xref: /openbmc/qemu/target/riscv/kvm/kvm-cpu.c (revision bef6a77f)
1 /*
2  * RISC-V implementation of KVM hooks
3  *
4  * Copyright (c) 2020 Huawei Technologies Co., Ltd
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include <sys/ioctl.h>
21 #include <sys/prctl.h>
22 
23 #include <linux/kvm.h>
24 
25 #include "qemu/timer.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/kvm_int.h"
33 #include "cpu.h"
34 #include "trace.h"
35 #include "hw/core/accel-cpu.h"
36 #include "hw/pci/pci.h"
37 #include "exec/memattrs.h"
38 #include "exec/address-spaces.h"
39 #include "hw/boards.h"
40 #include "hw/irq.h"
41 #include "hw/intc/riscv_imsic.h"
42 #include "qemu/log.h"
43 #include "hw/loader.h"
44 #include "kvm_riscv.h"
45 #include "sbi_ecall_interface.h"
46 #include "chardev/char-fe.h"
47 #include "migration/misc.h"
48 #include "sysemu/runstate.h"
49 #include "hw/riscv/numa.h"
50 
51 #define PR_RISCV_V_SET_CONTROL            69
52 #define PR_RISCV_V_VSTATE_CTRL_ON          2
53 
54 void riscv_kvm_aplic_request(void *opaque, int irq, int level)
55 {
56     kvm_set_irq(kvm_state, irq, !!level);
57 }
58 
59 static bool cap_has_mp_state;
60 
61 static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type,
62                                  uint64_t idx)
63 {
64     uint64_t id = KVM_REG_RISCV | type | idx;
65 
66     switch (riscv_cpu_mxl(env)) {
67     case MXL_RV32:
68         id |= KVM_REG_SIZE_U32;
69         break;
70     case MXL_RV64:
71         id |= KVM_REG_SIZE_U64;
72         break;
73     default:
74         g_assert_not_reached();
75     }
76     return id;
77 }
78 
79 static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx)
80 {
81     return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx;
82 }
83 
84 static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx)
85 {
86     return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx;
87 }
88 
89 static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b)
90 {
91     uint64_t size_ctz = __builtin_ctz(size_b);
92 
93     return id | (size_ctz << KVM_REG_SIZE_SHIFT);
94 }
95 
96 static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu,
97                                         uint64_t idx)
98 {
99     uint64_t id;
100     size_t size_b;
101 
102     g_assert(idx < 32);
103 
104     id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx);
105     size_b = cpu->cfg.vlenb;
106 
107     return kvm_encode_reg_size_id(id, size_b);
108 }
109 
110 #define RISCV_CORE_REG(env, name) \
111     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \
112                            KVM_REG_RISCV_CORE_REG(name))
113 
114 #define RISCV_CSR_REG(env, name) \
115     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \
116                            KVM_REG_RISCV_CSR_REG(name))
117 
118 #define RISCV_CONFIG_REG(env, name) \
119     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \
120                            KVM_REG_RISCV_CONFIG_REG(name))
121 
122 #define RISCV_TIMER_REG(name)  kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \
123                  KVM_REG_RISCV_TIMER_REG(name))
124 
125 #define RISCV_FP_F_REG(idx)  kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx)
126 
127 #define RISCV_FP_D_REG(idx)  kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx)
128 
129 #define RISCV_VECTOR_CSR_REG(env, name) \
130     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \
131                            KVM_REG_RISCV_VECTOR_CSR_REG(name))
132 
133 #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \
134     do { \
135         int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), &reg); \
136         if (_ret) { \
137             return _ret; \
138         } \
139     } while (0)
140 
141 #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \
142     do { \
143         int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), &reg); \
144         if (_ret) { \
145             return _ret; \
146         } \
147     } while (0)
148 
149 #define KVM_RISCV_GET_TIMER(cs, name, reg) \
150     do { \
151         int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), &reg); \
152         if (ret) { \
153             abort(); \
154         } \
155     } while (0)
156 
157 #define KVM_RISCV_SET_TIMER(cs, name, reg) \
158     do { \
159         int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), &reg); \
160         if (ret) { \
161             abort(); \
162         } \
163     } while (0)
164 
165 typedef struct KVMCPUConfig {
166     const char *name;
167     const char *description;
168     target_ulong offset;
169     uint64_t kvm_reg_id;
170     bool user_set;
171     bool supported;
172 } KVMCPUConfig;
173 
174 #define KVM_MISA_CFG(_bit, _reg_id) \
175     {.offset = _bit, .kvm_reg_id = _reg_id}
176 
177 /* KVM ISA extensions */
178 static KVMCPUConfig kvm_misa_ext_cfgs[] = {
179     KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A),
180     KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C),
181     KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D),
182     KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F),
183     KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H),
184     KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I),
185     KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M),
186     KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V),
187 };
188 
189 static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v,
190                                      const char *name,
191                                      void *opaque, Error **errp)
192 {
193     KVMCPUConfig *misa_ext_cfg = opaque;
194     target_ulong misa_bit = misa_ext_cfg->offset;
195     RISCVCPU *cpu = RISCV_CPU(obj);
196     CPURISCVState *env = &cpu->env;
197     bool value = env->misa_ext_mask & misa_bit;
198 
199     visit_type_bool(v, name, &value, errp);
200 }
201 
202 static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v,
203                                      const char *name,
204                                      void *opaque, Error **errp)
205 {
206     KVMCPUConfig *misa_ext_cfg = opaque;
207     target_ulong misa_bit = misa_ext_cfg->offset;
208     RISCVCPU *cpu = RISCV_CPU(obj);
209     CPURISCVState *env = &cpu->env;
210     bool value, host_bit;
211 
212     if (!visit_type_bool(v, name, &value, errp)) {
213         return;
214     }
215 
216     host_bit = env->misa_ext_mask & misa_bit;
217 
218     if (value == host_bit) {
219         return;
220     }
221 
222     if (!value) {
223         misa_ext_cfg->user_set = true;
224         return;
225     }
226 
227     /*
228      * Forbid users to enable extensions that aren't
229      * available in the hart.
230      */
231     error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not "
232                "enabled in the host", misa_ext_cfg->name);
233 }
234 
235 static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs)
236 {
237     CPURISCVState *env = &cpu->env;
238     uint64_t id, reg;
239     int i, ret;
240 
241     for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
242         KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
243         target_ulong misa_bit = misa_cfg->offset;
244 
245         if (!misa_cfg->user_set) {
246             continue;
247         }
248 
249         /* If we're here we're going to disable the MISA bit */
250         reg = 0;
251         id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
252                                     misa_cfg->kvm_reg_id);
253         ret = kvm_set_one_reg(cs, id, &reg);
254         if (ret != 0) {
255             /*
256              * We're not checking for -EINVAL because if the bit is about
257              * to be disabled, it means that it was already enabled by
258              * KVM. We determined that by fetching the 'isa' register
259              * during init() time. Any error at this point is worth
260              * aborting.
