1 /* 2 * QEMU RISC-V PMP (Physical Memory Protection) 3 * 4 * Author: Daire McNamara, daire.mcnamara@emdalo.com 5 * Ivan Griffin, ivan.griffin@emdalo.com 6 * 7 * This provides a RISC-V Physical Memory Protection implementation 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms and conditions of the GNU General Public License, 11 * version 2 or later, as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 /* 23 * PMP (Physical Memory Protection) is as-of-yet unused and needs testing. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/log.h" 28 #include "qapi/error.h" 29 #include "cpu.h" 30 #include "trace.h" 31 32 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index, 33 uint8_t val); 34 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index); 35 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index); 36 37 /* 38 * Accessor method to extract address matching type 'a field' from cfg reg 39 */ 40 static inline uint8_t pmp_get_a_field(uint8_t cfg) 41 { 42 uint8_t a = cfg >> 3; 43 return a & 0x3; 44 } 45 46 /* 47 * Check whether a PMP is locked or not. 48 */ 49 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index) 50 { 51 52 if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) { 53 return 1; 54 } 55 56 /* Top PMP has no 'next' to check */ 57 if ((pmp_index + 1u) >= MAX_RISCV_PMPS) { 58 return 0; 59 } 60 61 /* In TOR mode, need to check the lock bit of the next pmp 62 * (if there is a next) 63 */ 64 const uint8_t a_field = 65 pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg); 66 if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) && 67 (PMP_AMATCH_TOR == a_field)) { 68 return 1; 69 } 70 71 return 0; 72 } 73 74 /* 75 * Count the number of active rules. 76 */ 77 uint32_t pmp_get_num_rules(CPURISCVState *env) 78 { 79 return env->pmp_state.num_rules; 80 } 81 82 /* 83 * Accessor to get the cfg reg for a specific PMP/HART 84 */ 85 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index) 86 { 87 if (pmp_index < MAX_RISCV_PMPS) { 88 return env->pmp_state.pmp[pmp_index].cfg_reg; 89 } 90 91 return 0; 92 } 93 94 95 /* 96 * Accessor to set the cfg reg for a specific PMP/HART 97 * Bounds checks and relevant lock bit. 98 */ 99 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val) 100 { 101 if (pmp_index < MAX_RISCV_PMPS) { 102 if (!pmp_is_locked(env, pmp_index)) { 103 env->pmp_state.pmp[pmp_index].cfg_reg = val; 104 pmp_update_rule(env, pmp_index); 105 } else { 106 qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n"); 107 } 108 } else { 109 qemu_log_mask(LOG_GUEST_ERROR, 110 "ignoring pmpcfg write - out of bounds\n"); 111 } 112 } 113 114 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea) 115 { 116 /* 117 aaaa...aaa0 8-byte NAPOT range 118 aaaa...aa01 16-byte NAPOT range 119 aaaa...a011 32-byte NAPOT range 120 ... 121 aa01...1111 2^XLEN-byte NAPOT range 122 a011...1111 2^(XLEN+1)-byte NAPOT range 123 0111...1111 2^(XLEN+2)-byte NAPOT range 124 1111...1111 Reserved 125 */ 126 if (a == -1) { 127 *sa = 0u; 128 *ea = -1; 129 return; 130 } else { 131 target_ulong t1 = ctz64(~a); 132 target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2; 133 target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1; 134 *sa = base; 135 *ea = base + range; 136 } 137 } 138 139 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index) 140 { 141 uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg; 142 target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg; 143 target_ulong prev_addr = 0u; 144 target_ulong sa = 0u; 145 target_ulong ea = 0u; 146 147 if (pmp_index >= 1u) { 148 prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg; 149 } 150 