1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->ext_zve32f || s->ext_zve64f)) { 178 return false; 179 } 180 181 dst = dest_gpr(s, rd); 182 183 if (rd == 0 && rs1 == 0) { 184 s1 = tcg_temp_new(); 185 tcg_gen_mov_tl(s1, cpu_vl); 186 } else if (rs1 == 0) { 187 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 188 s1 = tcg_constant_tl(RV_VLEN_MAX); 189 } else { 190 s1 = get_gpr(s, rs1, EXT_ZERO); 191 } 192 193 gen_helper_vsetvl(dst, cpu_env, s1, s2); 194 gen_set_gpr(s, rd, dst); 195 mark_vs_dirty(s); 196 197 tcg_gen_movi_tl(cpu_pc, s->pc_succ_insn); 198 tcg_gen_lookup_and_goto_ptr(); 199 s->base.is_jmp = DISAS_NORETURN; 200 201 if (rd == 0 && rs1 == 0) { 202 tcg_temp_free(s1); 203 } 204 205 return true; 206} 207 208static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 209{ 210 TCGv dst; 211 212 if (!require_rvv(s) || 213 !(has_ext(s, RVV) || s->ext_zve32f || s->ext_zve64f)) { 214 return false; 215 } 216 217 dst = dest_gpr(s, rd); 218 219 gen_helper_vsetvl(dst, cpu_env, s1, s2); 220 gen_set_gpr(s, rd, dst); 221 mark_vs_dirty(s); 222 tcg_gen_movi_tl(cpu_pc, s->pc_succ_insn); 223 tcg_gen_lookup_and_goto_ptr(); 224 s->base.is_jmp = DISAS_NORETURN; 225 226 return true; 227} 228 229static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 230{ 231 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 232 return do_vsetvl(s, a->rd, a->rs1, s2); 233} 234 235static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 236{ 237 TCGv s2 = tcg_constant_tl(a->zimm); 238 return do_vsetvl(s, a->rd, a->rs1, s2); 239} 240 241static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 242{ 243 TCGv s1 = tcg_const_tl(a->rs1); 244 TCGv s2 = tcg_const_tl(a->zimm); 245 return do_vsetivli(s, a->rd, s1, s2); 246} 247 248/* vector register offset from env */ 249static uint32_t vreg_ofs(DisasContext *s, int reg) 250{ 251 return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8; 252} 253 254/* check functions */ 255 256/* 257 * Vector unit-stride, strided, unit-stride segment, strided segment 258 * store check function. 259 * 260 * Rules to be checked here: 261 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 262 * 2. Destination vector register number is multiples of EMUL. 263 * (Section 3.4.2, 7.3) 264 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 265 * 4. Vector register numbers accessed by the segment load or store 266 * cannot increment past 31. (Section 7.8) 267 */ 268static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 269{ 270 int8_t emul = eew - s->sew + s->lmul; 271 return (emul >= -3 && emul <= 3) && 272 require_align(vd, emul) && 273 require_nf(vd, nf, emul); 274} 275 276/* 277 * Vector unit-stride, strided, unit-stride segment, strided segment 278 * load check function. 279 * 280 * Rules to be checked here: 281 * 1. All rules applies to store instructions are applies 282 * to load instructions. 283 * 2. Destination vector register group for a masked vector 284 * instruction cannot overlap the source mask register (v0). 285 * (Section 5.3) 286 */ 287static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 288 uint8_t eew) 289{ 290 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 291} 292 293/* 294 * Vector indexed, indexed segment store check function. 295 * 296 * Rules to be checked here: 297 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 298 * 2. Index vector register number is multiples of EMUL. 299 * (Section 3.4.2, 7.3) 300 * 3. Destination vector register number is multiples of LMUL. 301 * (Section 3.4.2, 7.3) 302 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 303 * 5. Vector register numbers accessed by the segment load or store 304 * cannot increment past 31. (Section 7.8) 305 */ 306static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 307 uint8_t eew) 308{ 309 int8_t emul = eew - s->sew + s->lmul; 310 bool ret = (emul >= -3 && emul <= 3) && 311 require_align(vs2, emul) && 312 require_align(vd, s->lmul) && 313 require_nf(vd, nf, s->lmul); 314 315 /* 316 * All Zve* extensions support all vector load and store instructions, 317 * except Zve64* extensions do not support EEW=64 for index values 318 * when XLEN=32. (Section 18.2) 319 */ 320 if (get_xl(s) == MXL_RV32) { 321 ret &= (!has_ext(s, RVV) && s->ext_zve64f ? eew != MO_64 : true); 322 } 323 324 return ret; 325} 326 327/* 328 * Vector indexed, indexed segment load check function. 329 * 330 * Rules to be checked here: 331 * 1. All rules applies to store instructions are applies 332 * to load instructions. 333 * 2. Destination vector register group for a masked vector 334 * instruction cannot overlap the source mask register (v0). 335 * (Section 5.3) 336 * 3. Destination vector register cannot overlap a source vector 337 * register (vs2) group. 338 * (Section 5.2) 339 * 4. Destination vector register groups cannot overlap 340 * the source vector register (vs2) group for 341 * indexed segment load instructions. (Section 7.8.3) 342 */ 343static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 344 int nf, int vm, uint8_t eew) 345{ 346 int8_t seg_vd; 347 int8_t emul = eew - s->sew + s->lmul; 348 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 349 require_vm(vm, vd); 350 351 /* Each segment register group has to follow overlap rules. */ 352 for (int i = 0; i < nf; ++i) { 353 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 354 355 if (eew > s->sew) { 356 if (seg_vd != vs2) { 357 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 358 } 359 } else if (eew < s->sew) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 363 /* 364 * Destination vector register groups cannot overlap 365 * the source vector register (vs2) group for 366 * indexed segment load instructions. 367 */ 368 if (nf > 1) { 369 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 370 vs2, 1 << MAX(emul, 0)); 371 } 372 } 373 return ret; 374} 375 376static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 377{ 378 return require_vm(vm, vd) && 379 require_align(vd, s->lmul) && 380 require_align(vs, s->lmul); 381} 382 383/* 384 * Check function for vector instruction with format: 385 * single-width result and single-width sources (SEW = SEW op SEW) 386 * 387 * Rules to be checked here: 388 * 1. Destination vector register group for a masked vector 389 * instruction cannot overlap the source mask register (v0). 