261              */
262             error_report("Unable to set KVM reg %s, error %d",
263                          misa_cfg->name, ret);
264             exit(EXIT_FAILURE);
265         }
266         env->misa_ext &= ~misa_bit;
267     }
268 }
269 
270 #define KVM_EXT_CFG(_name, _prop, _reg_id) \
271     {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \
272      .kvm_reg_id = _reg_id}
273 
274 static KVMCPUConfig kvm_multi_ext_cfgs[] = {
275     KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM),
276     KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ),
277     KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR),
278     KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND),
279     KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR),
280     KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI),
281     KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL),
282     KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE),
283     KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM),
284     KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA),
285     KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH),
286     KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN),
287     KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA),
288     KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB),
289     KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC),
290     KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB),
291     KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC),
292     KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX),
293     KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS),
294     KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND),
295     KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE),
296     KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH),
297     KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR),
298     KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED),
299     KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH),
300     KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT),
301     KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB),
302     KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC),
303     KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH),
304     KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN),
305     KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB),
306     KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG),
307     KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED),
308     KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA),
309     KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB),
310     KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED),
311     KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH),
312     KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT),
313     KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN),
314     KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA),
315     KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC),
316     KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL),
317     KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT),
318     KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT),
319 };
320 
321 static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg)
322 {
323     return (void *)&cpu->cfg + kvmcfg->offset;
324 }
325 
326 static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext,
327                             uint32_t val)
328 {
329     bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
330 
331     *ext_enabled = val;
332 }
333 
334 static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu,
335                                 KVMCPUConfig *multi_ext)
336 {
337     bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
338 
339     return *ext_enabled;
340 }
341 
342 static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v,
343                                       const char *name,
344                                       void *opaque, Error **errp)
345 {
346     KVMCPUConfig *multi_ext_cfg = opaque;
347     RISCVCPU *cpu = RISCV_CPU(obj);
348     bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
349 
350     visit_type_bool(v, name, &value, errp);
351 }
352 
353 static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v,
354                                       const char *name,
355                                       void *opaque, Error **errp)
356 {
357     KVMCPUConfig *multi_ext_cfg = opaque;
358     RISCVCPU *cpu = RISCV_CPU(obj);
359     bool value, host_val;
360 
361     if (!visit_type_bool(v, name, &value, errp)) {
362         return;
363     }
364 
365     host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
366 
367     /*
368      * Ignore if the user is setting the same value
369      * as the host.
370      */
371     if (value == host_val) {
372         return;
373     }
374 
375     if (!multi_ext_cfg->supported) {
376         /*
377          * Error out if the user is trying to enable an
378          * extension that KVM doesn't support. Ignore
379          * option otherwise.
380          */
381         if (value) {
382             error_setg(errp, "KVM does not support disabling extension %s",
383                        multi_ext_cfg->name);
384         }
385 
386         return;
387     }
388 
389     multi_ext_cfg->user_set = true;
390     kvm_cpu_cfg_set(cpu, multi_ext_cfg, value);
391 }
392 
393 static KVMCPUConfig kvm_cbom_blocksize = {
394     .name = "cbom_blocksize",
395     .offset = CPU_CFG_OFFSET(cbom_blocksize),
396     .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size)
397 };
398 
399 static KVMCPUConfig kvm_cboz_blocksize = {
400     .name = "cboz_blocksize",
401     .offset = CPU_CFG_OFFSET(cboz_blocksize),
402     .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size)
403 };
404 
405 static KVMCPUConfig kvm_v_vlenb = {
406     .name = "vlenb",
407     .offset = CPU_CFG_OFFSET(vlenb),
408     .kvm_reg_id =  KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR |
409                    KVM_REG_RISCV_VECTOR_CSR_REG(vlenb)
410 };
411 
412 static KVMCPUConfig kvm_sbi_dbcn = {
413     .name = "sbi_dbcn",
414     .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 |
415                   KVM_REG_RISCV_SBI_EXT | KVM_RISCV_SBI_EXT_DBCN
416 };
417 
418 static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs)
419 {
420     CPURISCVState *env = &cpu->env;
421     uint64_t id, reg;
422     int i, ret;
423 
424     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
425         KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
426 
427         if (!multi_ext_cfg->user_set) {
428             continue;
429         }
430 
431         id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
432                                     multi_ext_cfg->kvm_reg_id);
433         reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
434         ret = kvm_set_one_reg(cs, id, &reg);
435         if (ret != 0) {
436             if (!reg && ret == -EINVAL) {
437                 warn_report("KVM cannot disable extension %s",
438                             multi_ext_cfg->name);
439             } else {
440                 error_report("Unable to enable extension %s in KVM, error %d",
441                              multi_ext_cfg->name, ret);
442                 exit(EXIT_FAILURE);
443             }
444         }
445     }
446 }
447 
448 static void cpu_get_cfg_unavailable(Object *obj, Visitor *v,
449                                     const char *name,
450                                     void *opaque, Error **errp)
451 {
452     bool value = false;
453 
454     visit_type_bool(v, name, &value, errp);
455 }
456 
457 static void cpu_set_cfg_unavailable(Object *obj, Visitor *v,
458                                     const char *name,
459                                     void *opaque, Error **errp)
460 {
461     const char *propname = opaque;
462     bool value;
463 
464     if (!visit_type_bool(v, name, &value, errp)) {
465         return;
466     }
467 
468     if (value) {
469         error_setg(errp, "'%s' is not available with KVM",
470                    propname);
471     }
472 }
473 
474 static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name)
475 {
476     /* Check if KVM created the property already */
477     if (object_property_find(obj, prop_name)) {
478         return;
479     }
480 
481     /*
482      * Set the default to disabled for every extension
483      * unknown to KVM and error out if the user attempts
484      * to enable any of them.
485      */
486     object_property_add(obj, prop_name, "bool",
487                         cpu_get_cfg_unavailable,
488                         cpu_set_cfg_unavailable,
489                         NULL, (void *)prop_name);
490 }
491 
492 static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj,
493                                         const RISCVCPUMultiExtConfig *array)
494 {
495     const RISCVCPUMultiExtConfig *prop;
496 
497     g_assert(array);
498 
499     for (prop = array; prop && prop->name; prop++) {
500         riscv_cpu_add_kvm_unavail_prop(obj, prop->name);
501     }
502 }
503 
504 static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj)
505 {
506     int i;
507 
508     riscv_add_satp_mode_properties(cpu_obj);
509 
510     for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
511         KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
512         int bit = misa_cfg->offset;
513 
514         misa_cfg->name = riscv_get_misa_ext_name(bit);
515         misa_cfg->description = riscv_get_misa_ext_description(bit);
516 
517         object_property_add(cpu_obj, misa_cfg->name, "bool",
518                             kvm_cpu_get_misa_ext_cfg,
519                             kvm_cpu_set_misa_ext_cfg,
520                             NULL, misa_cfg);
