1 /* 2 * RISC-V implementation of KVM hooks 3 * 4 * Copyright (c) 2020 Huawei Technologies Co., Ltd 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include <sys/ioctl.h> 21 #include <sys/prctl.h> 22 23 #include <linux/kvm.h> 24 25 #include "qemu/timer.h" 26 #include "qapi/error.h" 27 #include "qemu/error-report.h" 28 #include "qemu/main-loop.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/kvm.h" 32 #include "sysemu/kvm_int.h" 33 #include "cpu.h" 34 #include "trace.h" 35 #include "hw/core/accel-cpu.h" 36 #include "hw/pci/pci.h" 37 #include "exec/memattrs.h" 38 #include "exec/address-spaces.h" 39 #include "hw/boards.h" 40 #include "hw/irq.h" 41 #include "hw/intc/riscv_imsic.h" 42 #include "qemu/log.h" 43 #include "hw/loader.h" 44 #include "kvm_riscv.h" 45 #include "sbi_ecall_interface.h" 46 #include "chardev/char-fe.h" 47 #include "migration/misc.h" 48 #include "sysemu/runstate.h" 49 #include "hw/riscv/numa.h" 50 51 #define PR_RISCV_V_SET_CONTROL 69 52 #define PR_RISCV_V_VSTATE_CTRL_ON 2 53 54 void riscv_kvm_aplic_request(void *opaque, int irq, int level) 55 { 56 kvm_set_irq(kvm_state, irq, !!level); 57 } 58 59 static bool cap_has_mp_state; 60 61 static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type, 62 uint64_t idx) 63 { 64 uint64_t id = KVM_REG_RISCV | type | idx; 65 66 switch (riscv_cpu_mxl(env)) { 67 case MXL_RV32: 68 id |= KVM_REG_SIZE_U32; 69 break; 70 case MXL_RV64: 71 id |= KVM_REG_SIZE_U64; 72 break; 73 default: 74 g_assert_not_reached(); 75 } 76 return id; 77 } 78 79 static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx) 80 { 81 return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx; 82 } 83 84 static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx) 85 { 86 return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx; 87 } 88 89 static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b) 90 { 91 uint64_t size_ctz = __builtin_ctz(size_b); 92 93 return id | (size_ctz << KVM_REG_SIZE_SHIFT); 94 } 95 96 static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu, 97 uint64_t idx) 98 { 99 uint64_t id; 100 size_t size_b; 101 102 g_assert(idx < 32); 103 104 id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx); 105 size_b = cpu->cfg.vlenb; 106 107 return kvm_encode_reg_size_id(id, size_b); 108 } 109 110 #define RISCV_CORE_REG(env, name) \ 111 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \ 112 KVM_REG_RISCV_CORE_REG(name)) 113 114 #define RISCV_CSR_REG(env, name) \ 115 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \ 116 KVM_REG_RISCV_CSR_REG(name)) 117 118 #define RISCV_CONFIG_REG(env, name) \ 119 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \ 120 KVM_REG_RISCV_CONFIG_REG(name)) 121 122 #define RISCV_TIMER_REG(name) kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \ 123 KVM_REG_RISCV_TIMER_REG(name)) 124 125 #define RISCV_FP_F_REG(idx) kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx) 126 127 #define RISCV_FP_D_REG(idx) kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx) 128 129 #define RISCV_VECTOR_CSR_REG(env, name) \ 130 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \ 131 KVM_REG_RISCV_VECTOR_CSR_REG(name)) 132 133 #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \ 134 do { \ 135 int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ 136 if (_ret) { \ 137 return _ret; \ 138 } \ 139 } while (0) 140 141 #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \ 142 do { \ 143 int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ 144 if (_ret) { \ 145 return _ret; \ 146 } \ 147 } while (0) 148 149 #define KVM_RISCV_GET_TIMER(cs, name, reg) \ 150 do { \ 151 int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), ®); \ 152 if (ret) { \ 153 abort(); \ 154 } \ 155 } while (0) 156 157 #define KVM_RISCV_SET_TIMER(cs, name, reg) \ 158 do { \ 159 int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), ®); \ 160 if (ret) { \ 161 abort(); \ 162 } \ 163 } while (0) 164 165 typedef struct KVMCPUConfig { 166 const char *name; 167 const char *description; 168 target_ulong offset; 169 uint64_t kvm_reg_id; 170 bool user_set; 171 bool supported; 172 } KVMCPUConfig; 173 174 #define KVM_MISA_CFG(_bit, _reg_id) \ 175 {.offset = _bit, .kvm_reg_id = _reg_id} 176 177 /* KVM ISA extensions */ 178 static KVMCPUConfig kvm_misa_ext_cfgs[] = { 179 KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A), 180 KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C), 181 KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D), 182 KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F), 183 KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H), 184 KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I), 185 KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M), 186 KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V), 187 }; 188 189 static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v, 190 const char *name, 191 void *opaque, Error **errp) 192 { 193 KVMCPUConfig *misa_ext_cfg = opaque; 194 target_ulong misa_bit = misa_ext_cfg->offset; 195 RISCVCPU *cpu = RISCV_CPU(obj); 196 CPURISCVState *env = &cpu->env; 197 bool value = env->misa_ext_mask & misa_bit; 198 199 visit_type_bool(v, name, &value, errp); 200 } 201 202 static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v, 203 const char *name, 204 void *opaque, Error **errp) 205 { 206 KVMCPUConfig *misa_ext_cfg = opaque; 207 target_ulong misa_bit = misa_ext_cfg->offset; 208 RISCVCPU *cpu = RISCV_CPU(obj); 209 CPURISCVState *env = &cpu->env; 210 bool value, host_bit; 211 212 if (!visit_type_bool(v, name, &value, errp)) { 213 return; 214 } 215 216 host_bit = env->misa_ext_mask & misa_bit; 217 218 if (value == host_bit) { 219 return; 220 } 221 222 if (!value) { 223 misa_ext_cfg->user_set = true; 224 return; 225 } 226 227 /* 228 * Forbid users to enable extensions that aren't 229 * available in the hart. 230 */ 231 error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not " 232 "enabled in the host", misa_ext_cfg->name); 233 } 234 235 static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs) 236 { 237 CPURISCVState *env = &cpu->env; 238 uint64_t id, reg; 239 int i, ret; 240 241 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) { 242 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i]; 243 target_ulong misa_bit = misa_cfg->offset; 244 245 if (!misa_cfg->user_set) { 246 continue; 247 } 248 249 /* If we're here we're going to disable the MISA bit */ 250 reg = 0; 251 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, 252 misa_cfg->kvm_reg_id); 253 ret = kvm_set_one_reg(cs, id, ®); 254 if (ret != 0) { 255 /* 256 * We're not checking for -EINVAL because if the bit is about 257 * to be disabled, it means that it was already enabled by 258 * KVM. We determined that by fetching the 'isa' register 259 * during init() time. Any error at this point is worth 260 * aborting. 