1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69/* Destination vector register group cannot overlap source mask register. */ 70static bool require_vm(int vm, int vd) 71{ 72 return (vm != 0 || vd != 0); 73} 74 75static bool require_nf(int vd, int nf, int lmul) 76{ 77 int size = nf << MAX(lmul, 0); 78 return size <= 8 && vd + size <= 32; 79} 80 81/* 82 * Vector register should aligned with the passed-in LMUL (EMUL). 83 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 84 */ 85static bool require_align(const int8_t val, const int8_t lmul) 86{ 87 return lmul <= 0 || extract32(val, 0, lmul) == 0; 88} 89 90/* 91 * A destination vector register group can overlap a source vector 92 * register group only if one of the following holds: 93 * 1. The destination EEW equals the source EEW. 94 * 2. The destination EEW is smaller than the source EEW and the overlap 95 * is in the lowest-numbered part of the source register group. 96 * 3. The destination EEW is greater than the source EEW, the source EMUL 97 * is at least 1, and the overlap is in the highest-numbered part of 98 * the destination register group. 99 * (Section 5.2) 100 * 101 * This function returns true if one of the following holds: 102 * * Destination vector register group does not overlap a source vector 103 * register group. 104 * * Rule 3 met. 105 * For rule 1, overlap is allowed so this function doesn't need to be called. 106 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 107 * calling this function. 108 */ 109static bool require_noover(const int8_t dst, const int8_t dst_lmul, 110 const int8_t src, const int8_t src_lmul) 111{ 112 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 113 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 114 115 /* Destination EEW is greater than the source EEW, check rule 3. */ 116 if (dst_size > src_size) { 117 if (dst < src && 118 src_lmul >= 0 && 119 is_overlapped(dst, dst_size, src, src_size) && 120 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 121 return true; 122 } 123 } 124 125 return !is_overlapped(dst, dst_size, src, src_size); 126} 127 128static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 129{ 130 TCGv s1, dst; 131 132 if (!require_rvv(s) || !has_ext(s, RVV)) { 133 return false; 134 } 135 136 dst = dest_gpr(s, rd); 137 138 if (rd == 0 && rs1 == 0) { 139 s1 = tcg_temp_new(); 140 tcg_gen_mov_tl(s1, cpu_vl); 141 } else if (rs1 == 0) { 142 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 143 s1 = tcg_constant_tl(RV_VLEN_MAX); 144 } else { 145 s1 = get_gpr(s, rs1, EXT_ZERO); 146 } 147 148 gen_helper_vsetvl(dst, cpu_env, s1, s2); 149 gen_set_gpr(s, rd, dst); 150 mark_vs_dirty(s); 151 152 tcg_gen_movi_tl(cpu_pc, s->pc_succ_insn); 153 tcg_gen_lookup_and_goto_ptr(); 154 s->base.is_jmp = DISAS_NORETURN; 155 156 if (rd == 0 && rs1 == 0) { 157 tcg_temp_free(s1); 158 } 159 160 return true; 161} 162 163static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 164{ 165 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 166 return do_vsetvl(s, a->rd, a->rs1, s2); 167} 168 169static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 170{ 171 TCGv s2 = tcg_constant_tl(a->zimm); 172 return do_vsetvl(s, a->rd, a->rs1, s2); 173} 174 175/* vector register offset from env */ 176static uint32_t vreg_ofs(DisasContext *s, int reg) 177{ 178 return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8; 179} 180 181/* check functions */ 182 183/* 184 * Vector unit-stride, strided, unit-stride segment, strided segment 185 * store check function. 186 * 187 * Rules to be checked here: 188 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 189 * 2. Destination vector register number is multiples of EMUL. 190 * (Section 3.4.2, 7.3) 191 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 192 * 4. Vector register numbers accessed by the segment load or store 193 * cannot increment past 31. (Section 7.8) 194 */ 195static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 196{ 197 int8_t emul = eew - s->sew + s->lmul; 198 return (emul >= -3 && emul <= 3) && 199 require_align(vd, emul) && 200 require_nf(vd, nf, emul); 201} 202 203/* 204 * Vector unit-stride, strided, unit-stride segment, strided segment 205 * load check function. 206 * 207 * Rules to be checked here: 208 * 1. All rules applies to store instructions are applies 209 * to load instructions. 210 * 2. Destination vector register group for a masked vector 211 * instruction cannot overlap the source mask register (v0). 212 * (Section 5.3) 213 */ 214static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 215 uint8_t eew) 216{ 217 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 218} 219 220/* 221 * Vector indexed, indexed segment store check function. 222 * 223 * Rules to be checked here: 224 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 225 * 2. Index vector register number is multiples of EMUL. 226 * (Section 3.4.2, 7.3) 227 * 3. Destination vector register number is multiples of LMUL. 228 * (Section 3.4.2, 7.3) 229 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 230 * 5. Vector register numbers accessed by the segment load or store 231 * cannot increment past 31. (Section 7.8) 232 */ 233static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 234 uint8_t eew) 235{ 236 int8_t emul = eew - s->sew + s->lmul; 237 return (emul >= -3 && emul <= 3) && 238 require_align(vs2, emul) && 239 require_align(vd, s->lmul) && 240 require_nf(vd, nf, s->lmul); 241} 242 243/* 244 * Vector indexed, indexed segment load check function. 245 * 246 * Rules to be checked here: 247 * 1. All rules applies to store instructions are applies 248 * to load instructions. 249 * 2. Destination vector register group for a masked vector 250 * instruction cannot overlap the source mask register (v0). 251 * (Section 5.3) 252 * 3. Destination vector register cannot overlap a source vector 253 * register (vs2) group. 254 * (Section 5.2) 255 * 4. Destination vector register groups cannot overlap 256 * the source vector register (vs2) group for 257 * indexed segment load instructions. (Section 7.8.3) 258 */ 259static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 260 int nf, int vm, uint8_t eew) 261{ 262 int8_t seg_vd; 263 int8_t emul = eew - s->sew + s->lmul; 264 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 265 require_vm(vm, vd); 266 267 /* Each segment register group has to follow overlap rules. */ 268 for (int i = 0; i < nf; ++i) { 269 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 270 271 if (eew > s->sew) { 272 if (seg_vd != vs2) { 273 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 274 } 275 } else if (eew < s->sew) { 276 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 277 } 278 279 /* 280 * Destination vector register groups cannot overlap 281 * the source vector register (vs2) group for 282 * indexed segment load instructions. 283 */ 284 if (nf > 1) { 285 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 286 vs2, 1 << MAX(emul, 0)); 287 } 288 } 289 return ret; 290} 291 292static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 293{ 294 return require_vm(vm, vd) && 295 require_align(vd, s->lmul) && 296 require_align(vs, s->lmul); 297} 298 299/* 300 * Check function for vector instruction with format: 301 * single-width result and single-width sources (SEW = SEW op SEW) 302 * 303 * Rules to be checked here: 304 * 1. Destination vector register group for a masked vector 305 * instruction cannot overlap the source mask register (v0). 306 * (Section 5.3) 307 * 2. Destination vector register number is multiples of LMUL. 308 * (Section 3.4.2) 309 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 310 * (Section 3.4.2) 311 */ 312static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 313{ 314 return vext_check_ss(s, vd, vs2, vm) && 315 require_align(vs1, s->lmul); 316} 317 318static bool vext_check_ms(DisasContext *s, int vd, int vs) 319{ 320 bool ret = require_align(vs, s->lmul); 321 if (vd != vs) { 322 ret &= require_noover(vd, 0, vs, s->lmul); 323 } 324 return ret; 325} 326 327/* 328 * Check function for maskable vector instruction with format: 329 * single-width result and single-width sources (SEW = SEW op SEW) 330 * 331 * Rules to be checked here: 332 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 333 * (Section 3.4.2) 334 * 2. Destination vector register cannot overlap a source vector 335 * register (vs2, vs1) group. 336 * (Section 5.2) 337 * 3. The destination vector register group for a masked vector 338 * instruction cannot overlap the source mask register (v0), 339 * unless the destination vector register is being written 340 * with a mask value (e.g., comparisons) or the scalar result 341 * of a reduction. (Section 5.3) 342 */ 343static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 344{ 345 bool ret = vext_check_ms(s, vd, vs2) && 346 require_align(vs1, s->lmul); 347 if (vd != vs1) { 348 ret &= require_noover(vd, 0, vs1, s->lmul); 349 } 350 return ret; 351} 352 353/* 354 * Common check function for vector widening instructions 355 * of double-width result (2*SEW). 356 * 357 * Rules to be checked here: 358 * 1. The largest vector register group used by an instruction 359 * can not be greater than 8 vector registers (Section 5.2): 360 * => LMUL < 8. 361 * => SEW < 64. 362 * 2. Destination vector register number is multiples of 2 * LMUL. 363 * (Section 3.4.2) 364 * 3. Destination vector register group for a masked vector 365 * instruction cannot overlap the source mask register (v0). 366 * (Section 5.3) 367 */ 368static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 369{ 370 return (s->lmul <= 2) && 371 (s->sew < MO_64) && 372 require_align(vd, s->lmul + 1) && 373 require_vm(vm, vd); 374} 375 376/* 377 * Common check function for vector narrowing instructions 378 * of single-width result (SEW) and double-width source (2*SEW). 379 * 380 * Rules to be checked here: 381 * 1. The largest vector register group used by an instruction 382 * can not be greater than 8 vector registers (Section 5.2): 383 * => LMUL < 8. 384 * => SEW < 64. 385 * 2. Source vector register number is multiples of 2 * LMUL. 386 * (Section 3.4.2) 387 * 3. Destination vector register number is multiples of LMUL. 388 * (Section 3.4.2) 389 * 4. Destination vector register group for a masked vector 390 * instruction cannot overlap the source mask register (v0). 391 * (Section 5.3) 392 */ 393static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 394 int vm) 395{ 396 return (s->lmul <= 2) && 397 (s->sew < MO_64) && 398 require_align(vs2, s->lmul + 1) && 399 require_align(vd, s->lmul) && 400 require_vm(vm, vd); 401} 402 403static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 404{ 405 return vext_wide_check_common(s, vd, vm) && 406 require_align(vs, s->lmul) && 407 require_noover(vd, s->lmul + 1, vs, s->lmul); 408} 409 410static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 411{ 412 return vext_wide_check_common(s, vd, vm) && 413 require_align(vs, s->lmul + 1); 414} 415 416/* 417 * Check function for vector instruction with format: 418 * double-width result and single-width sources (2*SEW = SEW op SEW) 419 * 420 * Rules to be checked here: 421 * 1. All rules in defined in widen common rules are applied. 422 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 423 * (Section 3.4.2) 424 * 3. Destination vector register cannot overlap a source vector 425 * register (vs2, vs1) group. 426 * (Section 5.2) 427 */ 428static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 429{ 430 return vext_check_ds(s, vd, vs2, vm) && 431 require_align(vs1, s->lmul) && 432 require_noover(vd, s->lmul + 1, vs1, s->lmul); 433} 434 435/* 436 * Check function for vector instruction with format: 437 * double-width result and double-width source1 and single-width 438 * source2 (2*SEW = 2*SEW op SEW) 439 * 440 * Rules to be checked here: 441 * 1. All rules in defined in widen common rules are applied. 442 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 443 * (Section 3.4.2) 444 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 445 * (Section 3.4.2) 446 * 4. Destination vector register cannot overlap a source vector 447 * register (vs1) group. 448 * (Section 5.2) 449 */ 450static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 451{ 452 return vext_check_ds(s, vd, vs1, vm) && 453 require_align(vs2, s->lmul + 1); 454} 455 456static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 457{ 458 bool ret = vext_narrow_check_common(s, vd, vs, vm); 459 if (vd != vs) { 460 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 461 } 462 return ret; 463} 464 465/* 466 * Check function for vector instruction with format: 467 * single-width result and double-width source 1 and single-width 468 * source 2 (SEW = 2*SEW op SEW) 469 * 470 * Rules to be checked here: 471 * 1. All rules in defined in narrow common rules are applied. 472 * 2. Destination vector register cannot overlap a source vector 473 * register (vs2) group. 474 * (Section 5.2) 475 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 476 * (Section 3.4.2) 477 */ 478static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 479{ 480 return vext_check_sd(s, vd, vs2, vm) && 481 require_align(vs1, s->lmul); 482} 483 484/* 485 * Check function for vector reduction instructions. 486 * 487 * Rules to be checked here: 488 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 489 * (Section 3.4.2) 490 */ 491static bool vext_check_reduction(DisasContext *s, int vs2) 492{ 493 return require_align(vs2, s->lmul); 494} 495 496/* 497 * Check function for vector slide instructions. 