1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 data = FIELD_DP32(data, VDATA, VMA, s->vma); 716 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 717} 718 719static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 720{ 721 return require_rvv(s) && 722 vext_check_isa_ill(s) && 723 vext_check_load(s, a->rd, a->nf, a->vm, eew); 724} 725 726GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 729GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 730 731static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 732{ 733 uint32_t data = 0; 734 gen_helper_ldst_us *fn; 735 static gen_helper_ldst_us * const fns[2][4] = { 736 /* masked unit stride store */ 737 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 738 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 739 /* unmasked unit stride store */ 740 { gen_helper_vse8_v, gen_helper_vse16_v, 741 gen_helper_vse32_v, gen_helper_vse64_v } 742 }; 743 744 fn = fns[a->vm][eew]; 745 if (fn == NULL) { 746 return false; 747 } 748 749 uint8_t emul = vext_get_emul(s, eew); 750 data = FIELD_DP32(data, VDATA, VM, a->vm); 751 data = FIELD_DP32(data, VDATA, LMUL, emul); 752 data = FIELD_DP32(data, VDATA, NF, a->nf); 753 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 754} 755 756static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 757{ 758 return require_rvv(s) && 759 vext_check_isa_ill(s) && 760 vext_check_store(s, a->rd, a->nf, eew); 761} 762 763GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 766GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 767 768/* 769 *** unit stride mask load and store 770 */ 771static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 772{ 773 uint32_t data = 0; 774 gen_helper_ldst_us *fn = gen_helper_vlm_v; 775 776 /* EMUL = 1, NFIELDS = 1 */ 777 data = FIELD_DP32(data, VDATA, LMUL, 0); 778 data = FIELD_DP32(data, VDATA, NF, 1); 779 /* Mask destination register are always tail-agnostic */ 780 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 781 data = FIELD_DP32(data, VDATA, VMA, s->vma); 782 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 783} 784 785static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 786{ 787 /* EMUL = 1, NFIELDS = 1 */ 788 return require_rvv(s) && vext_check_isa_ill(s); 789} 790 791static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 792{ 793 uint32_t data = 0; 794 gen_helper_ldst_us *fn = gen_helper_vsm_v; 795 796 /* EMUL = 1, NFIELDS = 1 */ 797 data = FIELD_DP32(data, VDATA, LMUL, 0); 798 data = FIELD_DP32(data, VDATA, NF, 1); 799 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 800} 801 802static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 803{ 804 /* EMUL = 1, NFIELDS = 1 */ 805 return require_rvv(s) && vext_check_isa_ill(s); 806} 807 808GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 809GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 810 811/* 812 *** stride load and store 813 */ 814typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 815 TCGv, TCGv_env, TCGv_i32); 816 817static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 818 uint32_t data, gen_helper_ldst_stride *fn, 819 DisasContext *s, bool is_store) 820{ 821 TCGv_ptr dest, mask; 822 TCGv base, stride; 823 TCGv_i32 desc; 824 825 TCGLabel *over = gen_new_label(); 826 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 827 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 828 829 dest = tcg_temp_new_ptr(); 830 mask = tcg_temp_new_ptr(); 831 base = get_gpr(s, rs1, EXT_NONE); 832 stride = get_gpr(s, rs2, EXT_NONE); 833 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 834 s->cfg_ptr->vlen / 8, data)); 835 836 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 837 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 838 839 fn(dest, mask, base, stride, cpu_env, desc); 840 841 tcg_temp_free_ptr(dest); 842 tcg_temp_free_ptr(mask); 843 844 if (!is_store) { 845 mark_vs_dirty(s); 846 } 847 848 gen_set_label(over); 849 return true; 850} 851 852static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 853{ 854 uint32_t data = 0; 855 gen_helper_ldst_stride *fn; 856 static gen_helper_ldst_stride * const fns[4] = { 857 gen_helper_vlse8_v, gen_helper_vlse16_v, 858 gen_helper_vlse32_v, gen_helper_vlse64_v 859 }; 860 861 fn = fns[eew]; 862 if (fn == NULL) { 863 return false; 864 } 865 866 uint8_t emul = vext_get_emul(s, eew); 867 data = FIELD_DP32(data, VDATA, VM, a->vm); 868 data = FIELD_DP32(data, VDATA, LMUL, emul); 869 data = FIELD_DP32(data, VDATA, NF, a->nf); 870 data = FIELD_DP32(data, VDATA, VTA, s->vta); 871 data = FIELD_DP32(data, VDATA, VMA, s->vma); 872 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 873} 874 875static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 876{ 877 return require_rvv(s) && 878 vext_check_isa_ill(s) && 879 vext_check_load(s, a->rd, a->nf, a->vm, eew); 880} 881 882GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 883GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 884GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 885GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 886 887static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 888{ 889 uint32_t data = 0; 890 gen_helper_ldst_stride *fn; 891 static gen_helper_ldst_stride * const fns[4] = { 892 /* masked stride store */ 893 gen_helper_vsse8_v, gen_helper_vsse16_v, 894 gen_helper_vsse32_v, gen_helper_vsse64_v 895 }; 896 897 uint8_t emul = vext_get_emul(s, eew); 898 data = FIELD_DP32(data, VDATA, VM, a->vm); 899 data = FIELD_DP32(data, VDATA, LMUL, emul); 900 data = FIELD_DP32(data, VDATA, NF, a->nf); 901 fn = fns[eew]; 902 if (fn == NULL) { 903 return false; 904 } 905 906 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 907} 908 909static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 910{ 911 return require_rvv(s) && 912 vext_check_isa_ill(s) && 913 vext_check_store(s, a->rd, a->nf, eew); 914} 915 916GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 917GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 918GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 919GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 920 921/* 922 *** index load and store 923 */ 924typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 925 TCGv_ptr, TCGv_env, TCGv_i32); 926 927static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 928 uint32_t data, gen_helper_ldst_index *fn, 929 DisasContext *s, bool is_store) 930{ 931 TCGv_ptr dest, mask, index; 932 TCGv base; 933 TCGv_i32 desc; 934 935 TCGLabel *over = gen_new_label(); 936 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 937 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 938 939 dest = tcg_temp_new_ptr(); 940 mask = tcg_temp_new_ptr(); 941 index = tcg_temp_new_ptr(); 942 base = get_gpr(s, rs1, EXT_NONE); 943 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 944 s->cfg_ptr->vlen / 8, data)); 945 946 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 947 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 948 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 949 950 fn(dest, mask, base, index, cpu_env, desc); 951 952 tcg_temp_free_ptr(dest); 953 tcg_temp_free_ptr(mask); 954 tcg_temp_free_ptr(index); 955 956 if (!is_store) { 957 mark_vs_dirty(s); 958 } 959 960 gen_set_label(over); 961 return true; 962} 963 964static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 965{ 966 uint32_t data = 0; 967 gen_helper_ldst_index *fn; 968 static gen_helper_ldst_index * const fns[4][4] = { 969 /* 970 * offset vector register group EEW = 8, 971 * data vector register group EEW = SEW 972 */ 973 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 974 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 975 /* 976 * offset vector register group EEW = 16, 977 * data vector register group EEW = SEW 978 */ 979 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 980 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 981 /* 982 * offset vector register group EEW = 32, 983 * data vector register group EEW = SEW 984 */ 985 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 986 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 987 /* 988 * offset vector register group EEW = 64, 989 * data vector register group EEW = SEW 990 */ 991 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 992 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 993 }; 994 995 fn = fns[eew][s->sew]; 996 997 uint8_t emul = vext_get_emul(s, s->sew); 998 data = FIELD_DP32(data, VDATA, VM, a->vm); 999 data = FIELD_DP32(data, VDATA, LMUL, emul); 1000 data = FIELD_DP32(data, VDATA, NF, a->nf); 1001 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1002 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1003 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1004} 1005 1006static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1007{ 1008 return require_rvv(s) && 1009 vext_check_isa_ill(s) && 1010 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1011} 1012 1013GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1014GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1015GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1016GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1017 1018static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1019{ 1020 uint32_t data = 0; 1021 gen_helper_ldst_index *fn; 1022 static gen_helper_ldst_index * const fns[4][4] = { 1023 /* 1024 * offset vector register group EEW = 8, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1028 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1029 /* 1030 * offset vector register group EEW = 16, 1031 * data vector register group EEW = SEW 1032 */ 1033 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1034 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1035 /* 1036 * offset vector register group EEW = 32, 1037 * data vector register group EEW = SEW 1038 */ 1039 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1040 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1041 /* 1042 * offset vector register group EEW = 64, 1043 * data vector register group EEW = SEW 1044 */ 1045 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1046 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1047 }; 1048 1049 fn = fns[eew][s->sew]; 1050 1051 uint8_t emul = vext_get_emul(s, s->sew); 1052 data = FIELD_DP32(data, VDATA, VM, a->vm); 1053 data = FIELD_DP32(data, VDATA, LMUL, emul); 1054 data = FIELD_DP32(data, VDATA, NF, a->nf); 1055 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1056} 1057 1058static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1059{ 1060 return require_rvv(s) && 1061 vext_check_isa_ill(s) && 1062 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1063} 1064 1065GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1066GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1067GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1068GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1069 1070/* 1071 *** unit stride fault-only-first load 1072 */ 1073static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1074 gen_helper_ldst_us *fn, DisasContext *s) 1075{ 1076 TCGv_ptr dest, mask; 1077 TCGv base; 1078 TCGv_i32 desc; 1079 1080 TCGLabel *over = gen_new_label(); 1081 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1082 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1083 1084 dest = tcg_temp_new_ptr(); 1085 mask = tcg_temp_new_ptr(); 1086 base = get_gpr(s, rs1, EXT_NONE); 1087 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1088 s->cfg_ptr->vlen / 8, data)); 1089 1090 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1091 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1092 1093 fn(dest, mask, base, cpu_env, desc); 1094 1095 tcg_temp_free_ptr(dest); 1096 tcg_temp_free_ptr(mask); 1097 mark_vs_dirty(s); 1098 gen_set_label(over); 1099 return true; 1100} 1101 1102static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1103{ 1104 uint32_t data = 0; 1105 gen_helper_ldst_us *fn; 1106 static gen_helper_ldst_us * const fns[4] = { 1107 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1108 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1109 }; 1110 1111 fn = fns[eew]; 1112 if (fn == NULL) { 1113 return false; 1114 } 1115 1116 uint8_t emul = vext_get_emul(s, eew); 1117 data = FIELD_DP32(data, VDATA, VM, a->vm); 1118 data = FIELD_DP32(data, VDATA, LMUL, emul); 1119 data = FIELD_DP32(data, VDATA, NF, a->nf); 1120 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1121 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1122 return ldff_trans(a->rd, a->rs1, data, fn, s); 1123} 1124 1125GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1126GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1127GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1128GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1129 1130/* 1131 * load and store whole register instructions 1132 */ 1133typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1134 1135static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1136 uint32_t width, gen_helper_ldst_whole *fn, 1137 DisasContext *s, bool is_store) 1138{ 1139 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1140 TCGLabel *over = gen_new_label(); 1141 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1142 1143 TCGv_ptr dest; 1144 TCGv base; 1145 TCGv_i32 desc; 1146 1147 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1148 dest = tcg_temp_new_ptr(); 1149 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1150 s->cfg_ptr->vlen / 8, data)); 1151 1152 base = get_gpr(s, rs1, EXT_NONE); 1153 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1154 1155 fn(dest, base, cpu_env, desc); 1156 1157 tcg_temp_free_ptr(dest); 1158 1159 if (!is_store) { 1160 mark_vs_dirty(s); 1161 } 1162 gen_set_label(over); 1163 1164 return true; 1165} 1166 1167/* 1168 * load and store whole register instructions ignore vtype and vl setting. 