261 */ 262 error_report("Unable to set KVM reg %s, error %d", 263 misa_cfg->name, ret); 264 exit(EXIT_FAILURE); 265 } 266 env->misa_ext &= ~misa_bit; 267 } 268 } 269 270 #define KVM_EXT_CFG(_name, _prop, _reg_id) \ 271 {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \ 272 .kvm_reg_id = _reg_id} 273 274 static KVMCPUConfig kvm_multi_ext_cfgs[] = { 275 KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM), 276 KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ), 277 KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR), 278 KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND), 279 KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR), 280 KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI), 281 KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL), 282 KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE), 283 KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM), 284 KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA), 285 KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH), 286 KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN), 287 KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA), 288 KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB), 289 KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC), 290 KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB), 291 KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC), 292 KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX), 293 KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS), 294 KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND), 295 KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE), 296 KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH), 297 KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR), 298 KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED), 299 KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH), 300 KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT), 301 KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB), 302 KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC), 303 KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH), 304 KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN), 305 KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB), 306 KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG), 307 KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED), 308 KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA), 309 KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB), 310 KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED), 311 KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH), 312 KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT), 313 KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN), 314 KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA), 315 KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC), 316 KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL), 317 KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT), 318 KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT), 319 }; 320 321 static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg) 322 { 323 return (void *)&cpu->cfg + kvmcfg->offset; 324 } 325 326 static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext, 327 uint32_t val) 328 { 329 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext); 330 331 *ext_enabled = val; 332 } 333 334 static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu, 335 KVMCPUConfig *multi_ext) 336 { 337 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext); 338 339 return *ext_enabled; 340 } 341 342 static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v, 343 const char *name, 344 void *opaque, Error **errp) 345 { 346 KVMCPUConfig *multi_ext_cfg = opaque; 347 RISCVCPU *cpu = RISCV_CPU(obj); 348 bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg); 349 350 visit_type_bool(v, name, &value, errp); 351 } 352 353 static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v, 354 const char *name, 355 void *opaque, Error **errp) 356 { 357 KVMCPUConfig *multi_ext_cfg = opaque; 358 RISCVCPU *cpu = RISCV_CPU(obj); 359 bool value, host_val; 360 361 if (!visit_type_bool(v, name, &value, errp)) { 362 return; 363 } 364 365 host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg); 366 367 /* 368 * Ignore if the user is setting the same value 369 * as the host. 370 */ 371 if (value == host_val) { 372 return; 373 } 374 375 if (!multi_ext_cfg->supported) { 376 /* 377 * Error out if the user is trying to enable an 378 * extension that KVM doesn't support. Ignore 379 * option otherwise. 380 */ 381 if (value) { 382 error_setg(errp, "KVM does not support disabling extension %s", 383 multi_ext_cfg->name); 384 } 385 386 return; 387 } 388 389 multi_ext_cfg->user_set = true; 390 kvm_cpu_cfg_set(cpu, multi_ext_cfg, value); 391 } 392 393 static KVMCPUConfig kvm_cbom_blocksize = { 394 .name = "cbom_blocksize", 395 .offset = CPU_CFG_OFFSET(cbom_blocksize), 396 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size) 397 }; 398 399 static KVMCPUConfig kvm_cboz_blocksize = { 400 .name = "cboz_blocksize", 401 .offset = CPU_CFG_OFFSET(cboz_blocksize), 402 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size) 403 }; 404 405 static KVMCPUConfig kvm_v_vlenb = { 406 .name = "vlenb", 407 .offset = CPU_CFG_OFFSET(vlenb), 408 .