151 switch (pmp_get_a_field(this_cfg)) { 152 case PMP_AMATCH_OFF: 153 sa = 0u; 154 ea = -1; 155 break; 156 157 case PMP_AMATCH_TOR: 158 sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 159 ea = (this_addr << 2) - 1u; 160 break; 161 162 case PMP_AMATCH_NA4: 163 sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */ 164 ea = (sa + 4u) - 1u; 165 break; 166 167 case PMP_AMATCH_NAPOT: 168 pmp_decode_napot(this_addr, &sa, &ea); 169 break; 170 171 default: 172 sa = 0u; 173 ea = 0u; 174 break; 175 } 176 177 env->pmp_state.addr[pmp_index].sa = sa; 178 env->pmp_state.addr[pmp_index].ea = ea; 179 } 180 181 void pmp_update_rule_nums(CPURISCVState *env) 182 { 183 int i; 184 185 env->pmp_state.num_rules = 0; 186 for (i = 0; i < MAX_RISCV_PMPS; i++) { 187 const uint8_t a_field = 188 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 189 if (PMP_AMATCH_OFF != a_field) { 190 env->pmp_state.num_rules++; 191 } 192 } 193 } 194 195 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea' 196 * end address values. 197 * This function is called relatively infrequently whereas the check that 198 * an address is within a pmp rule is called often, so optimise that one 199 */ 200 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index) 201 { 202 pmp_update_rule_addr(env, pmp_index); 203 pmp_update_rule_nums(env); 204 } 205 206 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr) 207 { 208 int result = 0; 209 210 if ((addr >= env->pmp_state.addr[pmp_index].sa) 211 && (addr <= env->pmp_state.addr[pmp_index].ea)) { 212 result = 1; 213 } else { 214 result = 0; 215 } 216 217 return result; 218 } 219 220 221 /* 222 * Public Interface 223 */ 224 225 /* 226 * Check if the address has required RWX privs to complete desired operation 227 */ 228 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr, 229 target_ulong size, pmp_priv_t privs, target_ulong mode) 230 { 231 int i = 0; 232 int ret = -1; 233 int pmp_size = 0; 234 target_ulong s = 0; 235 target_ulong e = 0; 236 pmp_priv_t allowed_privs = 0; 237 238 /* Short cut if no rules */ 239 if (0 == pmp_get_num_rules(env)) { 240 return (env->priv == PRV_M) ? true : false; 241 } 242 243 if (size == 0) { 244 if (riscv_feature(env, RISCV_FEATURE_MMU)) { 245 /* 246 * If size is unknown (0), assume that all bytes 247 * from addr to the end of the page will be accessed. 248 */ 249 pmp_size = -(addr | TARGET_PAGE_MASK); 250 } else { 251 pmp_size = sizeof(target_ulong); 252 } 253 } else { 254 pmp_size = size; 255 } 256 257 /* 1.10 draft priv spec states there is an implicit order 258 from low to high */ 259 for (i = 0; i < MAX_RISCV_PMPS; i++) { 260 s = pmp_is_in_range(env, i, addr); 261 e = pmp_is_in_range(env, i, addr + pmp_size - 1); 262 263 /* partially inside */ 264 if ((s + e) == 1) { 265 qemu_log_mask(LOG_GUEST_ERROR, 266 "pmp violation - access is partially inside\n"); 267 ret = 0; 268 break; 269 } 270 271 /* fully inside */ 272 const uint8_t a_field = 273 pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg); 274 275 /* 276 * If the PMP entry is not off and the address is in range, do the priv 277 * check 278 */ 279 if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) { 280 allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC; 281 if ((mode != PRV_M) || pmp_is_locked(env, i)) { 282 allowed_privs &= env->pmp_state.pmp[i].cfg_reg; 283 } 284 285 if ((privs & allowed_privs) == privs) { 286 ret = 1; 287 break; 288 } else { 289 ret = 0; 290 break; 291 } 292 } 293 } 294 295 /* No rule matched */ 296 if (ret == -1) { 297 if (mode == PRV_M) { 298 ret = 1; /* Privileged spec v1.10 states if no PMP entry matches an 299 * M-Mode access, the access