1 /* 2 * RISC-V implementation of KVM hooks 3 * 4 * Copyright (c) 2020 Huawei Technologies Co., Ltd 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include <sys/ioctl.h> 21 #include <sys/prctl.h> 22 23 #include <linux/kvm.h> 24 25 #include "qemu/timer.h" 26 #include "qapi/error.h" 27 #include "qemu/error-report.h" 28 #include "qemu/main-loop.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/kvm.h" 32 #include "sysemu/kvm_int.h" 33 #include "cpu.h" 34 #include "trace.h" 35 #include "hw/core/accel-cpu.h" 36 #include "hw/pci/pci.h" 37 #include "exec/memattrs.h" 38 #include "exec/address-spaces.h" 39 #include "hw/boards.h" 40 #include "hw/irq.h" 41 #include "hw/intc/riscv_imsic.h" 42 #include "qemu/log.h" 43 #include "hw/loader.h" 44 #include "kvm_riscv.h" 45 #include "sbi_ecall_interface.h" 46 #include "chardev/char-fe.h" 47 #include "migration/misc.h" 48 #include "sysemu/runstate.h" 49 #include "hw/riscv/numa.h" 50 51 #define PR_RISCV_V_SET_CONTROL 69 52 #define PR_RISCV_V_VSTATE_CTRL_ON 2 53 54 void riscv_kvm_aplic_request(void *opaque, int irq, int level) 55 { 56 kvm_set_irq(kvm_state, irq, !!level); 57 } 58 59 static bool cap_has_mp_state; 60 61 static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type, 62 uint64_t idx) 63 { 64 uint64_t id = KVM_REG_RISCV | type | idx; 65 66 switch (riscv_cpu_mxl(env)) { 67 case MXL_RV32: 68 id |= KVM_REG_SIZE_U32; 69 break; 70 case MXL_RV64: 71 id |= KVM_REG_SIZE_U64; 72 break; 73 default: 74 g_assert_not_reached(); 75 } 76 return id; 77 } 78 79 static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx) 80 { 81 return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx; 82 } 83 84 static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx) 85 { 86 return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx; 87 } 88 89 static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b) 90 { 91 uint64_t size_ctz = __builtin_ctz(size_b); 92 93 return id | (size_ctz << KVM_REG_SIZE_SHIFT); 94 } 95 96 static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu, 97 uint64_t idx) 98 { 99 uint64_t id; 100 size_t size_b; 101 102 g_assert(idx < 32); 103 104 id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx); 105 size_b = cpu->cfg.vlenb; 106 107 return kvm_encode_reg_size_id(id, size_b); 108 } 109 110 #define RISCV_CORE_REG(env, name) \ 111 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \ 112 KVM_REG_RISCV_CORE_REG(name)) 113 114 #define RISCV_CSR_REG(env, name) \ 115 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \ 116 KVM_REG_RISCV_CSR_REG(name)) 117 118 #define RISCV_CONFIG_REG(env, name) \ 119 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \ 120 KVM_REG_RISCV_CONFIG_REG(name)) 121 122 #define RISCV_TIMER_REG(name) kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \ 123 KVM_REG_RISCV_TIMER_REG(name)) 124 125 #define RISCV_FP_F_REG(idx) kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx) 126 127 #define RISCV_FP_D_REG(idx) kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx) 128 129 #define RISCV_VECTOR_CSR_REG(env, name) \ 130 kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \ 131 KVM_REG_RISCV_VECTOR_CSR_REG(name)) 132 133 #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \ 134 do { \ 135 int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ 136 if (_ret) { \ 137 return _ret; \ 138 } \ 139 } while (0) 140 141 #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \ 142 do { \ 143 int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), ®); \ 144 if (_ret) { \ 145 return _ret; \ 146 } \ 147 } while (0) 148 149 #define KVM_RISCV_GET_TIMER(cs, name, reg) \ 150 do { \ 151 int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), ®); \ 152 if (ret) { \ 153 abort(); \ 154 } \ 155 } while (0) 156 157 #define KVM_RISCV_SET_TIMER(cs, name, reg) \ 158 do { \ 159 int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), ®); \ 160 if (ret) { \ 161 abort(); \ 162 } \ 163 } while (0) 164 165 typedef struct KVMCPUConfig { 166 const char *name; 167 const char *description; 168 target_ulong offset; 169 uint64_t kvm_reg_id; 170 bool user_set; 171 bool supported; 172 } KVMCPUConfig; 173 174 #define KVM_MISA_CFG(_bit, _reg_id) \ 175 {.offset = _bit, .kvm_reg_id = _reg_id} 176 177 /* KVM ISA extensions */ 178 static KVMCPUConfig kvm_misa_ext_cfgs[] = { 179 KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A), 180 KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C), 181 KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D), 182 KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F), 183 KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H), 184 KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I), 185 KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M), 186 KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V), 187 }; 188 189 static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v, 190 const char *name, 191 void *opaque, Error **errp) 192 { 193 KVMCPUConfig *misa_ext_cfg = opaque; 194 target_ulong misa_bit = misa_ext_cfg->offset; 195 RISCVCPU *cpu = RISCV_CPU(obj); 196 CPURISCVState *env = &cpu->env; 197 bool value = env->misa_ext_mask & misa_bit; 198 199 visit_type_bool(v, name, &value, errp); 200 } 201 202 static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v, 203 const char *name, 204 void *opaque, Error **errp) 205 { 206 KVMCPUConfig *misa_ext_cfg = opaque; 207 target_ulong misa_bit = misa_ext_cfg->offset; 208 RISCVCPU *cpu = RISCV_CPU(obj); 209 CPURISCVState *env = &cpu->env; 210 bool value, host_bit; 211 212 if (!visit_type_bool(v, name, &value, errp)) { 213 return; 214 } 215 216 host_bit = env->misa_ext_mask & misa_bit; 217 218 if (value == host_bit) { 219 return; 220 } 221 222 if (!value) { 223 misa_ext_cfg->user_set = true; 224 return; 225 } 226 227 /* 228 * Forbid users to enable extensions that aren't 229 * available in the hart. 230 */ 231 error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not " 232 "enabled in the host", misa_ext_cfg->name); 233 } 234 235 static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs) 236 { 237 CPURISCVState *env = &cpu->env; 238 uint64_t id, reg; 239 int i, ret; 240 241 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) { 242 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i]; 243 target_ulong misa_bit = misa_cfg->offset; 244 245 if (!misa_cfg->user_set) { 246 continue; 247 } 248 249 /* If we're here we're going to disable the MISA bit */ 250 reg = 0; 251 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, 252 misa_cfg->kvm_reg_id); 253 ret = kvm_set_one_reg(cs, id, ®); 254 if (ret != 0) { 255 /* 256 * We're not checking for -EINVAL because if the bit is about 257 * to be disabled, it means that it was already enabled by 258 * KVM. We determined that by fetching the 'isa' register 259 * during init() time. Any error at this point is worth 260 * aborting. 