390 * (Section 5.3) 391 * 2. Destination vector register number is multiples of LMUL. 392 * (Section 3.4.2) 393 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 394 * (Section 3.4.2) 395 */ 396static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 397{ 398 return vext_check_ss(s, vd, vs2, vm) && 399 require_align(vs1, s->lmul); 400} 401 402static bool vext_check_ms(DisasContext *s, int vd, int vs) 403{ 404 bool ret = require_align(vs, s->lmul); 405 if (vd != vs) { 406 ret &= require_noover(vd, 0, vs, s->lmul); 407 } 408 return ret; 409} 410 411/* 412 * Check function for maskable vector instruction with format: 413 * single-width result and single-width sources (SEW = SEW op SEW) 414 * 415 * Rules to be checked here: 416 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 417 * (Section 3.4.2) 418 * 2. Destination vector register cannot overlap a source vector 419 * register (vs2, vs1) group. 420 * (Section 5.2) 421 * 3. The destination vector register group for a masked vector 422 * instruction cannot overlap the source mask register (v0), 423 * unless the destination vector register is being written 424 * with a mask value (e.g., comparisons) or the scalar result 425 * of a reduction. (Section 5.3) 426 */ 427static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 428{ 429 bool ret = vext_check_ms(s, vd, vs2) && 430 require_align(vs1, s->lmul); 431 if (vd != vs1) { 432 ret &= require_noover(vd, 0, vs1, s->lmul); 433 } 434 return ret; 435} 436 437/* 438 * Common check function for vector widening instructions 439 * of double-width result (2*SEW). 440 * 441 * Rules to be checked here: 442 * 1. The largest vector register group used by an instruction 443 * can not be greater than 8 vector registers (Section 5.2): 444 * => LMUL < 8. 445 * => SEW < 64. 446 * 2. Double-width SEW cannot greater than ELEN. 447 * 3. Destination vector register number is multiples of 2 * LMUL. 448 * (Section 3.4.2) 449 * 4. Destination vector register group for a masked vector 450 * instruction cannot overlap the source mask register (v0). 451 * (Section 5.3) 452 */ 453static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 454{ 455 return (s->lmul <= 2) && 456 (s->sew < MO_64) && 457 ((s->sew + 1) <= (s->elen >> 4)) && 458 require_align(vd, s->lmul + 1) && 459 require_vm(vm, vd); 460} 461 462/* 463 * Common check function for vector narrowing instructions 464 * of single-width result (SEW) and double-width source (2*SEW). 465 * 466 * Rules to be checked here: 467 * 1. The largest vector register group used by an instruction 468 * can not be greater than 8 vector registers (Section 5.2): 469 * => LMUL < 8. 470 * => SEW < 64. 471 * 2. Double-width SEW cannot greater than ELEN. 472 * 3. Source vector register number is multiples of 2 * LMUL. 473 * (Section 3.4.2) 474 * 4. Destination vector register number is multiples of LMUL. 475 * (Section 3.4.2) 476 * 5. Destination vector register group for a masked vector 477 * instruction cannot overlap the source mask register (v0). 478 * (Section 5.3) 479 */ 480static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 481 int vm) 482{ 483 return (s->lmul <= 2) && 484 (s->sew < MO_64) && 485 ((s->sew + 1) <= (s->elen >> 4)) && 486 require_align(vs2, s->lmul + 1) && 487 require_align(vd, s->lmul) && 488 require_vm(vm, vd); 489} 490 491static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 492{ 493 return vext_wide_check_common(s, vd, vm) && 494 require_align(vs, s->lmul) && 495 require_noover(vd, s->lmul + 1, vs, s->lmul); 496} 497 498static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 499{ 500 return vext_wide_check_common(s, vd, vm) && 501 require_align(vs, s->lmul + 1); 502} 503 504/* 505 * Check function for vector instruction with format: 506 * double-width result and single-width sources (2*SEW = SEW op SEW) 507 * 508 * Rules to be checked here: 509 * 1. All rules in defined in widen common rules are applied. 510 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 511 * (Section 3.4.2) 512 * 3. Destination vector register cannot overlap a source vector 513 * register (vs2, vs1) group. 514 * (Section 5.2) 515 */ 516static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 517{ 518 return vext_check_ds(s, vd, vs2, vm) && 519 require_align(vs1, s->lmul) && 520 require_noover(vd, s->lmul + 1, vs1, s->lmul); 521} 522 523/* 524 * Check function for vector instruction with format: 525 * double-width result and double-width source1 and single-width 526 * source2 (2*SEW = 2*SEW op SEW) 527 * 528 * Rules to be checked here: 529 * 1. All rules in defined in widen common rules are applied. 530 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 531 * (Section 3.4.2) 532 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 533 * (Section 3.4.2) 534 * 4. Destination vector register cannot overlap a source vector 535 * register (vs1) group. 536 * (Section 5.2) 537 */ 538static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 539{ 540 return vext_check_ds(s, vd, vs1, vm) && 541 require_align(vs2, s->lmul + 1); 542} 543 544static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 545{ 546 bool ret = vext_narrow_check_common(s, vd, vs, vm); 547 if (vd != vs) { 548 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 549 } 550 return ret; 551} 552 553/* 554 * Check function for vector instruction with format: 555 * single-width result and double-width source 1 and single-width 556 * source 2 (SEW = 2*SEW op SEW) 557 * 558 * Rules to be checked here: 559 * 1. All rules in defined in narrow common rules are applied. 560 * 2. Destination vector register cannot overlap a source vector 561 * register (vs2) group. 562 * (Section 5.2) 563 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 564 * (Section 3.4.2) 565 */ 566static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 567{ 568 return vext_check_sd(s, vd, vs2, vm) && 569 require_align(vs1, s->lmul); 570} 571 572/* 573 * Check function for vector reduction instructions. 574 * 575 * Rules to be checked here: 576 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 577 * (Section 3.4.2) 578 */ 579static bool vext_check_reduction(DisasContext *s, int vs2) 580{ 581 return require_align(vs2, s->lmul) && (s->vstart == 0); 582} 583 584/* 585 * Check function for vector slide instructions. 586 * 587 * Rules to be checked here: 588 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 589 * (Section 3.4.2) 590 * 2. Destination vector register number is multiples of LMUL. 591 * (Section 3.4.2) 592 * 3. Destination vector register group for a masked vector 593 * instruction cannot overlap the source mask register (v0). 594 * (Section 5.3) 595 * 4. The destination vector register group for vslideup, vslide1up, 596 * vfslide1up, cannot overlap the source vector register (vs2) group. 