1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/log.h" 24 #include "qapi/error.h" 25 #include "cpu.h" 26 #include "trace.h" 27 #include "exec/exec-all.h" 28 29 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 30 uint8_t val); 31 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 32 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 33 34 /* 35 * Accessor method to extract address matching type 'a field' from cfg reg 36 */ 37 static inline uint8_t pmp_get_a_field(uint8_t cfg) 38 { 39 uint8_t a = cfg >> 3; 40 return a & 0x3; 41 } 42 43 /* 44 * Check whether a PMP is locked or not. 45 */ 46 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 47 { 48 49 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 50 return 1; 51 } 52 53 /* Top PMP has no 'next' to check */ 54 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 55 return 0; 56 } 57 58 return 0; 59 } 60 61 /* 62 * Count the number of active rules. 63 */ 64 uint32_t pmp_get_num_rules(CPURISCVState *env) 65 { 66 return env->pmp_state.num_rules; 67 } 68 69 /* 70 * Accessor to get the cfg reg for a specific PMP/HART 71 */ 72 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 73 { 74 if (pmp_index < MAX_RISCV_PMPS) { 75 return env->pmp_state.pmp[pmp_index].cfg_reg; 76 } 77 78 return 0; 79 } 80 81 82 /* 83 * Accessor to set the cfg reg for a specific PMP/HART 84 * Bounds checks and relevant lock bit. 85 */ 86 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 87 { 88 if (pmp_index < MAX_RISCV_PMPS) { 89 bool locked = true; 90 91 if (riscv_cpu_cfg(env)->epmp) { 92 /* mseccfg.RLB is set */ 93 if (MSECCFG_RLB_ISSET(env)) { 94 locked = false; 95 } 96 97 /* mseccfg.MML is not set */ 98 if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) { 99 locked = false; 100 } 101 102 /* mseccfg.MML is set */ 103 if (MSECCFG_MML_ISSET(env)) { 104 /* not adding execute bit */ 105 if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) { 106 locked = false; 107 } 108 /* shared region and not adding X bit */ 109 if ((val & PMP_LOCK) != PMP_LOCK && 110 (val & 0x7) != (PMP_WRITE | PMP_EXEC)) { 111 locked = false; 112 } 113 } 114 } else { 115 if (!pmp_is_locked(env, pmp_index)) { 116 locked = false; 117 } 118 } 119 120 if (locked) { 121 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 122 } else { 123 env->pmp_state.pmp[pmp_index].cfg_reg = val; 124 pmp_update_rule(env, pmp_index); 125 } 126 } else { 127 qemu_log_mask(LOG_GUEST_ERROR, 128 "ignoring pmpcfg write - out of bounds\n"); 129 } 130 } 131 132 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 133 { 134 /* 135 * aaaa...aaa0 8-byte NAPOT range 136 * aaaa...aa01 16-byte NAPOT range 137 * aaaa...a011 32-byte NAPOT range 138 * ... 139 * aa01...1111 2^XLEN-byte NAPOT range 140 * a011...1111 2^(XLEN+1)-byte NAPOT range 141 * 0111...1111 2^(XLEN+2)-byte NAPOT range 142 * 1111...1111 Reserved 143 */ 144 a = (a << 2) | 0x3; 145 *sa = a & (a + 1); 146 *ea = a | (a + 1); 147 } 148 149 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 150 { 151 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 152 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 153 target_ulong prev_addr = 0u; 154 target_ulong sa = 0u; 155 target_ulong ea = 0u; 156 157 if (pmp_index >= 1u) { 158 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 159 } 160 161 switch (pmp_get_a_field(this_cfg)) { 162 case PMP_AMATCH_OFF: 163 sa = 0u; 164 ea = -1; 165 break; 166 167 case PMP_AMATCH_TOR: 168 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 169 ea = (this_addr << 2) - 1u; 170 if (sa > ea) { 171 sa = ea = 0u; 172 } 173 break; 174 175 case PMP_AMATCH_NA4: 176 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 177 ea = (sa + 4u) - 1u; 178 break; 179 180 case PMP_AMATCH_NAPOT: 