261 */ 262 error_report("Unable to set KVM reg %s, error %d", 263 misa_cfg->name, ret); 264 exit(EXIT_FAILURE); 265 } 266 env->misa_ext &= ~misa_bit; 267 } 268 } 269 270 #define KVM_EXT_CFG(_name, _prop, _reg_id) \ 271 {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \ 272 .kvm_reg_id = _reg_id} 273 274 static KVMCPUConfig kvm_multi_ext_cfgs[] = { 275 KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM), 276 KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ), 277 KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR), 278 KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND), 279 KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR), 280 KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI), 281 KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL), 282 KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE), 283 KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM), 284 KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA), 285 KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH), 286 KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN), 287 KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA), 288 KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB), 289 KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC), 290 KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB), 291 KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC), 292 KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX), 293 KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS), 294 KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND), 295 KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE), 296 KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH), 297 KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR), 298 KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED), 299 KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH), 300 KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT), 301 KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB), 302 KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC), 303 KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH), 304 KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN), 305 KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB), 306 KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG), 307 KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED), 308 KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA), 309 KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB), 310 KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED), 311 KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH), 312 KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT), 313 KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN), 314 KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA), 315 KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC), 316 KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL), 317 KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT), 318 KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT), 319 }; 320 321 static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg) 322 { 323 return (void *)&cpu->cfg + kvmcfg->offset; 324 } 325 326 static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext, 327 uint32_t val) 328 { 329 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext); 330 331 *ext_enabled = val; 332 } 333 334 static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu, 335 KVMCPUConfig *multi_ext) 336 { 337 bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext); 338 339 return *ext_enabled; 340 } 341 342 static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v, 343 const char *name, 344 void *opaque, Error **errp) 345 { 346 KVMCPUConfig *multi_ext_cfg = opaque; 347 RISCVCPU *cpu = RISCV_CPU(obj); 348 bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg); 349 350 visit_type_bool(v, name, &value, errp); 351 } 352 353 static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v, 354 const char *name, 355 void *opaque, Error **errp) 356 { 357 KVMCPUConfig *multi_ext_cfg = opaque; 358 RISCVCPU *cpu = RISCV_CPU(obj); 359 bool value, host_val; 360 361 if (!visit_type_bool(v, name, &value, errp)) { 362 return; 363 } 364 365 host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg); 366 367 /* 368 * Ignore if the user is setting the same value 369 * as the host. 370 */ 371 if (value == host_val) { 372 return; 373 } 374 375 if (!multi_ext_cfg->supported) { 376 /* 377 * Error out if the user is trying to enable an 378 * extension that KVM doesn't support. Ignore 379 * option otherwise. 380 */ 381 if (value) { 382 error_setg(errp, "KVM does not support disabling extension %s", 383 multi_ext_cfg->name); 384 } 385 386 return; 387 } 388 389 multi_ext_cfg->user_set = true; 390 kvm_cpu_cfg_set(cpu, multi_ext_cfg, value); 391 } 392 393 static KVMCPUConfig kvm_cbom_blocksize = { 394 .name = "cbom_blocksize", 395 .offset = CPU_CFG_OFFSET(cbom_blocksize), 396 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size) 397 }; 398 399 static KVMCPUConfig kvm_cboz_blocksize = { 400 .name = "cboz_blocksize", 401 .offset = CPU_CFG_OFFSET(cboz_blocksize), 402 .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size) 403 }; 404 405 static KVMCPUConfig kvm_v_vlenb = { 406 .name = "vlenb", 407 .offset = CPU_CFG_OFFSET(vlenb), 408 .