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR | 409 KVM_REG_RISCV_VECTOR_CSR_REG(vlenb) 410 }; 411 412 static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs) 413 { 414 CPURISCVState *env = &cpu->env; 415 uint64_t id, reg; 416 int i, ret; 417 418 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 419 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i]; 420 421 if (!multi_ext_cfg->user_set) { 422 continue; 423 } 424 425 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, 426 multi_ext_cfg->kvm_reg_id); 427 reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg); 428 ret = kvm_set_one_reg(cs, id, ®); 429 if (ret != 0) { 430 error_report("Unable to %s extension %s in KVM, error %d", 431 reg ? "enable" : "disable", 432 multi_ext_cfg->name, ret); 433 exit(EXIT_FAILURE); 434 } 435 } 436 } 437 438 static void cpu_get_cfg_unavailable(Object *obj, Visitor *v, 439 const char *name, 440 void *opaque, Error **errp) 441 { 442 bool value = false; 443 444 visit_type_bool(v, name, &value, errp); 445 } 446 447 static void cpu_set_cfg_unavailable(Object *obj, Visitor *v, 448 const char *name, 449 void *opaque, Error **errp) 450 { 451 const char *propname = opaque; 452 bool value; 453 454 if (!visit_type_bool(v, name, &value, errp)) { 455 return; 456 } 457 458 if (value) { 459 error_setg(errp, "'%s' is not available with KVM", 460 propname); 461 } 462 } 463 464 static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name) 465 { 466 /* Check if KVM created the property already */ 467 if (object_property_find(obj, prop_name)) { 468 return; 469 } 470 471 /* 472 * Set the default to disabled for every extension 473 * unknown to KVM and error out if the user attempts 474 * to enable any of them. 475 */ 476 object_property_add(obj, prop_name, "bool", 477 cpu_get_cfg_unavailable, 478 cpu_set_cfg_unavailable, 479 NULL, (void *)prop_name); 480 } 481 482 static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj, 483 const RISCVCPUMultiExtConfig *array) 484 { 485 const RISCVCPUMultiExtConfig *prop; 486 487 g_assert(array); 488 489 for (prop = array; prop && prop->name; prop++) { 490 riscv_cpu_add_kvm_unavail_prop(obj, prop->name); 491 } 492 } 493 494 static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj) 495 { 496 int i; 497 498 riscv_add_satp_mode_properties(cpu_obj); 499 500 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) { 501 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i]; 502 int bit = misa_cfg->offset; 503 504 misa_cfg->name = riscv_get_misa_ext_name(bit); 505 misa_cfg->description = riscv_get_misa_ext_description(bit); 506 507 object_property_add(cpu_obj, misa_cfg->name, "bool", 508 kvm_cpu_get_misa_ext_cfg, 509 kvm_cpu_set_misa_ext_cfg, 510 NULL, misa_cfg); 511 object_property_set_description(cpu_obj, misa_cfg->name, 512 misa_cfg->description); 513 } 514 515 for (i = 0; misa_bits[i] != 0; i++) { 516 const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]); 517 riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name); 518 } 519 520 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 521 KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i]; 522 523 object_property_add(cpu_obj, multi_cfg->name, "bool", 524 kvm_cpu_get_multi_ext_cfg, 525 kvm_cpu_set_multi_ext_cfg, 526 NULL, multi_cfg); 527 } 528 529 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions); 530 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts); 531 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts); 532 533 /* We don't have the needed KVM support for profiles */ 534 for (i = 0; riscv_profiles[i] != NULL; i++) { 535 riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name); 536 } 537 } 538 539 static int kvm_riscv_get_regs_core(CPUState *cs) 540 { 541 int ret = 0; 542 int i; 543 target_ulong reg; 544 CPURISCVState *env = &RISCV_CPU(cs)->env; 545 546 ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); 547 if (ret) { 548 return ret; 549 } 550 env->pc = reg; 551 552 for (i = 1; i < 32; i++) { 553 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i); 554 ret = kvm_get_one_reg(cs, id, ®); 555 if (ret) { 556 return ret; 557 } 558 env->gpr[i] = reg; 559 } 560 561 return ret; 562 } 563 564 static int kvm_riscv_put_regs_core(CPUState *cs) 565 { 566 int ret = 0; 567 int i; 568 target_ulong reg; 569 CPURISCVState *env = &RISCV_CPU(cs)->env; 570 571 reg = env->pc; 572 ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); 573 if (ret) { 574 return ret; 575 } 576 577 for (i = 1; i < 32; i++) { 578 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i); 579 reg = env->gpr[i]; 580 ret = kvm_set_one_reg(cs, id, ®); 581 if (ret) { 582 return ret; 583 } 584 } 585 586 return ret; 587 } 588 589 static int kvm_riscv_get_regs_csr(CPUState *cs) 590 { 591 CPURISCVState *env = &RISCV_CPU(cs)->env; 592 593 KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus); 594 KVM_RISCV_GET_CSR(cs, env, sie, env->mie); 595 KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec); 596 KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch); 597 KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc); 598 KVM_RISCV_GET_CSR(cs, env, scause, env->scause); 599 KVM_RISCV_GET_CSR(cs, env, stval, env->stval); 600 KVM_RISCV_GET_CSR(cs, env, sip, env->mip); 601 KVM_RISCV_GET_CSR(cs, env, satp, env->satp); 602 603 return 0; 604 } 605 606 static int kvm_riscv_put_regs_csr(CPUState *cs) 607 { 608 CPURISCVState *env = &RISCV_CPU(cs)->env; 609 610 KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus); 611 KVM_RISCV_SET_CSR(cs, env, sie, env->mie); 612 KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec); 613 KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch); 614 KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc); 615 KVM_RISCV_SET_CSR(cs, env, scause, env->scause); 616 KVM_RISCV_SET_CSR(cs, env, stval, env->stval); 617 KVM_RISCV_SET_CSR(cs, env, sip, env->mip); 618 KVM_RISCV_SET_CSR(cs, env, satp, env->satp); 619 620 return 0; 621 } 622 623 static int kvm_riscv_get_regs_fp(CPUState *cs) 624 { 625 int ret = 0; 626 int i; 627 CPURISCVState *env = &RISCV_CPU(cs)->env; 628 629 if (riscv_has_ext(env, RVD)) { 630 uint64_t reg; 631 for (i = 0; i < 32; i++) { 632 ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), ®); 633 if (ret) { 634 return ret; 635 } 636 env->fpr[i] = reg; 637 } 638 return ret; 639 } 640 641 if (riscv_has_ext(env, RVF)) { 642 uint32_t reg; 643 for (i = 0; i < 32; i++) { 644 ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), ®); 645 if (ret) { 646 return ret; 647 } 648 env->fpr[i] = reg; 649 } 650 return ret; 651 } 652 653 return ret; 654 } 655 656 static int kvm_riscv_put_regs_fp(CPUState *cs) 657 { 658 int ret = 0; 659 int i; 660 CPURISCVState *env = &RISCV_CPU(cs)->env; 661 662 if (riscv_has_ext(env, RVD)) { 663 uint64_t reg; 664 for (i = 0; i < 32; i++) { 665 reg = env->fpr[i]; 666 ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), ®); 667 if (ret) { 668 return ret; 669 } 670 } 671 return ret; 672 } 673 674 if (riscv_has_ext(env, RVF)) { 675 uint32_t reg; 676 for (i = 0; i < 32; i++) { 677 reg = env->fpr[i]; 678 ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), ®); 679 if (ret) { 680 return ret; 681 } 682 } 683 return ret; 684 } 685 686 return ret; 687 } 688 689 static void kvm_riscv_get_regs_timer(CPUState *cs) 690 { 691 CPURISCVState *env = &RISCV_CPU(cs)->env; 692 693 if (env->kvm_timer_dirty) { 694 return; 695 } 696 697 KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time); 698 KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare); 699 KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state); 700 KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency); 701 702 env->kvm_timer_dirty = true; 703 } 704 705 static void kvm_riscv_put_regs_timer(CPUState *cs) 706 { 707 uint64_t reg; 708 CPURISCVState *env = &RISCV_CPU(cs)->env; 709 710 if (!env->kvm_timer_dirty) { 711 return; 712 } 713 714 KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time); 715 KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare); 716 717 /* 718 * To set register of RISCV_TIMER_REG(state) will occur a error from KVM 719 * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it 720 * doesn't matter that adaping in QEMU now. 721 * TODO If KVM changes, adapt here. 722 */ 723 if (env->kvm_timer_state) { 724 KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state); 725 } 726 727 /* 728 * For now, migration will not work between Hosts with different timer 729 * frequency. Therefore, we should check whether they are the same here 730 * during the migration. 731 */ 732 if (migration_is_running()) { 733 KVM_RISCV_GET_TIMER(cs, frequency, reg); 734 if (reg != env->kvm_timer_frequency) { 735 error_report("Dst Hosts timer frequency != Src Hosts"); 736 } 737 } 738 739 env->kvm_timer_dirty = false; 740 } 741 742 static int kvm_riscv_get_regs_vector(CPUState *cs) 743 { 744 RISCVCPU *cpu = RISCV_CPU(cs); 745 CPURISCVState *env = &cpu->env; 746 target_ulong reg; 747 uint64_t vreg_id; 748 int vreg_idx, ret = 0; 749 750 if (!riscv_has_ext(env, RVV)) { 751 return 0; 752 } 753 754 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®); 755 if (ret) { 756 return ret; 757 } 758 env->vstart = reg; 759 760 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®); 761 if (ret) { 762 return ret; 763 } 764 env->vl = reg; 765 766 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®); 767 if (ret) { 768 return ret; 769 } 770 env->vtype = reg; 771 772 if (kvm_v_vlenb.supported) { 773 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®); 774 if (ret) { 775 return ret; 776 } 777 cpu->cfg.vlenb = reg; 778 779 for (int i = 0; i < 32; i++) { 780 /* 781 * vreg[] is statically allocated using RV_VLEN_MAX. 782 * Use it instead of vlenb to calculate vreg_idx for 783 * simplicity. 784 */ 785 vreg_idx = i * RV_VLEN_MAX / 64; 786 vreg_id = kvm_riscv_vector_reg_id(cpu, i); 787 788 ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]); 789 if (ret) { 790 return ret; 791 } 792 } 793 } 794 795 return 0; 796 } 797 798 static int kvm_riscv_put_regs_vector(CPUState *cs) 799 { 800 RISCVCPU *cpu = RISCV_CPU(cs); 801 CPURISCVState *env = &cpu->env; 802 target_ulong reg; 803 uint64_t vreg_id; 804 int vreg_idx, ret = 0; 805 806 if (!riscv_has_ext(env, RVV)) { 807 return 0; 808 } 809 810 reg = env->vstart; 811 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®); 812 if (ret) { 813 return ret; 814 } 815 816 reg = env->vl; 817 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®); 818 if (ret) { 819 return ret; 820 } 821 822 reg = env->vtype; 823 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®); 824 if (ret) { 825 return ret; 826 } 827 828 if (kvm_v_vlenb.supported) { 829 reg = cpu->cfg.vlenb; 830 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®); 831 832 for (int i = 0; i < 32; i++) { 833 /* 834 * vreg[] is statically allocated using RV_VLEN_MAX. 835 * Use it instead of vlenb to calculate vreg_idx for 836 * simplicity. 837 */ 838 vreg_idx = i * RV_VLEN_MAX / 64; 839 vreg_id = kvm_riscv_vector_reg_id(cpu, i); 840 841 ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]); 842 if (ret) { 843 return ret; 844 } 845 } 846 } 847 848 return ret; 849 } 850 851 typedef struct KVMScratchCPU { 852 int kvmfd; 853 int vmfd; 854 int cpufd; 855 } KVMScratchCPU; 856 857 /* 858 * Heavily inspired by kvm_arm_create_scratch_host_vcpu() 859 * from target/arm/kvm.c. 860 */ 861 static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch) 862 { 863 int kvmfd = -1, vmfd = -1, cpufd = -1; 864 865 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 866 if (kvmfd < 0) { 867 goto err; 868 } 869 do { 870 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 871 } while (vmfd == -1 && errno == EINTR); 872 if (vmfd < 0) { 873 goto err; 874 } 875 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 876 if (cpufd < 0) { 877 goto err; 878 } 879 880 scratch->kvmfd = kvmfd; 881 scratch->vmfd = vmfd; 882 scratch->cpufd = cpufd; 883 884 return true; 885 886 err: 887 if (cpufd >= 0) { 888 close(cpufd); 889 } 890 if (vmfd >= 0) { 891 close(vmfd); 892 } 893 if (kvmfd >= 0) { 894 close(kvmfd); 895 } 896 897 return false; 898 } 899 900 static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch) 901 { 902 close(scratch->cpufd); 903 close(scratch->vmfd); 904 close(scratch->kvmfd); 905 } 906 907 