521         object_property_set_description(cpu_obj, misa_cfg->name,
522                                         misa_cfg->description);
523     }
524 
525     for (i = 0; misa_bits[i] != 0; i++) {
526         const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]);
527         riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name);
528     }
529 
530     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
531         KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i];
532 
533         object_property_add(cpu_obj, multi_cfg->name, "bool",
534                             kvm_cpu_get_multi_ext_cfg,
535                             kvm_cpu_set_multi_ext_cfg,
536                             NULL, multi_cfg);
537     }
538 
539     riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions);
540     riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts);
541     riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts);
542 
543    /* We don't have the needed KVM support for profiles */
544     for (i = 0; riscv_profiles[i] != NULL; i++) {
545         riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name);
546     }
547 }
548 
549 static int kvm_riscv_get_regs_core(CPUState *cs)
550 {
551     int ret = 0;
552     int i;
553     target_ulong reg;
554     CPURISCVState *env = &RISCV_CPU(cs)->env;
555 
556     ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), &reg);
557     if (ret) {
558         return ret;
559     }
560     env->pc = reg;
561 
562     for (i = 1; i < 32; i++) {
563         uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
564         ret = kvm_get_one_reg(cs, id, &reg);
565         if (ret) {
566             return ret;
567         }
568         env->gpr[i] = reg;
569     }
570 
571     return ret;
572 }
573 
574 static int kvm_riscv_put_regs_core(CPUState *cs)
575 {
576     int ret = 0;
577     int i;
578     target_ulong reg;
579     CPURISCVState *env = &RISCV_CPU(cs)->env;
580 
581     reg = env->pc;
582     ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), &reg);
583     if (ret) {
584         return ret;
585     }
586 
587     for (i = 1; i < 32; i++) {
588         uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
589         reg = env->gpr[i];
590         ret = kvm_set_one_reg(cs, id, &reg);
591         if (ret) {
592             return ret;
593         }
594     }
595 
596     return ret;
597 }
598 
599 static int kvm_riscv_get_regs_csr(CPUState *cs)
600 {
601     CPURISCVState *env = &RISCV_CPU(cs)->env;
602 
603     KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus);
604     KVM_RISCV_GET_CSR(cs, env, sie, env->mie);
605     KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec);
606     KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch);
607     KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc);
608     KVM_RISCV_GET_CSR(cs, env, scause, env->scause);
609     KVM_RISCV_GET_CSR(cs, env, stval, env->stval);
610     KVM_RISCV_GET_CSR(cs, env, sip, env->mip);
611     KVM_RISCV_GET_CSR(cs, env, satp, env->satp);
612 
613     return 0;
614 }
615 
616 static int kvm_riscv_put_regs_csr(CPUState *cs)
617 {
618     CPURISCVState *env = &RISCV_CPU(cs)->env;
619 
620     KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus);
621     KVM_RISCV_SET_CSR(cs, env, sie, env->mie);
622     KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec);
623     KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch);
624     KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc);
625     KVM_RISCV_SET_CSR(cs, env, scause, env->scause);
626     KVM_RISCV_SET_CSR(cs, env, stval, env->stval);
627     KVM_RISCV_SET_CSR(cs, env, sip, env->mip);
628     KVM_RISCV_SET_CSR(cs, env, satp, env->satp);
629 
630     return 0;
631 }
632 
633 static int kvm_riscv_get_regs_fp(CPUState *cs)
634 {
635     int ret = 0;
636     int i;
637     CPURISCVState *env = &RISCV_CPU(cs)->env;
638 
639     if (riscv_has_ext(env, RVD)) {
640         uint64_t reg;
641         for (i = 0; i < 32; i++) {
642             ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), &reg);
643             if (ret) {
644                 return ret;
645             }
646             env->fpr[i] = reg;
647         }
648         return ret;
649     }
650 
651     if (riscv_has_ext(env, RVF)) {
652         uint32_t reg;
653         for (i = 0; i < 32; i++) {
654             ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), &reg);
655             if (ret) {
656                 return ret;
657             }
658             env->fpr[i] = reg;
659         }
660         return ret;
661     }
662 
663     return ret;
664 }
665 
666 static int kvm_riscv_put_regs_fp(CPUState *cs)
667 {
668     int ret = 0;
669     int i;
670     CPURISCVState *env = &RISCV_CPU(cs)->env;
671 
672     if (riscv_has_ext(env, RVD)) {
673         uint64_t reg;
674         for (i = 0; i < 32; i++) {
675             reg = env->fpr[i];
676             ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), &reg);
677             if (ret) {
678                 return ret;
679             }
680         }
681         return ret;
682     }
683 
684     if (riscv_has_ext(env, RVF)) {
685         uint32_t reg;
686         for (i = 0; i < 32; i++) {
687             reg = env->fpr[i];
688             ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), &reg);
689             if (ret) {
690                 return ret;
691             }
692         }
693         return ret;
694     }
695 
696     return ret;
697 }
698 
699 static void kvm_riscv_get_regs_timer(CPUState *cs)
700 {
701     CPURISCVState *env = &RISCV_CPU(cs)->env;
702 
703     if (env->kvm_timer_dirty) {
704         return;
705     }
706 
707     KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time);
708     KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare);
709     KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state);
710     KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency);
711 
712     env->kvm_timer_dirty = true;
713 }
714 
715 static void kvm_riscv_put_regs_timer(CPUState *cs)
716 {
717     uint64_t reg;
718     CPURISCVState *env = &RISCV_CPU(cs)->env;
719 
720     if (!env->kvm_timer_dirty) {
721         return;
722     }
723 
724     KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time);
725     KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare);
726 
727     /*
728      * To set register of RISCV_TIMER_REG(state) will occur a error from KVM
729      * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it
730      * doesn't matter that adaping in QEMU now.
731      * TODO If KVM changes, adapt here.
732      */
733     if (env->kvm_timer_state) {
734         KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state);
735     }
736 
737     /*
738      * For now, migration will not work between Hosts with different timer
739      * frequency. Therefore, we should check whether they are the same here
740      * during the migration.
741      */
742     if (migration_is_running()) {
743         KVM_RISCV_GET_TIMER(cs, frequency, reg);
744         if (reg != env->kvm_timer_frequency) {
745             error_report("Dst Hosts timer frequency != Src Hosts");
746         }
747     }
748 
749     env->kvm_timer_dirty = false;
750 }
751 
752 uint64_t kvm_riscv_get_timebase_frequency(CPUState *cs)
753 {
754     uint64_t reg;
755 
756     KVM_RISCV_GET_TIMER(cs, frequency, reg);
757 
758     return reg;
759 }
760 
761 static int kvm_riscv_get_regs_vector(CPUState *cs)
762 {
763     RISCVCPU *cpu = RISCV_CPU(cs);
764     CPURISCVState *env = &cpu->env;
765     target_ulong reg;
766     uint64_t vreg_id;
767     int vreg_idx, ret = 0;
768 
769     if (!riscv_has_ext(env, RVV)) {
770         return 0;
771     }
772 
773     ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), &reg);
774     if (ret) {
775         return ret;
776     }
777     env->vstart = reg;
778 
779     ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), &reg);
780     if (ret) {
781         return ret;
782     }
783     env->vl = reg;
784 
785     ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), &reg);
786     if (ret) {
787         return ret;
788     }
789     env->vtype = reg;
790 
791     if (kvm_v_vlenb.supported) {
792         ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), &reg);
793         if (ret) {
794             return ret;
795         }
796         cpu->cfg.vlenb = reg;
797 
798         for (int i = 0; i < 32; i++) {
799             /*
800              * vreg[] is statically allocated using RV_VLEN_MAX.
801              * Use it instead of vlenb to calculate vreg_idx for
802              * simplicity.
803              */
804             vreg_idx = i * RV_VLEN_MAX / 64;
805             vreg_id = kvm_riscv_vector_reg_id(cpu, i);
806 
807             ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
808             if (ret) {
809                 return ret;
810             }
811         }
812     }
813 
814     return 0;
815 }
816 
817 static int kvm_riscv_put_regs_vector(CPUState *cs)
818 {
819     RISCVCPU *cpu = RISCV_CPU(cs);
820     CPURISCVState *env = &cpu->env;
821     target_ulong reg;
822     uint64_t vreg_id;
823     int vreg_idx, ret = 0;
824 
825     if (!riscv_has_ext(env, RVV)) {
826         return 0;
827     }
828 
829     reg = env->vstart;
830     ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), &reg);
831     if (ret) {
832         return ret;
833     }
834 
835     reg = env->vl;
836     ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), &reg);
837     if (ret) {
838         return ret;
839     }
840 
841     reg = env->vtype;
842     ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), &reg);
843     if (ret) {
844         return ret;
845     }
846 
847     if (kvm_v_vlenb.supported) {
848         reg = cpu->cfg.vlenb;
849         ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), &reg);
850 
851         for (int i = 0; i < 32; i++) {
852             /*
853              * vreg[] is statically allocated using RV_VLEN_MAX.
