return; 473 } 474 475 for (i = 0; i < sizeof(target_ulong); i++) { 476 cfg_val = (val >> 8 * i) & 0xff; 477 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 478 } 479 480 /* If PMP permission of any addr has been changed, flush TLB pages. */ 481 tlb_flush(env_cpu(env)); 482 } 483 484 485 /* 486 * Handle a read from a pmpcfg CSP 487 */ 488 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 489 { 490 int i; 491 target_ulong cfg_val = 0; 492 target_ulong val = 0; 493 494 for (i = 0; i < sizeof(target_ulong); i++) { 495 val = pmp_read_cfg(env, (reg_index * 4) + i); 496 cfg_val |= (val << (i * 8)); 497 } 498 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 499 500 return cfg_val; 501 } 502 503 504 /* 505 * Handle a write to a pmpaddr CSP 506 */ 507 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 508 target_ulong val) 509 { 510 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 511 512 if (addr_index < MAX_RISCV_PMPS) { 513 /* 514 * In TOR mode, need to check the lock bit of the next pmp 515 * (if there is a next). 516 */ 517 if (addr_index + 1 < MAX_RISCV_PMPS) { 518 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 519 520 if (pmp_cfg & PMP_LOCK && 521 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 522 qemu_log_mask(LOG_GUEST_ERROR, 523 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 524 return; 525 } 526 } 527 528 if (!pmp_is_locked(env, addr_index)) { 529 env->pmp_state.pmp[addr_index].addr_reg = val; 530 pmp_update_rule(env, addr_index); 531 } else { 532 qemu_log_mask(LOG_GUEST_ERROR, 533 "ignoring pmpaddr write - locked\n"); 534 } 535 } else { 536 qemu_log_mask(LOG_GUEST_ERROR, 537 "ignoring pmpaddr write - out of bounds\n"); 538 } 539 } 540 541 542 /* 543 * Handle a read from a pmpaddr CSP 544 */ 545 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 546 { 547 target_ulong val = 0; 548 549 if (addr_index < MAX_RISCV_PMPS) { 550 val = env->pmp_state.pmp[addr_index].addr_reg; 551 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 552 } else { 553 qemu_log_mask(LOG_GUEST_ERROR, 554 "ignoring pmpaddr read - out of bounds\n"); 555 } 556 557 return val; 558 } 559 560 /* 561 * Handle a write to a mseccfg CSR 562 */ 563 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 564 { 565 int i; 566 567 trace_mseccfg_csr_write(env->mhartid, val); 568 569 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 570 if (!MSECCFG_RLB_ISSET(env)) { 571 for (i = 0; i < MAX_RISCV_PMPS; i++) { 572 if (pmp_is_locked(env, i)) { 573 val &= ~MSECCFG_RLB; 574 break; 575 } 576 } 577 } 578 579 /* Sticky bits */ 580 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 581 582 env->mseccfg = val; 583 } 584 585 /* 586 * Handle a read from a mseccfg CSR 587 */ 588 target_ulong mseccfg_csr_read(CPURISCVState *env) 589 { 590 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 591 return env->mseccfg; 592 } 593 594 /* 595 * Calculate the TLB size if the start address or the end address of 596 * PMP entry is presented in thie TLB page. 597 */ 598 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 599 target_ulong tlb_sa, target_ulong tlb_ea) 600 { 601 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 602 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 603 604 if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) { 605 return pmp_ea - pmp_sa + 1; 606 } 607 608 if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) { 609 return tlb_ea - pmp_sa + 1; 610 } 611 612 if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) { 613 return pmp_ea - tlb_sa + 1; 614 } 615 616 return 0; 617 } 618 619 /* 620 * Check is there a PMP entry which range covers this page. If so, 621 * try to find the minimum granularity for the TLB size. 622 */ 623 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa, 624 target_ulong *tlb_size) 625 { 626 int i; 627 target_ulong val; 628 target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1); 629 630 for (i = 0; i < MAX_RISCV_PMPS; i++) { 631 val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea); 632 if (val) { 633 if (*tlb_size == 0 || *tlb_size > val) { 634 *tlb_size = val; 635 } 636 } 637 } 638 639 if (*tlb_size != 0) { 640 return true; 641 } 642 643 return false; 644 } 645 646 /* 647 * Convert PMP privilege to TLB page privilege. 648 */ 649 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 650 { 651 int prot = 0; 652 653 if (pmp_priv & PMP_READ) { 654 prot |= PAGE_READ; 655 } 656 if (pmp_priv & PMP_WRITE) { 657 prot |= PAGE_WRITE; 658 } 659 if (pmp_priv & PMP_EXEC) { 660 prot |= PAGE_EXEC; 661 } 662 663 return prot; 664 } 665