static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) 908 { 909 CPURISCVState *env = &cpu->env; 910 struct kvm_one_reg reg; 911 int ret; 912 913 reg.id = RISCV_CONFIG_REG(env, mvendorid); 914 reg.addr = (uint64_t)&cpu->cfg.mvendorid; 915 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 916 if (ret != 0) { 917 error_report("Unable to retrieve mvendorid from host, error %d", ret); 918 } 919 920 reg.id = RISCV_CONFIG_REG(env, marchid); 921 reg.addr = (uint64_t)&cpu->cfg.marchid; 922 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 923 if (ret != 0) { 924 error_report("Unable to retrieve marchid from host, error %d", ret); 925 } 926 927 reg.id = RISCV_CONFIG_REG(env, mimpid); 928 reg.addr = (uint64_t)&cpu->cfg.mimpid; 929 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 930 if (ret != 0) { 931 error_report("Unable to retrieve mimpid from host, error %d", ret); 932 } 933 } 934 935 static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu, 936 KVMScratchCPU *kvmcpu) 937 { 938 CPURISCVState *env = &cpu->env; 939 struct kvm_one_reg reg; 940 int ret; 941 942 reg.id = RISCV_CONFIG_REG(env, isa); 943 reg.addr = (uint64_t)&env->misa_ext_mask; 944 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 945 946 if (ret) { 947 error_report("Unable to fetch ISA register from KVM, " 948 "error %d", ret); 949 kvm_riscv_destroy_scratch_vcpu(kvmcpu); 950 exit(EXIT_FAILURE); 951 } 952 953 env->misa_ext = env->misa_ext_mask; 954 } 955 956 static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, 957 KVMCPUConfig *cbomz_cfg) 958 { 959 CPURISCVState *env = &cpu->env; 960 struct kvm_one_reg reg; 961 int ret; 962 963 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, 964 cbomz_cfg->kvm_reg_id); 965 reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg); 966 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 967 if (ret != 0) { 968 error_report("Unable to read KVM reg %s, error %d", 969 cbomz_cfg->name, ret); 970 exit(EXIT_FAILURE); 971 } 972 } 973 974 static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu, 975 KVMScratchCPU *kvmcpu) 976 { 977 CPURISCVState *env = &cpu->env; 978 uint64_t val; 979 int i, ret; 980 981 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 982 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i]; 983 struct kvm_one_reg reg; 984 985 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, 986 multi_ext_cfg->kvm_reg_id); 987 reg.addr = (uint64_t)&val; 988 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 989 if (ret != 0) { 990 if (errno == EINVAL) { 991 /* Silently default to 'false' if KVM does not support it. */ 992 multi_ext_cfg->supported = false; 993 val = false; 994 } else { 995 error_report("Unable to read ISA_EXT KVM register %s: %s", 996 multi_ext_cfg->name, strerror(errno)); 997 exit(EXIT_FAILURE); 998 } 999 } else { 1000 multi_ext_cfg->supported = true; 1001 } 1002 1003 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val); 1004 } 1005 1006 if (cpu->cfg.ext_zicbom) { 1007 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize); 1008 } 1009 1010 if (cpu->cfg.ext_zicboz) { 1011 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize); 1012 } 1013 } 1014 1015 static int uint64_cmp(const void *a, const void *b) 1016 { 1017 uint64_t val1 = *(const uint64_t *)a; 1018 uint64_t val2 = *(const uint64_t *)b; 1019 1020 if (val1 < val2) { 1021 return -1; 1022 } 1023 1024 if (val1 > val2) { 1025 return 1; 1026 } 1027 1028 return 0; 1029 } 1030 1031 static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, 1032 struct kvm_reg_list *reglist) 1033 { 1034 struct kvm_one_reg reg; 1035 struct kvm_reg_list *reg_search; 1036 uint64_t val; 1037 int ret; 1038 1039 reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n, 1040 sizeof(uint64_t), uint64_cmp); 1041 1042 if (reg_search) { 1043 reg.id = kvm_v_vlenb.kvm_reg_id; 1044 reg.addr = (uint64_t)&val; 1045 1046 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 1047 if (ret != 0) { 1048 error_report("Unable to read vlenb register, error code: %s", 1049 strerrorname_np(errno)); 1050 exit(EXIT_FAILURE); 1051 } 1052 1053 kvm_v_vlenb.supported = true; 1054 cpu->cfg.vlenb = val; 1055 } 1056 } 1057 1058 static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) 1059 { 1060 KVMCPUConfig *multi_ext_cfg; 1061 struct kvm_one_reg reg; 1062 struct kvm_reg_list rl_struct; 1063 struct kvm_reg_list *reglist; 1064 uint64_t val, reg_id, *reg_search; 1065 int i, ret; 1066 1067 rl_struct.n = 0; 1068 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct); 1069 1070 /* 1071 * If KVM_GET_REG_LIST isn't supported we'll get errno 22 1072 * (EINVAL). Use read_legacy() in this case. 1073 */ 1074 if (errno == EINVAL) { 1075 return kvm_riscv_read_multiext_legacy(cpu, kvmcpu); 1076 } else if (errno != E2BIG) { 1077 /* 1078 * E2BIG is an expected error message for the API since we 1079 * don't know the number of registers. The right amount will 1080 * be written in rl_struct.n. 1081 * 1082 * Error out if we get any other errno. 1083 */ 1084 error_report("Error when accessing get-reg-list: %s", 1085 strerror(errno)); 1086 exit(EXIT_FAILURE); 1087 } 1088 1089 reglist = g_malloc(sizeof(struct kvm_reg_list) + 1090 rl_struct.n * sizeof(uint64_t)); 1091 reglist->n = rl_struct.n; 1092 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist); 1093 if (ret) { 1094 error_report("Error when reading KVM_GET_REG_LIST: %s", 1095 strerror(errno)); 1096 exit(EXIT_FAILURE); 1097 } 1098 1099 /* sort reglist to use bsearch() */ 1100 qsort(®list->reg, reglist->n, sizeof(uint64_t), uint64_cmp); 1101 1102 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 1103 multi_ext_cfg = &kvm_multi_ext_cfgs[i]; 1104 reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT, 1105 multi_ext_cfg->kvm_reg_id); 1106 reg_search = bsearch(®_id, reglist->reg, reglist->n, 1107 sizeof(uint64_t), uint64_cmp); 1108 if (!reg_search) { 1109 continue; 1110 } 1111 1112 reg.id = reg_id; 1113 reg.addr = (uint64_t)&val; 1114 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 1115 if (ret != 0) { 1116 error_report("Unable to read ISA_EXT KVM register %s: %s", 1117 multi_ext_cfg->name, strerror(errno)); 1118 exit(EXIT_FAILURE); 