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR | 409 KVM_REG_RISCV_VECTOR_CSR_REG(vlenb) 410 }; 411 412 static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs) 413 { 414 CPURISCVState *env = &cpu->env; 415 uint64_t id, reg; 416 int i, ret; 417 418 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 419 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i]; 420 421 if (!multi_ext_cfg->user_set) { 422 continue; 423 } 424 425 id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, 426 multi_ext_cfg->kvm_reg_id); 427 reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg); 428 ret = kvm_set_one_reg(cs, id, ®); 429 if (ret != 0) { 430 error_report("Unable to %s extension %s in KVM, error %d", 431 reg ? "enable" : "disable", 432 multi_ext_cfg->name, ret); 433 exit(EXIT_FAILURE); 434 } 435 } 436 } 437 438 static void cpu_get_cfg_unavailable(Object *obj, Visitor *v, 439 const char *name, 440 void *opaque, Error **errp) 441 { 442 bool value = false; 443 444 visit_type_bool(v, name, &value, errp); 445 } 446 447 static void cpu_set_cfg_unavailable(Object *obj, Visitor *v, 448 const char *name, 449 void *opaque, Error **errp) 450 { 451 const char *propname = opaque; 452 bool value; 453 454 if (!visit_type_bool(v, name, &value, errp)) { 455 return; 456 } 457 458 if (value) { 459 error_setg(errp, "'%s' is not available with KVM", 460 propname); 461 } 462 } 463 464 static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name) 465 { 466 /* Check if KVM created the property already */ 467 if (object_property_find(obj, prop_name)) { 468 return; 469 } 470 471 /* 472 * Set the default to disabled for every extension 473 * unknown to KVM and error out if the user attempts 474 * to enable any of them. 475 */ 476 object_property_add(obj, prop_name, "bool", 477 cpu_get_cfg_unavailable, 478 cpu_set_cfg_unavailable, 479 NULL, (void *)prop_name); 480 } 481 482 static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj, 483 const RISCVCPUMultiExtConfig *array) 484 { 485 const RISCVCPUMultiExtConfig *prop; 486 487 g_assert(array); 488 489 for (prop = array; prop && prop->name; prop++) { 490 riscv_cpu_add_kvm_unavail_prop(obj, prop->name); 491 } 492 } 493 494 static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj) 495 { 496 int i; 497 498 riscv_add_satp_mode_properties(cpu_obj); 499 500 for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) { 501 KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i]; 502 int bit = misa_cfg->offset; 503 504 misa_cfg->name = riscv_get_misa_ext_name(bit); 505 misa_cfg->description = riscv_get_misa_ext_description(bit); 506 507 object_property_add(cpu_obj, misa_cfg->name, "bool", 508 kvm_cpu_get_misa_ext_cfg, 509 kvm_cpu_set_misa_ext_cfg, 510 NULL, misa_cfg); 511 object_property_set_description(cpu_obj, misa_cfg->name, 512 misa_cfg->description); 513 } 514 515 for (i = 0; misa_bits[i] != 0; i++) { 516 const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]); 517 riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name); 518 } 519 520 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 521 KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i]; 522 523 object_property_add(cpu_obj, multi_cfg->name, "bool", 524 kvm_cpu_get_multi_ext_cfg, 525 kvm_cpu_set_multi_ext_cfg, 526 NULL, multi_cfg); 527 } 528 529 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions); 530 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts); 531 riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts); 532 533 /* We don't have the needed KVM support for profiles */ 534 for (i = 0; riscv_profiles[i] != NULL; i++) { 535 riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name); 536 } 537 } 538 539 static int kvm_riscv_get_regs_core(CPUState *cs) 540 { 541 int ret = 0; 542 int i; 543 target_ulong reg; 544 CPURISCVState *env = &RISCV_CPU(cs)->env; 545 546 ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); 547 if (ret) { 548 return ret; 549 } 550 env->pc = reg; 551 552 for (i = 1; i < 32; i++) { 553 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i); 554 ret = kvm_get_one_reg(cs, id, ®); 555 if (ret) { 556 return ret; 557 } 558 env->gpr[i] = reg; 559 } 560 561 return ret; 562 } 563 564 static int kvm_riscv_put_regs_core(CPUState *cs) 565 { 566 int ret = 0; 567 int i; 568 target_ulong reg; 569 CPURISCVState *env = &RISCV_CPU(cs)->env; 570 571 reg = env->pc; 572 ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), ®); 573 if (ret) { 574 return ret; 575 } 576 577 for (i = 1; i < 32; i++) { 578 uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i); 579 reg = env->gpr[i]; 580 ret = kvm_set_one_reg(cs, id, ®); 581 if (ret) { 582 return ret; 583 } 584 } 585 586 return ret; 587 } 588 589 static int kvm_riscv_get_regs_csr(CPUState *cs) 590 { 591 CPURISCVState *env = &RISCV_CPU(cs)->env; 592 593 KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus); 594 KVM_RISCV_GET_CSR(cs, env, sie, env->mie); 595 KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec); 596 KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch); 597 KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc); 598 KVM_RISCV_GET_CSR(cs, env, scause, env->scause); 599 KVM_RISCV_GET_CSR(cs, env, stval, env->stval); 600 KVM_RISCV_GET_CSR(cs, env, sip, env->mip); 601 KVM_RISCV_GET_CSR(cs, env, satp, env->satp); 602 603 return 0; 604 } 605 606 static int kvm_riscv_put_regs_csr(CPUState *cs) 607 { 608 CPURISCVState *env = &RISCV_CPU(cs)->env; 609 610 KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus); 611 KVM_RISCV_SET_CSR(cs, env, sie, env->mie); 612 KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec); 613 KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch); 614 KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc); 615 KVM_RISCV_SET_CSR(cs, env, scause, env->scause); 616 KVM_RISCV_SET_CSR(cs, env, stval, env->stval); 617 KVM_RISCV_SET_CSR(cs, env, sip, env->mip); 618 KVM_RISCV_SET_CSR(cs, env, satp, env->satp); 619 620 return 0; 621 } 622 623 static int kvm_riscv_get_regs_fp(CPUState *cs) 624 { 625 int ret = 0; 626 int i; 627 CPURISCVState *env = &RISCV_CPU(cs)->env; 628 629 if (riscv_has_ext(env, RVD)) { 630 uint64_t reg; 631 for (i = 0; i < 32; i++) { 632 ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), ®); 633 if (ret) { 634 return ret; 635 } 636 env->fpr[i] = reg; 637 } 638 return ret; 639 } 640 641 if (riscv_has_ext(env, RVF)) { 642 uint32_t reg; 643 for (i = 0; i < 32; i++) { 644 ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), ®); 645 if (ret) { 646 return ret; 647 } 648 env->fpr[i] = reg; 649 } 650 return ret; 651 } 652 653 return ret; 654 } 655 656 static int kvm_riscv_put_regs_fp(CPUState *cs) 657 { 658 int ret = 0; 659 int i; 660 CPURISCVState *env = &RISCV_CPU(cs)->env; 661 662 if (riscv_has_ext(env, RVD)) { 663 uint64_t reg; 664 for (i = 0; i < 32; i++) { 665 reg = env->fpr[i]; 666 ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), ®); 667 if (ret) { 668 return ret; 669 } 670 } 671 return ret; 672 } 673 674 if (riscv_has_ext(env, RVF)) { 675 uint32_t reg; 676 for (i = 0; i < 32; i++) { 677 reg = env->fpr[i]; 678 ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), ®); 679 if (ret) { 680 return ret; 681 } 682 } 683 return ret; 684 } 685 686 return ret; 687 } 688 689 static void kvm_riscv_get_regs_timer(CPUState *cs) 690 { 691 CPURISCVState *env = &RISCV_CPU(cs)->env; 692 693 if (env->kvm_timer_dirty) { 694 return; 695 } 696 697 KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time); 698 KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare); 699 KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state); 700 KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency); 701 702 env->kvm_timer_dirty = true; 703 } 704 705 static void kvm_riscv_put_regs_timer(CPUState *cs) 706 { 707 uint64_t reg; 708 CPURISCVState *env = &RISCV_CPU(cs)->env; 709 710 if (!env->kvm_timer_dirty) { 711 return; 712 } 713 714 KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time); 715 KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare); 716 717 /* 718 * To set register of RISCV_TIMER_REG(state) will occur a error from KVM 719 * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it 720 * doesn't matter that adaping in QEMU now. 721 * TODO If KVM changes, adapt here. 722 */ 723 if (env->kvm_timer_state) { 724 KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state); 725 } 726 727 /* 728 * For now, migration will not work between Hosts with different timer 729 * frequency. Therefore, we should check whether they are the same here 730 * during the migration. 731 */ 732 if (migration_is_running()) { 733 KVM_RISCV_GET_TIMER(cs, frequency, reg); 734 if (reg != env->kvm_timer_frequency) { 735 error_report("Dst Hosts timer frequency != Src Hosts"); 736 } 737 } 738 739 env->kvm_timer_dirty = false; 740 } 741 742 uint64_t kvm_riscv_get_timebase_frequency(CPUState *cs) 743 { 744 uint64_t reg; 745 746 KVM_RISCV_GET_TIMER(cs, frequency, reg); 747 748 return reg; 749 } 750 751 static int kvm_riscv_get_regs_vector(CPUState *cs) 752 { 753 RISCVCPU *cpu = RISCV_CPU(cs); 754 CPURISCVState *env = &cpu->env; 755 target_ulong reg; 756 uint64_t vreg_id; 757 int vreg_idx, ret = 0; 758 759 if (!riscv_has_ext(env, RVV)) { 760 return 0; 761 } 762 763 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®); 764 if (ret) { 765 return ret; 766 } 767 env->vstart = reg; 768 769 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®); 770 if (ret) { 771 return ret; 772 } 773 env->vl = reg; 774 775 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®); 776 if (ret) { 777 return ret; 778 } 779 env->vtype = reg; 780 781 if (kvm_v_vlenb.supported) { 782 ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®); 783 if (ret) { 784 return ret; 785 } 786 cpu->cfg.vlenb = reg; 787 788 for (int i = 0; i < 32; i++) { 789 /* 790 * vreg[] is statically allocated using RV_VLEN_MAX. 791 * Use it instead of vlenb to calculate vreg_idx for 792 * simplicity. 793 */ 794 vreg_idx = i * RV_VLEN_MAX / 64; 795 vreg_id = kvm_riscv_vector_reg_id(cpu, i); 796 797 ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]); 798 if (ret) { 799 return ret; 800 } 801 } 802 } 803 804 return 0; 805 } 806 807 static int kvm_riscv_put_regs_vector(CPUState *cs) 808 { 809 RISCVCPU *cpu = RISCV_CPU(cs); 810 CPURISCVState *env = &cpu->env; 811 target_ulong reg; 812 uint64_t vreg_id; 813 int vreg_idx, ret = 0; 814 815 if (!riscv_has_ext(env, RVV)) { 816 return 0; 817 } 818 819 reg = env->vstart; 820 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), ®); 821 if (ret) { 822 return ret; 823 } 824 825 reg = env->vl; 826 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), ®); 827 if (ret) { 828 return ret; 829 } 830 831 reg = env->vtype; 832 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), ®); 833 if (ret) { 834 return ret; 835 } 836 837 if (kvm_v_vlenb.supported) { 838 reg = cpu->cfg.vlenb; 839 ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), ®); 840 841 for (int i = 0; i < 32; i++) { 842 /* 843 * vreg[] is statically allocated using RV_VLEN_MAX. 844 * Use it instead of vlenb to calculate vreg_idx for 845 * simplicity. 846 */ 847 vreg_idx = i * RV_VLEN_MAX / 64; 848 vreg_id = kvm_riscv_vector_reg_id(cpu, i); 849 850 ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]); 851 if (ret) { 852 return ret; 853 } 854 } 855 } 856 857 return ret; 858 } 859 860 typedef struct KVMScratchCPU { 861 int kvmfd; 862 int vmfd; 863 int cpufd; 864 } KVMScratchCPU; 865 866 /* 867 * Heavily inspired by kvm_arm_create_scratch_host_vcpu() 868 * from target/arm/kvm.c. 869 */ 870 static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch) 871 { 872 int kvmfd = -1, vmfd = -1, cpufd = -1; 873 874 kvmfd = qemu_open_old("/dev/kvm", O_RDWR); 875 if (kvmfd < 0) { 876 goto err; 877 } 878 do { 879 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 880 } while (vmfd == -1 && errno == EINTR); 881 if (vmfd < 0) { 882 goto err; 883 } 884 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); 885 if (cpufd < 0) { 886 goto err; 887 } 888 889 scratch->kvmfd = kvmfd; 890 scratch->vmfd = vmfd; 891 scratch->cpufd = cpufd; 892 893 return true; 894 895 err: 896 if (cpufd >= 0) { 897 close(cpufd); 898 } 899 if (vmfd >= 0) { 900 close(vmfd); 901 } 902 if (kvmfd >= 0) { 903 close(kvmfd); 904 } 905 906 return false; 907 } 908 909 static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch) 