597 * (Section 5.2, 16.3.1, 16.3.3) 598 */ 599static bool vext_check_slide(DisasContext *s, int vd, int vs2, 600 int vm, bool is_over) 601{ 602 bool ret = require_align(vs2, s->lmul) && 603 require_align(vd, s->lmul) && 604 require_vm(vm, vd); 605 if (is_over) { 606 ret &= (vd != vs2); 607 } 608 return ret; 609} 610 611/* 612 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 613 * So RVV is also be checked in this function. 614 */ 615static bool vext_check_isa_ill(DisasContext *s) 616{ 617 return !s->vill; 618} 619 620/* common translation macro */ 621#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 622static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 623{ \ 624 if (CHECK(s, a, EEW)) { \ 625 return OP(s, a, EEW); \ 626 } \ 627 return false; \ 628} 629 630static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 631{ 632 int8_t emul = eew - s->sew + s->lmul; 633 return emul < 0 ? 0 : emul; 634} 635 636/* 637 *** unit stride load and store 638 */ 639typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 640 TCGv_env, TCGv_i32); 641 642static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 643 gen_helper_ldst_us *fn, DisasContext *s, 644 bool is_store) 645{ 646 TCGv_ptr dest, mask; 647 TCGv base; 648 TCGv_i32 desc; 649 650 TCGLabel *over = gen_new_label(); 651 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 652 653 dest = tcg_temp_new_ptr(); 654 mask = tcg_temp_new_ptr(); 655 base = get_gpr(s, rs1, EXT_NONE); 656 657 /* 658 * As simd_desc supports at most 2048 bytes, and in this implementation, 659 * the max vector group length is 4096 bytes. So split it into two parts. 660 * 661 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 662 * The second part is lmul, encoded in data of simd_desc. 663 */ 664 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 665 666 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 667 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 668 669 fn(dest, mask, base, cpu_env, desc); 670 671 tcg_temp_free_ptr(dest); 672 tcg_temp_free_ptr(mask); 673 674 if (!is_store) { 675 mark_vs_dirty(s); 676 } 677 678 gen_set_label(over); 679 return true; 680} 681 682static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 683{ 684 uint32_t data = 0; 685 gen_helper_ldst_us *fn; 686 static gen_helper_ldst_us * const fns[2][4] = { 687 /* masked unit stride load */ 688 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 689 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 690 /* unmasked unit stride load */ 691 { gen_helper_vle8_v, gen_helper_vle16_v, 692 gen_helper_vle32_v, gen_helper_vle64_v } 693 }; 694 695 fn = fns[a->vm][eew]; 696 if (fn == NULL) { 697 return false; 698 } 699 700 /* 701 * Vector load/store instructions have the EEW encoded 702 * directly in the instructions. The maximum vector size is 703 * calculated with EMUL rather than LMUL. 704 */ 705 uint8_t emul = vext_get_emul(s, eew); 706 data = FIELD_DP32(data, VDATA, VM, a->vm); 707 data = FIELD_DP32(data, VDATA, LMUL, emul); 708 data = FIELD_DP32(data, VDATA, NF, a->nf); 709 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 710} 711 712static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 713{ 714 return require_rvv(s) && 715 vext_check_isa_ill(s) && 716 vext_check_load(s, a->rd, a->nf, a->vm, eew); 717} 718 719GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 720GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 721GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 722GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 723 724static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 725{ 726 uint32_t data = 0; 727 gen_helper_ldst_us *fn; 728 static gen_helper_ldst_us * const fns[2][4] = { 729 /* masked unit stride store */ 730 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 731 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 732 /* unmasked unit stride store */ 733 { gen_helper_vse8_v, gen_helper_vse16_v, 734 gen_helper_vse32_v, gen_helper_vse64_v } 735 }; 736 737 fn = fns[a->vm][eew]; 738 if (fn == NULL) { 739 return false; 740 } 741 742 uint8_t emul = vext_get_emul(s, eew); 743 data = FIELD_DP32(data, VDATA, VM, a->vm); 744 data = FIELD_DP32(data, VDATA, LMUL, emul); 745 data = FIELD_DP32(data, VDATA, NF, a->nf); 746 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 747} 748 749static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 750{ 751 return require_rvv(s) && 752 vext_check_isa_ill(s) && 753 vext_check_store(s, a->rd, a->nf, eew); 754} 755 756GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 757GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 758GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 759GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 760 761/* 762 *** unit stride mask load and store 763 */ 764static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 765{ 766 uint32_t data = 0; 767 gen_helper_ldst_us *fn = gen_helper_vlm_v; 768 769 /* EMUL = 1, NFIELDS = 1 */ 770 data = FIELD_DP32(data, VDATA, LMUL, 0); 771 data = FIELD_DP32(data, VDATA, NF, 1); 772 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 773} 774 775static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 776{ 777 /* EMUL = 1, NFIELDS = 1 */ 778 return require_rvv(s) && vext_check_isa_ill(s); 779} 780 781static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 782{ 783 uint32_t data = 0; 784 gen_helper_ldst_us *fn = gen_helper_vsm_v; 785 786 /* EMUL = 1, NFIELDS = 1 */ 787 data = FIELD_DP32(data, VDATA, LMUL, 0); 788 data = FIELD_DP32(data, VDATA, NF, 1); 789 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 790} 791 792static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 793{ 794 /* EMUL = 1, NFIELDS = 1 */ 795 return require_rvv(s) && vext_check_isa_ill(s); 796} 797 798GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 799GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 800 801/* 802 *** stride load and store 803 */ 804typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 805 TCGv, TCGv_env, TCGv_i32); 806 807static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 808 uint32_t data, gen_helper_ldst_stride *fn, 809 DisasContext *s, bool is_store) 810{ 811 TCGv_ptr dest, mask; 812 TCGv base, stride; 813 TCGv_i32 desc; 814 815 TCGLabel *over = gen_new_label(); 816 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 817 818 dest = tcg_temp_new_ptr(); 819 mask = tcg_temp_new_ptr(); 820 base = get_gpr(s, rs1, EXT_NONE); 821 stride = get_gpr(s, rs2, EXT_NONE); 822 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 