succeeds */ 300 } else { 301 ret = 0; /* Other modes are not allowed to succeed if they don't 302 * match a rule, but there are rules. We've checked for 303 * no rule earlier in this function. */ 304 } 305 } 306 307 return ret == 1 ? true : false; 308 } 309 310 311 /* 312 * Handle a write to a pmpcfg CSP 313 */ 314 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index, 315 target_ulong val) 316 { 317 int i; 318 uint8_t cfg_val; 319 320 trace_pmpcfg_csr_write(env->mhartid, reg_index, val); 321 322 if ((reg_index & 1) && (sizeof(target_ulong) == 8)) { 323 qemu_log_mask(LOG_GUEST_ERROR, 324 "ignoring pmpcfg write - incorrect address\n"); 325 return; 326 } 327 328 for (i = 0; i < sizeof(target_ulong); i++) { 329 cfg_val = (val >> 8 * i) & 0xff; 330 pmp_write_cfg(env, (reg_index * 4) + i, cfg_val); 331 } 332 } 333 334 335 /* 336 * Handle a read from a pmpcfg CSP 337 */ 338 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index) 339 { 340 int i; 341 target_ulong cfg_val = 0; 342 target_ulong val = 0; 343 344 for (i = 0; i < sizeof(target_ulong); i++) { 345 val = pmp_read_cfg(env, (reg_index * 4) + i); 346 cfg_val |= (val << (i * 8)); 347 } 348 trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val); 349 350 return cfg_val; 351 } 352 353 354 /* 355 * Handle a write to a pmpaddr CSP 356 */ 357 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index, 358 target_ulong val) 359 { 360 trace_pmpaddr_csr_write(env->mhartid, addr_index, val); 361 if (addr_index < MAX_RISCV_PMPS) { 362 if (!pmp_is_locked(env, addr_index)) { 363 env->pmp_state.pmp[addr_index].addr_reg = val; 364 pmp_update_rule(env, addr_index); 365 } else { 366 qemu_log_mask(LOG_GUEST_ERROR, 367 "ignoring pmpaddr write - locked\n"); 368 } 369 } else { 370 qemu_log_mask(LOG_GUEST_ERROR, 371 "ignoring pmpaddr write - out of bounds\n"); 372 } 373 } 374 375 376 /* 377 * Handle a read from a pmpaddr CSP 378 */ 379 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index) 380 { 381 target_ulong val = 0; 382 383 if (addr_index < MAX_RISCV_PMPS) { 384 val = env->pmp_state.pmp[addr_index].addr_reg; 385 trace_pmpaddr_csr_read(env->mhartid, addr_index, val); 386 } else { 387 qemu_log_mask(LOG_GUEST_ERROR, 388 "ignoring pmpaddr read - out of bounds\n"); 389 } 390 391 return val; 392 } 393 394 /* 395 * Calculate the TLB size if the start address or the end address of 396 * PMP entry is presented in thie TLB page. 397 */ 398 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index, 399 target_ulong tlb_sa, target_ulong tlb_ea) 400 { 401 target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa; 402 target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea; 403 404 if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) { 405 return pmp_ea - pmp_sa + 1; 406 } 407 408 if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) { 409 return tlb_ea - pmp_sa + 1; 410 } 411 412 if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) { 413 return pmp_ea - tlb_sa + 1; 414 } 415 416 return 0; 417 } 418 419 /* 420 * Check is there a PMP entry which range covers this page. If so, 421 * try to find the minimum granularity for the TLB size. 422 */ 423 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa, 424 target_ulong *tlb_size) 425 { 426 int i; 427 target_ulong val; 428 target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1); 429 430 for (i = 0; i < MAX_RISCV_PMPS; i++) { 431 val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea); 432 if (val) { 433 if (*tlb_size == 0 || *tlb_size > val) { 434 *tlb_size = val; 435 } 436 } 437 } 438 439 if (*tlb_size != 0) { 440 return true; 441 } 442 443 return false; 444 } 445