910 { 911 close(scratch->cpufd); 912 close(scratch->vmfd); 913 close(scratch->kvmfd); 914 } 915 916 static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) 917 { 918 CPURISCVState *env = &cpu->env; 919 struct kvm_one_reg reg; 920 int ret; 921 922 reg.id = RISCV_CONFIG_REG(env, mvendorid); 923 reg.addr = (uint64_t)&cpu->cfg.mvendorid; 924 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 925 if (ret != 0) { 926 error_report("Unable to retrieve mvendorid from host, error %d", ret); 927 } 928 929 reg.id = RISCV_CONFIG_REG(env, marchid); 930 reg.addr = (uint64_t)&cpu->cfg.marchid; 931 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 932 if (ret != 0) { 933 error_report("Unable to retrieve marchid from host, error %d", ret); 934 } 935 936 reg.id = RISCV_CONFIG_REG(env, mimpid); 937 reg.addr = (uint64_t)&cpu->cfg.mimpid; 938 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 939 if (ret != 0) { 940 error_report("Unable to retrieve mimpid from host, error %d", ret); 941 } 942 } 943 944 static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu, 945 KVMScratchCPU *kvmcpu) 946 { 947 CPURISCVState *env = &cpu->env; 948 struct kvm_one_reg reg; 949 int ret; 950 951 reg.id = RISCV_CONFIG_REG(env, isa); 952 reg.addr = (uint64_t)&env->misa_ext_mask; 953 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 954 955 if (ret) { 956 error_report("Unable to fetch ISA register from KVM, " 957 "error %d", ret); 958 kvm_riscv_destroy_scratch_vcpu(kvmcpu); 959 exit(EXIT_FAILURE); 960 } 961 962 env->misa_ext = env->misa_ext_mask; 963 } 964 965 static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, 966 KVMCPUConfig *cbomz_cfg) 967 { 968 CPURISCVState *env = &cpu->env; 969 struct kvm_one_reg reg; 970 int ret; 971 972 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, 973 cbomz_cfg->kvm_reg_id); 974 reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg); 975 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 976 if (ret != 0) { 977 error_report("Unable to read KVM reg %s, error %d", 978 cbomz_cfg->name, ret); 979 exit(EXIT_FAILURE); 980 } 981 } 982 983 static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu, 984 KVMScratchCPU *kvmcpu) 985 { 986 CPURISCVState *env = &cpu->env; 987 uint64_t val; 988 int i, ret; 989 990 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 991 KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i]; 992 struct kvm_one_reg reg; 993 994 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT, 995 multi_ext_cfg->kvm_reg_id); 996 reg.addr = (uint64_t)&val; 997 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 998 if (ret != 0) { 999 if (errno == EINVAL) { 1000 /* Silently default to 'false' if KVM does not support it. */ 1001 multi_ext_cfg->supported = false; 1002 val = false; 1003 } else { 1004 error_report("Unable to read ISA_EXT KVM register %s: %s", 1005 multi_ext_cfg->name, strerror(errno)); 1006 exit(EXIT_FAILURE); 1007 } 1008 } else { 1009 multi_ext_cfg->supported = true; 1010 } 1011 1012 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val); 1013 } 1014 1015 if (cpu->cfg.ext_zicbom) { 1016 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize); 1017 } 1018 1019 if (cpu->cfg.ext_zicboz) { 1020 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize); 1021 } 1022 } 1023 1024 static int uint64_cmp(const void *a, const void *b) 1025 { 1026 uint64_t val1 = *(const uint64_t *)a; 1027 uint64_t val2 = *(const uint64_t *)b; 1028 1029 if (val1 < val2) { 1030 return -1; 1031 } 1032 1033 if (val1 > val2) { 1034 return 1; 1035 } 1036 1037 return 0; 1038 } 1039 1040 static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu, 1041 struct kvm_reg_list *reglist) 1042 { 1043 struct kvm_one_reg reg; 1044 struct kvm_reg_list *reg_search; 1045 uint64_t val; 1046 int ret; 1047 1048 reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n, 1049 sizeof(uint64_t), uint64_cmp); 1050 1051 if (reg_search) { 1052 reg.id = kvm_v_vlenb.kvm_reg_id; 1053 reg.addr = (uint64_t)&val; 1054 1055 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 1056 if (ret != 0) { 1057 error_report("Unable to read vlenb register, error code: %d", 1058 errno); 1059 exit(EXIT_FAILURE); 1060 } 1061 1062 kvm_v_vlenb.supported = true; 1063 cpu->cfg.vlenb = val; 1064 } 1065 } 1066 1067 static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu) 1068 { 1069 KVMCPUConfig *multi_ext_cfg; 1070 struct kvm_one_reg reg; 1071 struct kvm_reg_list rl_struct; 1072 struct kvm_reg_list *reglist; 1073 uint64_t val, reg_id, *reg_search; 1074 int i, ret; 1075 1076 rl_struct.n = 0; 1077 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct); 1078 1079 /* 1080 * If KVM_GET_REG_LIST isn't supported we'll get errno 22 1081 * (EINVAL). Use read_legacy() in this case. 1082 */ 1083 if (errno == EINVAL) { 1084 return kvm_riscv_read_multiext_legacy(cpu, kvmcpu); 1085 } else if (errno != E2BIG) { 1086 /* 1087 * E2BIG is an expected error message for the API since we 1088 * don't know the number of registers. The right amount will 1089 * be written in rl_struct.n. 1090 * 1091 * Error out if we get any other errno. 1092 */ 1093 error_report("Error when accessing get-reg-list: %s", 1094 strerror(errno)); 1095 exit(EXIT_FAILURE); 1096 } 1097 1098 reglist = g_malloc(sizeof(struct kvm_reg_list) + 1099 rl_struct.n * sizeof(uint64_t)); 1100 reglist->n = rl_struct.n; 1101 ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist); 1102 if (ret) { 1103 error_report("Error when reading KVM_GET_REG_LIST: %s", 1104 strerror(errno)); 1105 exit(EXIT_FAILURE); 1106 } 1107 1108 /* sort reglist to use bsearch() */ 1109 qsort(®list->reg, reglist->n, sizeof(uint64_t), uint64_cmp); 1110 1111 for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) { 1112 multi_ext_cfg = &kvm_multi_ext_cfgs[i]; 1113 reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT, 1114 multi_ext_cfg->kvm_reg_id); 1115 reg_search = bsearch(®_id, reglist->reg, reglist->n, 1116 sizeof(uint64_t), uint64_cmp); 1117 if (!reg_search) { 1118 continue; 1119 } 1120 1121 reg.id = reg_id; 1122 reg.addr = (uint64_t)&val; 1123 ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, ®); 1124 if (ret != 0) { 1125 error_report("Unable to read ISA_EXT KVM register %s: %s", 1126 multi_ext_cfg->name, strerror(errno)); 1127 exit(EXIT_FAILURE); 1128 } 1129 1130 multi_ext_cfg->supported = true; 1131 kvm_cpu_cfg_set(cpu, multi_ext_cfg, val); 1132 } 1133 1134 if (cpu->cfg.ext_zicbom) { 1135 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize); 1136 } 1137 1138 if (cpu->cfg.ext_zicboz) { 1139 kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize); 1140 } 1141 1142 if (riscv_has_ext(&cpu->env, RVV)) { 1143 kvm_riscv_read_vlenb(cpu, kvmcpu, reglist); 1144 } 1145 } 1146 1147 static void riscv_init_kvm_registers(Object *cpu_obj) 1148 { 1149 RISCVCPU *cpu = RISCV_CPU(cpu_obj); 1150 KVMScratchCPU kvmcpu; 1151 1152 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { 1153 return; 1154 } 1155 1156 kvm_riscv_init_machine_ids(cpu, &kvmcpu); 1157 kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu); 1158 kvm_riscv_init_multiext_cfg(cpu, &kvmcpu); 1159 1160 kvm_riscv_destroy_scratch_vcpu(&kvmcpu); 1161 } 1162 1163 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 1164 KVM_CAP_LAST_INFO 1165 }; 1166 1167 int kvm_arch_get_registers(CPUState *cs) 1168 { 1169 int ret = 0; 1170 1171 ret = kvm_riscv_get_regs_core(cs); 1172 if (ret) { 1173 return ret; 1174 } 1175 1176 ret = kvm_riscv_get_regs_csr(cs); 1177 if (ret) { 1178 return ret; 1179 } 1180 1181 ret = kvm_riscv_get_regs_fp(cs); 1182 if (ret) { 1183 return ret; 1184 } 1185 1186 ret = kvm_riscv_get_regs_vector(cs); 1187 if (ret) { 1188 return ret; 1189 } 1190 1191 return ret; 1192 } 1193 1194 int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state) 1195 { 1196 if (cap_has_mp_state) { 1197 struct kvm_mp_state mp_state = { 1198 .mp_state = state 1199 }; 1200 1201 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1202 if (ret) { 1203 fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n", 1204 __func__, ret, strerror(-ret)); 1205 return -1; 1206 } 1207 } 1208 1209 return 0; 1210 } 1211 1212 int kvm_arch_put_registers(CPUState *cs, int level) 1213 { 1214 int ret = 0; 1215 1216 ret = kvm_riscv_put_regs_core(cs); 1217 if (ret) { 1218 return ret; 1219 } 1220 1221 ret = kvm_riscv_put_regs_csr(cs); 1222 if (ret) { 1223 return ret; 1224 } 1225 1226 ret = kvm_riscv_put_regs_fp(cs); 1227 if (ret) { 1228 return ret; 1229 } 1230 1231 ret = kvm_riscv_put_regs_vector(cs); 1232 if (ret) { 1233 return ret; 1234 } 1235 1236 if (KVM_PUT_RESET_STATE == level) { 1237 RISCVCPU *cpu = RISCV_CPU(cs); 1238 if (cs->cpu_index == 0) { 1239 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE); 1240 } else { 1241 ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED); 1242 } 1243 if (ret) { 1244 return ret; 1245 } 1246 } 1247 1248 return ret; 1249 } 1250 1251 int kvm_arch_release_virq_post(int virq) 1252 { 1253 return 0; 1254 } 1255 1256 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1257 uint64_t address, uint32_t data, PCIDevice *dev) 1258 { 1259 return 0; 1260 } 1261 1262 int kvm_arch_destroy_vcpu(CPUState *cs) 1263 { 1264 return 0; 1265 } 1266 1267 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 1268 { 1269 return cpu->cpu_index; 1270 } 1271 1272 static void kvm_riscv_vm_state_change(void *opaque, bool running, 1273 RunState state) 1274 { 1275 CPUState *cs = opaque; 1276 1277 if (running) { 1278 kvm_riscv_put_regs_timer(cs); 1279 } else { 1280 kvm_riscv_get_regs_timer(cs); 1281 } 1282 } 1283 1284 void kvm_arch_init_irq_routing(KVMState *s) 1285 { 1286 } 1287 1288 static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs) 1289 { 1290 CPURISCVState *env = &cpu->env; 1291 target_ulong reg; 1292 uint64_t id; 1293 int ret; 1294 1295 id = RISCV_CONFIG_REG(env, mvendorid); 1296 /* 1297 * cfg.mvendorid is an uint32 but a target_ulong will 1298 * be written. Assign it to a target_ulong var to avoid 1299 * writing pieces of other cpu->cfg fields in the reg. 1300 */ 1301 reg = cpu->cfg.mvendorid; 1302 ret = kvm_set_one_reg(cs, id, ®); 1303 if (ret != 0) { 1304 return ret; 1305 } 1306 1307 id = RISCV_CONFIG_REG(env, marchid); 1308 ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid); 1309 if (ret != 0) { 1310 return ret; 1311 } 1312 1313 id = RISCV_CONFIG_REG(env, mimpid); 1314 ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid); 1315 1316 return ret; 1317 } 1318 1319 int kvm_arch_init_vcpu(CPUState *cs) 1320 { 1321 int ret = 0; 1322 RISCVCPU *cpu = RISCV_CPU(cs); 1323 1324 qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs); 1325 1326 if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) { 1327 ret = kvm_vcpu_set_machine_ids(cpu, cs); 1328 if (ret != 0) { 1329 return ret; 1330 } 1331 } 1332 1333 kvm_riscv_update_cpu_misa_ext(cpu, cs); 1334 kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs); 1335 1336 return ret; 1337 } 1338 1339 int kvm_arch_msi_data_to_gsi(uint32_t data) 1340 { 1341 abort(); 1342 } 1343 1344 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1345 int vector, PCIDevice *dev) 1346 { 1347 return 0; 1348 } 1349 1350 int kvm_arch_get_default_type(MachineState *ms) 1351 { 1352 return 0; 1353 } 1354 1355 int kvm_arch_init(MachineState *ms, KVMState *s) 1356 { 1357 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); 1358 return 0; 1359 } 1360 1361 int kvm_arch_irqchip_create(KVMState *s) 1362 { 1363 if (kvm_kernel_irqchip_split()) { 1364 error_report("-machine kernel_irqchip=split is not supported on RISC-V."); 1365 exit(1); 1366 } 1367 1368 /* 1369 * We can create the VAIA using the newer device control API. 1370 */ 1371 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); 1372 } 1373 1374 int kvm_arch_process_async_events(CPUState *cs) 1375 { 1376 return 0; 1377 } 1378 1379 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1380 { 1381 } 1382 1383 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1384 { 1385 return MEMTXATTRS_UNSPECIFIED; 1386 } 1387 1388 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 1389 { 1390 return true; 1391 } 1392 1393 static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run) 1394 { 1395 int ret = 0; 1396 unsigned char ch; 1397 switch (run->riscv_sbi.extension_id) { 1398 case SBI_EXT_0_1_CONSOLE_PUTCHAR: 1399 ch = run->riscv_sbi.args[0]; 1400 qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch)); 1401 break; 1402 case SBI_EXT_0_1_CONSOLE_GETCHAR: 1403 ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch)); 1404 if (ret == sizeof(ch)) { 1405 run->riscv_sbi.ret[0] = ch; 1406 } else { 1407 run->riscv_sbi.ret[0] = -1; 1408 } 1409 ret = 0; 1410 break; 1411 default: 1412 qemu_log_mask(LOG_UNIMP, 1413 "%s: un-handled SBI EXIT, specific reasons is %lu\n", 1414 __func__, run->riscv_sbi.extension_id); 1415 ret = -1; 1416 break; 1417 } 1418 return ret; 1419 } 1420 1421 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1422 { 1423 int ret = 0; 1424 switch (run->exit_reason) { 1425 case KVM_EXIT_RISCV_SBI: 1426 ret = kvm_riscv_handle_sbi(cs, run); 1427 break; 1428 default: 1429 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", 1430 __func__, run->exit_reason); 1431 ret = -1; 1432 break; 1433 } 1434 return ret; 1435 } 1436 1437 void kvm_riscv_reset_vcpu(RISCVCPU *cpu) 1438 { 1439 CPURISCVState *env = &cpu->env; 1440 int i; 1441 1442 if (!kvm_enabled()) { 1443 return; 1444 } 1445 for (i = 0; i < 32; i++) { 1446 env->gpr[i] = 0; 1447 } 1448 env->pc = cpu->env.kernel_addr; 1449 env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */ 1450 env->gpr[11] = cpu->env.fdt_addr; /* a1 */ 1451 env->satp = 0; 1452 env->mie = 0; 1453 env->stvec = 0; 1454 env->sscratch = 0; 1455 env->sepc = 0; 1456 env->scause = 0; 1457 env->stval = 0; 1458 env->mip = 0; 1459 } 1460 1461 void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level) 1462 { 1463 int ret; 1464 unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET; 1465 1466 if (irq != IRQ_S_EXT) { 1467 perror("kvm riscv set irq != IRQ_S_EXT\n"); 1468 abort(); 1469 } 1470 1471 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1472 if (ret < 0) { 1473 perror("Set irq failed"); 1474 abort(); 1475 } 1476 } 1477 1478 static int aia_mode; 1479 1480 static const char *kvm_aia_mode_str(uint64_t mode) 1481 { 1482 switch (mode) { 1483 case KVM_DEV_RISCV_AIA_MODE_EMUL: 1484 return "emul"; 1485 case KVM_DEV_RISCV_AIA_MODE_HWACCEL: 1486 return "hwaccel"; 1487 case KVM_DEV_RISCV_AIA_MODE_AUTO: 1488 default: 1489 return "auto"; 1490 }; 1491 } 1492 1493 static char *riscv_get_kvm_aia(Object *obj, Error **errp) 1494 { 1495 return g_strdup(kvm_aia_mode_str(aia_mode)); 1496 } 1497 1498 static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp) 1499 { 1500 if (!strcmp(val, "emul")) { 1501 aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL; 1502 } else if (!strcmp(val, "hwaccel")) { 1503 aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL; 1504 } else if (!strcmp(val, "auto")) { 1505 aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO; 1506 } else { 1507 error_setg(errp, "Invalid KVM AIA mode"); 1508 error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n"); 1509 } 1510 } 1511 1512 void kvm_arch_accel_class_init(ObjectClass *oc) 1513 { 1514 object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia, 1515 riscv_set_kvm_aia); 1516 object_class_property_set_description(oc, "riscv-aia", 1517 "Set KVM AIA mode. Valid values are " 1518 "emul, hwaccel, and auto. Default " 1519 "is auto."); 1520 object_property_set_default_str(object_class_property_find(oc, "riscv-aia"), 1521 "auto"); 1522 } 1523 1524 void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift, 1525 uint64_t aia_irq_num, uint64_t aia_msi_num, 1526 uint64_t aplic_base, uint64_t imsic_base, 1527 uint64_t guest_num) 1528 { 1529 int ret, i; 1530 int aia_fd = -1; 1531 uint64_t default_aia_mode; 1532 uint64_t socket_count = riscv_socket_count(machine); 1533 uint64_t max_hart_per_socket = 0; 1534 uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr; 1535 uint64_t socket_bits, hart_bits, guest_bits; 1536 1537 aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false); 1538 1539 if (aia_fd < 0) { 1540 error_report("Unable to create in-kernel irqchip"); 1541 exit(1); 1542 } 1543 1544 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1545 KVM_DEV_RISCV_AIA_CONFIG_MODE, 1546 &default_aia_mode, false, NULL); 1547 if (ret < 0) { 1548 error_report("KVM AIA: failed to get current KVM AIA mode"); 1549 exit(1); 1550 } 1551 qemu_log("KVM AIA: default mode is %s\n", 1552 kvm_aia_mode_str(default_aia_mode)); 1553 1554 if (default_aia_mode != aia_mode) { 1555 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1556 KVM_DEV_RISCV_AIA_CONFIG_MODE, 1557 &aia_mode, true, NULL); 1558 if (ret < 0) 1559 warn_report("KVM AIA: failed to set KVM AIA mode"); 1560 else 1561 qemu_log("KVM AIA: set current mode to %s\n", 1562 kvm_aia_mode_str(aia_mode)); 1563 } 1564 1565 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1566 KVM_DEV_RISCV_AIA_CONFIG_SRCS, 1567 &aia_irq_num, true, NULL); 1568 if (ret < 0) { 1569 error_report("KVM AIA: failed to set number of input irq lines"); 1570 exit(1); 1571 } 1572 1573 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1574 KVM_DEV_RISCV_AIA_CONFIG_IDS, 1575 &aia_msi_num, true, NULL); 1576 if (ret < 0) { 1577 error_report("KVM AIA: failed to set number of msi"); 1578 exit(1); 1579 } 1580 1581 1582 if (socket_count > 1) { 1583 socket_bits = find_last_bit(&socket_count, BITS_PER_LONG) + 1; 1584 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1585 KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS, 1586 &socket_bits, true, NULL); 1587 if (ret < 0) { 1588 error_report("KVM AIA: failed to set group_bits"); 1589 exit(1); 1590 } 1591 1592 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1593 KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT, 1594 &group_shift, true, NULL); 1595 if (ret < 0) { 1596 error_report("KVM AIA: failed to set group_shift"); 1597 exit(1); 1598 } 1599 } 1600 1601 guest_bits = guest_num == 0 ? 