1169 * Thus, we don't need to check vill bit. (Section 7.9) 1170 */ 1171#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1172static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1173{ \ 1174 if (require_rvv(s) && \ 1175 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1176 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1177 gen_helper_##NAME, s, IS_STORE); \ 1178 } \ 1179 return false; \ 1180} 1181 1182GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1183GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1184GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1185GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1186GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1187GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1188GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1189GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1190GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1191GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1192GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1193GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1194GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1195GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1196GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1197GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1198 1199/* 1200 * The vector whole register store instructions are encoded similar to 1201 * unmasked unit-stride store of elements with EEW=8. 1202 */ 1203GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1204GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1205GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1206GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1207 1208/* 1209 *** Vector Integer Arithmetic Instructions 1210 */ 1211 1212/* 1213 * MAXSZ returns the maximum vector size can be operated in bytes, 1214 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1215 * to accerlate vector operation. 1216 */ 1217static inline uint32_t MAXSZ(DisasContext *s) 1218{ 1219 int scale = s->lmul - 3; 1220 return s->cfg_ptr->vlen >> -scale; 1221} 1222 1223static bool opivv_check(DisasContext *s, arg_rmrr *a) 1224{ 1225 return require_rvv(s) && 1226 vext_check_isa_ill(s) && 1227 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1228} 1229 1230typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1231 uint32_t, uint32_t, uint32_t); 1232 1233static inline bool 1234do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1235 gen_helper_gvec_4_ptr *fn) 1236{ 1237 TCGLabel *over = gen_new_label(); 1238 if (!opivv_check(s, a)) { 1239 return false; 1240 } 1241 1242 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1243 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1244 1245 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1246 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1247 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1248 MAXSZ(s), MAXSZ(s)); 1249 } else { 1250 uint32_t data = 0; 1251 1252 data = FIELD_DP32(data, VDATA, VM, a->vm); 1253 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1254 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1255 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1256 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1257 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1258 cpu_env, s->cfg_ptr->vlen / 8, 1259 s->cfg_ptr->vlen / 8, data, fn); 1260 } 1261 mark_vs_dirty(s); 1262 gen_set_label(over); 1263 return true; 1264} 1265 1266/* OPIVV with GVEC IR */ 1267#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1268static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1269{ \ 1270 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1271 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1272 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1273 }; \ 1274 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1275} 1276 1277GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1278GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1279 1280typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1281 TCGv_env, TCGv_i32); 1282 1283static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1284 gen_helper_opivx *fn, DisasContext *s) 1285{ 1286 TCGv_ptr dest, src2, mask; 1287 TCGv src1; 1288 TCGv_i32 desc; 1289 uint32_t data = 0; 1290 1291 TCGLabel *over = gen_new_label(); 1292 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1293 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1294 1295 dest = tcg_temp_new_ptr(); 1296 mask = tcg_temp_new_ptr(); 1297 src2 = tcg_temp_new_ptr(); 1298 src1 = get_gpr(s, rs1, EXT_SIGN); 1299 1300 data = FIELD_DP32(data, VDATA, VM, vm); 1301 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1302 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1303 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1304 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1305 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1306 s->cfg_ptr->vlen / 8, data)); 1307 1308 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1309 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1310 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1311 1312 fn(dest, mask, src1, src2, cpu_env, desc); 1313 1314 tcg_temp_free_ptr(dest); 1315 tcg_temp_free_ptr(mask); 1316 tcg_temp_free_ptr(src2); 1317 mark_vs_dirty(s); 1318 gen_set_label(over); 1319 return true; 1320} 1321 1322static bool opivx_check(DisasContext *s, arg_rmrr *a) 1323{ 1324 return require_rvv(s) && 1325 vext_check_isa_ill(s) && 1326 vext_check_ss(s, a->rd, a->rs2, a->vm); 1327} 1328 1329typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1330 uint32_t, uint32_t); 1331 1332static inline bool 1333do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1334 gen_helper_opivx *fn) 1335{ 1336 if (!opivx_check(s, a)) { 1337 return false; 1338 } 1339 1340 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1341 TCGv_i64 src1 = tcg_temp_new_i64(); 1342 1343 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1344 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1345 src1, MAXSZ(s), MAXSZ(s)); 1346 1347 tcg_temp_free_i64(src1); 1348 mark_vs_dirty(s); 1349 return true; 1350 } 1351 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1352} 1353 1354/* OPIVX with GVEC IR */ 1355#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1356static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1357{ \ 1358 static gen_helper_opivx * const fns[4] = { \ 1359 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1360 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1361 }; \ 1362 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1363} 1364 1365GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1366GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1367 1368static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1369{ 1370 tcg_gen_vec_sub8_i64(d, b, a); 1371} 1372 1373static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1374{ 1375 tcg_gen_vec_sub16_i64(d, b, a); 1376} 1377 1378static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1379{ 1380 tcg_gen_sub_i32(ret, arg2, arg1); 1381} 1382 1383static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1384{ 1385 tcg_gen_sub_i64(ret, arg2, arg1); 1386} 1387 1388static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1389{ 1390 tcg_gen_sub_vec(vece, r, b, a); 1391} 1392 1393static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1394 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1395{ 1396 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1397 static const GVecGen2s rsub_op[4] = { 1398 { .fni8 = gen_vec_rsub8_i64, 1399 .fniv = gen_rsub_vec, 1400 .fno = gen_helper_vec_rsubs8, 1401 .opt_opc = vecop_list, 1402 .vece = MO_8 }, 1403 { .fni8 = gen_vec_rsub16_i64, 1404 .fniv = gen_rsub_vec, 1405 .fno = gen_helper_vec_rsubs16, 1406 .opt_opc = vecop_list, 1407 .vece = MO_16 }, 1408 { .fni4 = gen_rsub_i32, 1409 .fniv = gen_rsub_vec, 1410 .fno = gen_helper_vec_rsubs32, 1411 .opt_opc = vecop_list, 1412 .vece = MO_32 }, 1413 { .fni8 = gen_rsub_i64, 1414 .fniv = gen_rsub_vec, 1415 .fno = gen_helper_vec_rsubs64, 1416 .opt_opc = vecop_list, 1417 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1418 .vece = MO_64 }, 1419 }; 1420 1421 tcg_debug_assert(vece <= MO_64); 1422 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1423} 1424 1425GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1426 1427typedef enum { 1428 IMM_ZX, /* Zero-extended */ 1429 IMM_SX, /* Sign-extended */ 1430 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1431 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1432} imm_mode_t; 1433 1434static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1435{ 1436 switch (imm_mode) { 1437 case IMM_ZX: 1438 return extract64(imm, 0, 5); 1439 case IMM_SX: 1440 return sextract64(imm, 0, 5); 1441 case IMM_TRUNC_SEW: 1442 return extract64(imm, 0, s->sew + 3); 1443 case IMM_TRUNC_2SEW: 1444 return extract64(imm, 0, s->sew + 4); 1445 default: 1446 g_assert_not_reached(); 1447 } 1448} 1449 1450static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1451 gen_helper_opivx *fn, DisasContext *s, 1452 imm_mode_t imm_mode) 1453{ 1454 TCGv_ptr dest, src2, mask; 1455 TCGv src1; 1456 TCGv_i32 desc; 1457 uint32_t data = 0; 1458 1459 TCGLabel *over = gen_new_label(); 1460 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1461 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1462 1463 dest = tcg_temp_new_ptr(); 1464 mask = tcg_temp_new_ptr(); 1465 src2 = tcg_temp_new_ptr(); 1466 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1467 1468 data = FIELD_DP32(data, VDATA, VM, vm); 1469 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1470 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1471 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1472 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1473 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1474 s->cfg_ptr->vlen / 8, data)); 1475 1476 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1477 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1478 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1479 1480 fn(dest, mask, src1, src2, cpu_env, desc); 1481 1482 tcg_temp_free_ptr(dest); 1483 tcg_temp_free_ptr(mask); 1484 tcg_temp_free_ptr(src2); 1485 mark_vs_dirty(s); 1486 gen_set_label(over); 1487 return true; 1488} 1489 1490typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1491 uint32_t, uint32_t); 1492 1493static inline bool 1494do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1495 gen_helper_opivx *fn, imm_mode_t imm_mode) 1496{ 1497 if (!opivx_check(s, a)) { 1498 return false; 1499 } 1500 1501 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1502 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1503 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1504 mark_vs_dirty(s); 1505 return true; 1506 } 1507 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1508} 1509 1510/* OPIVI with GVEC IR */ 1511#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1512static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1513{ \ 1514 static gen_helper_opivx * const fns[4] = { \ 1515 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1516 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1517 }; \ 1518 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1519 fns[s->sew], IMM_MODE); \ 1520} 1521 1522GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1523 1524static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1525 int64_t c, uint32_t oprsz, uint32_t maxsz) 1526{ 1527 TCGv_i64 tmp = tcg_constant_i64(c); 1528 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1529} 1530 1531GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1532 1533/* Vector Widening Integer Add/Subtract */ 1534 1535/* OPIVV with WIDEN */ 1536static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1537{ 1538 return require_rvv(s) && 1539 vext_check_isa_ill(s) && 1540 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1541} 1542 1543static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1544 gen_helper_gvec_4_ptr *fn, 1545 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1546{ 1547 if (checkfn(s, a)) { 1548 uint32_t data = 0; 1549 TCGLabel *over = gen_new_label(); 1550 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1551 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1552 1553 data = FIELD_DP32(data, VDATA, VM, a->vm); 1554 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1555 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1556 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1557 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1558 vreg_ofs(s, a->rs1), 1559 vreg_ofs(s, a->rs2), 1560 cpu_env, s->cfg_ptr->vlen / 8, 1561 s->cfg_ptr->vlen / 8, 1562 data, fn); 1563 mark_vs_dirty(s); 1564 gen_set_label(over); 1565 return true; 1566 } 1567 return false; 1568} 1569 1570#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1571static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1572{ \ 1573 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1574 gen_helper_##NAME##_b, \ 1575 gen_helper_##NAME##_h, \ 1576 gen_helper_##NAME##_w \ 1577 }; \ 1578 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1579} 1580 1581GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1582GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1583GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1584GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1585 1586/* OPIVX with WIDEN */ 1587static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1588{ 1589 return require_rvv(s) && 1590 vext_check_isa_ill(s) && 1591 vext_check_ds(s, a->rd, a->rs2, a->vm); 1592} 1593 1594static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1595 gen_helper_opivx *fn) 1596{ 1597 if (opivx_widen_check(s, a)) { 1598 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1599 } 1600 return false; 1601} 1602 1603#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1604static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1605{ \ 1606 static gen_helper_opivx * const fns[3] = { \ 1607 gen_helper_##NAME##_b, \ 1608 gen_helper_##NAME##_h, \ 1609 gen_helper_##NAME##_w \ 1610 }; \ 1611 return do_opivx_widen(s, a, fns[s->sew]); \ 1612} 1613 1614GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1615GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1616GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1617GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1618 1619/* WIDEN OPIVV with WIDEN */ 1620static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1621{ 1622 return require_rvv(s) && 1623 vext_check_isa_ill(s) && 1624 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1625} 1626 1627static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1628 gen_helper_gvec_4_ptr *fn) 1629{ 1630 if (opiwv_widen_check(s, a)) { 1631 uint32_t data = 0; 1632 TCGLabel *over = gen_new_label(); 1633 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1634 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1635 1636 data = FIELD_DP32(data, VDATA, VM, a->vm); 1637 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1638 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1639 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1640 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1641 vreg_ofs(s, a->rs1), 1642 vreg_ofs(s, a->rs2), 1643 cpu_env, s->cfg_ptr->vlen / 8, 1644 s->cfg_ptr->vlen / 8, data, fn); 1645 mark_vs_dirty(s); 1646 gen_set_label(over); 1647 return true; 1648 } 1649 return false; 1650} 1651 1652#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1653static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1654{ \ 1655 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1656 gen_helper_##NAME##_b, \ 1657 gen_helper_##NAME##_h, \ 1658 gen_helper_##NAME##_w \ 1659 }; \ 1660 return do_opiwv_widen(s, a, fns[s->sew]); \ 1661} 1662 1663GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1664GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1665GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1666GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1667 1668/* WIDEN OPIVX with WIDEN */ 1669static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1670{ 1671 return require_rvv(s) && 1672 vext_check_isa_ill(s) && 1673 vext_check_dd(s, a->rd, a->rs2, a->vm); 1674} 1675 1676static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1677 gen_helper_opivx *fn) 1678{ 1679 if (opiwx_widen_check(s, a)) { 1680 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1681 } 1682 return false; 1683} 1684 1685#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1686static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1687{ \ 1688 static gen_helper_opivx * const fns[3] = { \ 1689 gen_helper_##NAME##_b, \ 1690 gen_helper_##NAME##_h, \ 1691 gen_helper_##NAME##_w \ 1692 }; \ 1693 return do_opiwx_widen(s, a, fns[s->sew]); \ 1694} 1695 1696GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1697GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1698GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1699GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1700 1701/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1702/* OPIVV without GVEC IR */ 1703#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1704static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1705{ \ 1706 if (CHECK(s, a)) { \ 1707 uint32_t data = 0; \ 1708 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1709 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1710 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1711 }; \ 1712 TCGLabel *over = gen_new_label(); \ 1713 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1714 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1715 \ 1716 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1717 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1718 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1719 data = \ 1720 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1721 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1722 vreg_ofs(s, a->rs1), \ 1723 vreg_ofs(s, a->rs2), cpu_env, \ 1724 s->cfg_ptr->vlen / 8, \ 1725 s->cfg_ptr->vlen / 8, data, \ 1726 fns[s->sew]); \ 1727 mark_vs_dirty(s); \ 1728 gen_set_label(over); \ 1729 return true; \ 1730 } \ 1731 return false; \ 1732} 1733 1734/* 1735 * For vadc and vsbc, an illegal instruction exception is raised if the 1736 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1737 */ 1738static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1739{ 1740 return require_rvv(s) && 1741 vext_check_isa_ill(s) && 1742 (a->rd != 0) && 1743 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1744} 1745 1746GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1747GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1748 1749/* 1750 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1751 * destination vector register overlaps a source vector register group. 1752 */ 1753static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1754{ 1755 return require_rvv(s) && 1756 vext_check_isa_ill(s) && 1757 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1758} 1759 1760GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1761GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1762 1763static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1764{ 1765 return require_rvv(s) && 1766 vext_check_isa_ill(s) && 1767 (a->rd != 0) && 1768 vext_check_ss(s, a->rd, a->rs2, a->vm); 1769} 1770 1771/* OPIVX without GVEC IR */ 1772#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1773static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1774{ \ 1775 if (CHECK(s, a)) { \ 1776 static gen_helper_opivx * const fns[4] = { \ 1777 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1778 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1779 }; \ 1780 \ 1781 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1782 } \ 1783 return false; \ 1784} 1785 1786GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1787GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1788 1789static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1790{ 1791 return require_rvv(s) && 1792 vext_check_isa_ill(s) && 1793 vext_check_ms(s, a->rd, a->rs2); 1794} 1795 1796GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1797GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1798 1799/* OPIVI without GVEC IR */ 1800#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1801static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1802{ \ 1803 if (CHECK(s, a)) { \ 1804 static gen_helper_opivx * const fns[4] = { \ 1805 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1806 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1807 }; \ 1808 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1809 fns[s->sew], s, IMM_MODE); \ 1810 } \ 1811 return false; \ 1812} 1813 1814GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1815GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1816 1817/* Vector Bitwise Logical Instructions */ 1818GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1819GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1820GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1821GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1822GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1823GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1824GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1825GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1826GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1827 1828/* Vector Single-Width Bit Shift Instructions */ 1829GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1830GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1831GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1832 1833typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1834 uint32_t, uint32_t); 1835 1836static inline bool 1837do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1838 gen_helper_opivx *fn) 1839{ 1840 if (!opivx_check(s, a)) { 1841 return false; 1842 } 1843 1844 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1845 TCGv_i32 src1 = tcg_temp_new_i32(); 1846 1847 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1848 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1849 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1850 src1, MAXSZ(s), MAXSZ(s)); 1851 1852 tcg_temp_free_i32(src1); 1853 mark_vs_dirty(s); 1854 return true; 1855 } 1856 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1857} 1858 1859#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1860static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1861{ \ 1862 static gen_helper_opivx * const fns[4] = { \ 1863 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1864 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1865 }; \ 1866 \ 1867 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1868} 1869 1870GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1871GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1872GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1873 1874GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1875GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1876GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1877 1878/* Vector Narrowing Integer Right Shift Instructions */ 1879static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1880{ 1881 return require_rvv(s) && 1882 vext_check_isa_ill(s) && 1883 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1884} 1885 1886/* OPIVV with NARROW */ 1887#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1888static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1889{ \ 1890 if (opiwv_narrow_check(s, a)) { \ 1891 uint32_t data = 0; \ 1892 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1893 gen_helper_##NAME##_b, \ 1894 gen_helper_##NAME##_h, \ 1895 gen_helper_##NAME##_w, \ 1896 }; \ 1897 TCGLabel *over = gen_new_label(); \ 1898 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1899 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1900 \ 1901 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1902 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1903 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1904 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 1905 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1906 vreg_ofs(s, a->rs1), \ 1907 vreg_ofs(s, a->rs2), cpu_env, \ 1908 s->cfg_ptr->vlen / 8, \ 1909 s->cfg_ptr->vlen / 8, data, \ 1910 fns[s->sew]); \ 1911 mark_vs_dirty(s); \ 1912 gen_set_label(over); \ 1913 return true; \ 1914 } \ 1915 return false; \ 1916} 1917GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1918GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1919 1920static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1921{ 1922 return require_rvv(s) && 1923 vext_check_isa_ill(s) && 1924 vext_check_sd(s, a->rd, a->rs2, a->vm); 1925} 1926 1927/* OPIVX with NARROW */ 1928#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1929static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1930{ \ 1931 if (opiwx_narrow_check(s, a)) { \ 1932 static gen_helper_opivx * const fns[3] = { \ 1933 gen_helper_##NAME##_b, \ 1934 gen_helper_##NAME##_h, \ 1935 gen_helper_##NAME##_w, \ 1936 }; \ 1937 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1938 } \ 1939 return false; \ 1940} 1941 1942GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1943GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1944 1945/* OPIWI with NARROW */ 1946#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1947static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1948{ \ 1949 if (opiwx_narrow_check(s, a)) { \ 1950 static gen_helper_opivx * const fns[3] = { \ 1951 gen_helper_##OPIVX##_b, \ 1952 gen_helper_##OPIVX##_h, \ 1953 gen_helper_##OPIVX##_w, \ 1954 }; \ 1955 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1956 fns[s->sew], s, IMM_MODE); \ 1957 } \ 1958 return false; \ 1959} 1960 1961GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1962GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1963 1964/* Vector Integer Comparison Instructions */ 1965/* 1966 * For all comparison instructions, an illegal instruction exception is raised 1967 * if the destination vector register overlaps a source vector register group 1968 * and LMUL > 1. 