181 pmp_decode_napot(this_addr, &sa, &ea); 182 break; 183 184 default: 185 sa = 0u; 186 ea = 0u; 187 break; 188 } 189 190 env->pmp_state.addr[pmp_index].sa = sa; 191 env->pmp_state.addr[pmp_index].ea = ea; 192 } 193 194 void pmp_update_rule_nums(CPURISCVState *env) 195 { 196 int i; 197 198 env->pmp_state.num_rules = 0; 199 for (i = 0; i < MAX_RISCV_PMPS; i++) { 200 const uint8_t a_field = 201 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 202 if (PMP_AMATCH_OFF != a_field) { 203 env->pmp_state.num_rules++; 204 } 205 } 206 } 207 208 /* 209 * Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 210 * end address values. 211 * This function is called relatively infrequently whereas the check that 212 * an address is within a pmp rule is called often, so optimise that one 213 */ 214 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 215 { 216 pmp_update_rule_addr(env, pmp_index); 217 pmp_update_rule_nums(env); 218 } 219 220 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 221 { 222 int result = 0; 223 224 if ((addr >= env->pmp_state.addr[pmp_index].sa) && 225 (addr <= env->pmp_state.addr[pmp_index].ea)) { 226 result = 1; 227 } else { 228 result = 0; 229 } 230 231 return result; 232 } 233 234 /* 235 * Check if the address has required RWX privs when no PMP entry is matched. 236 */ 237 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr, 238 target_ulong size, pmp_priv_t privs, 239 pmp_priv_t *allowed_privs, 240 target_ulong mode) 241 { 242 bool ret; 243 244 if (riscv_cpu_cfg(env)->epmp) { 245 if (MSECCFG_MMWP_ISSET(env)) { 246 /* 247 * The Machine Mode Whitelist Policy (mseccfg.MMWP) is set 248 * so we default to deny all, even for M-mode. 249 */ 250 *allowed_privs = 0; 251 return false; 252 } else if (MSECCFG_MML_ISSET(env)) { 253 /* 254 * The Machine Mode Lockdown (mseccfg.MML) bit is set 255 * so we can only execute code in M-mode with an applicable 256 * rule. Other modes are disabled. 257 */ 258 if (mode == PRV_M && !(privs & PMP_EXEC)) { 259 ret = true; 260 *allowed_privs = PMP_READ | PMP_WRITE; 261 } else { 262 ret = false; 263 *allowed_privs = 0; 264 } 265 266 return ret; 267 } 268 } 269 270 if (!riscv_cpu_cfg(env)->pmp || (mode == PRV_M)) { 271 /* 272 * Privileged spec v1.10 states if HW doesn't implement any PMP entry 273 * or no PMP entry matches an M-Mode access, the access succeeds. 274 */ 275 ret = true; 276 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 277 } else { 278 /* 279 * Other modes are not allowed to succeed if they don't * match a rule, 280 * but there are rules. We've checked for no rule earlier in this 281 * function. 282 */ 283 ret = false; 284 *allowed_privs = 0; 285 } 286 287 return ret; 288 } 289 290 291 /* 292 * Public Interface 293 */ 294 295 /* 296 * Check if the address has required RWX privs to complete desired operation 297 * Return PMP rule index if a pmp rule match 298 * Return MAX_RISCV_PMPS if default match 299 * Return negtive value if no match 300 */ 301 int pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 302 target_ulong size, pmp_priv_t privs, 303 pmp_priv_t *allowed_privs, target_ulong mode) 304 { 305 int i = 0; 306 int ret = -1; 307 int pmp_size = 0; 308 target_ulong s = 0; 309 target_ulong e = 0; 310 311 /* Short cut if no rules */ 312 if (0 == pmp_get_num_rules(env)) { 313 if (pmp_hart_has_privs_default(env, addr, size, privs, 314 allowed_privs, mode)) { 315 ret = MAX_RISCV_PMPS; 316 } 317 } 318 319 if (size == 0) { 320 if (riscv_cpu_cfg(env)->mmu) { 321 /* 322 * If size is unknown (0), assume that all bytes 323 * from addr to the end of the page will be accessed. 