1119 } 1120 1121 multi_ext_cfg->supported = true; 1122 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val); 1123 } 1124 1125 if (cpu->cfg.ext_zicbom) { 1126 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize); 1127 } 1128 1129 if (cpu->cfg.ext_zicboz) { 1130 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize); 1131 } 1132 1133 if (riscv_has_ext(&cpu->env, RVV)) { 1134 kvm_riscv_read_vlenb(cpu, kvmcpu, reglist); 1135 } 1136 } 1137 1138 static void riscv_init_kvm_registers(Object *cpu_obj) 1139 { 1140 RISCVCPU *cpu = RISCV_CPU(cpu_obj); 1141 KVMScratchCPU kvmcpu; 1142 1143 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { 1144 return; 1145 } 1146 1147 kvm_riscv_init_machine_ids(cpu, &kvmcpu); 1148 kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu); 1149 kvm_riscv_init_multiext_cfg(cpu, &kvmcpu); 1150 1151 kvm_riscv_destroy_scratch_vcpu(&kvmcpu); 1152 } 1153 1154 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 1155 KVM_CAP_LAST_INFO 1156 }; 1157 1158 int kvm_arch_get_registers(CPUState *cs) 1159 { 1160 int ret = 0; 1161 1162 ret = kvm_riscv_get_regs_core(cs); 1163 if (ret) { 1164 return ret; 1165 } 1166 1167 ret = kvm_riscv_get_regs_csr(cs); 1168 if (ret) { 1169 return ret; 1170 } 1171 1172 ret = kvm_riscv_get_regs_fp(cs); 1173 if (ret) { 1174 return ret; 1175 } 1176 1177 ret = kvm_riscv_get_regs_vector(cs); 1178 if (ret) { 1179 return ret; 1180 } 1181 1182 return ret; 1183 } 1184 1185 int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state) 1186 { 1187 if (cap_has_mp_state) { 1188 struct kvm_mp_state mp_state = { 1189 .mp_state = state 1190 }; 1191 1192 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1193 if (ret) { 1194 fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n", 1195 __func__, ret, strerror(-ret)); 1196 return -1; 1197 } 1198 } 1199 1200 return 0; 1201 } 1202 1203 int kvm_arch_put_registers(CPUState *cs, int level) 1204 { 1205 int ret = 0; 1206 1207 ret = kvm_riscv_put_regs_core(cs); 1208 if (ret) { 1209 return ret; 1210 } 1211 1212 ret = kvm_riscv_put_regs_csr(cs); 1213 if (ret) { 1214 return ret; 1215 } 1216 1217 ret = kvm_riscv_put_regs_fp(cs); 1218 if (ret) { 1219 return ret; 1220 } 1221 1222 ret = kvm_riscv_put_regs_vector(cs); 1223 if (ret) { 1224 return ret; 1225 } 1226 1227 if (KVM_PUT_RESET_STATE == level) { 1228 RISCVCPU *cpu = RISCV_CPU(cs); 1229 if (cs->cpu_index == 0) { 1230 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE); 1231 } else { 1232 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED); 1233 } 1234 if (ret) { 1235 return ret; 1236 } 1237 } 1238 1239 return ret; 1240 } 1241 1242 int kvm_arch_release_virq_post(int virq) 1243 { 1244 return 0; 1245 } 1246 1247 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1248 uint64_t address, uint32_t data, PCIDevice *dev) 1249 { 1250 return 0; 1251 } 1252 1253 int kvm_arch_destroy_vcpu(CPUState *cs) 1254 { 1255 return 0; 1256 } 1257 1258 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 1259 { 1260 return cpu->cpu_index; 1261 } 1262 1263 static void kvm_riscv_vm_state_change(void *opaque, bool running, 1264 RunState state) 1265 { 1266 CPUState *cs = opaque; 1267 1268 if (running) { 1269 kvm_riscv_put_regs_timer(cs); 1270 } else { 1271 kvm_riscv_get_regs_timer(cs); 1272 } 1273 } 1274 1275 void kvm_arch_init_irq_routing(KVMState *s) 1276 { 1277 } 1278 1279 static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs) 1280 { 1281 CPURISCVState *env = &cpu->env; 1282 target_ulong reg; 1283 uint64_t id; 1284 int ret; 1285 1286 id = RISCV_CONFIG_REG(env, mvendorid); 1287 /* 1288 * cfg.mvendorid is an uint32 but a target_ulong will 1289 * be written. Assign it to a target_ulong var to avoid 1290 * writing pieces of other cpu->cfg fields in the reg. 1291 */ 1292 reg = cpu->cfg.mvendorid; 1293 ret = kvm_set_one_reg(cs, id, ®); 1294 if (ret != 0) { 1295 return ret; 1296 } 1297 1298 id = RISCV_CONFIG_REG(env, marchid); 1299 ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid); 1300 if (ret != 0) { 1301 return ret; 1302 } 1303 1304 id = RISCV_CONFIG_REG(env, mimpid); 1305 ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid); 1306 1307 return ret; 1308 } 1309 1310 int kvm_arch_init_vcpu(CPUState *cs) 1311 { 1312 int ret = 0; 1313 RISCVCPU *cpu = RISCV_CPU(cs); 1314 1315 qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs); 1316 1317 if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) { 1318 ret = kvm_vcpu_set_machine_ids(cpu, cs); 1319 if (ret != 0) { 1320 return ret; 1321 } 1322 } 1323 1324 kvm_riscv_update_cpu_misa_ext(cpu, cs); 1325 kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs); 1326 1327 return ret; 1328 } 1329 1330 int kvm_arch_msi_data_to_gsi(uint32_t data) 1331 { 1332 abort(); 1333 } 1334 1335 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1336 int vector, PCIDevice *dev) 1337 { 1338 return 0; 1339 } 1340 1341 int kvm_arch_get_default_type(MachineState *ms) 1342 { 1343 return 0; 1344 } 1345 1346 int kvm_arch_init(MachineState *ms, KVMState *s) 1347 { 1348 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 1349 return 0; 1350 } 1351 1352 int kvm_arch_irqchip_create(KVMState *s) 1353 { 1354 if (kvm_kernel_irqchip_split()) { 1355 error_report("-machine kernel_irqchip=split is not supported on RISC-V."); 1356 exit(1); 1357 } 1358 1359 /* 1360 * We can create the VAIA using the newer device control API. 1361 */ 1362 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 1363 } 1364 1365 int kvm_arch_process_async_events(CPUState *cs) 1366 { 1367 return 0; 1368 } 1369 1370 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1371 { 1372 } 1373 1374 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1375 { 1376 return MEMTXATTRS_UNSPECIFIED; 1377 } 1378 1379 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 1380 { 1381 return true; 1382 } 1383 1384 static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run) 1385 { 1386 int ret = 0; 1387 unsigned char ch; 1388 switch (run->riscv_sbi.extension_id) { 1389 case SBI_EXT_0_1_CONSOLE_PUTCHAR: 1390 ch = run->riscv_sbi.args[0]; 1391 qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch)); 1392 break; 1393 case