1969 */ 1970static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1971{ 1972 return require_rvv(s) && 1973 vext_check_isa_ill(s) && 1974 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1975} 1976 1977GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1978GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1979GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1980GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1981GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1982GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1983 1984static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1985{ 1986 return require_rvv(s) && 1987 vext_check_isa_ill(s) && 1988 vext_check_ms(s, a->rd, a->rs2); 1989} 1990 1991GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1992GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1993GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1994GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1995GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1996GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1997GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1998GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1999 2000GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 2001GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 2002GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 2003GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 2004GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 2005GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 2006 2007/* Vector Integer Min/Max Instructions */ 2008GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 2009GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 2010GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2011GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2012GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2013GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2014GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2015GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2016 2017/* Vector Single-Width Integer Multiply Instructions */ 2018 2019static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2020{ 2021 /* 2022 * All Zve* extensions support all vector integer instructions, 2023 * except that the vmulh integer multiply variants 2024 * that return the high word of the product 2025 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2026 * are not included for EEW=64 in Zve64*. (Section 18.2) 2027 */ 2028 return opivv_check(s, a) && 2029 (!has_ext(s, RVV) && 2030 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2031} 2032 2033static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2034{ 2035 /* 2036 * All Zve* extensions support all vector integer instructions, 2037 * except that the vmulh integer multiply variants 2038 * that return the high word of the product 2039 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2040 * are not included for EEW=64 in Zve64*. (Section 18.2) 2041 */ 2042 return opivx_check(s, a) && 2043 (!has_ext(s, RVV) && 2044 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2045} 2046 2047GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2048GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2049GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2050GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2051GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2052GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2053GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2054GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2055 2056/* Vector Integer Divide Instructions */ 2057GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2058GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2059GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2060GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2061GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2062GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2063GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2064GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2065 2066/* Vector Widening Integer Multiply Instructions */ 2067GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2068GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2069GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2070GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2071GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2072GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2073 2074/* Vector Single-Width Integer Multiply-Add Instructions */ 2075GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2076GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2077GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2078GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2079GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2080GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2081GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2082GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2083 2084/* Vector Widening Integer Multiply-Add Instructions */ 2085GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2086GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2087GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2088GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2089GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2090GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2091GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2092 2093/* Vector Integer Merge and Move Instructions */ 2094static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2095{ 2096 if (require_rvv(s) && 2097 vext_check_isa_ill(s) && 2098 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2099 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2100 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2101 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2102 vreg_ofs(s, a->rs1), 2103 MAXSZ(s), MAXSZ(s)); 2104 } else { 2105 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2106 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2107 static gen_helper_gvec_2_ptr * const fns[4] = { 2108 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2109 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2110 }; 2111 TCGLabel *over = gen_new_label(); 2112 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2113 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2114 2115 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2116 cpu_env, s->cfg_ptr->vlen / 8, 2117 s->cfg_ptr->vlen / 8, data, 2118 fns[s->sew]); 2119 gen_set_label(over); 2120 } 2121 mark_vs_dirty(s); 2122 return true; 2123 } 2124 return false; 2125} 2126 2127typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2128static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2129{ 2130 if (require_rvv(s) && 2131 vext_check_isa_ill(s) && 2132 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2133 vext_check_ss(s, a->rd, 0, 1)) { 2134 TCGv s1; 2135 TCGLabel *over = gen_new_label(); 2136 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2137 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2138 2139 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2140 2141 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2142 if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { 2143 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2144 tcg_gen_ext_tl_i64(s1_i64, s1); 2145 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2146 MAXSZ(s), MAXSZ(s), s1_i64); 2147 tcg_temp_free_i64(s1_i64); 2148 } else { 2149 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2150 MAXSZ(s), MAXSZ(s), s1); 2151 } 2152 } else { 2153 TCGv_i32 desc; 2154 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2155 TCGv_ptr dest = tcg_temp_new_ptr(); 2156 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2157 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2158 static gen_helper_vmv_vx * const fns[4] = { 2159 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2160 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2161 }; 2162 2163 tcg_gen_ext_tl_i64(s1_i64, s1); 2164 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2165 s->cfg_ptr->vlen / 8, data)); 2166 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2167 fns[s->sew](dest, s1_i64, cpu_env, desc); 2168 2169 tcg_temp_free_ptr(dest); 2170 tcg_temp_free_i64(s1_i64); 2171 } 2172 2173 mark_vs_dirty(s); 2174 gen_set_label(over); 2175 return true; 2176 } 2177 return false; 2178} 2179 2180static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2181{ 2182 if (require_rvv(s) && 2183 vext_check_isa_ill(s) && 2184 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2185 vext_check_ss(s, a->rd, 0, 1)) { 2186 int64_t simm = sextract64(a->rs1, 0, 5); 2187 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2188 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2189 MAXSZ(s), MAXSZ(s), simm); 2190 mark_vs_dirty(s); 2191 } else { 2192 TCGv_i32 desc; 2193 TCGv_i64 s1; 2194 TCGv_ptr dest; 2195 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2196 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2197 static gen_helper_vmv_vx * const fns[4] = { 2198 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2199 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2200 }; 2201 TCGLabel *over = gen_new_label(); 2202 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2203 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2204 2205 s1 = tcg_constant_i64(simm); 2206 dest = tcg_temp_new_ptr(); 2207 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2208 s->cfg_ptr->vlen / 8, data)); 2209 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2210 fns[s->sew](dest, s1, cpu_env, desc); 2211 2212 tcg_temp_free_ptr(dest); 2213 mark_vs_dirty(s); 2214 gen_set_label(over); 2215 } 2216 return true; 2217 } 2218 return false; 2219} 2220 2221GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2222GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2223GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2224 2225/* 2226 *** Vector Fixed-Point Arithmetic Instructions 2227 */ 2228 2229/* Vector Single-Width Saturating Add and Subtract */ 2230GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2231GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2232GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2233GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2234GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2235GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2236GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2237GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2238GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2239GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2240 2241/* Vector Single-Width Averaging Add and Subtract */ 2242GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2243GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2244GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2245GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2246GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2247GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2248GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2249GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2250 2251/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2252 2253static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2254{ 2255 /* 2256 * All Zve* extensions support all vector fixed-point arithmetic 2257 * instructions, except that vsmul.vv and vsmul.vx are not supported 2258 * for EEW=64 in Zve64*. (Section 18.2) 2259 */ 2260 return opivv_check(s, a) && 2261 (!has_ext(s, RVV) && 2262 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2263} 2264 2265static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2266{ 2267 /* 2268 * All Zve* extensions support all vector fixed-point arithmetic 2269 * instructions, except that vsmul.vv and vsmul.vx are not supported 2270 * for EEW=64 in Zve64*. (Section 18.2) 2271 */ 2272 return opivx_check(s, a) && 2273 (!has_ext(s, RVV) && 2274 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2275} 2276 2277GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2278GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2279 2280/* Vector Single-Width Scaling Shift Instructions */ 2281GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2282GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2283GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2284GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2285GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2286GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2287 2288/* Vector Narrowing Fixed-Point Clip Instructions */ 2289GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2290GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2291GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2292GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2293GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2294GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2295 2296/* 2297 *** Vector Float Point Arithmetic Instructions 2298 */ 2299 2300/* 2301 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2302 * RVF and RVD can be treated equally. 