498 * 499 * Rules to be checked here: 500 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 501 * (Section 3.4.2) 502 * 2. Destination vector register number is multiples of LMUL. 503 * (Section 3.4.2) 504 * 3. Destination vector register group for a masked vector 505 * instruction cannot overlap the source mask register (v0). 506 * (Section 5.3) 507 * 4. The destination vector register group for vslideup, vslide1up, 508 * vfslide1up, cannot overlap the source vector register (vs2) group. 509 * (Section 5.2, 16.3.1, 16.3.3) 510 */ 511static bool vext_check_slide(DisasContext *s, int vd, int vs2, 512 int vm, bool is_over) 513{ 514 bool ret = require_align(vs2, s->lmul) && 515 require_align(vd, s->lmul) && 516 require_vm(vm, vd); 517 if (is_over) { 518 ret &= (vd != vs2); 519 } 520 return ret; 521} 522 523/* 524 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 525 * So RVV is also be checked in this function. 526 */ 527static bool vext_check_isa_ill(DisasContext *s) 528{ 529 return !s->vill; 530} 531 532/* common translation macro */ 533#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 534static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 535{ \ 536 if (CHECK(s, a, EEW)) { \ 537 return OP(s, a, EEW); \ 538 } \ 539 return false; \ 540} 541 542static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 543{ 544 int8_t emul = eew - s->sew + s->lmul; 545 return emul < 0 ? 0 : emul; 546} 547 548/* 549 *** unit stride load and store 550 */ 551typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 552 TCGv_env, TCGv_i32); 553 554static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 555 gen_helper_ldst_us *fn, DisasContext *s, 556 bool is_store) 557{ 558 TCGv_ptr dest, mask; 559 TCGv base; 560 TCGv_i32 desc; 561 562 TCGLabel *over = gen_new_label(); 563 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 564 565 dest = tcg_temp_new_ptr(); 566 mask = tcg_temp_new_ptr(); 567 base = get_gpr(s, rs1, EXT_NONE); 568 569 /* 570 * As simd_desc supports at most 256 bytes, and in this implementation, 571 * the max vector group length is 2048 bytes. So split it into two parts. 572 * 573 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 574 * The second part is lmul, encoded in data of simd_desc. 575 */ 576 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 577 578 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 579 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 580 581 fn(dest, mask, base, cpu_env, desc); 582 583 tcg_temp_free_ptr(dest); 584 tcg_temp_free_ptr(mask); 585 586 if (!is_store) { 587 mark_vs_dirty(s); 588 } 589 590 gen_set_label(over); 591 return true; 592} 593 594static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 595{ 596 uint32_t data = 0; 597 gen_helper_ldst_us *fn; 598 static gen_helper_ldst_us * const fns[2][4] = { 599 /* masked unit stride load */ 600 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 601 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 602 /* unmasked unit stride load */ 603 { gen_helper_vle8_v, gen_helper_vle16_v, 604 gen_helper_vle32_v, gen_helper_vle64_v } 605 }; 606 607 fn = fns[a->vm][eew]; 608 if (fn == NULL) { 609 return false; 610 } 611 612 /* 613 * Vector load/store instructions have the EEW encoded 614 * directly in the instructions. The maximum vector size is 615 * calculated with EMUL rather than LMUL. 616 */ 617 uint8_t emul = vext_get_emul(s, eew); 618 data = FIELD_DP32(data, VDATA, VM, a->vm); 619 data = FIELD_DP32(data, VDATA, LMUL, emul); 620 data = FIELD_DP32(data, VDATA, NF, a->nf); 621 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 622} 623 624static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 625{ 626 return require_rvv(s) && 627 vext_check_isa_ill(s) && 628 vext_check_load(s, a->rd, a->nf, a->vm, eew); 629} 630 631GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 632GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 633GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 634GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 635 636static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 637{ 638 uint32_t data = 0; 639 gen_helper_ldst_us *fn; 640 static gen_helper_ldst_us * const fns[2][4] = { 641 /* masked unit stride store */ 642 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 643 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 644 /* unmasked unit stride store */ 645 { gen_helper_vse8_v, gen_helper_vse16_v, 646 gen_helper_vse32_v, gen_helper_vse64_v } 647 }; 648 649 fn = fns[a->vm][eew]; 650 if (fn == NULL) { 651 return false; 652 } 653 654 uint8_t emul = vext_get_emul(s, eew); 655 data = FIELD_DP32(data, VDATA, VM, a->vm); 656 data = FIELD_DP32(data, VDATA, LMUL, emul); 657 data = FIELD_DP32(data, VDATA, NF, a->nf); 658 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 659} 660 661static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 662{ 663 return require_rvv(s) && 664 vext_check_isa_ill(s) && 665 vext_check_store(s, a->rd, a->nf, eew); 666} 667 668GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 669GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 670GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 671GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 672 673/* 674 *** stride load and store 675 */ 676typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 677 TCGv, TCGv_env, TCGv_i32); 678 679static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 680 uint32_t data, gen_helper_ldst_stride *fn, 681 DisasContext *s, bool is_store) 682{ 683 TCGv_ptr dest, mask; 684 TCGv base, stride; 685 TCGv_i32 desc; 686 687 TCGLabel *over = gen_new_label(); 688 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 689 690 dest = tcg_temp_new_ptr(); 691 mask = tcg_temp_new_ptr(); 692 base = get_gpr(s, rs1, EXT_NONE); 693 stride = get_gpr(s, rs2, EXT_NONE); 694 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 695 696 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 697 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 698 699 fn(dest, mask, base, stride, cpu_env, desc); 700 701 tcg_temp_free_ptr(dest); 702 tcg_temp_free_ptr(mask); 703 704 if (!is_store) { 705 mark_vs_dirty(s); 706 } 707 708 gen_set_label(over); 709 return true; 710} 711 712static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 713{ 714 uint32_t data = 0; 715 gen_helper_ldst_stride *fn; 716 static gen_helper_ldst_stride * const fns[4] = { 717 gen_helper_vlse8_v, gen_helper_vlse16_v, 718 gen_helper_vlse32_v, gen_helper_vlse64_v 719 }; 720 721 fn = fns[eew]; 722 if (fn == NULL) { 723 return false; 724 } 725 726 uint8_t emul = vext_get_emul(s, eew); 727 data = FIELD_DP32(data, VDATA, VM, a->vm); 728 data = FIELD_DP32(data, VDATA, LMUL, emul); 729 data = FIELD_DP32(data, VDATA, NF, a->nf); 730 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 731} 732 733static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 734{ 735 return require_rvv(s) && 736 vext_check_isa_ill(s) && 737 vext_check_load(s, a->rd, a->nf, a->vm, eew); 738} 739 740GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 741GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 742GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 743GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 744 745static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 746{ 747 uint32_t data = 0; 748 gen_helper_ldst_stride *fn; 749 static gen_helper_ldst_stride * const fns[4] = { 750 /* masked stride store */ 751 gen_helper_vsse8_v, gen_helper_vsse16_v, 752 gen_helper_vsse32_v, gen_helper_vsse64_v 753 }; 754 755 uint8_t emul = vext_get_emul(s, eew); 756 data = FIELD_DP32(data, VDATA, VM, a->vm); 757 data = FIELD_DP32(data, VDATA, LMUL, emul); 758 data = FIELD_DP32(data, VDATA, NF, a->nf); 759 fn = fns[eew]; 760 if (fn == NULL) { 761 return false; 762 } 763 764 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 765} 766 767static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 768{ 769 return require_rvv(s) && 770 vext_check_isa_ill(s) && 771 vext_check_store(s, a->rd, a->nf, eew); 772} 773 774GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 775GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 776GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 777GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 778 779/* 780 *** index load and store 781 */ 782typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 783 TCGv_ptr, TCGv_env, TCGv_i32); 784 785static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 786 uint32_t data, gen_helper_ldst_index *fn, 787 DisasContext *s, bool is_store) 788{ 789 TCGv_ptr dest, mask, index; 790 TCGv base; 791 TCGv_i32 desc; 792 793 TCGLabel *over = gen_new_label(); 794 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 795 796 dest = tcg_temp_new_ptr(); 797 mask = tcg_temp_new_ptr(); 798 index = tcg_temp_new_ptr(); 799 base = get_gpr(s, rs1, EXT_NONE); 800 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 801 802 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 803 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 804 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 805 806 fn(dest, mask, base, index, cpu_env, desc); 807 808 tcg_temp_free_ptr(dest); 809 tcg_temp_free_ptr(mask); 810 tcg_temp_free_ptr(index); 811 812 if (!is_store) { 813 mark_vs_dirty(s); 814 } 815 816 gen_set_label(over); 817 return true; 818} 819 820static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 821{ 822 uint32_t data = 0; 823 gen_helper_ldst_index *fn; 824 static gen_helper_ldst_index * const fns[4][4] = { 825 /* 826 * offset vector register group EEW = 8, 827 * data vector register group EEW = SEW 828 */ 829 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 830 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 831 /* 832 * offset vector register group EEW = 16, 833 * data vector register group EEW = SEW 834 */ 835 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 836 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 837 /* 838 * offset vector register group EEW = 32, 839 * data vector register group EEW = SEW 840 */ 841 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 842 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 843 /* 844 * offset vector register group EEW = 64, 845 * data vector register group EEW = SEW 846 */ 847 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 848 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 849 }; 850 851 fn = fns[eew][s->sew]; 852 853 uint8_t emul = vext_get_emul(s, s->sew); 854 data = FIELD_DP32(data, VDATA, VM, a->vm); 855 data = FIELD_DP32(data, VDATA, LMUL, emul); 856 data = FIELD_DP32(data, VDATA, NF, a->nf); 857 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 858} 859 860static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 861{ 862 return require_rvv(s) && 863 vext_check_isa_ill(s) && 864 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 865} 866 867GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 868GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 869GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 870GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 871 872static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 873{ 874 uint32_t data = 0; 875 gen_helper_ldst_index *fn; 876 static gen_helper_ldst_index * const fns[4][4] = { 877 /* 878 * offset vector register group EEW = 8, 879 * data vector register group EEW = SEW 880 */ 881 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 882 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 883 /* 884 * offset vector register group EEW = 16, 885 * data vector register group EEW = SEW 886 */ 887 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 888 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 889 /* 890 * offset vector register group EEW = 32, 891 * data vector register group EEW = SEW 892 */ 893 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 894 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 895 /* 896 * offset vector register group EEW = 64, 897 * data vector register group EEW = SEW 898 */ 899 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 900 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 901 }; 902 903 fn = fns[eew][s->sew]; 904 905 uint8_t emul = vext_get_emul(s, s->sew); 906 data = FIELD_DP32(data, VDATA, VM, a->vm); 907 data = FIELD_DP32(data, VDATA, LMUL, emul); 908 data = FIELD_DP32(data, VDATA, NF, a->nf); 909 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 910} 911 912static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 913{ 914 return require_rvv(s) && 915 vext_check_isa_ill(s) && 916 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 917} 918 919GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 920GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 921GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 922GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 923 924/* 925 *** unit stride fault-only-first load 926 */ 927static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 928 gen_helper_ldst_us *fn, DisasContext *s) 929{ 930 TCGv_ptr dest, mask; 931 TCGv base; 932 TCGv_i32 desc; 933 934 TCGLabel *over = gen_new_label(); 935 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 936 937 dest = tcg_temp_new_ptr(); 938 mask = tcg_temp_new_ptr(); 939 base = get_gpr(s, rs1, EXT_NONE); 940 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 941 942 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 943 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 944 945 fn(dest, mask, base, cpu_env, desc); 946 947 tcg_temp_free_ptr(dest); 948 tcg_temp_free_ptr(mask); 949 mark_vs_dirty(s); 950 gen_set_label(over); 951 return true; 952} 953 954static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 955{ 956 uint32_t data = 0; 957 gen_helper_ldst_us *fn; 958 static gen_helper_ldst_us * const fns[4] = { 959 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 960 gen_helper_vle32ff_v, gen_helper_vle64ff_v 961 }; 962 963 fn = fns[eew]; 964 if (fn == NULL) { 965 return false; 966 } 967 968 uint8_t emul = vext_get_emul(s, eew); 969 data = FIELD_DP32(data, VDATA, VM, a->vm); 970 data = FIELD_DP32(data, VDATA, LMUL, emul); 971 data = FIELD_DP32(data, VDATA, NF, a->nf); 972 return ldff_trans(a->rd, a->rs1, data, fn, s); 973} 974 975GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 976GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 977GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 978GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 979 980/* 981 * load and store whole register instructions 982 */ 983typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 984 985static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 986 gen_helper_ldst_whole *fn, DisasContext *s, 987 bool is_store) 988{ 989 TCGv_ptr dest; 990 TCGv base; 991 TCGv_i32 desc; 992 993 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 994 dest = tcg_temp_new_ptr(); 995 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 996 997 base = get_gpr(s, rs1, EXT_NONE); 998 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 999 1000 fn(dest, base, cpu_env, desc); 1001 1002 tcg_temp_free_ptr(dest); 1003 1004 if (!is_store) { 1005 mark_vs_dirty(s); 1006 } 1007 1008 return true; 1009} 1010 1011/* 1012 * load and store whole register instructions ignore vtype and vl setting. 