854              * Use it instead of vlenb to calculate vreg_idx for
855              * simplicity.
856              */
857             vreg_idx = i * RV_VLEN_MAX / 64;
858             vreg_id = kvm_riscv_vector_reg_id(cpu, i);
859 
860             ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
861             if (ret) {
862                 return ret;
863             }
864         }
865     }
866 
867     return ret;
868 }
869 
870 typedef struct KVMScratchCPU {
871     int kvmfd;
872     int vmfd;
873     int cpufd;
874 } KVMScratchCPU;
875 
876 /*
877  * Heavily inspired by kvm_arm_create_scratch_host_vcpu()
878  * from target/arm/kvm.c.
879  */
880 static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch)
881 {
882     int kvmfd = -1, vmfd = -1, cpufd = -1;
883 
884     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
885     if (kvmfd < 0) {
886         goto err;
887     }
888     do {
889         vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
890     } while (vmfd == -1 && errno == EINTR);
891     if (vmfd < 0) {
892         goto err;
893     }
894     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
895     if (cpufd < 0) {
896         goto err;
897     }
898 
899     scratch->kvmfd =  kvmfd;
900     scratch->vmfd = vmfd;
901     scratch->cpufd = cpufd;
902 
903     return true;
904 
905  err:
906     if (cpufd >= 0) {
907         close(cpufd);
908     }
909     if (vmfd >= 0) {
910         close(vmfd);
911     }
912     if (kvmfd >= 0) {
913         close(kvmfd);
914     }
915 
916     return false;
917 }
918 
919 static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch)
920 {
921     close(scratch->cpufd);
922     close(scratch->vmfd);
923     close(scratch->kvmfd);
924 }
925 
926 static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
927 {
928     CPURISCVState *env = &cpu->env;
929     struct kvm_one_reg reg;
930     int ret;
931 
932     reg.id = RISCV_CONFIG_REG(env, mvendorid);
933     reg.addr = (uint64_t)&cpu->cfg.mvendorid;
934     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
935     if (ret != 0) {
936         error_report("Unable to retrieve mvendorid from host, error %d", ret);
937     }
938 
939     reg.id = RISCV_CONFIG_REG(env, marchid);
940     reg.addr = (uint64_t)&cpu->cfg.marchid;
941     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
942     if (ret != 0) {
943         error_report("Unable to retrieve marchid from host, error %d", ret);
944     }
945 
946     reg.id = RISCV_CONFIG_REG(env, mimpid);
947     reg.addr = (uint64_t)&cpu->cfg.mimpid;
948     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
949     if (ret != 0) {
950         error_report("Unable to retrieve mimpid from host, error %d", ret);
951     }
952 }
953 
954 static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu,
955                                          KVMScratchCPU *kvmcpu)
956 {
957     CPURISCVState *env = &cpu->env;
958     struct kvm_one_reg reg;
959     int ret;
960 
961     reg.id = RISCV_CONFIG_REG(env, isa);
962     reg.addr = (uint64_t)&env->misa_ext_mask;
963     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
964 
965     if (ret) {
966         error_report("Unable to fetch ISA register from KVM, "
967                      "error %d", ret);
968         kvm_riscv_destroy_scratch_vcpu(kvmcpu);
969         exit(EXIT_FAILURE);
970     }
971 
972     env->misa_ext = env->misa_ext_mask;
973 }
974 
975 static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
976                                          KVMCPUConfig *cbomz_cfg)
977 {
978     CPURISCVState *env = &cpu->env;
979     struct kvm_one_reg reg;
980     int ret;
981 
982     reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
983                                     cbomz_cfg->kvm_reg_id);
984     reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
985     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
986     if (ret != 0) {
987         error_report("Unable to read KVM reg %s, error %d",
988                      cbomz_cfg->name, ret);
989         exit(EXIT_FAILURE);
990     }
991 }
992 
993 static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu,
994                                            KVMScratchCPU *kvmcpu)
995 {
996     CPURISCVState *env = &cpu->env;
997     uint64_t val;
998     int i, ret;
999 
1000     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1001         KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1002         struct kvm_one_reg reg;
1003 
1004         reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
1005                                         multi_ext_cfg->kvm_reg_id);
1006         reg.addr = (uint64_t)&val;
1007         ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1008         if (ret != 0) {
1009             if (errno == EINVAL) {
1010                 /* Silently default to 'false' if KVM does not support it. */
1011                 multi_ext_cfg->supported = false;
1012                 val = false;
1013             } else {
1014                 error_report("Unable to read ISA_EXT KVM register %s: %s",
1015                              multi_ext_cfg->name, strerror(errno));
1016                 exit(EXIT_FAILURE);
1017             }
1018         } else {
1019             multi_ext_cfg->supported = true;
1020         }
1021 
1022         kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1023     }
1024 
1025     if (cpu->cfg.ext_zicbom) {
1026         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1027     }
1028 
1029     if (cpu->cfg.ext_zicboz) {
1030         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1031     }
1032 }
1033 
1034 static int uint64_cmp(const void *a, const void *b)
1035 {
1036     uint64_t val1 = *(const uint64_t *)a;
1037     uint64_t val2 = *(const uint64_t *)b;
1038 
1039     if (val1 < val2) {
1040         return -1;
1041     }
1042 
1043     if (val1 > val2) {
1044         return 1;
1045     }
1046 
1047     return 0;
1048 }
1049 
1050 static void kvm_riscv_check_sbi_dbcn_support(RISCVCPU *cpu,
1051                                              KVMScratchCPU *kvmcpu,
1052                                              struct kvm_reg_list *reglist)
1053 {
1054     struct kvm_reg_list *reg_search;
1055 
1056     reg_search = bsearch(&kvm_sbi_dbcn.kvm_reg_id, reglist->reg, reglist->n,
1057                          sizeof(uint64_t), uint64_cmp);
1058 
1059     if (reg_search) {
1060         kvm_sbi_dbcn.supported = true;
1061     }
1062 }
1063 
1064 static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
1065                                  struct kvm_reg_list *reglist)
1066 {
1067     struct kvm_one_reg reg;
1068     struct kvm_reg_list *reg_search;
1069     uint64_t val;
1070     int ret;
1071 
1072     reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n,
1073                          sizeof(uint64_t), uint64_cmp);
1074 
1075     if (reg_search) {
1076         reg.id = kvm_v_vlenb.kvm_reg_id;
1077         reg.addr = (uint64_t)&val;
1078 
1079         ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1080         if (ret != 0) {
1081             error_report("Unable to read vlenb register, error code: %d",
1082                          errno);
1083             exit(EXIT_FAILURE);
1084         }
1085 
1086         kvm_v_vlenb.supported = true;
1087         cpu->cfg.vlenb = val;
1088     }
1089 }
1090 
1091 static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
1092 {
1093     KVMCPUConfig *multi_ext_cfg;
1094     struct kvm_one_reg reg;
1095     struct kvm_reg_list rl_struct;
1096     struct kvm_reg_list *reglist;
1097     uint64_t val, reg_id, *reg_search;
1098     int i, ret;
1099 
1100     rl_struct.n = 0;
1101     ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct);
1102 
1103     /*
1104      * If KVM_GET_REG_LIST isn't supported we'll get errno 22
1105      * (EINVAL). Use read_legacy() in this case.