SBI_EXT_0_1_CONSOLE_GETCHAR: 1394 ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch)); 1395 if (ret == sizeof(ch)) { 1396 run->riscv_sbi.ret[0] = ch; 1397 } else { 1398 run->riscv_sbi.ret[0] = -1; 1399 } 1400 ret = 0; 1401 break; 1402 default: 1403 qemu_log_mask(LOG_UNIMP, 1404 "%s: un-handled SBI EXIT, specific reasons is %lu\n", 1405 __func__, run->riscv_sbi.extension_id); 1406 ret = -1; 1407 break; 1408 } 1409 return ret; 1410 } 1411 1412 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1413 { 1414 int ret = 0; 1415 switch (run->exit_reason) { 1416 case KVM_EXIT_RISCV_SBI: 1417 ret = kvm_riscv_handle_sbi(cs, run); 1418 break; 1419 default: 1420 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 1421 __func__, run->exit_reason); 1422 ret = -1; 1423 break; 1424 } 1425 return ret; 1426 } 1427 1428 void kvm_riscv_reset_vcpu(RISCVCPU *cpu) 1429 { 1430 CPURISCVState *env = &cpu->env; 1431 int i; 1432 1433 if (!kvm_enabled()) { 1434 return; 1435 } 1436 for (i = 0; i < 32; i++) { 1437 env->gpr[i] = 0; 1438 } 1439 env->pc = cpu->env.kernel_addr; 1440 env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */ 1441 env->gpr[11] = cpu->env.fdt_addr; /* a1 */ 1442 env->satp = 0; 1443 env->mie = 0; 1444 env->stvec = 0; 1445 env->sscratch = 0; 1446 env->sepc = 0; 1447 env->scause = 0; 1448 env->stval = 0; 1449 env->mip = 0; 1450 } 1451 1452 void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level) 1453 { 1454 int ret; 1455 unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET; 1456 1457 if (irq != IRQ_S_EXT) { 1458 perror("kvm riscv set irq != IRQ_S_EXT\n"); 1459 abort(); 1460 } 1461 1462 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1463 if (ret < 0) { 1464 perror("Set irq failed"); 1465 abort(); 1466 } 1467 } 1468 1469 bool kvm_arch_cpu_check_are_resettable(void) 1470 { 1471 return true; 1472 } 1473 1474 static int aia_mode; 1475 1476 static const char *kvm_aia_mode_str(uint64_t mode) 1477 { 1478 switch (mode) { 1479 case KVM_DEV_RISCV_AIA_MODE_EMUL: 1480 return "emul"; 1481 case KVM_DEV_RISCV_AIA_MODE_HWACCEL: 1482 return "hwaccel"; 1483 case KVM_DEV_RISCV_AIA_MODE_AUTO: 1484 default: 1485 return "auto"; 1486 }; 1487 } 1488 1489 static char *riscv_get_kvm_aia(Object *obj, Error **errp) 1490 { 1491 return g_strdup(kvm_aia_mode_str(aia_mode)); 1492 } 1493 1494 static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp) 1495 { 1496 if (!strcmp(val, "emul")) { 1497 aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL; 1498 } else if (!strcmp(val, "hwaccel")) { 1499 aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL; 1500 } else if (!strcmp(val, "auto")) { 1501 aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO; 1502 } else { 1503 error_setg(errp, "Invalid KVM AIA mode"); 1504 error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n"); 1505 } 1506 } 1507 1508 void kvm_arch_accel_class_init(ObjectClass *oc) 1509 { 1510 object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia, 1511 riscv_set_kvm_aia); 1512 object_class_property_set_description(oc, "riscv-aia", 1513 "Set KVM AIA mode. Valid values are " 1514 "emul, hwaccel, and auto. Default " 1515 "is auto."); 1516 object_property_set_default_str(object_class_property_find(oc, "riscv-aia"), 1517 "auto"); 1518 } 1519 1520 void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift, 1521 uint64_t aia_irq_num, uint64_t aia_msi_num, 1522 uint64_t aplic_base, uint64_t imsic_base, 1523 uint64_t guest_num) 1524 { 1525 int ret, i; 1526 int aia_fd = -1; 1527 uint64_t default_aia_mode; 1528 uint64_t socket_count = riscv_socket_count(machine); 1529 uint64_t max_hart_per_socket = 0; 1530 uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr; 1531 uint64_t socket_bits, hart_bits, guest_bits; 1532 1533 aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false); 1534 1535 if (aia_fd < 0) { 1536 error_report("Unable to create in-kernel irqchip"); 1537 exit(1); 1538 } 1539 1540 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1541 KVM_DEV_RISCV_AIA_CONFIG_MODE, 1542 &default_aia_mode, false, NULL); 1543 if (ret < 0) { 1544 error_report("KVM AIA: failed to get current KVM AIA mode"); 1545 exit(1); 1546 } 1547 qemu_log("KVM AIA: default mode is %s\n", 1548 kvm_aia_mode_str(default_aia_mode)); 1549 1550 if (default_aia_mode != aia_mode) { 1551 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1552 KVM_DEV_RISCV_AIA_CONFIG_MODE, 1553 &aia_mode, true, NULL); 1554 if (ret < 0) 1555 warn_report("KVM AIA: failed to set KVM AIA mode"); 1556 else 1557 qemu_log("KVM AIA: set current mode to %s\n", 1558 kvm_aia_mode_str(aia_mode)); 1559 } 1560 1561 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1562 KVM_DEV_RISCV_AIA_CONFIG_SRCS, 1563 &aia_irq_num, true, NULL); 1564 if (ret < 0) { 1565 error_report("KVM AIA: failed to set number of input irq lines"); 1566 exit(1); 1567 } 1568 1569 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1570 KVM_DEV_RISCV_AIA_CONFIG_IDS, 1571 &aia_msi_num, true, NULL); 1572 if (ret < 0) { 1573 error_report("KVM AIA: failed to set number of msi"); 1574 exit(1); 1575 } 1576 1577 1578 if (socket_count > 1) { 1579 socket_bits = find_last_bit(&socket_count, BITS_PER_LONG) + 1; 1580 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1581 KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS, 1582 &socket_bits, true, NULL); 1583 if (ret < 0) { 1584 error_report("KVM AIA: failed to set group_bits"); 1585 exit(1); 1586 } 1587 1588 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1589 KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT, 1590 &group_shift, true, NULL); 1591 if (ret < 0) { 1592 error_report("KVM AIA: failed to set group_shift"); 1593 exit(1); 1594 } 1595 } 1596 1597 guest_bits = guest_num == 0 ? 