1013 * Thus, we don't need to check vill bit. (Section 7.9) 1014 */ 1015#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, IS_STORE) \ 1016static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1017{ \ 1018 if (require_rvv(s) && \ 1019 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1020 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, gen_helper_##NAME, \ 1021 s, IS_STORE); \ 1022 } \ 1023 return false; \ 1024} 1025 1026GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, false) 1027GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, false) 1028GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, false) 1029GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, false) 1030GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, false) 1031GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, false) 1032GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, false) 1033GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, false) 1034GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, false) 1035GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, false) 1036GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, false) 1037GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, false) 1038GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, false) 1039GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, false) 1040GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, false) 1041GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, false) 1042 1043GEN_LDST_WHOLE_TRANS(vs1r_v, 1, true) 1044GEN_LDST_WHOLE_TRANS(vs2r_v, 2, true) 1045GEN_LDST_WHOLE_TRANS(vs4r_v, 4, true) 1046GEN_LDST_WHOLE_TRANS(vs8r_v, 8, true) 1047 1048/* 1049 *** Vector Integer Arithmetic Instructions 1050 */ 1051 1052/* 1053 * MAXSZ returns the maximum vector size can be operated in bytes, 1054 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1055 * to accerlate vector operation. 1056 */ 1057static inline uint32_t MAXSZ(DisasContext *s) 1058{ 1059 int scale = s->lmul - 3; 1060 return scale < 0 ? s->vlen >> -scale : s->vlen << scale; 1061} 1062 1063static bool opivv_check(DisasContext *s, arg_rmrr *a) 1064{ 1065 return require_rvv(s) && 1066 vext_check_isa_ill(s) && 1067 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1068} 1069 1070typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1071 uint32_t, uint32_t, uint32_t); 1072 1073static inline bool 1074do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1075 gen_helper_gvec_4_ptr *fn) 1076{ 1077 TCGLabel *over = gen_new_label(); 1078 if (!opivv_check(s, a)) { 1079 return false; 1080 } 1081 1082 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1083 1084 if (a->vm && s->vl_eq_vlmax) { 1085 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1086 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1087 MAXSZ(s), MAXSZ(s)); 1088 } else { 1089 uint32_t data = 0; 1090 1091 data = FIELD_DP32(data, VDATA, VM, a->vm); 1092 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1093 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1094 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1095 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1096 } 1097 mark_vs_dirty(s); 1098 gen_set_label(over); 1099 return true; 1100} 1101 1102/* OPIVV with GVEC IR */ 1103#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1104static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1105{ \ 1106 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1107 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1108 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1109 }; \ 1110 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1111} 1112 1113GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1114GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1115 1116typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1117 TCGv_env, TCGv_i32); 1118 1119static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1120 gen_helper_opivx *fn, DisasContext *s) 1121{ 1122 TCGv_ptr dest, src2, mask; 1123 TCGv src1; 1124 TCGv_i32 desc; 1125 uint32_t data = 0; 1126 1127 TCGLabel *over = gen_new_label(); 1128 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1129 1130 dest = tcg_temp_new_ptr(); 1131 mask = tcg_temp_new_ptr(); 1132 src2 = tcg_temp_new_ptr(); 1133 src1 = get_gpr(s, rs1, EXT_NONE); 1134 1135 data = FIELD_DP32(data, VDATA, VM, vm); 1136 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1137 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1138 1139 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1140 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1141 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1142 1143 fn(dest, mask, src1, src2, cpu_env, desc); 1144 1145 tcg_temp_free_ptr(dest); 1146 tcg_temp_free_ptr(mask); 1147 tcg_temp_free_ptr(src2); 1148 mark_vs_dirty(s); 1149 gen_set_label(over); 1150 return true; 1151} 1152 1153static bool opivx_check(DisasContext *s, arg_rmrr *a) 1154{ 1155 return require_rvv(s) && 1156 vext_check_isa_ill(s) && 1157 vext_check_ss(s, a->rd, a->rs2, a->vm); 1158} 1159 1160typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1161 uint32_t, uint32_t); 1162 1163static inline bool 1164do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1165 gen_helper_opivx *fn) 1166{ 1167 if (!opivx_check(s, a)) { 1168 return false; 1169 } 1170 1171 if (a->vm && s->vl_eq_vlmax) { 1172 TCGv_i64 src1 = tcg_temp_new_i64(); 1173 1174 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1175 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1176 src1, MAXSZ(s), MAXSZ(s)); 1177 1178 tcg_temp_free_i64(src1); 1179 mark_vs_dirty(s); 1180 return true; 1181 } 1182 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1183} 1184 1185/* OPIVX with GVEC IR */ 1186#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1187static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1188{ \ 1189 static gen_helper_opivx * const fns[4] = { \ 1190 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1191 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1192 }; \ 1193 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1194} 1195 1196GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1197GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1198 1199static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1200{ 1201 tcg_gen_vec_sub8_i64(d, b, a); 1202} 1203 1204static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1205{ 1206 tcg_gen_vec_sub16_i64(d, b, a); 1207} 1208 1209static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1210{ 1211 tcg_gen_sub_i32(ret, arg2, arg1); 1212} 1213 1214static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1215{ 1216 tcg_gen_sub_i64(ret, arg2, arg1); 1217} 1218 1219static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1220{ 1221 tcg_gen_sub_vec(vece, r, b, a); 1222} 1223 1224static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1225 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1226{ 1227 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1228 static const GVecGen2s rsub_op[4] = { 1229 { .fni8 = gen_vec_rsub8_i64, 1230 .fniv = gen_rsub_vec, 1231 .fno = gen_helper_vec_rsubs8, 1232 .opt_opc = vecop_list, 1233 .vece = MO_8 }, 1234 { .fni8 = gen_vec_rsub16_i64, 1235 .fniv = gen_rsub_vec, 1236 .fno = gen_helper_vec_rsubs16, 1237 .opt_opc = vecop_list, 1238 .vece = MO_16 }, 1239 { .fni4 = gen_rsub_i32, 1240 .fniv = gen_rsub_vec, 1241 .fno = gen_helper_vec_rsubs32, 1242 .opt_opc = vecop_list, 1243 .vece = MO_32 }, 1244 { .fni8 = gen_rsub_i64, 1245 .fniv = gen_rsub_vec, 1246 .fno = gen_helper_vec_rsubs64, 1247 .opt_opc = vecop_list, 1248 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1249 .vece = MO_64 }, 1250 }; 1251 1252 tcg_debug_assert(vece <= MO_64); 1253 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1254} 1255 1256GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1257 1258typedef enum { 1259 IMM_ZX, /* Zero-extended */ 1260 IMM_SX, /* Sign-extended */ 1261 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1262 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1263} imm_mode_t; 1264 1265static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1266{ 1267 switch (imm_mode) { 1268 case IMM_ZX: 1269 return extract64(imm, 0, 5); 1270 case IMM_SX: 1271 return sextract64(imm, 0, 5); 1272 case IMM_TRUNC_SEW: 1273 return extract64(imm, 0, s->sew + 3); 1274 case IMM_TRUNC_2SEW: 1275 return extract64(imm, 0, s->sew + 4); 1276 default: 1277 g_assert_not_reached(); 1278 } 1279} 1280 1281static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1282 gen_helper_opivx *fn, DisasContext *s, 1283 imm_mode_t imm_mode) 1284{ 1285 TCGv_ptr dest, src2, mask; 1286 TCGv src1; 1287 TCGv_i32 desc; 1288 uint32_t data = 0; 1289 1290 TCGLabel *over = gen_new_label(); 1291 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1292 1293 dest = tcg_temp_new_ptr(); 1294 mask = tcg_temp_new_ptr(); 1295 src2 = tcg_temp_new_ptr(); 1296 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1297 1298 data = FIELD_DP32(data, VDATA, VM, vm); 1299 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1300 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1301 1302 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1303 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1304 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1305 1306 fn(dest, mask, src1, src2, cpu_env, desc); 1307 1308 tcg_temp_free_ptr(dest); 1309 tcg_temp_free_ptr(mask); 1310 tcg_temp_free_ptr(src2); 1311 mark_vs_dirty(s); 1312 gen_set_label(over); 1313 return true; 1314} 1315 1316typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1317 uint32_t, uint32_t); 1318 1319static inline bool 1320do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1321 gen_helper_opivx *fn, imm_mode_t imm_mode) 1322{ 1323 if (!opivx_check(s, a)) { 1324 return false; 1325 } 1326 1327 if (a->vm && s->vl_eq_vlmax) { 1328 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1329 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1330 mark_vs_dirty(s); 1331 return true; 1332 } 1333 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1334} 1335 1336/* OPIVI with GVEC IR */ 1337#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1338static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1339{ \ 1340 static gen_helper_opivx * const fns[4] = { \ 1341 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1342 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1343 }; \ 1344 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1345 fns[s->sew], IMM_MODE); \ 1346} 1347 1348GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1349 1350static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1351 int64_t c, uint32_t oprsz, uint32_t maxsz) 1352{ 1353 TCGv_i64 tmp = tcg_constant_i64(c); 1354 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1355} 1356 1357GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1358 1359/* Vector Widening Integer Add/Subtract */ 1360 1361/* OPIVV with WIDEN */ 1362static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1363{ 1364 return require_rvv(s) && 1365 vext_check_isa_ill(s) && 1366 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1367} 1368 1369static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1370 gen_helper_gvec_4_ptr *fn, 1371 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1372{ 1373 if (checkfn(s, a)) { 1374 uint32_t data = 0; 1375 TCGLabel *over = gen_new_label(); 1376 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1377 1378 data = FIELD_DP32(data, VDATA, VM, a->vm); 1379 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1380 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1381 vreg_ofs(s, a->rs1), 1382 vreg_ofs(s, a->rs2), 1383 cpu_env, s->vlen / 8, s->vlen / 8, 1384 data, fn); 1385 mark_vs_dirty(s); 1386 gen_set_label(over); 1387 return true; 1388 } 1389 return false; 1390} 1391 1392#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1393static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1394{ \ 1395 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1396 gen_helper_##NAME##_b, \ 