2303 * We don't have to deal with the cases of: SEW > FLEN. 2304 * 2305 * If SEW < FLEN, check whether input fp register is a valid 2306 * NaN-boxed value, in which case the least-significant SEW bits 2307 * of the f regsiter are used, else the canonical NaN value is used. 2308 */ 2309static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2310{ 2311 switch (s->sew) { 2312 case 1: 2313 gen_check_nanbox_h(out, in); 2314 break; 2315 case 2: 2316 gen_check_nanbox_s(out, in); 2317 break; 2318 case 3: 2319 tcg_gen_mov_i64(out, in); 2320 break; 2321 default: 2322 g_assert_not_reached(); 2323 } 2324} 2325 2326/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2327 2328/* 2329 * If the current SEW does not correspond to a supported IEEE floating-point 2330 * type, an illegal instruction exception is raised. 2331 */ 2332static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2333{ 2334 return require_rvv(s) && 2335 require_rvf(s) && 2336 vext_check_isa_ill(s) && 2337 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2338 require_zve32f(s) && 2339 require_zve64f(s); 2340} 2341 2342/* OPFVV without GVEC IR */ 2343#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2344static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2345{ \ 2346 if (CHECK(s, a)) { \ 2347 uint32_t data = 0; \ 2348 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2349 gen_helper_##NAME##_h, \ 2350 gen_helper_##NAME##_w, \ 2351 gen_helper_##NAME##_d, \ 2352 }; \ 2353 TCGLabel *over = gen_new_label(); \ 2354 gen_set_rm(s, RISCV_FRM_DYN); \ 2355 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2356 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2357 \ 2358 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2359 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2360 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2361 data = \ 2362 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2363 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2364 vreg_ofs(s, a->rs1), \ 2365 vreg_ofs(s, a->rs2), cpu_env, \ 2366 s->cfg_ptr->vlen / 8, \ 2367 s->cfg_ptr->vlen / 8, data, \ 2368 fns[s->sew - 1]); \ 2369 mark_vs_dirty(s); \ 2370 gen_set_label(over); \ 2371 return true; \ 2372 } \ 2373 return false; \ 2374} 2375GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2376GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2377 2378typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2379 TCGv_env, TCGv_i32); 2380 2381static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2382 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2383{ 2384 TCGv_ptr dest, src2, mask; 2385 TCGv_i32 desc; 2386 TCGv_i64 t1; 2387 2388 TCGLabel *over = gen_new_label(); 2389 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2390 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2391 2392 dest = tcg_temp_new_ptr(); 2393 mask = tcg_temp_new_ptr(); 2394 src2 = tcg_temp_new_ptr(); 2395 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2396 s->cfg_ptr->vlen / 8, data)); 2397 2398 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2399 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2400 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2401 2402 /* NaN-box f[rs1] */ 2403 t1 = tcg_temp_new_i64(); 2404 do_nanbox(s, t1, cpu_fpr[rs1]); 2405 2406 fn(dest, mask, t1, src2, cpu_env, desc); 2407 2408 tcg_temp_free_ptr(dest); 2409 tcg_temp_free_ptr(mask); 2410 tcg_temp_free_ptr(src2); 2411 tcg_temp_free_i64(t1); 2412 mark_vs_dirty(s); 2413 gen_set_label(over); 2414 return true; 2415} 2416 2417/* 2418 * If the current SEW does not correspond to a supported IEEE floating-point 2419 * type, an illegal instruction exception is raised 2420 */ 2421static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2422{ 2423 return require_rvv(s) && 2424 require_rvf(s) && 2425 vext_check_isa_ill(s) && 2426 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2427 require_zve32f(s) && 2428 require_zve64f(s); 2429} 2430 2431/* OPFVF without GVEC IR */ 2432#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2433static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2434{ \ 2435 if (CHECK(s, a)) { \ 2436 uint32_t data = 0; \ 2437 static gen_helper_opfvf *const fns[3] = { \ 2438 gen_helper_##NAME##_h, \ 2439 gen_helper_##NAME##_w, \ 2440 gen_helper_##NAME##_d, \ 2441 }; \ 2442 gen_set_rm(s, RISCV_FRM_DYN); \ 2443 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2444 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2445 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2446 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2447 s->cfg_vta_all_1s); \ 2448 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2449 fns[s->sew - 1], s); \ 2450 } \ 2451 return false; \ 2452} 2453 2454GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2455GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2456GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2457 2458/* Vector Widening Floating-Point Add/Subtract Instructions */ 2459static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2460{ 2461 return require_rvv(s) && 2462 require_scale_rvf(s) && 2463 (s->sew != MO_8) && 2464 vext_check_isa_ill(s) && 2465 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2466 require_scale_zve32f(s) && 2467 require_scale_zve64f(s); 2468} 2469 2470/* OPFVV with WIDEN */ 2471#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2472static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2473{ \ 2474 if (CHECK(s, a)) { \ 2475 uint32_t data = 0; \ 2476 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2477 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2478 }; \ 2479 TCGLabel *over = gen_new_label(); \ 2480 gen_set_rm(s, RISCV_FRM_DYN); \ 2481 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2482 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2483 \ 2484 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2485 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2486 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2487 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2488 vreg_ofs(s, a->rs1), \ 2489 vreg_ofs(s, a->rs2), cpu_env, \ 2490 s->cfg_ptr->vlen / 8, \ 2491 s->cfg_ptr->vlen / 8, data, \ 2492 fns[s->sew - 1]); \ 2493 mark_vs_dirty(s); \ 2494 gen_set_label(over); \ 2495 return true; \ 2496 } \ 2497 return false; \ 2498} 2499 2500GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2501GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2502 2503static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2504{ 2505 return require_rvv(s) && 2506 require_scale_rvf(s) && 2507 (s->sew != MO_8) && 2508 vext_check_isa_ill(s) && 2509 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2510 require_scale_zve32f(s) && 2511 require_scale_zve64f(s); 2512} 2513 2514/* OPFVF with WIDEN */ 2515#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2516static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2517{ \ 2518 if (opfvf_widen_check(s, a)) { \ 2519 uint32_t data = 0; \ 2520 static gen_helper_opfvf *const fns[2] = { \ 2521 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2522 }; \ 2523 gen_set_rm(s, RISCV_FRM_DYN); \ 2524 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2525 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2526 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2527 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2528 fns[s->sew - 1], s); \ 2529 } \ 2530 return false; \ 2531} 2532 2533GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2534GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2535 2536static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2537{ 2538 return require_rvv(s) && 2539 require_scale_rvf(s) && 2540 (s->sew != MO_8) && 2541 vext_check_isa_ill(s) && 2542 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2543 require_scale_zve32f(s) && 2544 require_scale_zve64f(s); 2545} 2546 2547/* WIDEN OPFVV with WIDEN */ 2548#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2549static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2550{ \ 2551 if (opfwv_widen_check(s, a)) { \ 2552 uint32_t data = 0; \ 2553 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2554 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2555 }; \ 2556 TCGLabel *over = gen_new_label(); \ 2557 gen_set_rm(s, RISCV_FRM_DYN); \ 2558 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2559 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2560 \ 2561 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2562 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2563 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2564 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2565 vreg_ofs(s, a->rs1), \ 2566 vreg_ofs(s, a->rs2), cpu_env, \ 2567 s->cfg_ptr->vlen / 8, \ 2568 s->cfg_ptr->vlen / 8, data, \ 2569 fns[s->sew - 1]); \ 2570 mark_vs_dirty(s); \ 2571 gen_set_label(over); \ 2572 return true; \ 2573 } \ 2574 return false; \ 2575} 2576 2577GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2578GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2579 2580static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2581{ 2582 return require_rvv(s) && 2583 require_scale_rvf(s) && 2584 (s->sew != MO_8) && 2585 vext_check_isa_ill(s) && 2586 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2587 require_scale_zve32f(s) && 2588 require_scale_zve64f(s); 2589} 2590 2591/* WIDEN OPFVF with WIDEN */ 2592#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2593static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2594{ \ 2595 if (opfwf_widen_check(s, a)) { \ 2596 uint32_t data = 0; \ 2597 static gen_helper_opfvf *const fns[2] = { \ 2598 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2599 }; \ 2600 gen_set_rm(s, RISCV_FRM_DYN); \ 2601 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2602 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2603 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2604 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2605 fns[s->sew - 1], s); \ 2606 } \ 2607 return false; \ 2608} 2609 2610GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2611GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2612 2613/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2614GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2615GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2616GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2617GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2618GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2619 2620/* Vector Widening Floating-Point Multiply */ 2621GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2622GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2623 2624/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2625GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2626GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2627GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2628GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2629GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2630GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2631GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2632GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2633GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2634GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2635GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2636GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2637GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2638GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2639GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2640GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2641 