xref: /openbmc/qemu/target/riscv/pmp.c (revision 2582a95c)
1 /*
2  * QEMU RISC-V PMP (Physical Memory Protection)
3  *
4  * Author: Daire McNamara, daire.mcnamara@emdalo.com
5  *         Ivan Griffin, ivan.griffin@emdalo.com
6  *
7  * This provides a RISC-V Physical Memory Protection implementation
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2 or later, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 /*
23  * PMP (Physical Memory Protection) is as-of-yet unused and needs testing.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #include "trace.h"
31 #include "exec/exec-all.h"
32 
33 static void pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
34     uint8_t val);
35 static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
36 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index);
37 
38 /*
39  * Accessor method to extract address matching type 'a field' from cfg reg
40  */
41 static inline uint8_t pmp_get_a_field(uint8_t cfg)
42 {
43     uint8_t a = cfg >> 3;
44     return a & 0x3;
45 }
46 
47 /*
48  * Check whether a PMP is locked or not.
49  */
50 static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
51 {
52 
53     if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
54         return 1;
55     }
56 
57     /* Top PMP has no 'next' to check */
58     if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
59         return 0;
60     }
61 
62     return 0;
63 }
64 
65 /*
66  * Count the number of active rules.
67  */
68 uint32_t pmp_get_num_rules(CPURISCVState *env)
69 {
70      return env->pmp_state.num_rules;
71 }
72 
73 /*
74  * Accessor to get the cfg reg for a specific PMP/HART
75  */
76 static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
77 {
78     if (pmp_index < MAX_RISCV_PMPS) {
79         return env->pmp_state.pmp[pmp_index].cfg_reg;
80     }
81 
82     return 0;
83 }
84 
85 
86 /*
87  * Accessor to set the cfg reg for a specific PMP/HART
88  * Bounds checks and relevant lock bit.
89  */
90 static void pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
91 {
92     if (pmp_index < MAX_RISCV_PMPS) {
93         if (!pmp_is_locked(env, pmp_index)) {
94             env->pmp_state.pmp[pmp_index].cfg_reg = val;
95             pmp_update_rule(env, pmp_index);
96         } else {
97             qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
98         }
99     } else {
100         qemu_log_mask(LOG_GUEST_ERROR,
101                       "ignoring pmpcfg write - out of bounds\n");
102     }
103 }
104 
105 static void pmp_decode_napot(target_ulong a, target_ulong *sa, target_ulong *ea)
106 {
107     /*
108        aaaa...aaa0   8-byte NAPOT range
109        aaaa...aa01   16-byte NAPOT range
110        aaaa...a011   32-byte NAPOT range
111        ...
112        aa01...1111   2^XLEN-byte NAPOT range
113        a011...1111   2^(XLEN+1)-byte NAPOT range
114        0111...1111   2^(XLEN+2)-byte NAPOT range
115        1111...1111   Reserved
116     */
117     if (a == -1) {
118         *sa = 0u;
119         *ea = -1;
120         return;
121     } else {
122         target_ulong t1 = ctz64(~a);
123         target_ulong base = (a & ~(((target_ulong)1 << t1) - 1)) << 2;
124         target_ulong range = ((target_ulong)1 << (t1 + 3)) - 1;
125         *sa = base;
126         *ea = base + range;
127     }
128 }
129 
130 void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
131 {
132     uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
133     target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
134     target_ulong prev_addr = 0u;
135     target_ulong sa = 0u;
136     target_ulong ea = 0u;
137 
138     if (pmp_index >= 1u) {
139         prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
140     }
141 
142     switch (pmp_get_a_field(this_cfg)) {
143     case PMP_AMATCH_OFF:
144         sa = 0u;
145         ea = -1;
146         break;
147 
148     case PMP_AMATCH_TOR:
149         sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
150         ea = (this_addr << 2) - 1u;
151         break;
152 
153     case PMP_AMATCH_NA4:
154         sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
155         ea = (sa + 4u) - 1u;
156         break;
157 
158     case PMP_AMATCH_NAPOT:
159         pmp_decode_napot(this_addr, &sa, &ea);
160         break;
161 
162     default:
163         sa = 0u;
164         ea = 0u;
165         break;
166     }
167 
168     env->pmp_state.addr[pmp_index].sa = sa;
169     env->pmp_state.addr[pmp_index].ea = ea;
170 }
171 
172 void pmp_update_rule_nums(CPURISCVState *env)
173 {
174     int i;
175 
176     env->pmp_state.num_rules = 0;
177     for (i = 0; i < MAX_RISCV_PMPS; i++) {
178         const uint8_t a_field =
179             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
180         if (PMP_AMATCH_OFF != a_field) {
181             env->pmp_state.num_rules++;
182         }
183     }
184 }
185 
186 /* Convert cfg/addr reg values here into simple 'sa' --> start address and 'ea'
187  *   end address values.