823 824 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 825 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 826 827 fn(dest, mask, base, stride, cpu_env, desc); 828 829 tcg_temp_free_ptr(dest); 830 tcg_temp_free_ptr(mask); 831 832 if (!is_store) { 833 mark_vs_dirty(s); 834 } 835 836 gen_set_label(over); 837 return true; 838} 839 840static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 841{ 842 uint32_t data = 0; 843 gen_helper_ldst_stride *fn; 844 static gen_helper_ldst_stride * const fns[4] = { 845 gen_helper_vlse8_v, gen_helper_vlse16_v, 846 gen_helper_vlse32_v, gen_helper_vlse64_v 847 }; 848 849 fn = fns[eew]; 850 if (fn == NULL) { 851 return false; 852 } 853 854 uint8_t emul = vext_get_emul(s, eew); 855 data = FIELD_DP32(data, VDATA, VM, a->vm); 856 data = FIELD_DP32(data, VDATA, LMUL, emul); 857 data = FIELD_DP32(data, VDATA, NF, a->nf); 858 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 859} 860 861static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 862{ 863 return require_rvv(s) && 864 vext_check_isa_ill(s) && 865 vext_check_load(s, a->rd, a->nf, a->vm, eew); 866} 867 868GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 869GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 870GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 871GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 872 873static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 874{ 875 uint32_t data = 0; 876 gen_helper_ldst_stride *fn; 877 static gen_helper_ldst_stride * const fns[4] = { 878 /* masked stride store */ 879 gen_helper_vsse8_v, gen_helper_vsse16_v, 880 gen_helper_vsse32_v, gen_helper_vsse64_v 881 }; 882 883 uint8_t emul = vext_get_emul(s, eew); 884 data = FIELD_DP32(data, VDATA, VM, a->vm); 885 data = FIELD_DP32(data, VDATA, LMUL, emul); 886 data = FIELD_DP32(data, VDATA, NF, a->nf); 887 fn = fns[eew]; 888 if (fn == NULL) { 889 return false; 890 } 891 892 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 893} 894 895static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 896{ 897 return require_rvv(s) && 898 vext_check_isa_ill(s) && 899 vext_check_store(s, a->rd, a->nf, eew); 900} 901 902GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 903GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 904GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 905GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 906 907/* 908 *** index load and store 909 */ 910typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 911 TCGv_ptr, TCGv_env, TCGv_i32); 912 913static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 914 uint32_t data, gen_helper_ldst_index *fn, 915 DisasContext *s, bool is_store) 916{ 917 TCGv_ptr dest, mask, index; 918 TCGv base; 919 TCGv_i32 desc; 920 921 TCGLabel *over = gen_new_label(); 922 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 923 924 dest = tcg_temp_new_ptr(); 925 mask = tcg_temp_new_ptr(); 926 index = tcg_temp_new_ptr(); 927 base = get_gpr(s, rs1, EXT_NONE); 928 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 929 930 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 931 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 932 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 933 934 fn(dest, mask, base, index, cpu_env, desc); 935 936 tcg_temp_free_ptr(dest); 937 tcg_temp_free_ptr(mask); 938 tcg_temp_free_ptr(index); 939 940 if (!is_store) { 941 mark_vs_dirty(s); 942 } 943 944 gen_set_label(over); 945 return true; 946} 947 948static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 949{ 950 uint32_t data = 0; 951 gen_helper_ldst_index *fn; 952 static gen_helper_ldst_index * const fns[4][4] = { 953 /* 954 * offset vector register group EEW = 8, 955 * data vector register group EEW = SEW 956 */ 957 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 958 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 959 /* 960 * offset vector register group EEW = 16, 961 * data vector register group EEW = SEW 962 */ 963 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 964 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 965 /* 966 * offset vector register group EEW = 32, 967 * data vector register group EEW = SEW 968 */ 969 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 970 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 971 /* 972 * offset vector register group EEW = 64, 973 * data vector register group EEW = SEW 974 */ 975 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 976 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 977 }; 978 979 fn = fns[eew][s->sew]; 980 981 uint8_t emul = vext_get_emul(s, s->sew); 982 data = FIELD_DP32(data, VDATA, VM, a->vm); 983 data = FIELD_DP32(data, VDATA, LMUL, emul); 984 data = FIELD_DP32(data, VDATA, NF, a->nf); 985 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 986} 987 988static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 989{ 990 return require_rvv(s) && 991 vext_check_isa_ill(s) && 992 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 993} 994 995GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 996GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 997GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 998GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 999 1000static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1001{ 1002 uint32_t data = 0; 1003 gen_helper_ldst_index *fn; 1004 static gen_helper_ldst_index * const fns[4][4] = { 1005 /* 1006 * offset vector register group EEW = 8, 1007 * data vector register group EEW = SEW 1008 */ 1009 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1010 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1011 /* 1012 * offset vector register group EEW = 16, 1013 * data vector register group EEW = SEW 1014 */ 1015 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1016 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1017 /* 1018 * offset vector register group EEW = 32, 1019 * data vector register group EEW = SEW 1020 */ 1021 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1022 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1023 /* 1024 * offset vector register group EEW = 64, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1028 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1029 }; 1030 1031 fn = fns[eew][s->sew]; 1032 1033 uint8_t emul = vext_get_emul(s, s->sew); 1034 data = FIELD_DP32(data, VDATA, VM, a->vm); 1035 data = FIELD_DP32(data, VDATA, LMUL, emul); 1036 data = FIELD_DP32(data, VDATA, NF, a->nf); 1037 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1038} 