2642/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2643GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2644GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2645GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2646GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2647GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2648GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2649GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2650GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2651 2652/* Vector Floating-Point Square-Root Instruction */ 2653 2654/* 2655 * If the current SEW does not correspond to a supported IEEE floating-point 2656 * type, an illegal instruction exception is raised 2657 */ 2658static bool opfv_check(DisasContext *s, arg_rmr *a) 2659{ 2660 return require_rvv(s) && 2661 require_rvf(s) && 2662 vext_check_isa_ill(s) && 2663 /* OPFV instructions ignore vs1 check */ 2664 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2665 require_zve32f(s) && 2666 require_zve64f(s); 2667} 2668 2669static bool do_opfv(DisasContext *s, arg_rmr *a, 2670 gen_helper_gvec_3_ptr *fn, 2671 bool (*checkfn)(DisasContext *, arg_rmr *), 2672 int rm) 2673{ 2674 if (checkfn(s, a)) { 2675 if (rm != RISCV_FRM_DYN) { 2676 gen_set_rm(s, RISCV_FRM_DYN); 2677 } 2678 2679 uint32_t data = 0; 2680 TCGLabel *over = gen_new_label(); 2681 gen_set_rm(s, rm); 2682 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2683 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2684 2685 data = FIELD_DP32(data, VDATA, VM, a->vm); 2686 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2687 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2688 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2689 vreg_ofs(s, a->rs2), cpu_env, 2690 s->cfg_ptr->vlen / 8, 2691 s->cfg_ptr->vlen / 8, data, fn); 2692 mark_vs_dirty(s); 2693 gen_set_label(over); 2694 return true; 2695 } 2696 return false; 2697} 2698 2699#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2700static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2701{ \ 2702 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2703 gen_helper_##NAME##_h, \ 2704 gen_helper_##NAME##_w, \ 2705 gen_helper_##NAME##_d \ 2706 }; \ 2707 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2708} 2709 2710GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2711GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2712GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2713 2714/* Vector Floating-Point MIN/MAX Instructions */ 2715GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2716GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2717GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2718GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2719 2720/* Vector Floating-Point Sign-Injection Instructions */ 2721GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2722GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2723GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2724GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2725GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2726GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2727 2728/* Vector Floating-Point Compare Instructions */ 2729static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2730{ 2731 return require_rvv(s) && 2732 require_rvf(s) && 2733 vext_check_isa_ill(s) && 2734 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2735 require_zve32f(s) && 2736 require_zve64f(s); 2737} 2738 2739GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2740GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2741GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2742GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2743 2744static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2745{ 2746 return require_rvv(s) && 2747 require_rvf(s) && 2748 vext_check_isa_ill(s) && 2749 vext_check_ms(s, a->rd, a->rs2) && 2750 require_zve32f(s) && 2751 require_zve64f(s); 2752} 2753 2754GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2755GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2756GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2757GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2758GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2759GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2760 2761/* Vector Floating-Point Classify Instruction */ 2762GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2763 2764/* Vector Floating-Point Merge Instruction */ 2765GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2766 2767static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2768{ 2769 if (require_rvv(s) && 2770 require_rvf(s) && 2771 vext_check_isa_ill(s) && 2772 require_align(a->rd, s->lmul) && 2773 require_zve32f(s) && 2774 require_zve64f(s)) { 2775 gen_set_rm(s, RISCV_FRM_DYN); 2776 2777 TCGv_i64 t1; 2778 2779 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2780 t1 = tcg_temp_new_i64(); 2781 /* NaN-box f[rs1] */ 2782 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2783 2784 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2785 MAXSZ(s), MAXSZ(s), t1); 2786 mark_vs_dirty(s); 2787 } else { 2788 TCGv_ptr dest; 2789 TCGv_i32 desc; 2790 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2791 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2792 static gen_helper_vmv_vx * const fns[3] = { 2793 gen_helper_vmv_v_x_h, 2794 gen_helper_vmv_v_x_w, 2795 gen_helper_vmv_v_x_d, 2796 }; 2797 TCGLabel *over = gen_new_label(); 2798 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2799 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2800 2801 t1 = tcg_temp_new_i64(); 2802 /* NaN-box f[rs1] */ 2803 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2804 2805 dest = tcg_temp_new_ptr(); 2806 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2807 s->cfg_ptr->vlen / 8, data)); 2808 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2809 2810 fns[s->sew - 1](dest, t1, cpu_env, desc); 2811 2812 tcg_temp_free_ptr(dest); 2813 mark_vs_dirty(s); 2814 gen_set_label(over); 2815 } 2816 tcg_temp_free_i64(t1); 2817 return true; 2818 } 2819 return false; 2820} 2821 2822/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2823#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2824static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2825{ \ 2826 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2827 gen_helper_##HELPER##_h, \ 2828 gen_helper_##HELPER##_w, \ 2829 gen_helper_##HELPER##_d \ 2830 }; \ 2831 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2832} 2833 2834GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2835GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2836GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2837GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2838/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2839GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2840GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2841 2842/* Widening Floating-Point/Integer Type-Convert Instructions */ 2843 2844/* 2845 * If the current SEW does not correspond to a supported IEEE floating-point 2846 * type, an illegal instruction exception is raised 2847 */ 2848static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2849{ 2850 return require_rvv(s) && 2851 vext_check_isa_ill(s) && 2852 vext_check_ds(s, a->rd, a->rs2, a->vm); 2853} 2854 2855static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2856{ 2857 return opfv_widen_check(s, a) && 2858 require_rvf(s) && 2859 require_zve32f(s) && 2860 require_zve64f(s); 2861} 2862 2863static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2864{ 2865 return opfv_widen_check(s, a) && 2866 require_scale_rvf(s) && 2867 (s->sew != MO_8) && 2868 require_scale_zve32f(s) && 2869 require_scale_zve64f(s); 2870} 2871 2872#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2873static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2874{ \ 2875 if (CHECK(s, a)) { \ 2876 if (FRM != RISCV_FRM_DYN) { \ 2877 gen_set_rm(s, RISCV_FRM_DYN); \ 2878 } \ 2879 \ 2880 uint32_t data = 0; \ 2881 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2882 gen_helper_##HELPER##_h, \ 2883 gen_helper_##HELPER##_w, \ 2884 }; \ 2885 TCGLabel *over = gen_new_label(); \ 2886 gen_set_rm(s, FRM); \ 2887 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2888 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2889 \ 2890 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2891 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2892 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2893 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2894 vreg_ofs(s, a->rs2), cpu_env, \ 2895 s->cfg_ptr->vlen / 8, \ 2896 s->cfg_ptr->vlen / 8, data, \ 2897 fns[s->sew - 1]); \ 2898 mark_vs_dirty(s); \ 2899 gen_set_label(over); \ 2900 return true; \ 2901 } \ 2902 return false; \ 2903} 2904 2905GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2906 RISCV_FRM_DYN) 2907GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2908 RISCV_FRM_DYN) 2909GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2910 RISCV_FRM_DYN) 2911/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2912GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2913 RISCV_FRM_RTZ) 2914GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2915 RISCV_FRM_RTZ) 2916 2917static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2918{ 2919 return require_rvv(s) && 2920 require_scale_rvf(s) && 2921 vext_check_isa_ill(s) && 2922 /* OPFV widening instructions ignore vs1 check */ 2923 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2924 require_scale_zve32f(s) && 2925 require_scale_zve64f(s); 2926} 2927 2928#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2929static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2930{ \ 2931 if (opfxv_widen_check(s, a)) { \ 2932 uint32_t data = 0; \ 2933 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2934 gen_helper_##NAME##_b, \ 2935 gen_helper_##NAME##_h, \ 2936 gen_helper_##NAME##_w, \ 2937 }; \ 2938 TCGLabel *over = gen_new_label(); \ 2939 gen_set_rm(s, RISCV_FRM_DYN); \ 2940 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2941 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2942 \ 2943 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2944 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2945 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2946 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2947 vreg_ofs(s, a->rs2), cpu_env, \ 2948 s->cfg_ptr->vlen / 8, \ 2949 s->cfg_ptr->vlen / 8, data, \ 2950 fns[s->sew]); \ 2951 mark_vs_dirty(s); \ 2952 gen_set_label(over); \ 2953 return true; \ 2954 } \ 2955 return false; \ 2956} 2957 2958GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2959GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2960 2961/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2962 2963/* 2964 * If the current SEW does not correspond to a supported IEEE floating-point 2965 * type, an illegal instruction exception is raised 2966 */ 2967static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2968{ 2969 return require_rvv(s) && 2970 vext_check_isa_ill(s) && 2971 /* OPFV narrowing instructions ignore vs1 check */ 2972 vext_check_sd(s, a->rd, a->rs2, a->vm); 2973} 2974 2975static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2976{ 2977 return opfv_narrow_check(s, a) && 2978 require_rvf(s) && 2979 (s->sew != MO_64) && 2980 require_zve32f(s) && 2981 require_zve64f(s); 2982} 2983 2984static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2985{ 2986 return opfv_narrow_check(s, a) && 2987 require_scale_rvf(s) && 2988 (s->sew != MO_8) && 2989 require_scale_zve32f(s) && 2990 require_scale_zve64f(s); 2991} 2992 2993#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2994static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2995{ \ 2996 if (CHECK(s, a)) { \ 2997 if (FRM != RISCV_FRM_DYN) { \ 2998 gen_set_rm(s, RISCV_FRM_DYN); \ 2999 } \ 3000 \ 3001 uint32_t data = 0; \ 3002 static gen_helper_gvec_3_ptr * const fns[2] = { \ 3003 gen_helper_##HELPER##_h, \ 3004 gen_helper_##HELPER##_w, \ 3005 }; \ 3006 TCGLabel *over = gen_new_label(); \ 3007 gen_set_rm(s, FRM); \ 3008 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3009 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3010 \ 3011 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3012 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3013 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3014 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3015 vreg_ofs(s, a->rs2), cpu_env, \ 3016 s->cfg_ptr->vlen / 8, \ 3017 s->cfg_ptr->vlen / 8, data, \ 3018 fns[s->sew - 1]); \ 3019 mark_vs_dirty(s); \ 3020 gen_set_label(over); \ 3021 return true; \ 3022 } \ 3023 return false; \ 3024} 3025 3026GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 3027 RISCV_FRM_DYN) 3028GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 3029 RISCV_FRM_DYN) 3030GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3031 RISCV_FRM_DYN) 3032/* Reuse the helper function from vfncvt.f.f.w */ 3033GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3034 RISCV_FRM_ROD) 3035 