188  *   This function is called relatively infrequently whereas the check that
189  *   an address is within a pmp rule is called often, so optimise that one
190  */
191 static void pmp_update_rule(CPURISCVState *env, uint32_t pmp_index)
192 {
193     pmp_update_rule_addr(env, pmp_index);
194     pmp_update_rule_nums(env);
195 }
196 
197 static int pmp_is_in_range(CPURISCVState *env, int pmp_index, target_ulong addr)
198 {
199     int result = 0;
200 
201     if ((addr >= env->pmp_state.addr[pmp_index].sa)
202         && (addr <= env->pmp_state.addr[pmp_index].ea)) {
203         result = 1;
204     } else {
205         result = 0;
206     }
207 
208     return result;
209 }
210 
211 /*
212  * Check if the address has required RWX privs when no PMP entry is matched.
213  */
214 static bool pmp_hart_has_privs_default(CPURISCVState *env, target_ulong addr,
215     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
216     target_ulong mode)
217 {
218     bool ret;
219 
220     if ((!riscv_feature(env, RISCV_FEATURE_PMP)) || (mode == PRV_M)) {
221         /*
222          * Privileged spec v1.10 states if HW doesn't implement any PMP entry
223          * or no PMP entry matches an M-Mode access, the access succeeds.
224          */
225         ret = true;
226         *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
227     } else {
228         /*
229          * Other modes are not allowed to succeed if they don't * match a rule,
230          * but there are rules. We've checked for no rule earlier in this
231          * function.
232          */
233         ret = false;
234         *allowed_privs = 0;
235     }
236 
237     return ret;
238 }
239 
240 
241 /*
242  * Public Interface
243  */
244 
245 /*
246  * Check if the address has required RWX privs to complete desired operation
247  */
248 bool pmp_hart_has_privs(CPURISCVState *env, target_ulong addr,
249     target_ulong size, pmp_priv_t privs, pmp_priv_t *allowed_privs,
250     target_ulong mode)
251 {
252     int i = 0;
253     int ret = -1;
254     int pmp_size = 0;
255     target_ulong s = 0;
256     target_ulong e = 0;
257 
258     /* Short cut if no rules */
259     if (0 == pmp_get_num_rules(env)) {
260         return pmp_hart_has_privs_default(env, addr, size, privs,
261                                           allowed_privs, mode);
262     }
263 
264     if (size == 0) {
265         if (riscv_feature(env, RISCV_FEATURE_MMU)) {
266             /*
267              * If size is unknown (0), assume that all bytes
268              * from addr to the end of the page will be accessed.
269              */
270             pmp_size = -(addr | TARGET_PAGE_MASK);
271         } else {
272             pmp_size = sizeof(target_ulong);
273         }
274     } else {
275         pmp_size = size;
276     }
277 
278     /* 1.10 draft priv spec states there is an implicit order
279          from low to high */
280     for (i = 0; i < MAX_RISCV_PMPS; i++) {
281         s = pmp_is_in_range(env, i, addr);
282         e = pmp_is_in_range(env, i, addr + pmp_size - 1);
283 
284         /* partially inside */
285         if ((s + e) == 1) {
286             qemu_log_mask(LOG_GUEST_ERROR,
287                           "pmp violation - access is partially inside\n");
288             ret = 0;
289             break;
290         }
291 
292         /* fully inside */
293         const uint8_t a_field =
294             pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
295 
296         /*
297          * If the PMP entry is not off and the address is in range, do the priv
298          * check
299          */
300         if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
301             *allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
302             if ((mode != PRV_M) || pmp_is_locked(env, i)) {
303                 *allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
304             }
305 
306             ret = ((privs & *allowed_privs) == privs);
307             break;
308         }
309     }
310 
311     /* No rule matched */
312     if (ret == -1) {
313         return pmp_hart_has_privs_default(env, addr, size, privs,
314                                           allowed_privs, mode);
315     }
316 
317     return ret == 1 ? true : false;
318 }
319 
320 /*
321  * Handle a write to a pmpcfg CSP
322  */
323 void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
324     target_ulong val)
325 {
326     int i;
327     uint8_t cfg_val;
328 
329     trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
330 
331     if ((reg_index & 1) && (sizeof(target_ulong) == 8)) {
332         qemu_log_mask(LOG_GUEST_ERROR,
333                       "ignoring pmpcfg write - incorrect address\n");
334         return;
335     }
336 
337     for (i = 0; i < sizeof(target_ulong); i++) {
338         cfg_val = (val >> 8 * i)  & 0xff;
339         pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
340     }
341 
342     /* If PMP permission of any addr has been changed, flush TLB pages. */
343     tlb_flush(env_cpu(env));
344 }
345 
346 
347 /*
348  * Handle a read from a pmpcfg CSP
349  */
350 target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
351 {
352     int i;
353     target_ulong cfg_val = 0;
354     target_ulong val = 0;
355 
356     for (i = 0; i < sizeof(target_ulong); i++) {
357         val = pmp_read_cfg(env, (reg_index * 4) + i);
358         cfg_val |= (val << (i * 8));
359     }
360     trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
361 
362     return cfg_val;
363 }
364 
365 
366 /*
367  * Handle a write to a pmpaddr CSP
368  */
369 void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
370     target_ulong val)
371 {
372     trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
373 
374     if (addr_index < MAX_RISCV_PMPS) {
375         /*
376          * In TOR mode, need to check the lock bit of the next pmp
377          * (if there is a next).