1106      */
1107     if (errno == EINVAL) {
1108         return kvm_riscv_read_multiext_legacy(cpu, kvmcpu);
1109     } else if (errno != E2BIG) {
1110         /*
1111          * E2BIG is an expected error message for the API since we
1112          * don't know the number of registers. The right amount will
1113          * be written in rl_struct.n.
1114          *
1115          * Error out if we get any other errno.
1116          */
1117         error_report("Error when accessing get-reg-list: %s",
1118                      strerror(errno));
1119         exit(EXIT_FAILURE);
1120     }
1121 
1122     reglist = g_malloc(sizeof(struct kvm_reg_list) +
1123                        rl_struct.n * sizeof(uint64_t));
1124     reglist->n = rl_struct.n;
1125     ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist);
1126     if (ret) {
1127         error_report("Error when reading KVM_GET_REG_LIST: %s",
1128                      strerror(errno));
1129         exit(EXIT_FAILURE);
1130     }
1131 
1132     /* sort reglist to use bsearch() */
1133     qsort(&reglist->reg, reglist->n, sizeof(uint64_t), uint64_cmp);
1134 
1135     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1136         multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1137         reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT,
1138                                         multi_ext_cfg->kvm_reg_id);
1139         reg_search = bsearch(&reg_id, reglist->reg, reglist->n,
1140                              sizeof(uint64_t), uint64_cmp);
1141         if (!reg_search) {
1142             continue;
1143         }
1144 
1145         reg.id = reg_id;
1146         reg.addr = (uint64_t)&val;
1147         ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1148         if (ret != 0) {
1149             error_report("Unable to read ISA_EXT KVM register %s: %s",
1150                          multi_ext_cfg->name, strerror(errno));
1151             exit(EXIT_FAILURE);
1152         }
1153 
1154         multi_ext_cfg->supported = true;
1155         kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1156     }
1157 
1158     if (cpu->cfg.ext_zicbom) {
1159         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1160     }
1161 
1162     if (cpu->cfg.ext_zicboz) {
1163         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1164     }
1165 
1166     if (riscv_has_ext(&cpu->env, RVV)) {
1167         kvm_riscv_read_vlenb(cpu, kvmcpu, reglist);
1168     }
1169 
1170     kvm_riscv_check_sbi_dbcn_support(cpu, kvmcpu, reglist);
1171 }
1172 
1173 static void riscv_init_kvm_registers(Object *cpu_obj)
1174 {
1175     RISCVCPU *cpu = RISCV_CPU(cpu_obj);
1176     KVMScratchCPU kvmcpu;
1177 
1178     if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1179         return;
1180     }
1181 
1182     kvm_riscv_init_machine_ids(cpu, &kvmcpu);
1183     kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu);
1184     kvm_riscv_init_multiext_cfg(cpu, &kvmcpu);
1185 
1186     kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1187 }
1188 
1189 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
1190     KVM_CAP_LAST_INFO
1191 };
1192 
1193 int kvm_arch_get_registers(CPUState *cs)
1194 {
1195     int ret = 0;
1196 
1197     ret = kvm_riscv_get_regs_core(cs);
1198     if (ret) {
1199         return ret;
1200     }
1201 
1202     ret = kvm_riscv_get_regs_csr(cs);
1203     if (ret) {
1204         return ret;
1205     }
1206 
1207     ret = kvm_riscv_get_regs_fp(cs);
1208     if (ret) {
1209         return ret;
1210     }
1211 
1212     ret = kvm_riscv_get_regs_vector(cs);
1213     if (ret) {
1214         return ret;
1215     }
1216 
1217     return ret;
1218 }
1219 
1220 int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state)
1221 {
1222     if (cap_has_mp_state) {
1223         struct kvm_mp_state mp_state = {
1224             .mp_state = state
1225         };
1226 
1227         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1228         if (ret) {
1229             fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n",
1230                     __func__, ret, strerror(-ret));
1231             return -1;
1232         }
1233     }
1234 
1235     return 0;
1236 }
1237 
1238 int kvm_arch_put_registers(CPUState *cs, int level)
1239 {
1240     int ret = 0;
1241 
1242     ret = kvm_riscv_put_regs_core(cs);
1243     if (ret) {
1244         return ret;
1245     }
1246 
1247     ret = kvm_riscv_put_regs_csr(cs);
1248     if (ret) {
1249         return ret;
1250     }
1251 
1252     ret = kvm_riscv_put_regs_fp(cs);
1253     if (ret) {
1254         return ret;
1255     }
1256 
1257     ret = kvm_riscv_put_regs_vector(cs);
1258     if (ret) {
1259         return ret;
1260     }
1261 
1262     if (KVM_PUT_RESET_STATE == level) {
1263         RISCVCPU *cpu = RISCV_CPU(cs);
1264         if (cs->cpu_index == 0) {
1265             ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE);
1266         } else {
1267             ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED);
1268         }
1269         if (ret) {
1270             return ret;
1271         }
1272     }
1273 
1274     return ret;
1275 }
1276 
1277 int kvm_arch_release_virq_post(int virq)
1278 {
1279     return 0;
1280 }
1281 
1282 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1283                              uint64_t address, uint32_t data, PCIDevice *dev)
1284 {
1285     return 0;
1286 }
1287 
1288 int kvm_arch_destroy_vcpu(CPUState *cs)
1289 {
1290     return 0;
1291 }
1292 
1293 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
1294 {
1295     return cpu->cpu_index;
1296 }
1297 
1298 static void kvm_riscv_vm_state_change(void *opaque, bool running,
1299                                       RunState state)
1300 {
1301     CPUState *cs = opaque;
1302 
1303     if (running) {
1304         kvm_riscv_put_regs_timer(cs);
1305     } else {
1306         kvm_riscv_get_regs_timer(cs);
1307     }
1308 }
1309 
1310 void kvm_arch_init_irq_routing(KVMState *s)
1311 {
1312 }
1313 
1314 static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs)
1315 {
1316     CPURISCVState *env = &cpu->env;
1317     target_ulong reg;
1318     uint64_t id;
1319     int ret;
1320 
1321     id = RISCV_CONFIG_REG(env, mvendorid);
1322     /*
1323      * cfg.mvendorid is an uint32 but a target_ulong will
1324      * be written. Assign it to a target_ulong var to avoid
1325      * writing pieces of other cpu->cfg fields in the reg.