1039 1040static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1041{ 1042 return require_rvv(s) && 1043 vext_check_isa_ill(s) && 1044 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1045} 1046 1047GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1048GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1049GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1050GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1051 1052/* 1053 *** unit stride fault-only-first load 1054 */ 1055static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1056 gen_helper_ldst_us *fn, DisasContext *s) 1057{ 1058 TCGv_ptr dest, mask; 1059 TCGv base; 1060 TCGv_i32 desc; 1061 1062 TCGLabel *over = gen_new_label(); 1063 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1064 1065 dest = tcg_temp_new_ptr(); 1066 mask = tcg_temp_new_ptr(); 1067 base = get_gpr(s, rs1, EXT_NONE); 1068 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1069 1070 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1071 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1072 1073 fn(dest, mask, base, cpu_env, desc); 1074 1075 tcg_temp_free_ptr(dest); 1076 tcg_temp_free_ptr(mask); 1077 mark_vs_dirty(s); 1078 gen_set_label(over); 1079 return true; 1080} 1081 1082static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1083{ 1084 uint32_t data = 0; 1085 gen_helper_ldst_us *fn; 1086 static gen_helper_ldst_us * const fns[4] = { 1087 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1088 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1089 }; 1090 1091 fn = fns[eew]; 1092 if (fn == NULL) { 1093 return false; 1094 } 1095 1096 uint8_t emul = vext_get_emul(s, eew); 1097 data = FIELD_DP32(data, VDATA, VM, a->vm); 1098 data = FIELD_DP32(data, VDATA, LMUL, emul); 1099 data = FIELD_DP32(data, VDATA, NF, a->nf); 1100 return ldff_trans(a->rd, a->rs1, data, fn, s); 1101} 1102 1103GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1104GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1105GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1106GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1107 1108/* 1109 * load and store whole register instructions 1110 */ 1111typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1112 1113static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1114 gen_helper_ldst_whole *fn, DisasContext *s, 1115 bool is_store) 1116{ 1117 TCGv_ptr dest; 1118 TCGv base; 1119 TCGv_i32 desc; 1120 1121 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1122 dest = tcg_temp_new_ptr(); 1123 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1124 1125 base = get_gpr(s, rs1, EXT_NONE); 1126 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1127 1128 fn(dest, base, cpu_env, desc); 1129 1130 tcg_temp_free_ptr(dest); 1131 1132 if (!is_store) { 1133 mark_vs_dirty(s); 1134 } 1135 1136 return true; 1137} 1138 1139/* 1140 * load and store whole register instructions ignore vtype and vl setting. 1141 * Thus, we don't need to check vill bit. (Section 7.9) 1142 */ 1143#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, IS_STORE) \ 1144static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1145{ \ 1146 if (require_rvv(s) && \ 1147 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1148 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, gen_helper_##NAME, \ 1149 s, IS_STORE); \ 1150 } \ 1151 return false; \ 1152} 1153 1154GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, false) 1155GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, false) 1156GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, false) 1157GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, false) 1158GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, false) 1159GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, false) 1160GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, false) 1161GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, false) 1162GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, false) 1163GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, false) 1164GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, false) 1165GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, false) 1166GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, false) 1167GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, false) 1168GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, false) 1169GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, false) 1170 1171GEN_LDST_WHOLE_TRANS(vs1r_v, 1, true) 1172GEN_LDST_WHOLE_TRANS(vs2r_v, 2, true) 1173GEN_LDST_WHOLE_TRANS(vs4r_v, 4, true) 1174GEN_LDST_WHOLE_TRANS(vs8r_v, 8, true) 1175 1176/* 1177 *** Vector Integer Arithmetic Instructions 1178 */ 1179 1180/* 1181 * MAXSZ returns the maximum vector size can be operated in bytes, 1182 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1183 * to accerlate vector operation. 1184 */ 1185static inline uint32_t MAXSZ(DisasContext *s) 1186{ 1187 int scale = s->lmul - 3; 1188 return scale < 0 ? s->vlen >> -scale : s->vlen << scale; 1189} 1190 1191static bool opivv_check(DisasContext *s, arg_rmrr *a) 1192{ 1193 return require_rvv(s) && 1194 vext_check_isa_ill(s) && 1195 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1196} 1197 1198typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1199 uint32_t, uint32_t, uint32_t); 1200 1201static inline bool 1202do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1203 gen_helper_gvec_4_ptr *fn) 1204{ 1205 TCGLabel *over = gen_new_label(); 1206 if (!opivv_check(s, a)) { 1207 return false; 1208 } 1209 1210 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1211 1212 if (a->vm && s->vl_eq_vlmax) { 1213 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1214 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1215 MAXSZ(s), MAXSZ(s)); 1216 } else { 1217 uint32_t data = 0; 1218 1219 data = FIELD_DP32(data, VDATA, VM, a->vm); 1220 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1221 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1222 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1223 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1224 } 1225 mark_vs_dirty(s); 1226 gen_set_label(over); 1227 return true; 1228} 1229 1230/* OPIVV with GVEC IR */ 1231#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1232static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1233{ \ 1234 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1235 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1236 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1237 }; \ 1238 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1239} 1240 1241GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1242GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1243 1244typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1245 TCGv_env, TCGv_i32); 1246 1247static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1248 gen_helper_opivx *fn, DisasContext *s) 1249{ 1250 TCGv_ptr dest, src2, mask; 1251 TCGv src1; 1252 TCGv_i32 desc; 1253 uint32_t data = 0; 1254 1255 TCGLabel *over = gen_new_label(); 1256 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1257 1258 dest = tcg_temp_new_ptr(); 1259 mask = tcg_temp_new_ptr(); 1260 src2 = tcg_temp_new_ptr(); 1261 src1 = get_gpr(s, rs1, EXT_NONE); 1262 1263 data = FIELD_DP32(data, VDATA, VM, vm); 1264 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1265 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1266 1267 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1268 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1269 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1270 1271 fn(dest, mask, src1, src2, cpu_env, desc); 1272 1273 tcg_temp_free_ptr(dest); 1274 tcg_temp_free_ptr(mask); 1275 tcg_temp_free_ptr(src2); 1276 mark_vs_dirty(s); 1277 gen_set_label(over); 1278 return true; 1279} 1280 1281static bool opivx_check(DisasContext *s, arg_rmrr *a) 1282{ 1283 return require_rvv(s) && 1284 vext_check_isa_ill(s) && 1285 vext_check_ss(s, a->rd, a->rs2, a->vm); 1286} 1287 1288typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1289 uint32_t, uint32_t); 1290 1291static inline bool 1292do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1293 gen_helper_opivx *fn) 1294{ 1295 if (!opivx_check(s, a)) { 1296 return false; 1297 } 1298 1299 if (a->vm && s->vl_eq_vlmax) { 1300 TCGv_i64 src1 = tcg_temp_new_i64(); 1301 1302 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1303 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1304 src1, MAXSZ(s), MAXSZ(s)); 1305 1306 tcg_temp_free_i64(src1); 1307 mark_vs_dirty(s); 1308 return true; 1309 } 1310 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1311} 1312 1313/* OPIVX with GVEC IR */ 1314#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1315static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1316{ \ 1317 static gen_helper_opivx * const fns[4] = { \ 1318 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1319 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1320 }; \ 1321 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1322} 1323 1324GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1325GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1326 1327static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1328{ 1329 tcg_gen_vec_sub8_i64(d, b, a); 1330} 1331 1332static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1333{ 1334 tcg_gen_vec_sub16_i64(d, b, a); 1335} 1336 1337static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1338{ 1339 tcg_gen_sub_i32(ret, arg2, arg1); 1340} 1341 1342static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1343{ 1344 tcg_gen_sub_i64(ret, arg2, arg1); 1345} 1346 1347static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1348{ 1349 tcg_gen_sub_vec(vece, r, b, a); 1350} 1351 1352static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1353 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1354{ 1355 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1356 static const GVecGen2s rsub_op[4] = { 1357 { .fni8 = gen_vec_rsub8_i64, 1358 .fniv = gen_rsub_vec, 1359 .fno = gen_helper_vec_rsubs8, 1360 .opt_opc = vecop_list, 1361 .vece = MO_8 }, 1362 { .fni8 = gen_vec_rsub16_i64, 1363 .fniv = gen_rsub_vec, 1364 .fno = gen_helper_vec_rsubs16, 1365 .opt_opc = vecop_list, 1366 .vece = MO_16 }, 1367 { .fni4 = gen_rsub_i32, 1368 .fniv = gen_rsub_vec, 1369 .fno = gen_helper_vec_rsubs32, 1370 .opt_opc = vecop_list, 1371 .vece = MO_32 }, 1372 { .fni8 = gen_rsub_i64, 1373 .fniv = gen_rsub_vec, 1374 .fno = gen_helper_vec_rsubs64, 1375 .opt_opc = vecop_list, 1376 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1377 .vece = MO_64 }, 1378 }; 1379 1380 tcg_debug_assert(vece <= MO_64); 1381 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1382} 1383 1384GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1385 1386typedef enum { 1387 IMM_ZX, /* Zero-extended */ 1388 IMM_SX, /* Sign-extended */ 1389 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1390 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1391} imm_mode_t; 1392 1393static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1394{ 1395 switch (imm_mode) { 1396 case IMM_ZX: 1397 return extract64(imm, 0, 5); 1398 case IMM_SX: 1399 return sextract64(imm, 0, 5); 1400 case IMM_TRUNC_SEW: 1401 return extract64(imm, 0, s->sew + 3); 1402 case IMM_TRUNC_2SEW: 1403 return extract64(imm, 0, s->sew + 4); 1404 default: 1405 g_assert_not_reached(); 1406 } 1407} 1408 1409static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1410 gen_helper_opivx *fn, DisasContext *s, 1411 imm_mode_t imm_mode) 1412{ 1413 TCGv_ptr dest, src2, mask; 1414 TCGv src1; 1415 TCGv_i32 desc; 1416 uint32_t data = 0; 1417 1418 TCGLabel *over = gen_new_label(); 1419 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1420 1421 dest = tcg_temp_new_ptr(); 1422 mask = tcg_temp_new_ptr(); 1423 src2 = tcg_temp_new_ptr(); 1424 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1425 1426 data = FIELD_DP32(data, VDATA, VM, vm); 1427 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1428 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1429 1430 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1431 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1432 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1433 1434 fn(dest, mask, src1, src2, cpu_env, desc); 1435 1436 tcg_temp_free_ptr(dest); 1437 tcg_temp_free_ptr(mask); 1438 tcg_temp_free_ptr(src2); 1439 mark_vs_dirty(s); 1440 gen_set_label(over); 1441 return true; 1442} 1443 1444typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1445 uint32_t, uint32_t); 1446 1447static inline bool 1448do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1449 gen_helper_opivx *fn, imm_mode_t imm_mode) 1450{ 1451 if (!opivx_check(s, a)) { 1452 return false; 1453 } 1454 1455 if (a->vm && s->vl_eq_vlmax) { 1456 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1457 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1458 mark_vs_dirty(s); 1459 return true; 1460 } 1461 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1462} 1463 1464/* OPIVI with