0 : 1598 find_last_bit(&guest_num, BITS_PER_LONG) + 1; 1599 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1600 KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS, 1601 &guest_bits, true, NULL); 1602 if (ret < 0) { 1603 error_report("KVM AIA: failed to set guest_bits"); 1604 exit(1); 1605 } 1606 1607 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR, 1608 KVM_DEV_RISCV_AIA_ADDR_APLIC, 1609 &aplic_base, true, NULL); 1610 if (ret < 0) { 1611 error_report("KVM AIA: failed to set the base address of APLIC"); 1612 exit(1); 1613 } 1614 1615 for (socket = 0; socket < socket_count; socket++) { 1616 socket_imsic_base = imsic_base + socket * (1U << group_shift); 1617 hart_count = riscv_socket_hart_count(machine, socket); 1618 base_hart = riscv_socket_first_hartid(machine, socket); 1619 1620 if (max_hart_per_socket < hart_count) { 1621 max_hart_per_socket = hart_count; 1622 } 1623 1624 for (i = 0; i < hart_count; i++) { 1625 imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits); 1626 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR, 1627 KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart), 1628 &imsic_addr, true, NULL); 1629 if (ret < 0) { 1630 error_report("KVM AIA: failed to set the IMSIC address for hart %d", i); 1631 exit(1); 1632 } 1633 } 1634 } 1635 1636 hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1; 1637 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1638 KVM_DEV_RISCV_AIA_CONFIG_HART_BITS, 1639 &hart_bits, true, NULL); 1640 if (ret < 0) { 1641 error_report("KVM AIA: failed to set hart_bits"); 1642 exit(1); 1643 } 1644 1645 if (kvm_has_gsi_routing()) { 1646 for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) { 1647 /* KVM AIA only has one APLIC instance */ 1648 kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx); 1649 } 1650 kvm_gsi_routing_allowed = true; 1651 kvm_irqchip_commit_routes(kvm_state); 1652 } 1653 1654 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL, 1655 KVM_DEV_RISCV_AIA_CTRL_INIT, 1656 NULL, true, NULL); 1657 if (ret < 0) { 1658 error_report("KVM AIA: initialized fail"); 1659 exit(1); 1660 } 1661 1662 kvm_msi_via_irqfd_allowed = true; 1663 } 1664 1665 static void kvm_cpu_instance_init(CPUState *cs) 1666 { 1667 Object *obj = OBJECT(RISCV_CPU(cs)); 1668 1669 riscv_init_kvm_registers(obj); 1670 1671 kvm_riscv_add_cpu_user_properties(obj); 1672 } 1673 1674 /* 1675 * We'll get here via the following path: 1676 * 1677 * riscv_cpu_realize() 1678 * -> cpu_exec_realizefn() 1679 * -> kvm_cpu_realize() (via accel_cpu_common_realize()) 1680 */ 1681 static bool kvm_cpu_realize(CPUState *cs, Error **errp) 1682 { 1683 RISCVCPU *cpu = RISCV_CPU(cs); 1684 int ret; 1685 1686 if (riscv_has_ext(&cpu->env, RVV)) { 1687 ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON); 1688 if (ret) { 1689 error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s", 1690 strerrorname_np(errno)); 1691 return false; 1692 } 1693 } 1694 1695 return true; 1696 } 1697 1698 void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp) 1699 { 1700 CPURISCVState *env = &cpu->env; 1701 KVMScratchCPU kvmcpu; 1702 struct kvm_one_reg reg; 1703 uint64_t val; 1704 int ret; 1705 1706 /* short-circuit without spinning the scratch CPU */ 1707 if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz && 1708 !riscv_has_ext(env, RVV)) { 1709 return; 1710 } 1711 1712 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { 1713 error_setg(errp, "Unable to create scratch KVM cpu"); 1714 return; 1715 } 1716 1717 if (cpu->cfg.ext_zicbom && 1718 riscv_cpu_option_set(kvm_cbom_blocksize.name)) { 1719 1720 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, 1721 kvm_cbom_blocksize.kvm_reg_id); 1722 reg.addr = (uint64_t)&val; 1723 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); 1724 if (ret != 0) { 1725 error_setg(errp, "Unable to read cbom_blocksize, error %d", errno); 1726 return; 1727 } 1728 1729 if (cpu->cfg.cbom_blocksize != val) { 1730 error_setg(errp, "Unable to set cbom_blocksize to a different " 1731 "value than the host (%lu)", val); 1732 return; 1733 } 1734 } 1735 1736 if (cpu->cfg.ext_zicboz && 1737 riscv_cpu_option_set(kvm_cboz_blocksize.name)) { 1738 1739 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, 1740 kvm_cboz_blocksize.kvm_reg_id); 1741 reg.addr = (uint64_t)&val; 1742 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); 1743 if (ret != 0) { 1744 error_setg(errp, "Unable to read cboz_blocksize, error %d", errno); 1745 return; 1746 } 1747 1748 if (cpu->cfg.cboz_blocksize != val) { 1749 error_setg(errp, "Unable to set cboz_blocksize to a different " 1750 "value than the host (%lu)", val); 1751 return; 1752 } 1753 } 1754 1755 /* Users are setting vlen, not vlenb */ 1756 if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) { 1757 if (!kvm_v_vlenb.supported) { 1758 error_setg(errp, "Unable to set 'vlenb': register not supported"); 1759 return; 1760 } 1761 1762 reg.id = kvm_v_vlenb.kvm_reg_id; 1763 reg.addr = (uint64_t)&val; 1764 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); 1765 if (ret != 0) { 1766 error_setg(errp, "Unable to read vlenb register, error %d", errno); 1767 return; 1768 } 1769 1770 if (cpu->cfg.vlenb != val) { 1771 error_setg(errp, "Unable to set 'vlen' to a different " 1772 "value than the host (%lu)", val * 8); 1773 return; 1774 } 1775 } 1776 1777 kvm_riscv_destroy_scratch_vcpu(&kvmcpu); 1778 } 1779 1780 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data) 1781 { 1782 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc); 1783 1784 acc->cpu_instance_init = kvm_cpu_instance_init; 1785 acc->cpu_target_realize = kvm_cpu_realize; 1786 } 1787 1788 static const TypeInfo kvm_cpu_accel_type_info = { 1789 .name = ACCEL_CPU_NAME("kvm"), 1790 1791 .parent = TYPE_ACCEL_CPU, 1792 .class_init = kvm_cpu_accel_class_init, 1793 .abstract = true, 1794 }; 1795 static void kvm_cpu_accel_register_types(void) 1796 { 1797 type_register_static(&kvm_cpu_accel_type_info); 1798 } 1799 type_init(kvm_cpu_accel_register_types); 1800 1801 static void riscv_host_cpu_class_init(ObjectClass *c, void *data) 1802 { 1803 RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); 1804 1805 #if defined(TARGET_RISCV32) 1806 mcc->misa_mxl_max = MXL_RV32; 1807 #elif defined(TARGET_RISCV64) 1808 mcc->misa_mxl_max = MXL_RV64; 1809 #endif 1810 } 1811 1812 static const TypeInfo riscv_kvm_cpu_type_infos[] = { 1813 { 1814 .name = TYPE_RISCV_CPU_HOST, 1815 .parent = TYPE_RISCV_CPU, 1816 .class_init = riscv_host_cpu_class_init, 1817 } 1818 }; 1819 1820 DEFINE_TYPES(riscv_kvm_cpu_type_infos) 1821