xref: /openbmc/qemu/target/riscv/pmp.c (revision 2c2e0f28)
1 /*
2  * QEMU RISC-V PMP (Physical Memory Protection)
3  *
4  * Author: Daire McNamara, daire.mcnamara@emdalo.com
5  *         Ivan Griffin, ivan.griffin@emdalo.com
6  *
7  * This provides a RISC-V Physical Memory Protection implementation
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2 or later, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 /*
23  * PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #include "trace.h"
31 #include "exec/exec-all.h"
32 
33 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
34     uint8_t val);
35 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
36 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
37 
38 /*
39  * Accessor method to extract address matching type 'a field' from cfg reg
40  */
41 static inline uint8_t pmp_get_a_field(uint8_t cfg)
42 {
43     uint8_t a = cfg >> 3;
44     return a & 0x3;
45 }
46 
47 /*
48  * Check whether a PMP is locked or not.
49  */
50 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
51 {
52 
53     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
54         return 1;
55     }
56 
57     /* Top PMP has no 'next' to check */
58     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
59         return 0;
60     }
61 
62     /* In TOR mode, need to check the lock bit of the next pmp
63      * (if there is a next)
64      */
65     const uint8_t a_field =
66         pmp_get_a_field(env->pmp_state.pmp[pmp_index + 1].cfg_reg);
67     if ((env->pmp_state.pmp[pmp_index + 1u].cfg_reg & PMP_LOCK) &&
68          (PMP_AMATCH_TOR == a_field)) {
69         return 1;
70     }
71 
72     return 0;
73 }
74 
75 /*
76  * Count the number of active rules.
77  */
78 uint32_t pmp_get_num_rules(CPURISCVState *env)
79 {
80      return env->pmp_state.num_rules;
81 }
82 
83 /*
84  * Accessor to get the cfg reg for a specific PMP/HART
85  */
86 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
87 {
88     if (pmp_index < MAX_RISCV_PMPS) {
89         return env->pmp_state.pmp[pmp_index].cfg_reg;
90     }
91 
92     return 0;
93 }
94 
95 
96 /*
97  * Accessor to set the cfg reg for a specific PMP/HART
98  * Bounds checks and relevant lock bit.
99  */
100 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
101 {
102     if (pmp_index < MAX_RISCV_PMPS) {
103         if (!pmp_is_locked(env, pmp_index)) {
104             env->pmp_state.pmp[pmp_index].cfg_reg = val;
105             pmp_update_rule(env, pmp_index);
106         } else {
107             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
108         }
109     } else {
110         qemu_log_mask(LOG_GUEST_ERROR,
111                       "ignoring pmpcfg write - out of bounds\n");
112     }
113 }
114 
115 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
116 {
117     /*
118        aaaa...aaa0   8-byte NAPOT range
119        aaaa...aa01   16-byte NAPOT range
120        aaaa...a011   32-byte NAPOT range
121        ...
122        aa01...1111   2^XLEN-byte NAPOT range
123        a011...1111   2^(XLEN+1)-byte NAPOT range
124        0111...1111   2^(XLEN+2)-byte NAPOT range
125        1111...1111   Reserved
126     */
127     if (a == -1) {
128         *sa = 0u;
129         *ea = -1;
130         return;
131     } else {
132         target_ulong t1 = ctz64(~a);
133         target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
134         target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
135         *sa = base;
136         *ea = base + range;
137     }
138 }
139 
140 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
141 {
142     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
143     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
144     target_ulong prev_addr = 0u;
145     target_ulong sa = 0u;
146     target_ulong ea = 0u;
147 
148     if (pmp_index >= 1u) {
149         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
150     }
151 
152     switch (pmp_get_a_field(this_cfg)) {
153     case PMP_AMATCH_OFF:
154         sa = 0u;
155         ea = -1;
156         break;
157 
158     case PMP_AMATCH_TOR:
159         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
160         ea = (this_addr << 2) - 1u;
161         break;
162 
163     case PMP_AMATCH_NA4:
164         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
165         ea = (sa + 4u) - 1u;
166         break;
167 
168     case PMP_AMATCH_NAPOT:
169         pmp_decode_napot(this_addr, &sa, &ea);
170         break;
171 
172     default:
173         sa = 0u;
174         ea = 0u;
175         break;
176     }
177 
178     env->pmp_state.addr[pmp_index].sa = sa;
179     env->pmp_state.addr[pmp_index].ea = ea;
180 }
181 
182 void pmp_update_rule_nums(CPURISCVState *env)
183 {
184     int i;
185 
186     env->pmp_state.num_rules = 0;
187     for (i = 0; i < MAX_RISCV_PMPS; i++) {
188         const uint8_t a_field =
189             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
190         if (PMP_AMATCH_OFF != a_field) {
191             env->pmp_state.num_rules++;
192         }
193     }
194 }
195 
196 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
197  *   end address values.