1397 gen_helper_##NAME##_h, \ 1398 gen_helper_##NAME##_w \ 1399 }; \ 1400 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1401} 1402 1403GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1404GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1405GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1406GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1407 1408/* OPIVX with WIDEN */ 1409static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1410{ 1411 return require_rvv(s) && 1412 vext_check_isa_ill(s) && 1413 vext_check_ds(s, a->rd, a->rs2, a->vm); 1414} 1415 1416static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1417 gen_helper_opivx *fn) 1418{ 1419 if (opivx_widen_check(s, a)) { 1420 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1421 } 1422 return false; 1423} 1424 1425#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1426static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1427{ \ 1428 static gen_helper_opivx * const fns[3] = { \ 1429 gen_helper_##NAME##_b, \ 1430 gen_helper_##NAME##_h, \ 1431 gen_helper_##NAME##_w \ 1432 }; \ 1433 return do_opivx_widen(s, a, fns[s->sew]); \ 1434} 1435 1436GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1437GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1438GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1439GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1440 1441/* WIDEN OPIVV with WIDEN */ 1442static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1443{ 1444 return require_rvv(s) && 1445 vext_check_isa_ill(s) && 1446 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1447} 1448 1449static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1450 gen_helper_gvec_4_ptr *fn) 1451{ 1452 if (opiwv_widen_check(s, a)) { 1453 uint32_t data = 0; 1454 TCGLabel *over = gen_new_label(); 1455 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1456 1457 data = FIELD_DP32(data, VDATA, VM, a->vm); 1458 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1459 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1460 vreg_ofs(s, a->rs1), 1461 vreg_ofs(s, a->rs2), 1462 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1463 mark_vs_dirty(s); 1464 gen_set_label(over); 1465 return true; 1466 } 1467 return false; 1468} 1469 1470#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1471static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1472{ \ 1473 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1474 gen_helper_##NAME##_b, \ 1475 gen_helper_##NAME##_h, \ 1476 gen_helper_##NAME##_w \ 1477 }; \ 1478 return do_opiwv_widen(s, a, fns[s->sew]); \ 1479} 1480 1481GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1482GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1483GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1484GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1485 1486/* WIDEN OPIVX with WIDEN */ 1487static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1488{ 1489 return require_rvv(s) && 1490 vext_check_isa_ill(s) && 1491 vext_check_dd(s, a->rd, a->rs2, a->vm); 1492} 1493 1494static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1495 gen_helper_opivx *fn) 1496{ 1497 if (opiwx_widen_check(s, a)) { 1498 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1499 } 1500 return false; 1501} 1502 1503#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1504static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1505{ \ 1506 static gen_helper_opivx * const fns[3] = { \ 1507 gen_helper_##NAME##_b, \ 1508 gen_helper_##NAME##_h, \ 1509 gen_helper_##NAME##_w \ 1510 }; \ 1511 return do_opiwx_widen(s, a, fns[s->sew]); \ 1512} 1513 1514GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1515GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1516GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1517GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1518 1519/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1520/* OPIVV without GVEC IR */ 1521#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1522static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1523{ \ 1524 if (CHECK(s, a)) { \ 1525 uint32_t data = 0; \ 1526 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1527 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1528 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1529 }; \ 1530 TCGLabel *over = gen_new_label(); \ 1531 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1532 \ 1533 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1534 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1535 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1536 vreg_ofs(s, a->rs1), \ 1537 vreg_ofs(s, a->rs2), cpu_env, \ 1538 s->vlen / 8, s->vlen / 8, data, \ 1539 fns[s->sew]); \ 1540 mark_vs_dirty(s); \ 1541 gen_set_label(over); \ 1542 return true; \ 1543 } \ 1544 return false; \ 1545} 1546 1547/* 1548 * For vadc and vsbc, an illegal instruction exception is raised if the 1549 * destination vector register is v0 and LMUL > 1. (Section 12.4) 1550 */ 1551static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1552{ 1553 return require_rvv(s) && 1554 vext_check_isa_ill(s) && 1555 (a->rd != 0) && 1556 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1557} 1558 1559GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1560GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1561 1562/* 1563 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1564 * destination vector register overlaps a source vector register group. 1565 */ 1566static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1567{ 1568 return require_rvv(s) && 1569 vext_check_isa_ill(s) && 1570 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1571} 1572 1573GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1574GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1575 1576static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1577{ 1578 return require_rvv(s) && 1579 vext_check_isa_ill(s) && 1580 (a->rd != 0) && 1581 vext_check_ss(s, a->rd, a->rs2, a->vm); 1582} 1583 1584/* OPIVX without GVEC IR */ 1585#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1586static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1587{ \ 1588 if (CHECK(s, a)) { \ 1589 static gen_helper_opivx * const fns[4] = { \ 1590 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1591 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1592 }; \ 1593 \ 1594 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1595 } \ 1596 return false; \ 1597} 1598 1599GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1600GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1601 1602static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1603{ 1604 return require_rvv(s) && 1605 vext_check_isa_ill(s) && 1606 vext_check_ms(s, a->rd, a->rs2); 1607} 1608 1609GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1610GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1611 1612/* OPIVI without GVEC IR */ 1613#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1614static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1615{ \ 1616 if (CHECK(s, a)) { \ 1617 static gen_helper_opivx * const fns[4] = { \ 1618 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1619 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1620 }; \ 1621 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1622 fns[s->sew], s, IMM_MODE); \ 1623 } \ 1624 return false; \ 1625} 1626 1627GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1628GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1629 1630/* Vector Bitwise Logical Instructions */ 1631GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1632GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1633GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1634GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1635GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1636GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1637GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1638GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1639GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1640 1641/* Vector Single-Width Bit Shift Instructions */ 1642GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1643GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1644GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1645 1646typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1647 uint32_t, uint32_t); 1648 1649static inline bool 1650do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1651 gen_helper_opivx *fn) 1652{ 1653 if (!opivx_check(s, a)) { 1654 return false; 1655 } 1656 1657 if (a->vm && s->vl_eq_vlmax) { 1658 TCGv_i32 src1 = tcg_temp_new_i32(); 1659 1660 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1661 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1662 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1663 src1, MAXSZ(s), MAXSZ(s)); 1664 1665 tcg_temp_free_i32(src1); 1666 mark_vs_dirty(s); 1667 return true; 1668 } 1669 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1670} 1671 1672#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1673static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1674{ \ 1675 static gen_helper_opivx * const fns[4] = { \ 1676 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1677 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1678 }; \ 1679 \ 1680 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1681} 1682 1683GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1684GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1685GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1686 1687GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1688GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1689GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1690 1691/* Vector Narrowing Integer Right Shift Instructions */ 1692static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1693{ 1694 return require_rvv(s) && 1695 vext_check_isa_ill(s) && 1696 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1697} 1698 1699/* OPIVV with NARROW */ 1700#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1701static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1702{ \ 1703 if (opiwv_narrow_check(s, a)) { \ 1704 uint32_t data = 0; \ 1705 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1706 gen_helper_##NAME##_b, \ 1707 gen_helper_##NAME##_h, \ 1708 gen_helper_##NAME##_w, \ 1709 }; \ 1710 TCGLabel *over = gen_new_label(); \ 1711 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1712 \ 1713 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1714 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1715 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1716 vreg_ofs(s, a->rs1), \ 1717 vreg_ofs(s, a->rs2), cpu_env, \ 1718 s->vlen / 8, s->vlen / 8, data, \ 1719 fns[s->sew]); \ 1720 mark_vs_dirty(s); \ 1721 gen_set_label(over); \ 1722 return true; \ 1723 } \ 1724 return false; \ 1725} 1726GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1727GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1728 1729static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1730{ 1731 return require_rvv(s) && 1732 vext_check_isa_ill(s) && 1733 vext_check_sd(s, a->rd, a->rs2, a->vm); 1734} 1735 1736/* OPIVX with NARROW */ 1737#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1738static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1739{ \ 1740 if (opiwx_narrow_check(s, a)) { \ 1741 static gen_helper_opivx * const fns[3] = { \ 1742 gen_helper_##NAME##_b, \ 1743 gen_helper_##NAME##_h, \ 1744 gen_helper_##NAME##_w, \ 1745 }; \ 1746 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1747 } \ 1748 return false; \ 1749} 1750 1751GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1752GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1753 1754/* OPIWI with NARROW */ 1755#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1756static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1757{ \ 1758 if (opiwx_narrow_check(s, a)) { \ 1759 static gen_helper_opivx * const fns[3] = { \ 1760 gen_helper_##OPIVX##_b, \ 1761 gen_helper_##OPIVX##_h, \ 1762 gen_helper_##OPIVX##_w, \ 1763 }; \ 1764 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1765 fns[s->sew], s, IMM_MODE); \ 1766 } \ 1767 return false; \ 1768} 1769 1770GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1771GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1772 1773/* Vector Integer Comparison Instructions */ 1774/* 1775 * For all comparison instructions, an illegal instruction exception is raised 1776 * if the destination vector register overlaps a source vector register group 1777 * and LMUL > 1. 