GVEC IR */ 1465#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1466static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1467{ \ 1468 static gen_helper_opivx * const fns[4] = { \ 1469 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1470 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1471 }; \ 1472 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1473 fns[s->sew], IMM_MODE); \ 1474} 1475 1476GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1477 1478static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1479 int64_t c, uint32_t oprsz, uint32_t maxsz) 1480{ 1481 TCGv_i64 tmp = tcg_constant_i64(c); 1482 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1483} 1484 1485GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1486 1487/* Vector Widening Integer Add/Subtract */ 1488 1489/* OPIVV with WIDEN */ 1490static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1491{ 1492 return require_rvv(s) && 1493 vext_check_isa_ill(s) && 1494 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1495} 1496 1497static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1498 gen_helper_gvec_4_ptr *fn, 1499 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1500{ 1501 if (checkfn(s, a)) { 1502 uint32_t data = 0; 1503 TCGLabel *over = gen_new_label(); 1504 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1505 1506 data = FIELD_DP32(data, VDATA, VM, a->vm); 1507 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1508 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1509 vreg_ofs(s, a->rs1), 1510 vreg_ofs(s, a->rs2), 1511 cpu_env, s->vlen / 8, s->vlen / 8, 1512 data, fn); 1513 mark_vs_dirty(s); 1514 gen_set_label(over); 1515 return true; 1516 } 1517 return false; 1518} 1519 1520#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1521static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1522{ \ 1523 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1524 gen_helper_##NAME##_b, \ 1525 gen_helper_##NAME##_h, \ 1526 gen_helper_##NAME##_w \ 1527 }; \ 1528 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1529} 1530 1531GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1532GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1533GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1534GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1535 1536/* OPIVX with WIDEN */ 1537static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1538{ 1539 return require_rvv(s) && 1540 vext_check_isa_ill(s) && 1541 vext_check_ds(s, a->rd, a->rs2, a->vm); 1542} 1543 1544static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1545 gen_helper_opivx *fn) 1546{ 1547 if (opivx_widen_check(s, a)) { 1548 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1549 } 1550 return false; 1551} 1552 1553#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1554static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1555{ \ 1556 static gen_helper_opivx * const fns[3] = { \ 1557 gen_helper_##NAME##_b, \ 1558 gen_helper_##NAME##_h, \ 1559 gen_helper_##NAME##_w \ 1560 }; \ 1561 return do_opivx_widen(s, a, fns[s->sew]); \ 1562} 1563 1564GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1565GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1566GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1567GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1568 1569/* WIDEN OPIVV with WIDEN */ 1570static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1571{ 1572 return require_rvv(s) && 1573 vext_check_isa_ill(s) && 1574 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1575} 1576 1577static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1578 gen_helper_gvec_4_ptr *fn) 1579{ 1580 if (opiwv_widen_check(s, a)) { 1581 uint32_t data = 0; 1582 TCGLabel *over = gen_new_label(); 1583 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1584 1585 data = FIELD_DP32(data, VDATA, VM, a->vm); 1586 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1587 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1588 vreg_ofs(s, a->rs1), 1589 vreg_ofs(s, a->rs2), 1590 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1591 mark_vs_dirty(s); 1592 gen_set_label(over); 1593 return true; 1594 } 1595 return false; 1596} 1597 1598#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1599static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1600{ \ 1601 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1602 gen_helper_##NAME##_b, \ 1603 gen_helper_##NAME##_h, \ 1604 gen_helper_##NAME##_w \ 1605 }; \ 1606 return do_opiwv_widen(s, a, fns[s->sew]); \ 1607} 1608 1609GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1610GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1611GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1612GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1613 1614/* WIDEN OPIVX with WIDEN */ 1615static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1616{ 1617 return require_rvv(s) && 1618 vext_check_isa_ill(s) && 1619 vext_check_dd(s, a->rd, a->rs2, a->vm); 1620} 1621 1622static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1623 gen_helper_opivx *fn) 1624{ 1625 if (opiwx_widen_check(s, a)) { 1626 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1627 } 1628 return false; 1629} 1630 1631#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1632static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1633{ \ 1634 static gen_helper_opivx * const fns[3] = { \ 1635 gen_helper_##NAME##_b, \ 1636 gen_helper_##NAME##_h, \ 1637 gen_helper_##NAME##_w \ 1638 }; \ 1639 return do_opiwx_widen(s, a, fns[s->sew]); \ 1640} 1641 1642GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1643GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1644GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1645GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1646 1647/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1648/* OPIVV without GVEC IR */ 1649#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1650static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1651{ \ 1652 if (CHECK(s, a)) { \ 1653 uint32_t data = 0; \ 1654 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1655 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1656 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1657 }; \ 1658 TCGLabel *over = gen_new_label(); \ 1659 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1660 \ 1661 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1662 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1663 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1664 vreg_ofs(s, a->rs1), \ 1665 vreg_ofs(s, a->rs2), cpu_env, \ 1666 s->vlen / 8, s->vlen / 8, data, \ 1667 fns[s->sew]); \ 1668 mark_vs_dirty(s); \ 1669 gen_set_label(over); \ 1670 return true; \ 1671 } \ 1672 return false; \ 1673} 1674 1675/* 1676 * For vadc and vsbc, an illegal instruction exception is raised if the 1677 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1678 */ 1679static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1680{ 1681 return require_rvv(s) && 1682 vext_check_isa_ill(s) && 1683 (a->rd != 0) && 1684 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1685} 1686 1687GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1688GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1689 1690/* 1691 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1692 * destination vector register overlaps a source vector register group. 