198  *   This function is called relatively infrequently whereas the check that
199  *   an address is within a pmp rule is called often, so optimise that one
200  */
201 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
202 {
203     pmp_update_rule_addr(env, pmp_index);
204     pmp_update_rule_nums(env);
205 }
206 
207 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
208 {
209     int result = 0;
210 
211     if ((addr >= env->pmp_state.addr[pmp_index].sa)
212         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
213         result = 1;
214     } else {
215         result = 0;
216     }
217 
218     return result;
219 }
220 
221 /*
222  * Check if the address has required RWX privs when no PMP entry is matched.
223  */
224 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
225     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
226     target_ulong mode)
227 {
228     bool ret;
229 
230     if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
231         /*
232          * Privileged spec v1.10 states if HW doesn't implement any PMP entry
233          * or no PMP entry matches an M-Mode access, the access succeeds.
234          */
235         ret = true;
236         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
237     } else {
238         /*
239          * Other modes are not allowed to succeed if they don't * match a rule,
240          * but there are rules. We've checked for no rule earlier in this
241          * function.
242          */
243         ret = false;
244         *allowed_privs = 0;
245     }
246 
247     return ret;
248 }
249 
250 
251 /*
252  * Public Interface
253  */
254 
255 /*
256  * Check if the address has required RWX privs to complete desired operation
257  */
258 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
259     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
260     target_ulong mode)
261 {
262     int i = 0;
263     int ret = -1;
264     int pmp_size = 0;
265     target_ulong s = 0;
266     target_ulong e = 0;
267 
268     /* Short cut if no rules */
269     if (0 == pmp_get_num_rules(env)) {
270         return pmp_hart_has_privs_default(env, addr, size, privs,
271                                           allowed_privs, mode);
272     }
273 
274     if (size == 0) {
275         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
276             /*
277              * If size is unknown (0), assume that all bytes
278              * from addr to the end of the page will be accessed.
279              */
280             pmp_size = -(addr | TARGET_PAGE_MASK);
281         } else {
282             pmp_size = sizeof(target_ulong);
283         }
284     } else {
285         pmp_size = size;
286     }
287 
288     /* 1.10 draft priv spec states there is an implicit order
289          from low to high */
290     for (i = 0; i < MAX_RISCV_PMPS; i++) {
291         s = pmp_is_in_range(env, i, addr);
292         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
293 
294         /* partially inside */
295         if ((s + e) == 1) {
296             qemu_log_mask(LOG_GUEST_ERROR,
297                           "pmp violation - access is partially inside\n");
298             ret = 0;
299             break;
300         }
301 
302         /* fully inside */
303         const uint8_t a_field =
304             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
305 
306         /*
307          * If the PMP entry is not off and the address is in range, do the priv
308          * check
309          */
310         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
311             *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
312             if ((mode != PRV_M) || pmp_is_locked(env, i)) {
313                 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
314             }
315 
316             ret = ((privs & *allowed_privs) == privs);
317             break;
318         }
319     }
320 
321     /* No rule matched */
322     if (ret == -1) {
323         return pmp_hart_has_privs_default(env, addr, size, privs,
324                                           allowed_privs, mode);
325     }
326 
327     return ret == 1 ? true : false;
328 }
329 
330 /*
331  * Handle a write to a pmpcfg CSP
332  */
333 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