1326      */
1327     reg = cpu->cfg.mvendorid;
1328     ret = kvm_set_one_reg(cs, id, &reg);
1329     if (ret != 0) {
1330         return ret;
1331     }
1332 
1333     id = RISCV_CONFIG_REG(env, marchid);
1334     ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid);
1335     if (ret != 0) {
1336         return ret;
1337     }
1338 
1339     id = RISCV_CONFIG_REG(env, mimpid);
1340     ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid);
1341 
1342     return ret;
1343 }
1344 
1345 static int kvm_vcpu_enable_sbi_dbcn(RISCVCPU *cpu, CPUState *cs)
1346 {
1347     target_ulong reg = 1;
1348 
1349     if (!kvm_sbi_dbcn.supported) {
1350         return 0;
1351     }
1352 
1353     return kvm_set_one_reg(cs, kvm_sbi_dbcn.kvm_reg_id, &reg);
1354 }
1355 
1356 int kvm_arch_init_vcpu(CPUState *cs)
1357 {
1358     int ret = 0;
1359     RISCVCPU *cpu = RISCV_CPU(cs);
1360 
1361     qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs);
1362 
1363     if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
1364         ret = kvm_vcpu_set_machine_ids(cpu, cs);
1365         if (ret != 0) {
1366             return ret;
1367         }
1368     }
1369 
1370     kvm_riscv_update_cpu_misa_ext(cpu, cs);
1371     kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs);
1372 
1373     ret = kvm_vcpu_enable_sbi_dbcn(cpu, cs);
1374 
1375     return ret;
1376 }
1377 
1378 int kvm_arch_msi_data_to_gsi(uint32_t data)
1379 {
1380     abort();
1381 }
1382 
1383 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1384                                 int vector, PCIDevice *dev)
1385 {
1386     return 0;
1387 }
1388 
1389 int kvm_arch_get_default_type(MachineState *ms)
1390 {
1391     return 0;
1392 }
1393 
1394 int kvm_arch_init(MachineState *ms, KVMState *s)
1395 {
1396     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
1397     return 0;
1398 }
1399 
1400 int kvm_arch_irqchip_create(KVMState *s)
1401 {
1402     if (kvm_kernel_irqchip_split()) {
1403         error_report("-machine kernel_irqchip=split is not supported on RISC-V.");
1404         exit(1);
1405     }
1406 
1407     /*
1408      * We can create the VAIA using the newer device control API.
1409      */
1410     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1411 }
1412 
1413 int kvm_arch_process_async_events(CPUState *cs)
1414 {
1415     return 0;
1416 }
1417 
1418 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1419 {
1420 }
1421 
1422 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1423 {
1424     return MEMTXATTRS_UNSPECIFIED;
1425 }
1426 
1427 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1428 {
1429     return true;
1430 }
1431 
1432 static void kvm_riscv_handle_sbi_dbcn(CPUState *cs, struct kvm_run *run)
1433 {
1434     g_autofree uint8_t *buf = NULL;
1435     RISCVCPU *cpu = RISCV_CPU(cs);
1436     target_ulong num_bytes;
1437     uint64_t addr;
1438     unsigned char ch;
1439     int ret;
1440 
1441     switch (run->riscv_sbi.function_id) {
1442     case SBI_EXT_DBCN_CONSOLE_READ:
1443     case SBI_EXT_DBCN_CONSOLE_WRITE:
1444         num_bytes = run->riscv_sbi.args[0];
1445 
1446         if (num_bytes == 0) {
1447             run->riscv_sbi.ret[0] = SBI_SUCCESS;
1448             run->riscv_sbi.ret[1] = 0;
1449             break;
1450         }
1451 
1452         addr = run->riscv_sbi.args[1];
1453 
1454         /*
1455          * Handle the case where a 32 bit CPU is running in a
1456          * 64 bit addressing env.
1457          */
1458         if (riscv_cpu_mxl(&cpu->env) == MXL_RV32) {
1459             addr |= (uint64_t)run->riscv_sbi.args[2] << 32;
1460         }
1461 
1462         buf = g_malloc0(num_bytes);
1463 
1464         if (run->riscv_sbi.function_id == SBI_EXT_DBCN_CONSOLE_READ) {
1465             ret = qemu_chr_fe_read_all(serial_hd(0)->be, buf, num_bytes);
1466             if (ret < 0) {
1467                 error_report("SBI_EXT_DBCN_CONSOLE_READ: error when "
1468                              "reading chardev");
1469                 exit(1);
1470             }
1471 
1472             cpu_physical_memory_write(addr, buf, ret);
1473         } else {
1474             cpu_physical_memory_read(addr, buf, num_bytes);
1475 
1476             ret = qemu_chr_fe_write_all(serial_hd(0)->be, buf, num_bytes);
1477             if (ret < 0) {
1478                 error_report("SBI_EXT_DBCN_CONSOLE_WRITE: error when "
1479                              "writing chardev");
1480                 exit(1);
1481             }
1482         }
1483 
1484         run->riscv_sbi.ret[0] = SBI_SUCCESS;
1485         run->riscv_sbi.ret[1] = ret;
1486         break;
1487     case SBI_EXT_DBCN_CONSOLE_WRITE_BYTE:
1488         ch = run->riscv_sbi.args[0];
1489         ret = qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1490 
1491         if (ret < 0) {
1492             error_report("SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: error when "
1493                          "writing chardev");
1494             exit(1);
1495         }
1496 
1497         run->riscv_sbi.ret[0] = SBI_SUCCESS;
1498         run->riscv_sbi.ret[1] = 0;
1499         break;
1500     default:
1501         run->riscv_sbi.ret[0] = SBI_ERR_NOT_SUPPORTED;
1502     }
1503 }
1504 
1505 static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run)
1506 {
1507     int ret = 0;
1508     unsigned char ch;
1509     switch (run->riscv_sbi.extension_id) {
1510     case SBI_EXT_0_1_CONSOLE_PUTCHAR:
1511         ch = run->riscv_sbi.args[0];
1512         qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1513         break;
1514     case SBI_EXT_0_1_CONSOLE_GETCHAR:
1515         ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch));
1516         if (ret == sizeof(ch)) {
1517             run->riscv_sbi.ret[0] = ch;
1518         } else {
1519             run->riscv_sbi.ret[0] = -1;
1520         }
1521         ret = 0;
1522         break;
1523     case SBI_EXT_DBCN:
1524         kvm_riscv_handle_sbi_dbcn(cs, run);
1525         break;
1526     default:
1527         qemu_log_mask(LOG_UNIMP,
1528                       "%s: un-handled SBI EXIT, specific reasons is %lu\n",
1529                       __func__, run->riscv_sbi.extension_id);
1530         ret = -1;
1531         break;
1532     }
1533     return ret;
1534 }
1535 
1536 static int kvm_riscv_handle_csr(CPUState *cs, struct kvm_run *run)
1537 {
1538     target_ulong csr_num = run->riscv_csr.csr_num;
1539     target_ulong new_value = run->riscv_csr.new_value;
1540     target_ulong write_mask = run->riscv_csr.write_mask;
1541     int ret = 0;
1542 
1543     switch (csr_num) {
1544     case CSR_SEED:
1545         run->riscv_csr.ret_value = riscv_new_csr_seed(new_value, write_mask);
1546         break;
1547     default:
1548         qemu_log_mask(LOG_UNIMP,
1549                       "%s: un-handled CSR EXIT for CSR %lx\n",
1550                       __func__, csr_num);
1551         ret = -1;
1552         break;
1553     }
1554 
1555     return ret;
1556 }
1557 
1558 static bool kvm_riscv_handle_debug(CPUState *cs)
1559 {
1560     RISCVCPU *cpu = RISCV_CPU(cs);
1561     CPURISCVState *env = &cpu->env;
1562 
1563     /* Ensure PC is synchronised */
1564     kvm_cpu_synchronize_state(cs);
1565 
1566     if (kvm_find_sw_breakpoint(cs, env->pc)) {
1567         return true;
1568     }
1569 
1570     return false;
1571 }
1572 
1573 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1574 {
1575     int ret = 0;
1576     switch (run->exit_reason) {
1577     case KVM_EXIT_RISCV_SBI:
1578         ret = kvm_riscv_handle_sbi(cs, run);
1579         break;
1580     case KVM_EXIT_RISCV_CSR:
1581         ret = kvm_riscv_handle_csr(cs, run);
1582         break;
1583     case KVM_EXIT_DEBUG:
1584         if (kvm_riscv_handle_debug(cs)) {
1585             ret = EXCP_DEBUG;
1586         }
1587         break;
1588     default:
1589         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1590                       __func__, run->exit_reason);
1591         ret = -1;
1592         break;
1593     }
1594     return ret;
1595 }
1596 
1597 void kvm_riscv_reset_vcpu(RISCVCPU *cpu)
1598 {
1599     CPURISCVState *env = &cpu->env;