3036static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 3037{ 3038 return require_rvv(s) && 3039 require_scale_rvf(s) && 3040 vext_check_isa_ill(s) && 3041 /* OPFV narrowing instructions ignore vs1 check */ 3042 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3043 require_scale_zve32f(s) && 3044 require_scale_zve64f(s); 3045} 3046 3047#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3048static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3049{ \ 3050 if (opxfv_narrow_check(s, a)) { \ 3051 if (FRM != RISCV_FRM_DYN) { \ 3052 gen_set_rm(s, RISCV_FRM_DYN); \ 3053 } \ 3054 \ 3055 uint32_t data = 0; \ 3056 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3057 gen_helper_##HELPER##_b, \ 3058 gen_helper_##HELPER##_h, \ 3059 gen_helper_##HELPER##_w, \ 3060 }; \ 3061 TCGLabel *over = gen_new_label(); \ 3062 gen_set_rm(s, FRM); \ 3063 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3064 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3065 \ 3066 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3067 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3068 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3069 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3070 vreg_ofs(s, a->rs2), cpu_env, \ 3071 s->cfg_ptr->vlen / 8, \ 3072 s->cfg_ptr->vlen / 8, data, \ 3073 fns[s->sew]); \ 3074 mark_vs_dirty(s); \ 3075 gen_set_label(over); \ 3076 return true; \ 3077 } \ 3078 return false; \ 3079} 3080 3081GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3082GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3083/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3084GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3085GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3086 3087/* 3088 *** Vector Reduction Operations 3089 */ 3090/* Vector Single-Width Integer Reduction Instructions */ 3091static bool reduction_check(DisasContext *s, arg_rmrr *a) 3092{ 3093 return require_rvv(s) && 3094 vext_check_isa_ill(s) && 3095 vext_check_reduction(s, a->rs2); 3096} 3097 3098GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3099GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3100GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3101GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3102GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3103GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3104GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3105GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3106 3107/* Vector Widening Integer Reduction Instructions */ 3108static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3109{ 3110 return reduction_check(s, a) && (s->sew < MO_64) && 3111 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3112} 3113 3114GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3115GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3116 3117/* Vector Single-Width Floating-Point Reduction Instructions */ 3118static bool freduction_check(DisasContext *s, arg_rmrr *a) 3119{ 3120 return reduction_check(s, a) && 3121 require_rvf(s) && 3122 require_zve32f(s) && 3123 require_zve64f(s); 3124} 3125 3126GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3127GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3128GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3129 3130/* Vector Widening Floating-Point Reduction Instructions */ 3131static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3132{ 3133 return reduction_widen_check(s, a) && 3134 require_scale_rvf(s) && 3135 (s->sew != MO_8); 3136} 3137 3138GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3139 3140/* 3141 *** Vector Mask Operations 3142 */ 3143 3144/* Vector Mask-Register Logical Instructions */ 3145#define GEN_MM_TRANS(NAME) \ 3146static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3147{ \ 3148 if (require_rvv(s) && \ 3149 vext_check_isa_ill(s)) { \ 3150 uint32_t data = 0; \ 3151 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3152 TCGLabel *over = gen_new_label(); \ 3153 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3154 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3155 \ 3156 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3157 data = \ 3158 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3159 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3160 vreg_ofs(s, a->rs1), \ 3161 vreg_ofs(s, a->rs2), cpu_env, \ 3162 s->cfg_ptr->vlen / 8, \ 3163 s->cfg_ptr->vlen / 8, data, fn); \ 3164 mark_vs_dirty(s); \ 3165 gen_set_label(over); \ 3166 return true; \ 3167 } \ 3168 return false; \ 3169} 3170 3171GEN_MM_TRANS(vmand_mm) 3172GEN_MM_TRANS(vmnand_mm) 3173GEN_MM_TRANS(vmandn_mm) 3174GEN_MM_TRANS(vmxor_mm) 3175GEN_MM_TRANS(vmor_mm) 3176GEN_MM_TRANS(vmnor_mm) 3177GEN_MM_TRANS(vmorn_mm) 3178GEN_MM_TRANS(vmxnor_mm) 3179 3180/* Vector count population in mask vcpop */ 3181static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3182{ 3183 if (require_rvv(s) && 3184 vext_check_isa_ill(s) && 3185 s->vstart == 0) { 3186 TCGv_ptr src2, mask; 3187 TCGv dst; 3188 TCGv_i32 desc; 3189 uint32_t data = 0; 3190 data = FIELD_DP32(data, VDATA, VM, a->vm); 3191 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3192 3193 mask = tcg_temp_new_ptr(); 3194 src2 = tcg_temp_new_ptr(); 3195 dst = dest_gpr(s, a->rd); 3196 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3197 s->cfg_ptr->vlen / 8, data)); 3198 3199 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3200 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3201 3202 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3203 gen_set_gpr(s, a->rd, dst); 3204 3205 tcg_temp_free_ptr(mask); 3206 tcg_temp_free_ptr(src2); 3207 3208 return true; 3209 } 3210 return false; 3211} 3212 3213/* vmfirst find-first-set mask bit */ 3214static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3215{ 3216 if (require_rvv(s) && 3217 vext_check_isa_ill(s) && 3218 s->vstart == 0) { 3219 TCGv_ptr src2, mask; 3220 TCGv dst; 3221 TCGv_i32 desc; 3222 uint32_t data = 0; 3223 data = FIELD_DP32(data, VDATA, VM, a->vm); 3224 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3225 3226 mask = tcg_temp_new_ptr(); 3227 src2 = tcg_temp_new_ptr(); 3228 dst = dest_gpr(s, a->rd); 3229 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3230 s->cfg_ptr->vlen / 8, data)); 3231 3232 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3233 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3234 3235 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3236 gen_set_gpr(s, a->rd, dst); 3237 3238 tcg_temp_free_ptr(mask); 3239 tcg_temp_free_ptr(src2); 3240 return true; 3241 } 3242 return false; 3243} 3244 3245/* vmsbf.m set-before-first mask bit */ 3246/* vmsif.m set-includ-first mask bit */ 3247/* vmsof.m set-only-first mask bit */ 3248#define GEN_M_TRANS(NAME) \ 3249static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3250{ \ 3251 if (require_rvv(s) && \ 3252 vext_check_isa_ill(s) && \ 3253 require_vm(a->vm, a->rd) && \ 3254 (a->rd != a->rs2) && \ 3255 (s->vstart == 0)) { \ 3256 uint32_t data = 0; \ 3257 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3258 TCGLabel *over = gen_new_label(); \ 3259 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3260 \ 3261 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3262 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3263 data = \ 3264 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3265 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3266 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3267 cpu_env, s->cfg_ptr->vlen / 8, \ 3268 s->cfg_ptr->vlen / 8, \ 3269 data, fn); \ 3270 mark_vs_dirty(s); \ 3271 gen_set_label(over); \ 3272 return true; \ 3273 } \ 3274 return false; \ 3275} 3276 3277GEN_M_TRANS(vmsbf_m) 3278GEN_M_TRANS(vmsif_m) 3279GEN_M_TRANS(vmsof_m) 3280 3281/* 3282 * Vector Iota Instruction 3283 * 3284 * 1. The destination register cannot overlap the source register. 3285 * 2. If masked, cannot overlap the mask register ('v0'). 3286 * 3. An illegal instruction exception is raised if vstart is non-zero. 3287 */ 3288static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3289{ 3290 if (require_rvv(s) && 3291 vext_check_isa_ill(s) && 3292 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3293 require_vm(a->vm, a->rd) && 3294 require_align(a->rd, s->lmul) && 3295 (s->vstart == 0)) { 3296 uint32_t data = 0; 3297 TCGLabel *over = gen_new_label(); 3298 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3299 3300 data = FIELD_DP32(data, VDATA, VM, a->vm); 3301 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3302 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3303 static gen_helper_gvec_3_ptr * const fns[4] = { 3304 gen_helper_viota_m_b, gen_helper_viota_m_h, 3305 gen_helper_viota_m_w, gen_helper_viota_m_d, 3306 }; 3307 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3308 vreg_ofs(s, a->rs2), cpu_env, 3309 s->cfg_ptr->vlen / 8, 3310 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3311 mark_vs_dirty(s); 3312 gen_set_label(over); 3313 return true; 3314 } 3315 return false; 3316} 3317 3318/* Vector Element Index Instruction */ 3319static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3320{ 3321 if (require_rvv(s) && 3322 vext_check_isa_ill(s) && 3323 require_align(a->rd, s->lmul) && 3324 require_vm(a->vm, a->rd)) { 3325 uint32_t data = 0; 3326 TCGLabel *over = gen_new_label(); 3327 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3328 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3329 3330 data = FIELD_DP32(data, VDATA, VM, a->vm); 3331 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3332 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3333 static gen_helper_gvec_2_ptr * const fns[4] = { 3334 gen_helper_vid_v_b, gen_helper_vid_v_h, 3335 gen_helper_vid_v_w, gen_helper_vid_v_d, 3336 }; 3337 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3338 cpu_env, s->cfg_ptr->vlen / 8, 3339 s->cfg_ptr->vlen / 8, 3340 data, fns[s->sew]); 3341 mark_vs_dirty(s); 3342 gen_set_label(over); 3343 return true; 3344 } 3345 return false; 3346} 3347 3348/* 3349 *** Vector Permutation Instructions 3350 */ 3351 3352static void load_element(TCGv_i64 dest, TCGv_ptr base, 3353 int ofs, int sew, bool sign) 3354{ 3355 switch (sew) { 3356 case MO_8: 3357 if (!sign) { 3358 tcg_gen_ld8u_i64(dest, base, ofs); 3359 } else { 3360 tcg_gen_ld8s_i64(dest, base, ofs); 3361 } 3362 break; 3363 case MO_16: 3364 if (!sign) { 3365 tcg_gen_ld16u_i64(dest, base, ofs); 3366 } else { 3367 tcg_gen_ld16s_i64(dest, base, ofs); 3368 } 3369 break; 3370 case MO_32: 3371 if (!sign) { 3372 tcg_gen_ld32u_i64(dest, base, ofs); 3373 } else { 3374 tcg_gen_ld32s_i64(dest, base, ofs); 3375 } 3376 break; 3377 case MO_64: 3378 tcg_gen_ld_i64(dest, base, ofs); 3379 break; 3380 default: 3381 g_assert_not_reached(); 3382 break; 3383 } 3384} 3385 3386/* offset of the idx element with base regsiter r */ 3387static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3388{ 3389#if HOST_BIG_ENDIAN 3390 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3391#else 3392 return vreg_ofs(s, r) + (idx << s->sew); 3393#endif 3394} 3395 3396/* adjust the index according to the endian */ 3397static void endian_adjust(TCGv_i32 ofs, int sew) 3398{ 3399#if HOST_BIG_ENDIAN 3400 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3401#endif 3402} 3403 3404/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3405static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3406 int vreg, TCGv idx, int vlmax) 3407{ 3408 TCGv_i32 ofs = tcg_temp_new_i32(); 3409 TCGv_ptr base = tcg_temp_new_ptr(); 3410 TCGv_i64 t_idx = tcg_temp_new_i64(); 3411 TCGv_i64 t_vlmax, t_zero; 3412 3413 /* 3414 * Mask the index to the length so that we do 3415 * not produce an out-of-range load. 3416 */ 3417 tcg_gen_trunc_tl_i32(ofs, idx); 3418 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3419 3420 /* Convert the index to an offset. */ 3421 endian_adjust(ofs, s->sew); 3422 tcg_gen_shli_i32(ofs, ofs, s->sew); 3423 3424 /* Convert the index to a pointer. */ 3425 tcg_gen_ext_i32_ptr(base, ofs); 3426 tcg_gen_add_ptr(base, base, cpu_env); 3427 3428 /* Perform the load. */ 3429 load_element(dest, base, 3430 vreg_ofs(s, vreg), s->sew, false); 3431 tcg_temp_free_ptr(base); 3432 tcg_temp_free_i32(ofs); 3433 3434 /* Flush out-of-range indexing to zero. */ 3435 t_vlmax = tcg_constant_i64(vlmax); 3436 t_zero = tcg_constant_i64(0); 3437 tcg_gen_extu_tl_i64(t_idx, idx); 3438 3439 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3440 t_vlmax, dest, t_zero); 3441 3442 tcg_temp_free_i64(t_idx); 3443} 3444 3445static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3446 int vreg, int idx, bool sign) 3447{ 3448 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3449} 3450 3451/* Integer Scalar Move Instruction */ 3452 3453static void store_element(TCGv_i64 val, TCGv_ptr base, 3454 int ofs, int sew) 3455{ 3456 switch (sew) { 3457 case MO_8: 3458 tcg_gen_st8_i64(val, base, ofs); 3459 break; 3460 case MO_16: 3461 tcg_gen_st16_i64(val, base, ofs); 3462 break; 3463 case MO_32: 3464 tcg_gen_st32_i64(val, base, ofs); 3465 break; 3466 case MO_64: 3467 tcg_gen_st_i64(val, base, ofs); 3468 break; 3469 default: 3470 g_assert_not_reached(); 3471 break; 3472 } 3473} 3474 3475/* 3476 * Store vreg[idx] = val. 3477 * The index must be in range of VLMAX. 