334     target_ulong val)
335 {
336     int i;
337     uint8_t cfg_val;
338 
339     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
340 
341     if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
342         qemu_log_mask(LOG_GUEST_ERROR,
343                       "ignoring pmpcfg write - incorrect address\n");
344         return;
345     }
346 
347     for (i = 0; i < sizeof(target_ulong); i++) {
348         cfg_val = (val >> 8 * i)  & 0xff;
349         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
350     }
351 
352     /* If PMP permission of any addr has been changed, flush TLB pages. */
353     tlb_flush(env_cpu(env));
354 }
355 
356 
357 /*
358  * Handle a read from a pmpcfg CSP
359  */
360 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
361 {
362     int i;
363     target_ulong cfg_val = 0;
364     target_ulong val = 0;
365 
366     for (i = 0; i < sizeof(target_ulong); i++) {
367         val = pmp_read_cfg(env, (reg_index * 4) + i);
368         cfg_val |= (val << (i * 8));
369     }
370     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
371 
372     return cfg_val;
373 }
374 
375 
376 /*
377  * Handle a write to a pmpaddr CSP
378  */
379 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
380     target_ulong val)
381 {
382     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
383     if (addr_index < MAX_RISCV_PMPS) {
384         if (!pmp_is_locked(env, addr_index)) {
385             env->pmp_state.pmp[addr_index].addr_reg = val;
386             pmp_update_rule(env, addr_index);
387         } else {
388             qemu_log_mask(LOG_GUEST_ERROR,
389                           "ignoring pmpaddr write - locked\n");
390         }
391     } else {
392         qemu_log_mask(LOG_GUEST_ERROR,
393                       "ignoring pmpaddr write - out of bounds\n");
394     }
395 }
396 
397 
398 /*
399  * Handle a read from a pmpaddr CSP
400  */
401 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
402 {
403     target_ulong val = 0;
404 
405     if (addr_index < MAX_RISCV_PMPS) {
406         val = env->pmp_state.pmp[addr_index].addr_reg;
407         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
408     } else {
409         qemu_log_mask(LOG_GUEST_ERROR,
410                       "ignoring pmpaddr read - out of bounds\n");
411     }
412 
413     return val;
414 }
415 
416 /*
417  * Calculate the TLB size if the start address or the end address of
418  * PMP entry is presented in thie TLB page.
419  */
420 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
421                                      target_ulong tlb_sa, target_ulong tlb_ea)
422 {
423     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
424     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
425 
426     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
427         return pmp_ea - pmp_sa + 1;
428     }
429 
430     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
431         return tlb_ea - pmp_sa + 1;
432     }
433 
434     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
435         return pmp_ea - tlb_sa + 1;
436     }
437 
438     return 0;
439 }
440 
441 /*
442  * Check is there a PMP entry which range covers this page. If so,
443  * try to find the minimum granularity for the TLB size.
444  */
445 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
446                          target_ulong *tlb_size)
447 {
448     int i;
449     target_ulong val;
450     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
451 
452     for (i = 0; i < MAX_RISCV_PMPS; i++) {
453         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
454         if (val) {
455             if (*tlb_size == 0 || *tlb_size > val) {
456                 *tlb_size = val;
457             }
458         }
459     }
460 
461     if (*tlb_size != 0) {
462         return true;
463     }
464 
465     return false;
466 }
467 
468 /*
469  * Convert PMP privilege to TLB page privilege.
470  */
471 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
472 {
473     int prot = 0;
474 
475     if (pmp_priv & PMP_READ) {
476         prot |= PAGE_READ;
477     }
478     if (pmp_priv & PMP_WRITE) {
479         prot |= PAGE_WRITE;
480     }
481     if (pmp_priv & PMP_EXEC) {
482         prot |= PAGE_EXEC;
483     }
484 
485     return prot;
486 }
487