xref: /openbmc/qemu/target/riscv/pmp.c (revision 47566421)
1 /*
2  * QEMU RISC-V PMP (Physical Memory Protection)
3  *
4  * Author: Daire McNamara, daire.mcnamara@emdalo.com
5  *         Ivan Griffin, ivan.griffin@emdalo.com
6  *
7  * This provides a RISC-V Physical Memory Protection implementation
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2 or later, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/log.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "trace.h"
27 #include "exec/exec-all.h"
28 
29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
30     uint8_t val);
31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
33 
34 /*
35  * Accessor method to extract address matching type 'a field' from cfg reg
36  */
37 static inline uint8_t pmp_get_a_field(uint8_t cfg)
38 {
39     uint8_t a = cfg >> 3;
40     return a & 0x3;
41 }
42 
43 /*
44  * Check whether a PMP is locked or not.
45  */
46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
47 {
48 
49     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
50         return 1;
51     }
52 
53     /* Top PMP has no 'next' to check */
54     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
55         return 0;
56     }
57 
58     return 0;
59 }
60 
61 /*
62  * Count the number of active rules.
63  */
64 uint32_t pmp_get_num_rules(CPURISCVState *env)
65 {
66      return env->pmp_state.num_rules;
67 }
68 
69 /*
70  * Accessor to get the cfg reg for a specific PMP/HART
71  */
72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
73 {
74     if (pmp_index < MAX_RISCV_PMPS) {
75         return env->pmp_state.pmp[pmp_index].cfg_reg;
76     }
77 
78     return 0;
79 }
80 
81 
82 /*
83  * Accessor to set the cfg reg for a specific PMP/HART
84  * Bounds checks and relevant lock bit.
85  */
86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
87 {
88     if (pmp_index < MAX_RISCV_PMPS) {
89         bool locked = true;
90 
91         if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
92             /* mseccfg.RLB is set */
93             if (MSECCFG_RLB_ISSET(env)) {
94                 locked = false;
95             }
96 
97             /* mseccfg.MML is not set */
98             if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) {
99                 locked = false;
100             }
101 
102             /* mseccfg.MML is set */
103             if (MSECCFG_MML_ISSET(env)) {
104                 /* not adding execute bit */
105                 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) {
106                     locked = false;
107                 }
108                 /* shared region and not adding X bit */
109                 if ((val & PMP_LOCK) != PMP_LOCK &&
110                     (val & 0x7) != (PMP_WRITE | PMP_EXEC)) {
111                     locked = false;
112                 }
113             }
114         } else {
115             if (!pmp_is_locked(env, pmp_index)) {
116                 locked = false;
117             }
118         }
119 
120         if (locked) {
121             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
122         } else {
123             env->pmp_state.pmp[pmp_index].cfg_reg = val;
124             pmp_update_rule(env, pmp_index);
125         }
126     } else {
127         qemu_log_mask(LOG_GUEST_ERROR,
128                       "ignoring pmpcfg write - out of bounds\n");
129     }
130 }
131 
132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
133 {
134     /*
135        aaaa...aaa0   8-byte NAPOT range
136        aaaa...aa01   16-byte NAPOT range
137        aaaa...a011   32-byte NAPOT range
138        ...
139        aa01...1111   2^XLEN-byte NAPOT range
140        a011...1111   2^(XLEN+1)-byte NAPOT range
141        0111...1111   2^(XLEN+2)-byte NAPOT range
142        1111...1111   Reserved
143     */
144     a = (a << 2) | 0x3;
145     *sa = a & (a + 1);
146     *ea = a | (a + 1);
147 }
148 
149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
150 {
151     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
152     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
153     target_ulong prev_addr = 0u;
154     target_ulong sa = 0u;
155     target_ulong ea = 0u;
156 
157     if (pmp_index >= 1u) {
158         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
159     }
160 
161     switch (pmp_get_a_field(this_cfg)) {
162     case PMP_AMATCH_OFF:
163         sa = 0u;
164         ea = -1;
165         break;
166 
167     case PMP_AMATCH_TOR:
168         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
169         ea = (this_addr << 2) - 1u;
170         if (sa > ea) {
171             sa = ea = 0u;
172         }
173         break;
174 
175     case PMP_AMATCH_NA4:
176         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
177         ea = (sa + 4u) - 1u;
178         break;
179 
180     case PMP_AMATCH_NAPOT:
181         pmp_decode_napot(this_addr, &sa, &ea);
182         break;
183 
184     default:
185         sa = 0u;
186         ea = 0u;
187         break;
188     }
189 
190     env->pmp_state.addr[pmp_index].sa = sa;
191     env->pmp_state.addr[pmp_index].ea = ea;
192 }
193 
194 void pmp_update_rule_nums(CPURISCVState *env)
195 {
196     int i;
197 
198     env->pmp_state.num_rules = 0;
199     for (i = 0; i < MAX_RISCV_PMPS; i++) {
200         const uint8_t a_field =
201             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
202         if (PMP_AMATCH_OFF != a_field) {
203             env->pmp_state.num_rules++;
204         }
205     }
206 }
207 
208 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
209  *   end address values.