3478 */ 3479static void vec_element_storei(DisasContext *s, int vreg, 3480 int idx, TCGv_i64 val) 3481{ 3482 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3483} 3484 3485/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3486static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3487{ 3488 if (require_rvv(s) && 3489 vext_check_isa_ill(s)) { 3490 TCGv_i64 t1; 3491 TCGv dest; 3492 3493 t1 = tcg_temp_new_i64(); 3494 dest = tcg_temp_new(); 3495 /* 3496 * load vreg and sign-extend to 64 bits, 3497 * then truncate to XLEN bits before storing to gpr. 3498 */ 3499 vec_element_loadi(s, t1, a->rs2, 0, true); 3500 tcg_gen_trunc_i64_tl(dest, t1); 3501 gen_set_gpr(s, a->rd, dest); 3502 tcg_temp_free_i64(t1); 3503 tcg_temp_free(dest); 3504 3505 return true; 3506 } 3507 return false; 3508} 3509 3510/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3511static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3512{ 3513 if (require_rvv(s) && 3514 vext_check_isa_ill(s)) { 3515 /* This instruction ignores LMUL and vector register groups */ 3516 TCGv_i64 t1; 3517 TCGv s1; 3518 TCGLabel *over = gen_new_label(); 3519 3520 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3521 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3522 3523 t1 = tcg_temp_new_i64(); 3524 3525 /* 3526 * load gpr and sign-extend to 64 bits, 3527 * then truncate to SEW bits when storing to vreg. 3528 */ 3529 s1 = get_gpr(s, a->rs1, EXT_NONE); 3530 tcg_gen_ext_tl_i64(t1, s1); 3531 vec_element_storei(s, a->rd, 0, t1); 3532 tcg_temp_free_i64(t1); 3533 mark_vs_dirty(s); 3534 gen_set_label(over); 3535 return true; 3536 } 3537 return false; 3538} 3539 3540/* Floating-Point Scalar Move Instructions */ 3541static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3542{ 3543 if (require_rvv(s) && 3544 require_rvf(s) && 3545 vext_check_isa_ill(s) && 3546 require_zve32f(s) && 3547 require_zve64f(s)) { 3548 gen_set_rm(s, RISCV_FRM_DYN); 3549 3550 unsigned int ofs = (8 << s->sew); 3551 unsigned int len = 64 - ofs; 3552 TCGv_i64 t_nan; 3553 3554 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3555 /* NaN-box f[rd] as necessary for SEW */ 3556 if (len) { 3557 t_nan = tcg_constant_i64(UINT64_MAX); 3558 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3559 t_nan, ofs, len); 3560 } 3561 3562 mark_fs_dirty(s); 3563 return true; 3564 } 3565 return false; 3566} 3567 3568/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3569static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3570{ 3571 if (require_rvv(s) && 3572 require_rvf(s) && 3573 vext_check_isa_ill(s) && 3574 require_zve32f(s) && 3575 require_zve64f(s)) { 3576 gen_set_rm(s, RISCV_FRM_DYN); 3577 3578 /* The instructions ignore LMUL and vector register group. */ 3579 TCGv_i64 t1; 3580 TCGLabel *over = gen_new_label(); 3581 3582 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3583 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3584 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3585 3586 /* NaN-box f[rs1] */ 3587 t1 = tcg_temp_new_i64(); 3588 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3589 3590 vec_element_storei(s, a->rd, 0, t1); 3591 tcg_temp_free_i64(t1); 3592 mark_vs_dirty(s); 3593 gen_set_label(over); 3594 return true; 3595 } 3596 return false; 3597} 3598 3599/* Vector Slide Instructions */ 3600static bool slideup_check(DisasContext *s, arg_rmrr *a) 3601{ 3602 return require_rvv(s) && 3603 vext_check_isa_ill(s) && 3604 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3605} 3606 3607GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3608GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3609GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3610 3611static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3612{ 3613 return require_rvv(s) && 3614 vext_check_isa_ill(s) && 3615 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3616} 3617 3618GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3619GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3620GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3621 3622/* Vector Floating-Point Slide Instructions */ 3623static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3624{ 3625 return slideup_check(s, a) && 3626 require_rvf(s) && 3627 require_zve32f(s) && 3628 require_zve64f(s); 3629} 3630 3631static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3632{ 3633 return slidedown_check(s, a) && 3634 require_rvf(s) && 3635 require_zve32f(s) && 3636 require_zve64f(s); 3637} 3638 3639GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3640GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3641 3642/* Vector Register Gather Instruction */ 3643static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3644{ 3645 return require_rvv(s) && 3646 vext_check_isa_ill(s) && 3647 require_align(a->rd, s->lmul) && 3648 require_align(a->rs1, s->lmul) && 3649 require_align(a->rs2, s->lmul) && 3650 (a->rd != a->rs2 && a->rd != a->rs1) && 3651 require_vm(a->vm, a->rd); 3652} 3653 3654static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3655{ 3656 int8_t emul = MO_16 - s->sew + s->lmul; 3657 return require_rvv(s) && 3658 vext_check_isa_ill(s) && 3659 (emul >= -3 && emul <= 3) && 3660 require_align(a->rd, s->lmul) && 3661 require_align(a->rs1, emul) && 3662 require_align(a->rs2, s->lmul) && 3663 (a->rd != a->rs2 && a->rd != a->rs1) && 3664 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3665 a->rs1, 1 << MAX(emul, 0)) && 3666 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3667 a->rs2, 1 << MAX(s->lmul, 0)) && 3668 require_vm(a->vm, a->rd); 3669} 3670 3671GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3672GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3673 3674static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3675{ 3676 return require_rvv(s) && 3677 vext_check_isa_ill(s) && 3678 require_align(a->rd, s->lmul) && 3679 require_align(a->rs2, s->lmul) && 3680 (a->rd != a->rs2) && 3681 require_vm(a->vm, a->rd); 3682} 3683 3684/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3685static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3686{ 3687 if (!vrgather_vx_check(s, a)) { 3688 return false; 3689 } 3690 3691 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3692 int scale = s->lmul - (s->sew + 3); 3693 int vlmax = s->cfg_ptr->vlen >> -scale; 3694 TCGv_i64 dest = tcg_temp_new_i64(); 3695 3696 if (a->rs1 == 0) { 3697 vec_element_loadi(s, dest, a->rs2, 0, false); 3698 } else { 3699 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3700 } 3701 3702 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3703 MAXSZ(s), MAXSZ(s), dest); 3704 tcg_temp_free_i64(dest); 3705 mark_vs_dirty(s); 3706 } else { 3707 static gen_helper_opivx * const fns[4] = { 3708 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3709 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3710 }; 3711 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3712 } 3713 return true; 3714} 3715 3716/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3717static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3718{ 3719 if (!vrgather_vx_check(s, a)) { 3720 return false; 3721 } 3722 3723 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3724 int scale = s->lmul - (s->sew + 3); 3725 int vlmax = s->cfg_ptr->vlen >> -scale; 3726 if (a->rs1 >= vlmax) { 3727 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3728 MAXSZ(s), MAXSZ(s), 0); 3729 } else { 3730 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3731 endian_ofs(s, a->rs2, a->rs1), 3732 MAXSZ(s), MAXSZ(s)); 3733 } 3734 mark_vs_dirty(s); 3735 } else { 3736 static gen_helper_opivx * const fns[4] = { 3737 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3738 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3739 }; 3740 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3741 s, IMM_ZX); 3742 } 3743 return true; 3744} 3745 3746/* 3747 * Vector Compress Instruction 3748 * 3749 * The destination vector register group cannot overlap the 3750 * source vector register group or the source mask register. 3751 */ 3752static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3753{ 3754 return require_rvv(s) && 3755 vext_check_isa_ill(s) && 3756 require_align(a->rd, s->lmul) && 3757 require_align(a->rs2, s->lmul) && 3758 (a->rd != a->rs2) && 3759 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3760 (s->vstart == 0); 3761} 3762 3763static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3764{ 3765 if (vcompress_vm_check(s, a)) { 3766 uint32_t data = 0; 3767 static gen_helper_gvec_4_ptr * const fns[4] = { 3768 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3769 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3770 }; 3771 TCGLabel *over = gen_new_label(); 3772 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3773 3774 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3775 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3776 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3777 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3778 cpu_env, s->cfg_ptr->vlen / 8, 3779 s->cfg_ptr->vlen / 8, data, 3780 fns[s->sew]); 3781 mark_vs_dirty(s); 3782 gen_set_label(over); 3783 return true; 3784 } 3785 return false; 3786} 3787 3788/* 3789 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3790 * Thus, we don't need to check vill bit. (Section 16.6) 3791 */ 3792#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3793static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3794{ \ 3795 if (require_rvv(s) && \ 3796 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3797 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3798 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3799 if (s->vstart == 0) { \ 3800 /* EEW = 8 */ \ 3801 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3802 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3803 mark_vs_dirty(s); \ 3804 } else { \ 3805 TCGLabel *over = gen_new_label(); \ 3806 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3807 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3808 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3809 mark_vs_dirty(s); \ 3810 gen_set_label(over); \ 3811 } \ 3812 return true; \ 3813 } \ 3814 return false; \ 3815} 3816 3817GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3818GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3819GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3820GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3821 3822static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3823{ 3824 uint8_t from = (s->sew + 3) - div; 3825 bool ret = require_rvv(s) && 3826 (from >= 3 && from <= 8) && 3827 (a->rd != a->rs2) && 3828 require_align(a->rd, s->lmul) && 3829 require_align(a->rs2, s->lmul - div) && 3830 require_vm(a->vm, a->rd) && 3831 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3832 return ret; 3833} 3834 3835static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3836{ 3837 uint32_t data = 0; 3838 gen_helper_gvec_3_ptr *fn; 3839 TCGLabel *over = gen_new_label(); 3840 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3841 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3842 3843 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3844 { 3845 NULL, gen_helper_vzext_vf2_h, 3846 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3847 }, 3848 { 3849 NULL, NULL, 3850 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3851 }, 3852 { 3853 NULL, NULL, 3854 NULL, gen_helper_vzext_vf8_d 3855 }, 3856 { 3857 NULL, gen_helper_vsext_vf2_h, 3858 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3859 }, 3860 { 3861 NULL, NULL, 3862 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3863 }, 3864 { 3865 NULL, NULL, 3866 NULL, gen_helper_vsext_vf8_d 3867 } 3868 }; 3869 3870 fn = fns[seq][s->sew]; 3871 if (fn == NULL) { 3872 return false; 3873 } 3874 3875 data = FIELD_DP32(data, VDATA, VM, a->vm); 3876 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3877 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3878 3879 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3880 vreg_ofs(s, a->rs2), cpu_env, 3881 s->cfg_ptr->vlen / 8, 3882 s->cfg_ptr->vlen / 8, data, fn); 3883 3884 mark_vs_dirty(s); 3885 gen_set_label(over); 3886 return true; 3887} 3888 3889/* Vector Integer Extension */ 3890#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3891static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3892{ \ 3893 if (int_ext_check(s, a, DIV)) { \ 3894 return int_ext_op(s, a, SEQ); \ 3895 } \ 3896 return false; \ 3897} 3898 3899GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3900GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3901GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3902GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3903GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3904GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3905