1778 */ 1779static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1780{ 1781 return require_rvv(s) && 1782 vext_check_isa_ill(s) && 1783 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1784} 1785 1786GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1787GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1788GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1789GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1790GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1791GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1792 1793static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1794{ 1795 return require_rvv(s) && 1796 vext_check_isa_ill(s) && 1797 vext_check_ms(s, a->rd, a->rs2); 1798} 1799 1800GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1801GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1802GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1803GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1804GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1805GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1806GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1807GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1808 1809GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1810GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1811GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1812GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1813GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1814GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1815 1816/* Vector Integer Min/Max Instructions */ 1817GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1818GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1819GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1820GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1821GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1822GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1823GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1824GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1825 1826/* Vector Single-Width Integer Multiply Instructions */ 1827GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 1828GEN_OPIVV_TRANS(vmulh_vv, opivv_check) 1829GEN_OPIVV_TRANS(vmulhu_vv, opivv_check) 1830GEN_OPIVV_TRANS(vmulhsu_vv, opivv_check) 1831GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 1832GEN_OPIVX_TRANS(vmulh_vx, opivx_check) 1833GEN_OPIVX_TRANS(vmulhu_vx, opivx_check) 1834GEN_OPIVX_TRANS(vmulhsu_vx, opivx_check) 1835 1836/* Vector Integer Divide Instructions */ 1837GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 1838GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 1839GEN_OPIVV_TRANS(vremu_vv, opivv_check) 1840GEN_OPIVV_TRANS(vrem_vv, opivv_check) 1841GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 1842GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 1843GEN_OPIVX_TRANS(vremu_vx, opivx_check) 1844GEN_OPIVX_TRANS(vrem_vx, opivx_check) 1845 1846/* Vector Widening Integer Multiply Instructions */ 1847GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 1848GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 1849GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 1850GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 1851GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 1852GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 1853 1854/* Vector Single-Width Integer Multiply-Add Instructions */ 1855GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 1856GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 1857GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 1858GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 1859GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 1860GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 1861GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 1862GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 1863 1864/* Vector Widening Integer Multiply-Add Instructions */ 1865GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 1866GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 1867GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 1868GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 1869GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 1870GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 1871GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 1872 1873/* Vector Integer Merge and Move Instructions */ 1874static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 1875{ 1876 if (require_rvv(s) && 1877 vext_check_isa_ill(s) && 1878 /* vmv.v.v has rs2 = 0 and vm = 1 */ 1879 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 1880 if (s->vl_eq_vlmax) { 1881 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 1882 vreg_ofs(s, a->rs1), 1883 MAXSZ(s), MAXSZ(s)); 1884 } else { 1885 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1886 static gen_helper_gvec_2_ptr * const fns[4] = { 1887 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 1888 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 1889 }; 1890 TCGLabel *over = gen_new_label(); 1891 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1892 1893 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 1894 cpu_env, s->vlen / 8, s->vlen / 8, data, 1895 fns[s->sew]); 1896 gen_set_label(over); 1897 } 1898 mark_vs_dirty(s); 1899 return true; 1900 } 1901 return false; 1902} 1903 1904typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 1905static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 1906{ 1907 if (require_rvv(s) && 1908 vext_check_isa_ill(s) && 1909 /* vmv.v.x has rs2 = 0 and vm = 1 */ 1910 vext_check_ss(s, a->rd, 0, 1)) { 1911 TCGv s1; 1912 TCGLabel *over = gen_new_label(); 1913 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1914 1915 s1 = get_gpr(s, a->rs1, EXT_SIGN); 1916 1917 if (s->vl_eq_vlmax) { 1918 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 1919 MAXSZ(s), MAXSZ(s), s1); 1920 } else { 1921 TCGv_i32 desc; 1922 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 1923 TCGv_ptr dest = tcg_temp_new_ptr(); 1924 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1925 static gen_helper_vmv_vx * const fns[4] = { 1926 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 1927 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 1928 }; 1929 1930 tcg_gen_ext_tl_i64(s1_i64, s1); 1931 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1932 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 1933 fns[s->sew](dest, s1_i64, cpu_env, desc); 1934 1935 tcg_temp_free_ptr(dest); 1936 tcg_temp_free_i64(s1_i64); 1937 } 1938 1939 mark_vs_dirty(s); 1940 gen_set_label(over); 1941 return true; 1942 } 1943 return false; 1944} 1945 1946static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 1947{ 1948 if (require_rvv(s) && 1949 vext_check_isa_ill(s) && 1950 /* vmv.v.i has rs2 = 0 and vm = 1 */ 1951 vext_check_ss(s, a->rd, 0, 1)) { 1952 int64_t simm = sextract64(a->rs1, 0, 5); 1953 if (s->vl_eq_vlmax) { 1954 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 1955 MAXSZ(s), MAXSZ(s), simm); 1956 mark_vs_dirty(s); 1957 } else { 1958 TCGv_i32 desc; 1959 TCGv_i64 s1; 1960 TCGv_ptr dest; 1961 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1962 static gen_helper_vmv_vx * const fns[4] = { 1963 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 1964 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 1965 }; 1966 TCGLabel *over = gen_new_label(); 1967 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1968 1969 s1 = tcg_constant_i64(simm); 1970 dest = tcg_temp_new_ptr(); 1971 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1972 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 1973 fns[s->sew](dest, s1, cpu_env, desc); 1974 1975 tcg_temp_free_ptr(dest); 1976 mark_vs_dirty(s); 1977 gen_set_label(over); 1978 } 1979 return true; 1980 } 1981 return false; 1982} 1983 1984GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 1985GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 1986GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 1987 1988/* 1989 *** Vector Fixed-Point Arithmetic Instructions 1990 */ 1991 1992/* Vector Single-Width Saturating Add and Subtract */ 1993GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 1994GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 1995GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 1996GEN_OPIVV_TRANS(vssub_vv, opivv_check) 1997GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 1998GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 1999GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2000GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2001GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2002GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2003 2004/* Vector Single-Width Averaging Add and Subtract */ 2005GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2006GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2007GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2008GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2009GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2010GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2011GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2012GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2013 2014/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2015GEN_OPIVV_TRANS(vsmul_vv, opivv_check) 2016GEN_OPIVX_TRANS(vsmul_vx, opivx_check) 2017 2018/* Vector Single-Width Scaling Shift Instructions */ 2019GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2020GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2021GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2022GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2023GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2024GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2025 2026/* Vector Narrowing Fixed-Point Clip Instructions */ 2027GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2028GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2029GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2030GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2031GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2032GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2033 2034/* 2035 *** Vector Float Point Arithmetic Instructions 2036 */ 2037 2038/* 2039 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2040 * RVF and RVD can be treated equally. 2041 * We don't have to deal with the cases of: SEW > FLEN. 2042 * 2043 * If SEW < FLEN, check whether input fp register is a valid 2044 * NaN-boxed value, in which case the least-significant SEW bits 2045 * of the f regsiter are used, else the canonical NaN value is used. 2046 */ 2047static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2048{ 2049 switch (s->sew) { 2050 case 1: 2051 gen_check_nanbox_h(out, in); 2052 break; 2053 case 2: 2054 gen_check_nanbox_s(out, in); 2055 break; 2056 case 3: 2057 tcg_gen_mov_i64(out, in); 2058 break; 2059 default: 2060 g_assert_not_reached(); 2061 } 2062} 2063 2064/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2065 2066/* 2067 * If the current SEW does not correspond to a supported IEEE floating-point 2068 * type, an illegal instruction exception is raised. 2069 */ 2070static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2071{ 2072 return require_rvv(s) && 2073 require_rvf(s) && 2074 vext_check_isa_ill(s) && 2075 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 2076} 2077 2078/* OPFVV without GVEC IR */ 2079#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2080static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2081{ \ 2082 if (CHECK(s, a)) { \ 2083 uint32_t data = 0; \ 2084 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2085 gen_helper_##NAME##_h, \ 2086 gen_helper_##NAME##_w, \ 2087 gen_helper_##NAME##_d, \ 2088 }; \ 2089 TCGLabel *over = gen_new_label(); \ 2090 gen_set_rm(s, RISCV_FRM_DYN); \ 2091 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2092 \ 2093 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2094 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2095 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2096 vreg_ofs(s, a->rs1), \ 2097 vreg_ofs(s, a->rs2), cpu_env, \ 2098 s->vlen / 8, s->vlen / 8, data, \ 2099 fns[s->sew - 1]); \ 2100 mark_vs_dirty(s); \ 2101 gen_set_label(over); \ 2102 return true; \ 2103 } \ 2104 return false; \ 2105} 2106GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2107GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2108 2109typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2110 TCGv_env, TCGv_i32); 2111 2112static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2113 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2114{ 2115 TCGv_ptr dest, src2, mask; 2116 TCGv_i32 desc; 2117 TCGv_i64 t1; 2118 2119 TCGLabel *over = gen_new_label(); 2120 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2121 2122 dest = tcg_temp_new_ptr(); 2123 mask = tcg_temp_new_ptr(); 2124 src2 = tcg_temp_new_ptr(); 2125 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2126 2127 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2128 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2129 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2130 2131 /* NaN-box f[rs1] */ 2132 t1 = tcg_temp_new_i64(); 2133 do_nanbox(s, t1, cpu_fpr[rs1]); 2134 2135 fn(dest, mask, t1, src2, cpu_env, desc); 2136 2137 tcg_temp_free_ptr(dest); 2138 tcg_temp_free_ptr(mask); 2139 tcg_temp_free_ptr(src2); 2140 tcg_temp_free_i64(t1); 2141 mark_vs_dirty(s); 2142 gen_set_label(over); 2143 return true; 2144} 2145 2146/* 2147 * If the current SEW does not correspond to a supported IEEE floating-point 2148 * type, an illegal instruction exception is raised 2149 */ 2150static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2151{ 2152 return require_rvv(s) && 2153 require_rvf(s) && 2154 vext_check_isa_ill(s) && 2155 vext_check_ss(s, a->rd, a->rs2, a->vm); 2156} 2157 2158/* OPFVF without GVEC IR */ 2159#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2160static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2161{ \ 2162 if (CHECK(s, a)) { \ 2163 uint32_t data = 0; \ 2164 static gen_helper_opfvf *const fns[3] = { \ 2165 gen_helper_##NAME##_h, \ 2166 gen_helper_##NAME##_w, \ 2167 gen_helper_##NAME##_d, \ 2168 }; \ 2169 gen_set_rm(s, RISCV_FRM_DYN); \ 2170 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2171 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2172 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2173 fns[s->sew - 1], s); \ 2174 } \ 2175 return false; \ 2176} 2177 2178GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2179GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2180GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2181 