378          */
379         if (addr_index + 1 < MAX_RISCV_PMPS) {
380             uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
381 
382             if (pmp_cfg & PMP_LOCK &&
383                 PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg)) {
384                 qemu_log_mask(LOG_GUEST_ERROR,
385                               "ignoring pmpaddr write - pmpcfg + 1 locked\n");
386                 return;
387             }
388         }
389 
390         if (!pmp_is_locked(env, addr_index)) {
391             env->pmp_state.pmp[addr_index].addr_reg = val;
392             pmp_update_rule(env, addr_index);
393         } else {
394             qemu_log_mask(LOG_GUEST_ERROR,
395                           "ignoring pmpaddr write - locked\n");
396         }
397     } else {
398         qemu_log_mask(LOG_GUEST_ERROR,
399                       "ignoring pmpaddr write - out of bounds\n");
400     }
401 }
402 
403 
404 /*
405  * Handle a read from a pmpaddr CSP
406  */
407 target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
408 {
409     target_ulong val = 0;
410 
411     if (addr_index < MAX_RISCV_PMPS) {
412         val = env->pmp_state.pmp[addr_index].addr_reg;
413         trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
414     } else {
415         qemu_log_mask(LOG_GUEST_ERROR,
416                       "ignoring pmpaddr read - out of bounds\n");
417     }
418 
419     return val;
420 }
421 
422 /*
423  * Handle a write to a mseccfg CSR
424  */
425 void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
426 {
427     int i;
428 
429     trace_mseccfg_csr_write(env->mhartid, val);
430 
431     /* RLB cannot be enabled if it's already 0 and if any regions are locked */
432     if (!MSECCFG_RLB_ISSET(env)) {
433         for (i = 0; i < MAX_RISCV_PMPS; i++) {
434             if (pmp_is_locked(env, i)) {
435                 val &= ~MSECCFG_RLB;
436                 break;
437             }
438         }
439     }
440 
441     /* Sticky bits */
442     val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
443 
444     env->mseccfg = val;
445 }
446 
447 /*
448  * Handle a read from a mseccfg CSR
449  */
450 target_ulong mseccfg_csr_read(CPURISCVState *env)
451 {
452     trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
453     return env->mseccfg;
454 }
455 
456 /*
457  * Calculate the TLB size if the start address or the end address of
458  * PMP entry is presented in thie TLB page.
459  */
460 static target_ulong pmp_get_tlb_size(CPURISCVState *env, int pmp_index,
461                                      target_ulong tlb_sa, target_ulong tlb_ea)
462 {
463     target_ulong pmp_sa = env->pmp_state.addr[pmp_index].sa;
464     target_ulong pmp_ea = env->pmp_state.addr[pmp_index].ea;
465 
466     if (pmp_sa >= tlb_sa && pmp_ea <= tlb_ea) {
467         return pmp_ea - pmp_sa + 1;
468     }
469 
470     if (pmp_sa >= tlb_sa && pmp_sa <= tlb_ea && pmp_ea >= tlb_ea) {
471         return tlb_ea - pmp_sa + 1;
472     }
473 
474     if (pmp_ea <= tlb_ea && pmp_ea >= tlb_sa && pmp_sa <= tlb_sa) {
475         return pmp_ea - tlb_sa + 1;
476     }
477 
478     return 0;
479 }
480 
481 /*
482  * Check is there a PMP entry which range covers this page. If so,
483  * try to find the minimum granularity for the TLB size.
484  */
485 bool pmp_is_range_in_tlb(CPURISCVState *env, hwaddr tlb_sa,
486                          target_ulong *tlb_size)
487 {
488     int i;
489     target_ulong val;
490     target_ulong tlb_ea = (tlb_sa + TARGET_PAGE_SIZE - 1);
491 
492     for (i = 0; i < MAX_RISCV_PMPS; i++) {
493         val = pmp_get_tlb_size(env, i, tlb_sa, tlb_ea);
494         if (val) {
495             if (*tlb_size == 0 || *tlb_size > val) {
496                 *tlb_size = val;
497             }
498         }
499     }
500 
501     if (*tlb_size != 0) {
502         return true;
503     }
504 
505     return false;
506 }
507 
508 /*
509  * Convert PMP privilege to TLB page privilege.
510  */
511 int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
512 {
513     int prot = 0;
514 
515     if (pmp_priv & PMP_READ) {
516         prot |= PAGE_READ;
517     }
518     if (pmp_priv & PMP_WRITE) {
519         prot |= PAGE_WRITE;
520     }
521     if (pmp_priv & PMP_EXEC) {
522         prot |= PAGE_EXEC;
523     }
524 
525     return prot;
526 }
527