0 : 1602 find_last_bit(&guest_num, BITS_PER_LONG) + 1; 1603 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1604 KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS, 1605 &guest_bits, true, NULL); 1606 if (ret < 0) { 1607 error_report("KVM AIA: failed to set guest_bits"); 1608 exit(1); 1609 } 1610 1611 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR, 1612 KVM_DEV_RISCV_AIA_ADDR_APLIC, 1613 &aplic_base, true, NULL); 1614 if (ret < 0) { 1615 error_report("KVM AIA: failed to set the base address of APLIC"); 1616 exit(1); 1617 } 1618 1619 for (socket = 0; socket < socket_count; socket++) { 1620 socket_imsic_base = imsic_base + socket * (1U << group_shift); 1621 hart_count = riscv_socket_hart_count(machine, socket); 1622 base_hart = riscv_socket_first_hartid(machine, socket); 1623 1624 if (max_hart_per_socket < hart_count) { 1625 max_hart_per_socket = hart_count; 1626 } 1627 1628 for (i = 0; i < hart_count; i++) { 1629 imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits); 1630 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR, 1631 KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart), 1632 &imsic_addr, true, NULL); 1633 if (ret < 0) { 1634 error_report("KVM AIA: failed to set the IMSIC address for hart %d", i); 1635 exit(1); 1636 } 1637 } 1638 } 1639 1640 hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1; 1641 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG, 1642 KVM_DEV_RISCV_AIA_CONFIG_HART_BITS, 1643 &hart_bits, true, NULL); 1644 if (ret < 0) { 1645 error_report("KVM AIA: failed to set hart_bits"); 1646 exit(1); 1647 } 1648 1649 if (kvm_has_gsi_routing()) { 1650 for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) { 1651 /* KVM AIA only has one APLIC instance */ 1652 kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx); 1653 } 1654 kvm_gsi_routing_allowed = true; 1655 kvm_irqchip_commit_routes(kvm_state); 1656 } 1657 1658 ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL, 1659 KVM_DEV_RISCV_AIA_CTRL_INIT, 1660 NULL, true, NULL); 1661 if (ret < 0) { 1662 error_report("KVM AIA: initialized fail"); 1663 exit(1); 1664 } 1665 1666 kvm_msi_via_irqfd_allowed = true; 1667 } 1668 1669 static void kvm_cpu_instance_init(CPUState *cs) 1670 { 1671 Object *obj = OBJECT(RISCV_CPU(cs)); 1672 1673 riscv_init_kvm_registers(obj); 1674 1675 kvm_riscv_add_cpu_user_properties(obj); 1676 } 1677 1678 /* 1679 * We'll get here via the following path: 1680 * 1681 * riscv_cpu_realize() 1682 * -> cpu_exec_realizefn() 1683 * -> kvm_cpu_realize() (via accel_cpu_common_realize()) 1684 */ 1685 static bool kvm_cpu_realize(CPUState *cs, Error **errp) 1686 { 1687 RISCVCPU *cpu = RISCV_CPU(cs); 1688 int ret; 1689 1690 if (riscv_has_ext(&cpu->env, RVV)) { 1691 ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON); 1692 if (ret) { 1693 error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s", 1694 strerrorname_np(errno)); 1695 return false; 1696 } 1697 } 1698 1699 return true; 1700 } 1701 1702 void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp) 1703 { 1704 CPURISCVState *env = &cpu->env; 1705 KVMScratchCPU kvmcpu; 1706 struct kvm_one_reg reg; 1707 uint64_t val; 1708 int ret; 1709 1710 /* short-circuit without spinning the scratch CPU */ 1711 if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz && 1712 !riscv_has_ext(env, RVV)) { 1713 return; 1714 } 1715 1716 if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) { 1717 error_setg(errp, "Unable to create scratch KVM cpu"); 1718 return; 1719 } 1720 1721 if (cpu->cfg.ext_zicbom && 1722 riscv_cpu_option_set(kvm_cbom_blocksize.name)) { 1723 1724 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, 1725 kvm_cbom_blocksize.kvm_reg_id); 1726 reg.addr = (uint64_t)&val; 1727 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); 1728 if (ret != 0) { 1729 error_setg(errp, "Unable to read cbom_blocksize, error %d", errno); 1730 return; 1731 } 1732 1733 if (cpu->cfg.cbom_blocksize != val) { 1734 error_setg(errp, "Unable to set cbom_blocksize to a different " 1735 "value than the host (%lu)", val); 1736 return; 1737 } 1738 } 1739 1740 if (cpu->cfg.ext_zicboz && 1741 riscv_cpu_option_set(kvm_cboz_blocksize.name)) { 1742 1743 reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, 1744 kvm_cboz_blocksize.kvm_reg_id); 1745 reg.addr = (uint64_t)&val; 1746 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); 1747 if (ret != 0) { 1748 error_setg(errp, "Unable to read cboz_blocksize, error %d", errno); 1749 return; 1750 } 1751 1752 if (cpu->cfg.cboz_blocksize != val) { 1753 error_setg(errp, "Unable to set cboz_blocksize to a different " 1754 "value than the host (%lu)", val); 1755 return; 1756 } 1757 } 1758 1759 /* Users are setting vlen, not vlenb */ 1760 if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) { 1761 if (!kvm_v_vlenb.supported) { 1762 error_setg(errp, "Unable to set 'vlenb': register not supported"); 1763 return; 1764 } 1765 1766 reg.id = kvm_v_vlenb.kvm_reg_id; 1767 reg.addr = (uint64_t)&val; 1768 ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, ®); 1769 if (ret != 0) { 1770 error_setg(errp, "Unable to read vlenb register, error %d", errno); 1771 return; 1772 } 1773 1774 if (cpu->cfg.vlenb != val) { 1775 error_setg(errp, "Unable to set 'vlen' to a different " 1776 "value than the host (%lu)", val * 8); 1777 return; 1778 } 1779 } 1780 1781 kvm_riscv_destroy_scratch_vcpu(&kvmcpu); 1782 } 1783 1784 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data) 1785 { 1786 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc); 1787 1788 acc->cpu_instance_init = kvm_cpu_instance_init; 1789 acc->cpu_target_realize = kvm_cpu_realize; 1790 } 1791 1792 static const TypeInfo kvm_cpu_accel_type_info = { 1793 .name = ACCEL_CPU_NAME("kvm"), 1794 1795 .parent = TYPE_ACCEL_CPU, 1796 .class_init = kvm_cpu_accel_class_init, 1797 .abstract = true, 1798 }; 1799 static void kvm_cpu_accel_register_types(void) 1800 { 1801 type_register_static(&kvm_cpu_accel_type_info); 1802 } 1803 type_init(kvm_cpu_accel_register_types); 1804 1805 static void riscv_host_cpu_class_init(ObjectClass *c, void *data) 1806 { 1807 RISCVCPUClass *mcc = RISCV_CPU_CLASS(c); 1808 1809 #if defined(TARGET_RISCV32) 1810 mcc->misa_mxl_max = MXL_RV32; 1811 #elif defined(TARGET_RISCV64) 1812 mcc->misa_mxl_max = MXL_RV64; 1813 #endif 1814 } 1815 1816 static const TypeInfo riscv_kvm_cpu_type_infos[] = { 1817 { 1818 .name = TYPE_RISCV_CPU_HOST, 1819 .parent = TYPE_RISCV_CPU, 1820 .class_init = riscv_host_cpu_class_init, 1821 } 1822 }; 1823 1824 DEFINE_TYPES(riscv_kvm_cpu_type_infos) 1825