324 */ 325 pmp_size = -(addr | TARGET_PAGE_MASK); 326 } else { 327 pmp_size = sizeof(target_ulong); 328 } 329 } else { 330 pmp_size = size; 331 } 332 333 /* 334 * 1.10 draft priv spec states there is an implicit order 335 * from low to high 336 */ 337 for (i = 0; i < MAX_RISCV_PMPS; i++) { 338 s = pmp_is_in_range(env, i, addr); 339 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 340 341 /* partially inside */ 342 if ((s + e) == 1) { 343 qemu_log_mask(LOG_GUEST_ERROR, 344 "pmp violation - access is partially inside\n"); 345 ret = -1; 346 break; 347 } 348 349 /* fully inside */ 350 const uint8_t a_field = 351 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 352 353 /* 354 * Convert the PMP permissions to match the truth table in the 355 * ePMP spec. 356 */ 357 const uint8_t epmp_operation = 358 ((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) | 359 ((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) | 360 (env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) | 361 ((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2); 362 363 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 364 /* 365 * If the PMP entry is not off and the address is in range, 366 * do the priv check 367 */ 368 if (!MSECCFG_MML_ISSET(env)) { 369 /* 370 * If mseccfg.MML Bit is not set, do pmp priv check 371 * This will always apply to regular PMP. 372 */ 373 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 374 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 375 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 376 } 377 } else { 378 /* 379 * If mseccfg.MML Bit set, do the enhanced pmp priv check 380 */ 381 if (mode == PRV_M) { 382 switch (epmp_operation) { 383 case 0: 384 case 1: 385 case 4: 386 case 5: 387 case 6: 388 case 7: 389 case 8: 390 *allowed_privs = 0; 391 break; 392 case 2: 393 case 3: 394 case 14: 395 *allowed_privs = PMP_READ | PMP_WRITE; 396 break; 397 case 9: 398 case 10: 399 *allowed_privs = PMP_EXEC; 400 break; 401 case 11: 402 case 13: 403 *allowed_privs = PMP_READ | PMP_EXEC; 404 break; 405 case 12: 406 case 15: 407 *allowed_privs = PMP_READ; 408 break; 409 default: 410 g_assert_not_reached(); 411 } 412 } else { 413 switch (epmp_operation) { 414 case 0: 415 case 8: 416 case 9: 417 case 12: 418 case 13: 419 case 14: 420 *allowed_privs = 0; 421 break; 422 case 1: 423 case 10: 424 case 11: 425 *allowed_privs = PMP_EXEC; 426 break; 427 case 2: 428 case 4: 429 case 15: 430 *allowed_privs = PMP_READ; 431 break; 432 case 3: 433 case 6: 434 *allowed_privs = PMP_READ | PMP_WRITE; 435 break; 436 case 5: 437 *allowed_privs = PMP_READ | PMP_EXEC; 438 break; 439 case 7: 440 *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 441 break; 442 default: 443 g_assert_not_reached(); 444 } 445 } 446 } 447 448 /* 449 * If matching address range was found, the protection bits 450 * defined with PMP must be used. We shouldn't fallback on 451 * finding default privileges. 452 */ 453 ret = i; 454 break; 455 } 456 } 457 458 /* No rule matched */ 459 if (ret == -1) { 460 if (pmp_hart_has_privs_default(env, addr, size, privs, 461 allowed_privs, mode)) { 462 ret = MAX_RISCV_PMPS; 463 } 464 } 465 466 return ret; 467 } 468 469 /* 470 * Handle a write to a pmpcfg CSR 471 */ 472 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 473 target_ulong val) 474 { 475 int i; 476 uint8_t cfg_val; 477 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 478 479 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 480 481 for (i = 0; i < pmpcfg_nums; i++) { 482 cfg_val = (val >> 8 * i) & 0xff; 483 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 484 } 485 486 /* If PMP permission of any addr has been changed, flush TLB pages. */ 487 tlb_flush(env_cpu(env)); 488 } 489 490 491 /* 492 * Handle a read from a pmpcfg CSR 493 */ 494 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 