2182/* Vector Widening Floating-Point Add/Subtract Instructions */ 2183static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2184{ 2185 return require_rvv(s) && 2186 require_rvf(s) && 2187 vext_check_isa_ill(s) && 2188 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 2189} 2190 2191/* OPFVV with WIDEN */ 2192#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2193static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2194{ \ 2195 if (CHECK(s, a)) { \ 2196 uint32_t data = 0; \ 2197 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2198 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2199 }; \ 2200 TCGLabel *over = gen_new_label(); \ 2201 gen_set_rm(s, RISCV_FRM_DYN); \ 2202 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2203 \ 2204 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2205 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2206 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2207 vreg_ofs(s, a->rs1), \ 2208 vreg_ofs(s, a->rs2), cpu_env, \ 2209 s->vlen / 8, s->vlen / 8, data, \ 2210 fns[s->sew - 1]); \ 2211 mark_vs_dirty(s); \ 2212 gen_set_label(over); \ 2213 return true; \ 2214 } \ 2215 return false; \ 2216} 2217 2218GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2219GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2220 2221static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2222{ 2223 return require_rvv(s) && 2224 require_rvf(s) && 2225 vext_check_isa_ill(s) && 2226 vext_check_ds(s, a->rd, a->rs2, a->vm); 2227} 2228 2229/* OPFVF with WIDEN */ 2230#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2231static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2232{ \ 2233 if (opfvf_widen_check(s, a)) { \ 2234 uint32_t data = 0; \ 2235 static gen_helper_opfvf *const fns[2] = { \ 2236 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2237 }; \ 2238 gen_set_rm(s, RISCV_FRM_DYN); \ 2239 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2240 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2241 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2242 fns[s->sew - 1], s); \ 2243 } \ 2244 return false; \ 2245} 2246 2247GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2248GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2249 2250static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2251{ 2252 return require_rvv(s) && 2253 require_rvf(s) && 2254 vext_check_isa_ill(s) && 2255 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 2256} 2257 2258/* WIDEN OPFVV with WIDEN */ 2259#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2260static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2261{ \ 2262 if (opfwv_widen_check(s, a)) { \ 2263 uint32_t data = 0; \ 2264 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2265 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2266 }; \ 2267 TCGLabel *over = gen_new_label(); \ 2268 gen_set_rm(s, RISCV_FRM_DYN); \ 2269 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2270 \ 2271 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2272 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2273 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2274 vreg_ofs(s, a->rs1), \ 2275 vreg_ofs(s, a->rs2), cpu_env, \ 2276 s->vlen / 8, s->vlen / 8, data, \ 2277 fns[s->sew - 1]); \ 2278 mark_vs_dirty(s); \ 2279 gen_set_label(over); \ 2280 return true; \ 2281 } \ 2282 return false; \ 2283} 2284 2285GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2286GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2287 2288static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2289{ 2290 return require_rvv(s) && 2291 require_rvf(s) && 2292 vext_check_isa_ill(s) && 2293 vext_check_dd(s, a->rd, a->rs2, a->vm); 2294} 2295 2296/* WIDEN OPFVF with WIDEN */ 2297#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2298static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2299{ \ 2300 if (opfwf_widen_check(s, a)) { \ 2301 uint32_t data = 0; \ 2302 static gen_helper_opfvf *const fns[2] = { \ 2303 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2304 }; \ 2305 gen_set_rm(s, RISCV_FRM_DYN); \ 2306 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2307 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2308 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2309 fns[s->sew - 1], s); \ 2310 } \ 2311 return false; \ 2312} 2313 2314GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2315GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2316 2317/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2318GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2319GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2320GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2321GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2322GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2323 2324/* Vector Widening Floating-Point Multiply */ 2325GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2326GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2327 2328/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2329GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2330GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2331GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2332GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2333GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2334GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2335GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2336GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2337GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2338GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2339GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2340GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2341GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2342GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2343GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2344GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2345 2346/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2347GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2348GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2349GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2350GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2351GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2352GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2353GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2354GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2355 2356/* Vector Floating-Point Square-Root Instruction */ 2357 2358/* 2359 * If the current SEW does not correspond to a supported IEEE floating-point 2360 * type, an illegal instruction exception is raised 2361 */ 2362static bool opfv_check(DisasContext *s, arg_rmr *a) 2363{ 2364 return require_rvv(s) && 2365 require_rvf(s) && 2366 vext_check_isa_ill(s) && 2367 /* OPFV instructions ignore vs1 check */ 2368 vext_check_ss(s, a->rd, a->rs2, a->vm); 2369} 2370 2371static bool do_opfv(DisasContext *s, arg_rmr *a, 2372 gen_helper_gvec_3_ptr *fn, 2373 bool (*checkfn)(DisasContext *, arg_rmr *), 2374 int rm) 2375{ 2376 if (checkfn(s, a)) { 2377 uint32_t data = 0; 2378 TCGLabel *over = gen_new_label(); 2379 gen_set_rm(s, rm); 2380 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2381 2382 data = FIELD_DP32(data, VDATA, VM, a->vm); 2383 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2384 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2385 vreg_ofs(s, a->rs2), cpu_env, 2386 s->vlen / 8, s->vlen / 8, data, fn); 2387 mark_vs_dirty(s); 2388 gen_set_label(over); 2389 return true; 2390 } 2391 return false; 2392} 2393 2394#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2395static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2396{ \ 2397 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2398 gen_helper_##NAME##_h, \ 2399 gen_helper_##NAME##_w, \ 2400 gen_helper_##NAME##_d \ 2401 }; \ 2402 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2403} 2404 2405GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2406 2407/* Vector Floating-Point MIN/MAX Instructions */ 2408GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2409GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2410GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2411GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2412 2413/* Vector Floating-Point Sign-Injection Instructions */ 2414GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2415GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2416GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2417GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2418GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2419GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2420 2421/* Vector Floating-Point Compare Instructions */ 2422static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2423{ 2424 return require_rvv(s) && 2425 require_rvf(s) && 2426 vext_check_isa_ill(s) && 2427 vext_check_mss(s, a->rd, a->rs1, a->rs2); 2428} 2429 2430GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2431GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2432GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2433GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2434 2435static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2436{ 2437 return require_rvv(s) && 2438 require_rvf(s) && 2439 vext_check_isa_ill(s) && 2440 vext_check_ms(s, a->rd, a->rs2); 2441} 2442 2443GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2444GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2445GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2446GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2447GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2448GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2449 2450/* Vector Floating-Point Classify Instruction */ 2451GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2452 2453/* Vector Floating-Point Merge Instruction */ 2454GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2455 2456static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2457{ 2458 if (require_rvv(s) && 2459 require_rvf(s) && 2460 vext_check_isa_ill(s) && 2461 require_align(a->rd, s->lmul)) { 2462 TCGv_i64 t1; 2463 2464 if (s->vl_eq_vlmax) { 2465 t1 = tcg_temp_new_i64(); 2466 /* NaN-box f[rs1] */ 2467 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2468 2469 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2470 MAXSZ(s), MAXSZ(s), t1); 2471 mark_vs_dirty(s); 2472 } else { 2473 TCGv_ptr dest; 2474 TCGv_i32 desc; 2475 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2476 static gen_helper_vmv_vx * const fns[3] = { 2477 gen_helper_vmv_v_x_h, 2478 gen_helper_vmv_v_x_w, 2479 gen_helper_vmv_v_x_d, 2480 }; 2481 TCGLabel *over = gen_new_label(); 2482 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2483 2484 t1 = tcg_temp_new_i64(); 2485 /* NaN-box f[rs1] */ 2486 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2487 2488 dest = tcg_temp_new_ptr(); 2489 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2490 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2491 2492 fns[s->sew - 1](dest, t1, cpu_env, desc); 2493 2494 tcg_temp_free_ptr(dest); 2495 mark_vs_dirty(s); 2496 gen_set_label(over); 2497 } 2498 tcg_temp_free_i64(t1); 2499 return true; 2500 } 2501 return false; 2502} 2503 2504/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2505#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2506static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2507{ \ 2508 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2509 gen_helper_##HELPER##_h, \ 2510 gen_helper_##HELPER##_w, \ 2511 gen_helper_##HELPER##_d \ 2512 }; \ 2513 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2514} 2515 2516GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2517GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2518GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2519GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2520/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2521GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2522GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2523 2524/* Widening Floating-Point/Integer Type-Convert Instructions */ 2525 2526/* 2527 * If the current SEW does not correspond to a supported IEEE floating-point 2528 * type, an illegal instruction exception is raised 2529 */ 2530static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2531{ 2532 return require_rvv(s) && 2533 require_scale_rvf(s) && 2534 (s->sew != MO_8) && 2535 vext_check_isa_ill(s) && 2536 vext_check_ds(s, a->rd, a->rs2, a->vm); 2537} 2538 2539#define GEN_OPFV_WIDEN_TRANS(NAME, HELPER, FRM) \ 2540static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2541{ \ 2542 if (opfv_widen_check(s, a)) { \ 2543 uint32_t data = 0; \ 2544 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2545 gen_helper_##HELPER##_h, \ 2546 gen_helper_##HELPER##_w, \ 2547 }; \ 2548 TCGLabel *over = gen_new_label(); \ 2549 gen_set_rm(s, FRM); \ 2550 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2551 \ 2552 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2553 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2554 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2555 vreg_ofs(s, a->rs2), cpu_env, \ 2556 s->vlen / 8, s->vlen / 8, data, \ 2557 fns[s->sew - 1]); \ 2558 mark_vs_dirty(s); \ 2559 gen_set_label(over); \ 2560 return true; \ 2561 } \ 2562 return false; \ 2563} 2564 2565GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, vfwcvt_xu_f_v, RISCV_FRM_DYN) 