210  *   This function is called relatively infrequently whereas the check that
211  *   an address is within a pmp rule is called often, so optimise that one
212  */
213 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
214 {
215     pmp_update_rule_addr(env, pmp_index);
216     pmp_update_rule_nums(env);
217 }
218 
219 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
220 {
221     int result = 0;
222 
223     if ((addr >= env->pmp_state.addr[pmp_index].sa)
224         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
225         result = 1;
226     } else {
227         result = 0;
228     }
229 
230     return result;
231 }
232 
233 /*
234  * Check if the address has required RWX privs when no PMP entry is matched.
235  */
236 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
237     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
238     target_ulong mode)
239 {
240     bool ret;
241 
242     if (riscv_feature(env, RISCV_FEATURE_EPMP)) {
243         if (MSECCFG_MMWP_ISSET(env)) {
244             /*
245              * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set
246              * so we default to deny all, even for M-mode.
247              */
248             *allowed_privs = 0;
249             return false;
250         } else if (MSECCFG_MML_ISSET(env)) {
251             /*
252              * The Machine Mode Lockdown (mseccfg.MML) bit is set
253              * so we can only execute code in M-mode with an applicable
254              * rule. Other modes are disabled.
255              */
256             if (mode == PRV_M && !(privs & PMP_EXEC)) {
257                 ret = true;
258                 *allowed_privs = PMP_READ | PMP_WRITE;
259             } else {
260                 ret = false;
261                 *allowed_privs = 0;
262             }
263 
264             return ret;
265         }
266     }
267 
268     if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
269         /*
270          * Privileged spec v1.10 states if HW doesn't implement any PMP entry
271          * or no PMP entry matches an M-Mode access, the access succeeds.
272          */
273         ret = true;
274         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
275     } else {
276         /*
277          * Other modes are not allowed to succeed if they don't * match a rule,
278          * but there are rules. We've checked for no rule earlier in this
279          * function.
280          */
281         ret = false;
282         *allowed_privs = 0;
283     }
284 
285     return ret;
286 }
287 
288 
289 /*
290  * Public Interface
291  */
292 
293 /*
294  * Check if the address has required RWX privs to complete desired operation
295  */
296 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
297     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
298     target_ulong mode)
299 {
300     int i = 0;
301     int ret = -1;
302     int pmp_size = 0;
303     target_ulong s = 0;
304     target_ulong e = 0;
305 
306     /* Short cut if no rules */
307     if (0 == pmp_get_num_rules(env)) {
308         return pmp_hart_has_privs_default(env, addr, size, privs,
309                                           allowed_privs, mode);
310     }
311 
312     if (size == 0) {
313         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
314             /*
315              * If size is unknown (0), assume that all bytes
316              * from addr to the end of the page will be accessed.
317              */
318             pmp_size = -(addr | TARGET_PAGE_MASK);
319         } else {
320             pmp_size = sizeof(target_ulong);
321         }
322     } else {
323         pmp_size = size;
324     }
325 
326     /* 1.10 draft priv spec states there is an implicit order
327          from low to high */
328     for (i = 0; i < MAX_RISCV_PMPS; i++) {
329         s = pmp_is_in_range(env, i, addr);
330         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
331 
332         /* partially inside */
333         if ((s + e) == 1) {
334             qemu_log_mask(LOG_GUEST_ERROR,
335                           "pmp violation - access is partially inside\n");
336             ret = 0;
337             break;
338         }
339 
340         /* fully inside */
341         const uint8_t a_field =
342             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
343 
344         /*
345          * Convert the PMP permissions to match the truth table in the
346          * ePMP spec.