1600     int i;
1601 
1602     if (!kvm_enabled()) {
1603         return;
1604     }
1605     for (i = 0; i < 32; i++) {
1606         env->gpr[i] = 0;
1607     }
1608     env->pc = cpu->env.kernel_addr;
1609     env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */
1610     env->gpr[11] = cpu->env.fdt_addr;          /* a1 */
1611     env->satp = 0;
1612     env->mie = 0;
1613     env->stvec = 0;
1614     env->sscratch = 0;
1615     env->sepc = 0;
1616     env->scause = 0;
1617     env->stval = 0;
1618     env->mip = 0;
1619 }
1620 
1621 void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level)
1622 {
1623     int ret;
1624     unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET;
1625 
1626     if (irq != IRQ_S_EXT) {
1627         perror("kvm riscv set irq != IRQ_S_EXT\n");
1628         abort();
1629     }
1630 
1631     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1632     if (ret < 0) {
1633         perror("Set irq failed");
1634         abort();
1635     }
1636 }
1637 
1638 static int aia_mode;
1639 
1640 static const char *kvm_aia_mode_str(uint64_t mode)
1641 {
1642     switch (mode) {
1643     case KVM_DEV_RISCV_AIA_MODE_EMUL:
1644         return "emul";
1645     case KVM_DEV_RISCV_AIA_MODE_HWACCEL:
1646         return "hwaccel";
1647     case KVM_DEV_RISCV_AIA_MODE_AUTO:
1648     default:
1649         return "auto";
1650     };
1651 }
1652 
1653 static char *riscv_get_kvm_aia(Object *obj, Error **errp)
1654 {
1655     return g_strdup(kvm_aia_mode_str(aia_mode));
1656 }
1657 
1658 static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp)
1659 {
1660     if (!strcmp(val, "emul")) {
1661         aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL;
1662     } else if (!strcmp(val, "hwaccel")) {
1663         aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL;
1664     } else if (!strcmp(val, "auto")) {
1665         aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO;
1666     } else {
1667         error_setg(errp, "Invalid KVM AIA mode");
1668         error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n");
1669     }
1670 }
1671 
1672 void kvm_arch_accel_class_init(ObjectClass *oc)
1673 {
1674     object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia,
1675                                   riscv_set_kvm_aia);
1676     object_class_property_set_description(oc, "riscv-aia",
1677                                           "Set KVM AIA mode. Valid values are "
1678                                           "emul, hwaccel, and auto. Default "
1679                                           "is auto.");
1680     object_property_set_default_str(object_class_property_find(oc, "riscv-aia"),
1681                                     "auto");
1682 }
1683 
1684 void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift,
1685                           uint64_t aia_irq_num, uint64_t aia_msi_num,
1686                           uint64_t aplic_base, uint64_t imsic_base,
1687                           uint64_t guest_num)
1688 {
1689     int ret, i;
1690     int aia_fd = -1;
1691     uint64_t default_aia_mode;
1692     uint64_t socket_count = riscv_socket_count(machine);
1693     uint64_t max_hart_per_socket = 0;
1694     uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr;
1695     uint64_t socket_bits, hart_bits, guest_bits;
1696 
1697     aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false);
1698 
1699     if (aia_fd < 0) {
1700         error_report("Unable to create in-kernel irqchip");
1701         exit(1);
1702     }
1703 
1704     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1705                             KVM_DEV_RISCV_AIA_CONFIG_MODE,
1706                             &default_aia_mode, false, NULL);
1707     if (ret < 0) {
1708         error_report("KVM AIA: failed to get current KVM AIA mode");
1709         exit(1);
1710     }
1711     qemu_log("KVM AIA: default mode is %s\n",
1712              kvm_aia_mode_str(default_aia_mode));
1713 
1714     if (default_aia_mode != aia_mode) {
1715         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1716                                 KVM_DEV_RISCV_AIA_CONFIG_MODE,
1717                                 &aia_mode, true, NULL);
1718         if (ret < 0)
1719             warn_report("KVM AIA: failed to set KVM AIA mode");
1720         else
1721             qemu_log("KVM AIA: set current mode to %s\n",
1722                      kvm_aia_mode_str(aia_mode));
1723     }
1724 
1725     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1726                             KVM_DEV_RISCV_AIA_CONFIG_SRCS,
1727                             &aia_irq_num, true, NULL);
1728     if (ret < 0) {
1729         error_report("KVM AIA: failed to set number of input irq lines");
1730         exit(1);
1731     }
1732 
1733     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1734                             KVM_DEV_RISCV_AIA_CONFIG_IDS,
1735                             &aia_msi_num, true, NULL);
1736     if (ret < 0) {
1737         error_report("KVM AIA: failed to set number of msi");
1738         exit(1);
1739     }
1740 
1741 
1742     if (socket_count > 1) {
1743         socket_bits = find_last_bit(&socket_count, BITS_PER_LONG) + 1;
1744         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1745                                 KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS,
1746                                 &socket_bits, true, NULL);
1747         if (ret < 0) {
1748             error_report("KVM AIA: failed to set group_bits");
1749             exit(1);
1750         }
1751 
1752         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1753                                 KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT,
1754                                 &group_shift, true, NULL);
1755         if (ret < 0) {
1756             error_report("KVM AIA: failed to set group_shift");
1757             exit(1);
1758         }
1759     }
1760 
1761     guest_bits = guest_num == 0 ? 0 :
1762                  find_last_bit(&guest_num, BITS_PER_LONG) + 1;
1763     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1764                             KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS,
1765                             &guest_bits, true, NULL);
1766     if (ret < 0) {
1767         error_report("KVM AIA: failed to set guest_bits");
1768         exit(1);
1769     }
1770 
1771     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1772                             KVM_DEV_RISCV_AIA_ADDR_APLIC,
1773                             &aplic_base, true, NULL);
1774     if (ret < 0) {
1775         error_report("KVM AIA: failed to set the base address of APLIC");
1776         exit(1);
1777     }
1778 
1779     for (socket = 0; socket < socket_count; socket++) {
1780         socket_imsic_base = imsic_base + socket * (1U << group_shift);
1781         hart_count = riscv_socket_hart_count(machine, socket);
1782         base_hart = riscv_socket_first_hartid(machine, socket);
1783 
1784         if (max_hart_per_socket < hart_count) {
1785             max_hart_per_socket = hart_count;
1786         }
1787 
1788         for (i = 0; i < hart_count; i++) {
1789             imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits);
1790             ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1791                                     KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart),
1792                                     &imsic_addr, true, NULL);
1793             if (ret < 0) {
1794                 error_report("KVM AIA: failed to set the IMSIC address for hart %d", i);
1795                 exit(1);
1796             }
1797         }
1798     }
1799 
1800 
1801     if (max_hart_per_socket > 1) {
1802         max_hart_per_socket--;
1803         hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1;
1804     } else {
1805         hart_bits = 0;
1806     }
1807 
1808     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1809                             KVM_DEV_RISCV_AIA_CONFIG_HART_BITS,
1810                             &hart_bits, true, NULL);
1811     if (ret < 0) {