2566GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, vfwcvt_x_f_v, RISCV_FRM_DYN) 2567GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, vfwcvt_f_f_v, RISCV_FRM_DYN) 2568/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2569GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, vfwcvt_xu_f_v, RISCV_FRM_RTZ) 2570GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, vfwcvt_x_f_v, RISCV_FRM_RTZ) 2571 2572static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2573{ 2574 return require_rvv(s) && 2575 require_scale_rvf(s) && 2576 vext_check_isa_ill(s) && 2577 /* OPFV widening instructions ignore vs1 check */ 2578 vext_check_ds(s, a->rd, a->rs2, a->vm); 2579} 2580 2581#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2582static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2583{ \ 2584 if (opfxv_widen_check(s, a)) { \ 2585 uint32_t data = 0; \ 2586 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2587 gen_helper_##NAME##_b, \ 2588 gen_helper_##NAME##_h, \ 2589 gen_helper_##NAME##_w, \ 2590 }; \ 2591 TCGLabel *over = gen_new_label(); \ 2592 gen_set_rm(s, RISCV_FRM_DYN); \ 2593 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2594 \ 2595 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2596 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2597 vreg_ofs(s, a->rs2), cpu_env, \ 2598 s->vlen / 8, s->vlen / 8, data, \ 2599 fns[s->sew]); \ 2600 mark_vs_dirty(s); \ 2601 gen_set_label(over); \ 2602 return true; \ 2603 } \ 2604 return false; \ 2605} 2606 2607GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2608GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2609 2610/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2611 2612/* 2613 * If the current SEW does not correspond to a supported IEEE floating-point 2614 * type, an illegal instruction exception is raised 2615 */ 2616static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2617{ 2618 return require_rvv(s) && 2619 require_rvf(s) && 2620 (s->sew != MO_64) && 2621 vext_check_isa_ill(s) && 2622 /* OPFV narrowing instructions ignore vs1 check */ 2623 vext_check_sd(s, a->rd, a->rs2, a->vm); 2624} 2625 2626#define GEN_OPFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2627static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2628{ \ 2629 if (opfv_narrow_check(s, a)) { \ 2630 uint32_t data = 0; \ 2631 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2632 gen_helper_##HELPER##_h, \ 2633 gen_helper_##HELPER##_w, \ 2634 }; \ 2635 TCGLabel *over = gen_new_label(); \ 2636 gen_set_rm(s, FRM); \ 2637 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2638 \ 2639 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2640 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2641 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2642 vreg_ofs(s, a->rs2), cpu_env, \ 2643 s->vlen / 8, s->vlen / 8, data, \ 2644 fns[s->sew - 1]); \ 2645 mark_vs_dirty(s); \ 2646 gen_set_label(over); \ 2647 return true; \ 2648 } \ 2649 return false; \ 2650} 2651 2652GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, vfncvt_f_xu_w, RISCV_FRM_DYN) 2653GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, vfncvt_f_x_w, RISCV_FRM_DYN) 2654GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, vfncvt_f_f_w, RISCV_FRM_DYN) 2655/* Reuse the helper function from vfncvt.f.f.w */ 2656GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, vfncvt_f_f_w, RISCV_FRM_ROD) 2657 2658static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2659{ 2660 return require_rvv(s) && 2661 require_scale_rvf(s) && 2662 vext_check_isa_ill(s) && 2663 /* OPFV narrowing instructions ignore vs1 check */ 2664 vext_check_sd(s, a->rd, a->rs2, a->vm); 2665} 2666 2667#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2668static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2669{ \ 2670 if (opxfv_narrow_check(s, a)) { \ 2671 uint32_t data = 0; \ 2672 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2673 gen_helper_##HELPER##_b, \ 2674 gen_helper_##HELPER##_h, \ 2675 gen_helper_##HELPER##_w, \ 2676 }; \ 2677 TCGLabel *over = gen_new_label(); \ 2678 gen_set_rm(s, FRM); \ 2679 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2680 \ 2681 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2682 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2683 vreg_ofs(s, a->rs2), cpu_env, \ 2684 s->vlen / 8, s->vlen / 8, data, \ 2685 fns[s->sew]); \ 2686 mark_vs_dirty(s); \ 2687 gen_set_label(over); \ 2688 return true; \ 2689 } \ 2690 return false; \ 2691} 2692 2693GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 2694GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 2695/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 2696GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 2697GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 2698 2699/* 2700 *** Vector Reduction Operations 2701 */ 2702/* Vector Single-Width Integer Reduction Instructions */ 2703static bool reduction_check(DisasContext *s, arg_rmrr *a) 2704{ 2705 return require_rvv(s) && 2706 vext_check_isa_ill(s) && 2707 vext_check_reduction(s, a->rs2); 2708} 2709 2710GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 2711GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 2712GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 2713GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 2714GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 2715GEN_OPIVV_TRANS(vredand_vs, reduction_check) 2716GEN_OPIVV_TRANS(vredor_vs, reduction_check) 2717GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 2718 2719/* Vector Widening Integer Reduction Instructions */ 2720static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 2721{ 2722 return reduction_check(s, a) && (s->sew < MO_64); 2723} 2724 2725GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 2726GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 2727 2728/* Vector Single-Width Floating-Point Reduction Instructions */ 2729static bool freduction_check(DisasContext *s, arg_rmrr *a) 2730{ 2731 return reduction_check(s, a) && 2732 require_rvf(s); 2733} 2734 2735GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 2736GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 2737GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 2738 2739/* Vector Widening Floating-Point Reduction Instructions */ 2740static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 2741{ 2742 return reduction_widen_check(s, a) && 2743 require_scale_rvf(s) && 2744 (s->sew != MO_8); 2745} 2746 2747GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 2748 2749/* 2750 *** Vector Mask Operations 2751 */ 2752 2753/* Vector Mask-Register Logical Instructions */ 2754#define GEN_MM_TRANS(NAME) \ 2755static bool trans_##NAME(DisasContext *s, arg_r *a) \ 2756{ \ 2757 if (require_rvv(s) && \ 2758 vext_check_isa_ill(s)) { \ 2759 uint32_t data = 0; \ 2760 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 2761 TCGLabel *over = gen_new_label(); \ 2762 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2763 \ 2764 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2765 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2766 vreg_ofs(s, a->rs1), \ 2767 vreg_ofs(s, a->rs2), cpu_env, \ 2768 s->vlen / 8, s->vlen / 8, data, fn); \ 2769 mark_vs_dirty(s); \ 2770 gen_set_label(over); \ 2771 return true; \ 2772 } \ 2773 return false; \ 2774} 2775 2776GEN_MM_TRANS(vmand_mm) 2777GEN_MM_TRANS(vmnand_mm) 2778GEN_MM_TRANS(vmandnot_mm) 2779GEN_MM_TRANS(vmxor_mm) 2780GEN_MM_TRANS(vmor_mm) 2781GEN_MM_TRANS(vmnor_mm) 2782GEN_MM_TRANS(vmornot_mm) 2783GEN_MM_TRANS(vmxnor_mm) 2784 2785/* Vector count population in mask vcpop */ 2786static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 2787{ 2788 if (require_rvv(s) && 2789 vext_check_isa_ill(s)) { 2790 TCGv_ptr src2, mask; 2791 TCGv dst; 2792 TCGv_i32 desc; 2793 uint32_t data = 0; 2794 data = FIELD_DP32(data, VDATA, VM, a->vm); 2795 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2796 2797 mask = tcg_temp_new_ptr(); 2798 src2 = tcg_temp_new_ptr(); 2799 dst = dest_gpr(s, a->rd); 2800 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2801 2802 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 2803 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2804 2805 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 2806 gen_set_gpr(s, a->rd, dst); 2807 2808 tcg_temp_free_ptr(mask); 2809 tcg_temp_free_ptr(src2); 2810 2811 return true; 2812 } 2813 return false; 2814} 2815 2816/* vmfirst find-first-set mask bit */ 2817static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 2818{ 2819 if (require_rvv(s) && 2820 vext_check_isa_ill(s)) { 2821 TCGv_ptr src2, mask; 2822 TCGv dst; 2823 TCGv_i32 desc; 2824 uint32_t data = 0; 2825 data = FIELD_DP32(data, VDATA, VM, a->vm); 2826 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2827 2828 mask = tcg_temp_new_ptr(); 2829 src2 = tcg_temp_new_ptr(); 2830 dst = dest_gpr(s, a->rd); 2831 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2832 2833 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 2834 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2835 2836 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 2837 gen_set_gpr(s, a->rd, dst); 2838 2839 tcg_temp_free_ptr(mask); 2840 tcg_temp_free_ptr(src2); 2841 return true; 2842 } 2843 return false; 2844} 2845 2846/* vmsbf.m set-before-first mask bit */ 2847/* vmsif.m set-includ-first mask bit */ 2848/* vmsof.m set-only-first mask bit */ 2849#define GEN_M_TRANS(NAME) \ 2850static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2851{ \ 2852 if (require_rvv(s) && \ 2853 vext_check_isa_ill(s) && \ 2854 require_vm(a->vm, a->rd) && \ 2855 (a->rd != a->rs2)) { \ 2856 uint32_t data = 0; \ 2857 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 2858 TCGLabel *over = gen_new_label(); \ 2859 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2860 \ 2861 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2862 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2863 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 2864 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 2865 cpu_env, s->vlen / 8, s->vlen / 8, \ 2866 data, fn); \ 2867 mark_vs_dirty(s); \ 2868 gen_set_label(over); \ 2869 return true; \ 2870 } \ 2871 return false; \ 2872} 2873 2874GEN_M_TRANS(vmsbf_m) 2875GEN_M_TRANS(vmsif_m) 2876GEN_M_TRANS(vmsof_m) 2877 2878/* 2879 * Vector Iota Instruction 2880 * 2881 * 1. The destination register cannot overlap the source register. 2882 * 2. If masked, cannot overlap the mask register ('v0'). 2883 * 3. An illegal instruction exception is raised if vstart is non-zero. 2884 */ 2885static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 2886{ 2887 if (require_rvv(s) && 2888 vext_check_isa_ill(s) && 2889 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 2890 require_vm(a->vm, a->rd) && 2891 require_align(a->rd, s->lmul)) { 2892 uint32_t data = 0; 2893 TCGLabel *over = gen_new_label(); 2894 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2895 2896 data = FIELD_DP32(data, VDATA, VM, a->vm); 2897 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2898 static gen_helper_gvec_3_ptr * const fns[4] = { 2899 gen_helper_viota_m_b, gen_helper_viota_m_h, 2900 gen_helper_viota_m_w, gen_helper_viota_m_d, 2901 }; 2902 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2903 vreg_ofs(s, a->rs2), cpu_env, 2904 s->vlen / 8, s->vlen / 8, data, fns[s->sew]); 2905 mark_vs_dirty(s); 2906 gen_set_label(over); 2907 return true; 2908 } 2909 return false; 2910} 2911 2912/* Vector Element Index Instruction */ 2913static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 2914{ 2915 if (require_rvv(s) && 2916 vext_check_isa_ill(s) && 2917 require_align(a->rd, s->lmul) && 2918 require_vm(a->vm, a->rd)) { 2919 uint32_t data = 0; 2920 TCGLabel *over = gen_new_label(); 2921 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2922 2923 data = FIELD_DP32(data, VDATA, VM, a->vm); 2924 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2925 static gen_helper_gvec_2_ptr * const fns[4] = { 2926 gen_helper_vid_v_b, gen_helper_vid_v_h, 2927 gen_helper_vid_v_w, gen_helper_vid_v_d, 2928 }; 2929 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2930 cpu_env, s->vlen / 8, s->vlen / 8, 2931 data, fns[s->sew]); 2932 mark_vs_dirty(s); 2933 gen_set_label(over); 2934 return true; 2935 } 2936 return false; 2937} 2938 2939/* 2940 *** Vector Permutation Instructions 2941 */ 2942 2943static void load_element(TCGv_i64 dest, TCGv_ptr base, 2944 int ofs, int sew, bool sign) 2945{ 2946 switch (sew) { 2947 case MO_8: 2948 if (!sign) { 2949 tcg_gen_ld8u_i64(dest, base, ofs); 2950 } else { 2951 tcg_gen_ld8s_i64(dest, base, ofs); 2952 } 2953 break; 2954 case MO_16: 2955 if (!sign) { 2956 tcg_gen_ld16u_i64(dest, base, ofs); 2957 } else { 2958 tcg_gen_ld16s_i64(dest, base, ofs); 2959 } 2960 break; 2961 case MO_32: 2962 if (!sign) { 2963 tcg_gen_ld32u_i64(dest, base, ofs); 2964 } else { 2965 tcg_gen_ld32s_i64(dest, base, ofs); 2966 } 2967 break; 2968 case MO_64: 2969 tcg_gen_ld_i64(dest, base, ofs); 2970 break; 2971 default: 2972 g_assert_not_reached(); 2973 break; 2974 } 2975} 2976 2977/* offset of the idx element with base regsiter r */ 2978static uint32_t endian_ofs(DisasContext *s, int r, int idx) 2979{ 2980#ifdef HOST_WORDS_BIGENDIAN 2981 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 2982#else 2983 return vreg_ofs(s, r) + (idx << s->sew); 2984#endif 2985} 2986 2987/* adjust the index according to the endian */ 2988static void endian_adjust(TCGv_i32 ofs, int sew) 2989{ 2990#ifdef HOST_WORDS_BIGENDIAN 2991 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 2992#endif 2993} 2994 2995/* Load idx >= VLMAX ? 