347          */
348         const uint8_t epmp_operation =
349             ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) |
350             ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) |
351             (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) |
352             ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2);
353 
354         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
355             /*
356              * If the PMP entry is not off and the address is in range,
357              * do the priv check
358              */
359             if (!MSECCFG_MML_ISSET(env)) {
360                 /*
361                  * If mseccfg.MML Bit is not set, do pmp priv check
362                  * This will always apply to regular PMP.
363                  */
364                 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
365                 if ((mode != PRV_M) || pmp_is_locked(env, i)) {
366                     *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
367                 }
368             } else {
369                 /*
370                  * If mseccfg.MML Bit set, do the enhanced pmp priv check
371                  */
372                 if (mode == PRV_M) {
373                     switch (epmp_operation) {
374                     case 0:
375                     case 1:
376                     case 4:
377                     case 5:
378                     case 6:
379                     case 7:
380                     case 8:
381                         *allowed_privs = 0;
382                         break;
383                     case 2:
384                     case 3:
385                     case 14:
386                         *allowed_privs = PMP_READ | PMP_WRITE;
387                         break;
388                     case 9:
389                     case 10:
390                         *allowed_privs = PMP_EXEC;
391                         break;
392                     case 11:
393                     case 13:
394                         *allowed_privs = PMP_READ | PMP_EXEC;
395                         break;
396                     case 12:
397                     case 15:
398                         *allowed_privs = PMP_READ;
399                         break;
400                     default:
401                         g_assert_not_reached();
402                     }
403                 } else {
404                     switch (epmp_operation) {
405                     case 0:
406                     case 8:
407                     case 9:
408                     case 12:
409                     case 13:
410                     case 14:
411                         *allowed_privs = 0;
412                         break;
413                     case 1:
414                     case 10:
415                     case 11:
416                         *allowed_privs = PMP_EXEC;
417                         break;
418                     case 2:
419                     case 4:
420                     case 15:
421                         *allowed_privs = PMP_READ;
422                         break;
423                     case 3:
424                     case 6:
425                         *allowed_privs = PMP_READ | PMP_WRITE;
426                         break;
427                     case 5:
428                         *allowed_privs = PMP_READ | PMP_EXEC;
429                         break;
430                     case 7:
431                         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
432                         break;
433                     default:
434                         g_assert_not_reached();
435                     }
436                 }
437             }
438 
439             ret = ((privs & *allowed_privs) == privs);
440             break;
441         }
442     }
443 
444     /* No rule matched */
445     if (ret == -1) {
446         return pmp_hart_has_privs_default(env, addr, size, privs,
447                                           allowed_privs, mode);
448     }
449 
450     return ret == 1 ? true : false;
451 }
452 
453 /*
454  * Handle a write to a pmpcfg CSR
455  */
456 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
457     target_ulong val)
458 {
459     int i;
460     uint8_t cfg_val;
461     int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
462 
463     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
464 
465     for (i = 0; i < pmpcfg_nums; i++) {
466         cfg_val = (val >> 8 * i)  & 0xff;
467         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
468     }
469 
470     /* If PMP permission of any addr has been changed, flush TLB pages. */
471     tlb_flush(env_cpu(env));
472 }
473 
474 
475 /*
476  * Handle a read from a pmpcfg CSR
477  */
478 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
479 {
480     int i;
481     target_ulong cfg_val = 0;
482     target_ulong val = 0;
483     int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
484 
485     for (i = 0; i < pmpcfg_nums; i++) {
486         val = pmp_read_cfg(env, (reg_index * 4) + i);
487         cfg_val |= (val << (i * 8));
488     }
489     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
490 
491     return cfg_val;
492 }
493 
494 
495 /*
496  * Handle a write to a pmpaddr CSR
497  */
498 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
499     target_ulong val)
500 {
501     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
502 
503     if (addr_index < MAX_RISCV_PMPS) {
504         /*
505          * In TOR mode, need to check the lock bit of the next pmp
506          * (if there is a next).