1812         error_report("KVM AIA: failed to set hart_bits");
1813         exit(1);
1814     }
1815 
1816     if (kvm_has_gsi_routing()) {
1817         for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) {
1818             /* KVM AIA only has one APLIC instance */
1819             kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx);
1820         }
1821         kvm_gsi_routing_allowed = true;
1822         kvm_irqchip_commit_routes(kvm_state);
1823     }
1824 
1825     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL,
1826                             KVM_DEV_RISCV_AIA_CTRL_INIT,
1827                             NULL, true, NULL);
1828     if (ret < 0) {
1829         error_report("KVM AIA: initialized fail");
1830         exit(1);
1831     }
1832 
1833     kvm_msi_via_irqfd_allowed = true;
1834 }
1835 
1836 static void kvm_cpu_instance_init(CPUState *cs)
1837 {
1838     Object *obj = OBJECT(RISCV_CPU(cs));
1839 
1840     riscv_init_kvm_registers(obj);
1841 
1842     kvm_riscv_add_cpu_user_properties(obj);
1843 }
1844 
1845 /*
1846  * We'll get here via the following path:
1847  *
1848  * riscv_cpu_realize()
1849  *   -> cpu_exec_realizefn()
1850  *      -> kvm_cpu_realize() (via accel_cpu_common_realize())
1851  */
1852 static bool kvm_cpu_realize(CPUState *cs, Error **errp)
1853 {
1854     RISCVCPU *cpu = RISCV_CPU(cs);
1855     int ret;
1856 
1857     if (riscv_has_ext(&cpu->env, RVV)) {
1858         ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON);
1859         if (ret) {
1860             error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s",
1861                        strerrorname_np(errno));
1862             return false;
1863         }
1864     }
1865 
1866    return true;
1867 }
1868 
1869 void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp)
1870 {
1871     CPURISCVState *env = &cpu->env;
1872     KVMScratchCPU kvmcpu;
1873     struct kvm_one_reg reg;
1874     uint64_t val;
1875     int ret;
1876 
1877     /* short-circuit without spinning the scratch CPU */
1878     if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz &&
1879         !riscv_has_ext(env, RVV)) {
1880         return;
1881     }
1882 
1883     if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1884         error_setg(errp, "Unable to create scratch KVM cpu");
1885         return;
1886     }
1887 
1888     if (cpu->cfg.ext_zicbom &&
1889         riscv_cpu_option_set(kvm_cbom_blocksize.name)) {
1890 
1891         reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1892                                         kvm_cbom_blocksize.kvm_reg_id);
1893         reg.addr = (uint64_t)&val;
1894         ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, &reg);
1895         if (ret != 0) {
1896             error_setg(errp, "Unable to read cbom_blocksize, error %d", errno);
1897             return;
1898         }
1899 
1900         if (cpu->cfg.cbom_blocksize != val) {
1901             error_setg(errp, "Unable to set cbom_blocksize to a different "
1902                        "value than the host (%lu)", val);
1903             return;
1904         }
1905     }
1906 
1907     if (cpu->cfg.ext_zicboz &&
1908         riscv_cpu_option_set(kvm_cboz_blocksize.name)) {
1909 
1910         reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1911                                         kvm_cboz_blocksize.kvm_reg_id);
1912         reg.addr = (uint64_t)&val;
1913         ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, &reg);
1914         if (ret != 0) {
1915             error_setg(errp, "Unable to read cboz_blocksize, error %d", errno);
1916             return;
1917         }
1918 
1919         if (cpu->cfg.cboz_blocksize != val) {
1920             error_setg(errp, "Unable to set cboz_blocksize to a different "
1921                        "value than the host (%lu)", val);
1922             return;
1923         }
1924     }
1925 
1926     /* Users are setting vlen, not vlenb */
1927     if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) {
1928         if (!kvm_v_vlenb.supported) {
1929             error_setg(errp, "Unable to set 'vlenb': register not supported");
1930             return;
1931         }
1932 
1933         reg.id = kvm_v_vlenb.kvm_reg_id;
1934         reg.addr = (uint64_t)&val;
1935         ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, &reg);
1936         if (ret != 0) {
1937             error_setg(errp, "Unable to read vlenb register, error %d", errno);
1938             return;
1939         }
1940 
1941         if (cpu->cfg.vlenb != val) {
1942             error_setg(errp, "Unable to set 'vlen' to a different "
1943                        "value than the host (%lu)", val * 8);
1944             return;
1945         }
1946     }
1947 
1948     kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1949 }
1950 
1951 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
1952 {
1953     AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
1954 
1955     acc->cpu_instance_init = kvm_cpu_instance_init;
1956     acc->cpu_target_realize = kvm_cpu_realize;
1957 }
1958 
1959 static const TypeInfo kvm_cpu_accel_type_info = {
1960     .name = ACCEL_CPU_NAME("kvm"),
1961 
1962     .parent = TYPE_ACCEL_CPU,
1963     .class_init = kvm_cpu_accel_class_init,
1964     .abstract = true,
1965 };
1966 static void kvm_cpu_accel_register_types(void)
1967 {
1968     type_register_static(&kvm_cpu_accel_type_info);
1969 }
1970 type_init(kvm_cpu_accel_register_types);
1971 
1972 static void riscv_host_cpu_class_init(ObjectClass *c, void *data)
1973 {
1974     RISCVCPUClass *mcc = RISCV_CPU_CLASS(c);
1975 
1976 #if defined(TARGET_RISCV32)
1977     mcc->misa_mxl_max = MXL_RV32;
1978 #elif defined(TARGET_RISCV64)
1979     mcc->misa_mxl_max = MXL_RV64;
1980 #endif
1981 }
1982 
1983 static const TypeInfo riscv_kvm_cpu_type_infos[] = {
1984     {
1985         .name = TYPE_RISCV_CPU_HOST,
1986         .parent = TYPE_RISCV_CPU,
1987         .class_init = riscv_host_cpu_class_init,
1988     }
1989 };
1990 
1991 DEFINE_TYPES(riscv_kvm_cpu_type_infos)
1992 
1993 static const uint32_t ebreak_insn = 0x00100073;
1994 static const uint16_t c_ebreak_insn = 0x9002;
1995 
1996 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1997 {
1998     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 0)) {
1999         return -EINVAL;
2000     }
2001 
2002     if ((bp->saved_insn & 0x3) == 0x3) {
2003         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0)
2004             || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak_insn, 4, 1)) {
2005             return -EINVAL;
2006         }
2007     } else {
2008         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak_insn, 2, 1)) {
2009             return -EINVAL;
2010         }
2011     }
2012 
2013     return 0;
2014 }
2015 
2016 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2017 {
2018     uint32_t ebreak;
2019     uint16_t c_ebreak;
2020 
2021     if ((bp->saved_insn & 0x3) == 0x3) {
2022         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak, 4, 0) ||
2023             ebreak != ebreak_insn ||
2024             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2025             return -EINVAL;
2026         }
2027     } else {
2028         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak, 2, 0) ||
2029             c_ebreak != c_ebreak_insn ||
2030             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 1)) {
2031             return -EINVAL;
2032         }
2033     }
2034 
2035     return 0;
2036 }
2037 
2038 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2039 {
2040     /* TODO; To be implemented later. */
2041     return -EINVAL;
2042 }
2043 
2044 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2045 {
2046     /* TODO; To be implemented later. */
2047     return -EINVAL;
2048 }
2049 
2050 void kvm_arch_remove_all_hw_breakpoints(void)
2051 {
2052     /* TODO; To be implemented later. */
2053 }
2054 
2055 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
2056 {
2057     if (kvm_sw_breakpoints_active(cs)) {
2058         dbg->control |= KVM_GUESTDBG_ENABLE;
2059     }
2060 }
2061