0 : vreg[idx] */ 2996static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 2997 int vreg, TCGv idx, int vlmax) 2998{ 2999 TCGv_i32 ofs = tcg_temp_new_i32(); 3000 TCGv_ptr base = tcg_temp_new_ptr(); 3001 TCGv_i64 t_idx = tcg_temp_new_i64(); 3002 TCGv_i64 t_vlmax, t_zero; 3003 3004 /* 3005 * Mask the index to the length so that we do 3006 * not produce an out-of-range load. 3007 */ 3008 tcg_gen_trunc_tl_i32(ofs, idx); 3009 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3010 3011 /* Convert the index to an offset. */ 3012 endian_adjust(ofs, s->sew); 3013 tcg_gen_shli_i32(ofs, ofs, s->sew); 3014 3015 /* Convert the index to a pointer. */ 3016 tcg_gen_ext_i32_ptr(base, ofs); 3017 tcg_gen_add_ptr(base, base, cpu_env); 3018 3019 /* Perform the load. */ 3020 load_element(dest, base, 3021 vreg_ofs(s, vreg), s->sew, false); 3022 tcg_temp_free_ptr(base); 3023 tcg_temp_free_i32(ofs); 3024 3025 /* Flush out-of-range indexing to zero. */ 3026 t_vlmax = tcg_constant_i64(vlmax); 3027 t_zero = tcg_constant_i64(0); 3028 tcg_gen_extu_tl_i64(t_idx, idx); 3029 3030 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3031 t_vlmax, dest, t_zero); 3032 3033 tcg_temp_free_i64(t_idx); 3034} 3035 3036static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3037 int vreg, int idx, bool sign) 3038{ 3039 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3040} 3041 3042/* Integer Scalar Move Instruction */ 3043 3044static void store_element(TCGv_i64 val, TCGv_ptr base, 3045 int ofs, int sew) 3046{ 3047 switch (sew) { 3048 case MO_8: 3049 tcg_gen_st8_i64(val, base, ofs); 3050 break; 3051 case MO_16: 3052 tcg_gen_st16_i64(val, base, ofs); 3053 break; 3054 case MO_32: 3055 tcg_gen_st32_i64(val, base, ofs); 3056 break; 3057 case MO_64: 3058 tcg_gen_st_i64(val, base, ofs); 3059 break; 3060 default: 3061 g_assert_not_reached(); 3062 break; 3063 } 3064} 3065 3066/* 3067 * Store vreg[idx] = val. 3068 * The index must be in range of VLMAX. 3069 */ 3070static void vec_element_storei(DisasContext *s, int vreg, 3071 int idx, TCGv_i64 val) 3072{ 3073 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3074} 3075 3076/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3077static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3078{ 3079 if (require_rvv(s) && 3080 vext_check_isa_ill(s)) { 3081 TCGv_i64 t1; 3082 TCGv dest; 3083 3084 t1 = tcg_temp_new_i64(); 3085 dest = tcg_temp_new(); 3086 /* 3087 * load vreg and sign-extend to 64 bits, 3088 * then truncate to XLEN bits before storing to gpr. 3089 */ 3090 vec_element_loadi(s, t1, a->rs2, 0, true); 3091 tcg_gen_trunc_i64_tl(dest, t1); 3092 gen_set_gpr(s, a->rd, dest); 3093 tcg_temp_free_i64(t1); 3094 tcg_temp_free(dest); 3095 3096 return true; 3097 } 3098 return false; 3099} 3100 3101/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3102static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3103{ 3104 if (require_rvv(s) && 3105 vext_check_isa_ill(s)) { 3106 /* This instruction ignores LMUL and vector register groups */ 3107 TCGv_i64 t1; 3108 TCGv s1; 3109 TCGLabel *over = gen_new_label(); 3110 3111 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3112 3113 t1 = tcg_temp_new_i64(); 3114 3115 /* 3116 * load gpr and sign-extend to 64 bits, 3117 * then truncate to SEW bits when storing to vreg. 3118 */ 3119 s1 = get_gpr(s, a->rs1, EXT_NONE); 3120 tcg_gen_ext_tl_i64(t1, s1); 3121 vec_element_storei(s, a->rd, 0, t1); 3122 tcg_temp_free_i64(t1); 3123 mark_vs_dirty(s); 3124 gen_set_label(over); 3125 return true; 3126 } 3127 return false; 3128} 3129 3130/* Floating-Point Scalar Move Instructions */ 3131static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3132{ 3133 if (require_rvv(s) && 3134 require_rvf(s) && 3135 vext_check_isa_ill(s)) { 3136 unsigned int ofs = (8 << s->sew); 3137 unsigned int len = 64 - ofs; 3138 TCGv_i64 t_nan; 3139 3140 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3141 /* NaN-box f[rd] as necessary for SEW */ 3142 if (len) { 3143 t_nan = tcg_constant_i64(UINT64_MAX); 3144 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3145 t_nan, ofs, len); 3146 } 3147 3148 mark_fs_dirty(s); 3149 return true; 3150 } 3151 return false; 3152} 3153 3154/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3155static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3156{ 3157 if (require_rvv(s) && 3158 require_rvf(s) && 3159 vext_check_isa_ill(s)) { 3160 /* The instructions ignore LMUL and vector register group. */ 3161 TCGv_i64 t1; 3162 TCGLabel *over = gen_new_label(); 3163 3164 /* if vl == 0, skip vector register write back */ 3165 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3166 3167 /* NaN-box f[rs1] */ 3168 t1 = tcg_temp_new_i64(); 3169 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3170 3171 vec_element_storei(s, a->rd, 0, t1); 3172 tcg_temp_free_i64(t1); 3173 mark_vs_dirty(s); 3174 gen_set_label(over); 3175 return true; 3176 } 3177 return false; 3178} 3179 3180/* Vector Slide Instructions */ 3181static bool slideup_check(DisasContext *s, arg_rmrr *a) 3182{ 3183 return require_rvv(s) && 3184 vext_check_isa_ill(s) && 3185 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3186} 3187 3188GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3189GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3190GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3191 3192static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3193{ 3194 return require_rvv(s) && 3195 vext_check_isa_ill(s) && 3196 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3197} 3198 3199GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3200GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3201GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3202 3203/* Vector Floating-Point Slide Instructions */ 3204static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3205{ 3206 return slideup_check(s, a) && 3207 require_rvf(s); 3208} 3209 3210static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3211{ 3212 return slidedown_check(s, a) && 3213 require_rvf(s); 3214} 3215 3216GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3217GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3218 3219/* Vector Register Gather Instruction */ 3220static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3221{ 3222 return require_rvv(s) && 3223 vext_check_isa_ill(s) && 3224 require_align(a->rd, s->lmul) && 3225 require_align(a->rs1, s->lmul) && 3226 require_align(a->rs2, s->lmul) && 3227 (a->rd != a->rs2 && a->rd != a->rs1) && 3228 require_vm(a->vm, a->rd); 3229} 3230 3231static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3232{ 3233 int8_t emul = MO_16 - s->sew + s->lmul; 3234 return require_rvv(s) && 3235 vext_check_isa_ill(s) && 3236 (emul >= -3 && emul <= 3) && 3237 require_align(a->rd, s->lmul) && 3238 require_align(a->rs1, emul) && 3239 require_align(a->rs2, s->lmul) && 3240 (a->rd != a->rs2 && a->rd != a->rs1) && 3241 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3242 a->rs1, 1 << MAX(emul, 0)) && 3243 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3244 a->rs2, 1 << MAX(s->lmul, 0)) && 3245 require_vm(a->vm, a->rd); 3246} 3247 3248GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3249GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3250 3251static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3252{ 3253 return require_rvv(s) && 3254 vext_check_isa_ill(s) && 3255 require_align(a->rd, s->lmul) && 3256 require_align(a->rs2, s->lmul) && 3257 (a->rd != a->rs2) && 3258 require_vm(a->vm, a->rd); 3259} 3260 3261/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3262static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3263{ 3264 if (!vrgather_vx_check(s, a)) { 3265 return false; 3266 } 3267 3268 if (a->vm && s->vl_eq_vlmax) { 3269 int scale = s->lmul - (s->sew + 3); 3270 int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; 3271 TCGv_i64 dest = tcg_temp_new_i64(); 3272 3273 if (a->rs1 == 0) { 3274 vec_element_loadi(s, dest, a->rs2, 0, false); 3275 } else { 3276 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3277 } 3278 3279 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3280 MAXSZ(s), MAXSZ(s), dest); 3281 tcg_temp_free_i64(dest); 3282 mark_vs_dirty(s); 3283 } else { 3284 static gen_helper_opivx * const fns[4] = { 3285 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3286 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3287 }; 3288 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3289 } 3290 return true; 3291} 3292 3293/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3294static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3295{ 3296 if (!vrgather_vx_check(s, a)) { 3297 return false; 3298 } 3299 3300 if (a->vm && s->vl_eq_vlmax) { 3301 int scale = s->lmul - (s->sew + 3); 3302 int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; 3303 if (a->rs1 >= vlmax) { 3304 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3305 MAXSZ(s), MAXSZ(s), 0); 3306 } else { 3307 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3308 endian_ofs(s, a->rs2, a->rs1), 3309 MAXSZ(s), MAXSZ(s)); 3310 } 3311 mark_vs_dirty(s); 3312 } else { 3313 static gen_helper_opivx * const fns[4] = { 3314 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3315 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3316 }; 3317 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3318 s, IMM_ZX); 3319 } 3320 return true; 3321} 3322 3323/* 3324 * Vector Compress Instruction 3325 * 3326 * The destination vector register group cannot overlap the 3327 * source vector register group or the source mask register. 3328 */ 3329static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3330{ 3331 return require_rvv(s) && 3332 vext_check_isa_ill(s) && 3333 require_align(a->rd, s->lmul) && 3334 require_align(a->rs2, s->lmul) && 3335 (a->rd != a->rs2) && 3336 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1); 3337} 3338 3339static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3340{ 3341 if (vcompress_vm_check(s, a)) { 3342 uint32_t data = 0; 3343 static gen_helper_gvec_4_ptr * const fns[4] = { 3344 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3345 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3346 }; 3347 TCGLabel *over = gen_new_label(); 3348 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3349 3350 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3351 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3352 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3353 cpu_env, s->vlen / 8, s->vlen / 8, data, 3354 fns[s->sew]); 3355 mark_vs_dirty(s); 3356 gen_set_label(over); 3357 return true; 3358 } 3359 return false; 3360} 3361 3362/* 3363 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3364 * Thus, we don't need to check vill bit. (Section 16.6) 3365 */ 3366#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3367static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3368{ \ 3369 if (require_rvv(s) && \ 3370 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3371 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3372 /* EEW = 8 */ \ 3373 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3374 vreg_ofs(s, a->rs2), \ 3375 s->vlen / 8 * LEN, s->vlen / 8 * LEN); \ 3376 mark_vs_dirty(s); \ 3377 return true; \ 3378 } \ 3379 return false; \ 3380} 3381 3382GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3383GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3384GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3385GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3386 3387static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3388{ 3389 uint8_t from = (s->sew + 3) - div; 3390 bool ret = require_rvv(s) && 3391 (from >= 3 && from <= 8) && 3392 (a->rd != a->rs2) && 3393 require_align(a->rd, s->lmul) && 3394 require_align(a->rs2, s->lmul - div) && 3395 require_vm(a->vm, a->rd) && 3396 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3397 return ret; 3398} 3399 3400static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3401{ 3402 uint32_t data = 0; 3403 gen_helper_gvec_3_ptr *fn; 3404 TCGLabel *over = gen_new_label(); 3405 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3406 3407 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3408 { 3409 NULL, gen_helper_vzext_vf2_h, 3410 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3411 }, 3412 { 3413 NULL, NULL, 3414 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3415 }, 3416 { 3417 NULL, NULL, 3418 NULL, gen_helper_vzext_vf8_d 3419 }, 3420 { 3421 NULL, gen_helper_vsext_vf2_h, 3422 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3423 }, 3424 { 3425 NULL, NULL, 3426 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3427 }, 3428 { 3429 NULL, NULL, 3430 NULL, gen_helper_vsext_vf8_d 3431 } 3432 }; 3433 3434 fn = fns[seq][s->sew]; 3435 if (fn == NULL) { 3436 return false; 3437 } 3438 3439 data = FIELD_DP32(data, VDATA, VM, a->vm); 3440 3441 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3442 vreg_ofs(s, a->rs2), cpu_env, 3443 s->vlen / 8, s->vlen / 8, data, fn); 3444 3445 mark_vs_dirty(s); 3446 gen_set_label(over); 3447 return true; 3448} 3449 3450/* Vector Integer Extension */ 3451#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3452static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3453{ \ 3454 if (int_ext_check(s, a, DIV)) { \ 3455 return int_ext_op(s, a, SEQ); \ 3456 } \ 3457 return false; \ 3458} 3459 3460GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3461GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3462GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3463GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3464GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3465GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3466