507          */
508         if (addr_index + 1 < MAX_RISCV_PMPS) {
509             uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
510 
511             if (pmp_cfg & PMP_LOCK &&
512                 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) {
513                 qemu_log_mask(LOG_GUEST_ERROR,
514                               "ignoring pmpaddr write - pmpcfg + 1 locked\n");
515                 return;
516             }
517         }
518 
519         if (!pmp_is_locked(env, addr_index)) {
520             env->pmp_state.pmp[addr_index].addr_reg = val;
521             pmp_update_rule(env, addr_index);
522         } else {
523             qemu_log_mask(LOG_GUEST_ERROR,
524                           "ignoring pmpaddr write - locked\n");
525         }
526     } else {
527         qemu_log_mask(LOG_GUEST_ERROR,
528                       "ignoring pmpaddr write - out of bounds\n");
529     }
530 }
531 
532 
533 /*
534  * Handle a read from a pmpaddr CSR
535  */
536 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
537 {
538     target_ulong val = 0;
539 
540     if (addr_index < MAX_RISCV_PMPS) {
541         val = env->pmp_state.pmp[addr_index].addr_reg;
542         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
543     } else {
544         qemu_log_mask(LOG_GUEST_ERROR,
545                       "ignoring pmpaddr read - out of bounds\n");
546     }
547 
548     return val;
549 }
550 
551 /*
552  * Handle a write to a mseccfg CSR
553  */
554 void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
555 {
556     int i;
557 
558     trace_mseccfg_csr_write(env->mhartid, val);
559 
560     /* RLB cannot be enabled if it's already 0 and if any regions are locked */
561     if (!MSECCFG_RLB_ISSET(env)) {
562         for (i = 0; i < MAX_RISCV_PMPS; i++) {
563             if (pmp_is_locked(env, i)) {
564                 val &= ~MSECCFG_RLB;
565                 break;
566             }
567         }
568     }
569 
570     /* Sticky bits */
571     val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
572 
573     env->mseccfg = val;
574 }
575 
576 /*
577  * Handle a read from a mseccfg CSR
578  */
579 target_ulong mseccfg_csr_read(CPURISCVState *env)
580 {
581     trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
582     return env->mseccfg;
583 }
584 
585 /*
586  * Calculate the TLB size if the start address or the end address of
587  * PMP entry is presented in the TLB page.
588  */
589 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
590                                      target_ulong tlb_sa, target_ulong tlb_ea)
591 {
592     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
593     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
594 
595     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
596         return pmp_ea - pmp_sa + 1;
597     }
598 
599     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
600         return tlb_ea - pmp_sa + 1;
601     }
602 
603     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
604         return pmp_ea - tlb_sa + 1;
605     }
606 
607     return 0;
608 }
609 
610 /*
611  * Check is there a PMP entry which range covers this page. If so,
612  * try to find the minimum granularity for the TLB size.
613  */
614 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
615                          target_ulong *tlb_size)
616 {
617     int i;
618     target_ulong val;
619     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
620 
621     for (i = 0; i < MAX_RISCV_PMPS; i++) {
622         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
623         if (val) {
624             if (*tlb_size == 0 || *tlb_size > val) {
625                 *tlb_size = val;
626             }
627         }
628     }
629 
630     if (*tlb_size != 0) {
631         /*
632          * At this point we have a tlb_size that is the smallest possible size
633          * That fits within a TARGET_PAGE_SIZE and the PMP region.
634          *
635          * If the size is less then TARGET_PAGE_SIZE we drop the size to 1.
636          * This means the result isn't cached in the TLB and is only used for
637          * a single translation.
638          */
639         if (*tlb_size < TARGET_PAGE_SIZE) {
640             *tlb_size = 1;
641         }
642 
643         return true;
644     }
645 
646     return false;
647 }
648 
649 /*
650  * Convert PMP privilege to TLB page privilege.
651  */
652 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
653 {
654     int prot = 0;
655 
656     if (pmp_priv & PMP_READ) {
657         prot |= PAGE_READ;
658     }
659     if (pmp_priv & PMP_WRITE) {
660         prot |= PAGE_WRITE;
661     }
662     if (pmp_priv & PMP_EXEC) {
663         prot |= PAGE_EXEC;
664     }
665 
666     return prot;
667 }
668