495 { 496 int i; 497 target_ulong cfg_val = 0; 498 target_ulong val = 0; 499 int pmpcfg_nums = 2 << riscv_cpu_mxl(env); 500 501 for (i = 0; i < pmpcfg_nums; i++) { 502 val = pmp_read_cfg(env, (reg_index * 4) + i); 503 cfg_val |= (val << (i * 8)); 504 } 505 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 506 507 return cfg_val; 508 } 509 510 511 /* 512 * Handle a write to a pmpaddr CSR 513 */ 514 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 515 target_ulong val) 516 { 517 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 518 519 if (addr_index < MAX_RISCV_PMPS) { 520 /* 521 * In TOR mode, need to check the lock bit of the next pmp 522 * (if there is a next). 523 */ 524 if (addr_index + 1 < MAX_RISCV_PMPS) { 525 uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg; 526 527 if (pmp_cfg & PMP_LOCK && 528 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) { 529 qemu_log_mask(LOG_GUEST_ERROR, 530 "ignoring pmpaddr write - pmpcfg + 1 locked\n"); 531 return; 532 } 533 } 534 535 if (!pmp_is_locked(env, addr_index)) { 536 env->pmp_state.pmp[addr_index].addr_reg = val; 537 pmp_update_rule(env, addr_index); 538 } else { 539 qemu_log_mask(LOG_GUEST_ERROR, 540 "ignoring pmpaddr write - locked\n"); 541 } 542 } else { 543 qemu_log_mask(LOG_GUEST_ERROR, 544 "ignoring pmpaddr write - out of bounds\n"); 545 } 546 } 547 548 549 /* 550 * Handle a read from a pmpaddr CSR 551 */ 552 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 553 { 554 target_ulong val = 0; 555 556 if (addr_index < MAX_RISCV_PMPS) { 557 val = env->pmp_state.pmp[addr_index].addr_reg; 558 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 559 } else { 560 qemu_log_mask(LOG_GUEST_ERROR, 561 "ignoring pmpaddr read - out of bounds\n"); 562 } 563 564 return val; 565 } 566 567 /* 568 * Handle a write to a mseccfg CSR 569 */ 570 void mseccfg_csr_write(CPURISCVState *env, target_ulong val) 571 { 572 int i; 573 574 trace_mseccfg_csr_write(env->mhartid, val); 575 576 /* RLB cannot be enabled if it's already 0 and if any regions are locked */ 577 if (!MSECCFG_RLB_ISSET(env)) { 578 for (i = 0; i < MAX_RISCV_PMPS; i++) { 579 if (pmp_is_locked(env, i)) { 580 val &= ~MSECCFG_RLB; 581 break; 582 } 583 } 584 } 585 586 /* Sticky bits */ 587 val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML)); 588 589 env->mseccfg = val; 590 } 591 592 /* 593 * Handle a read from a mseccfg CSR 594 */ 595 target_ulong mseccfg_csr_read(CPURISCVState *env) 596 { 597 trace_mseccfg_csr_read(env->mhartid, env->mseccfg); 598 return env->mseccfg; 599 } 600 601 /* 602 * Calculate the TLB size if the start address or the end address of 603 * PMP entry is presented in the TLB page. 604 */ 605 target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 606 target_ulong tlb_sa, target_ulong tlb_ea) 607 { 608 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 609 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 610 611 if (pmp_sa <= tlb_sa && pmp_ea >= tlb_ea) { 612 return TARGET_PAGE_SIZE; 613 } else { 614 /* 615 * At this point we have a tlb_size that is the smallest possible size 616 * That fits within a TARGET_PAGE_SIZE and the PMP region. 617 * 618 * If the size is less then TARGET_PAGE_SIZE we drop the size to 1. 619 * This means the result isn't cached in the TLB and is only used for 620 * a single translation. 621 */ 622 return 1; 623 } 624 } 625 626 /* 627 * Convert PMP privilege to TLB page privilege. 628 */ 629 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv) 630 { 631 int prot = 0; 632 633 if (pmp_priv & PMP_READ) { 634 prot |= PAGE_READ; 635 } 636 if (pmp_priv & PMP_WRITE) { 637 prot |= PAGE_WRITE; 638 } 639 if (pmp_priv & PMP_EXEC) { 640 prot |= PAGE_EXEC; 641 } 642 643 return prot; 644 } 645