1693 */ 1694static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1695{ 1696 return require_rvv(s) && 1697 vext_check_isa_ill(s) && 1698 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1699} 1700 1701GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1702GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1703 1704static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1705{ 1706 return require_rvv(s) && 1707 vext_check_isa_ill(s) && 1708 (a->rd != 0) && 1709 vext_check_ss(s, a->rd, a->rs2, a->vm); 1710} 1711 1712/* OPIVX without GVEC IR */ 1713#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1714static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1715{ \ 1716 if (CHECK(s, a)) { \ 1717 static gen_helper_opivx * const fns[4] = { \ 1718 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1719 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1720 }; \ 1721 \ 1722 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1723 } \ 1724 return false; \ 1725} 1726 1727GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1728GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1729 1730static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1731{ 1732 return require_rvv(s) && 1733 vext_check_isa_ill(s) && 1734 vext_check_ms(s, a->rd, a->rs2); 1735} 1736 1737GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1738GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1739 1740/* OPIVI without GVEC IR */ 1741#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1742static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1743{ \ 1744 if (CHECK(s, a)) { \ 1745 static gen_helper_opivx * const fns[4] = { \ 1746 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1747 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1748 }; \ 1749 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1750 fns[s->sew], s, IMM_MODE); \ 1751 } \ 1752 return false; \ 1753} 1754 1755GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1756GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1757 1758/* Vector Bitwise Logical Instructions */ 1759GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1760GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1761GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1762GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1763GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1764GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1765GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1766GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1767GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1768 1769/* Vector Single-Width Bit Shift Instructions */ 1770GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1771GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1772GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1773 1774typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1775 uint32_t, uint32_t); 1776 1777static inline bool 1778do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1779 gen_helper_opivx *fn) 1780{ 1781 if (!opivx_check(s, a)) { 1782 return false; 1783 } 1784 1785 if (a->vm && s->vl_eq_vlmax) { 1786 TCGv_i32 src1 = tcg_temp_new_i32(); 1787 1788 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1789 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1790 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1791 src1, MAXSZ(s), MAXSZ(s)); 1792 1793 tcg_temp_free_i32(src1); 1794 mark_vs_dirty(s); 1795 return true; 1796 } 1797 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1798} 1799 1800#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1801static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1802{ \ 1803 static gen_helper_opivx * const fns[4] = { \ 1804 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1805 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1806 }; \ 1807 \ 1808 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1809} 1810 1811GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1812GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1813GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1814 1815GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1816GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1817GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1818 1819/* Vector Narrowing Integer Right Shift Instructions */ 1820static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1821{ 1822 return require_rvv(s) && 1823 vext_check_isa_ill(s) && 1824 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1825} 1826 1827/* OPIVV with NARROW */ 1828#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1829static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1830{ \ 1831 if (opiwv_narrow_check(s, a)) { \ 1832 uint32_t data = 0; \ 1833 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1834 gen_helper_##NAME##_b, \ 1835 gen_helper_##NAME##_h, \ 1836 gen_helper_##NAME##_w, \ 1837 }; \ 1838 TCGLabel *over = gen_new_label(); \ 1839 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1840 \ 1841 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1842 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1843 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1844 vreg_ofs(s, a->rs1), \ 1845 vreg_ofs(s, a->rs2), cpu_env, \ 1846 s->vlen / 8, s->vlen / 8, data, \ 1847 fns[s->sew]); \ 1848 mark_vs_dirty(s); \ 1849 gen_set_label(over); \ 1850 return true; \ 1851 } \ 1852 return false; \ 1853} 1854GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1855GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1856 1857static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1858{ 1859 return require_rvv(s) && 1860 vext_check_isa_ill(s) && 1861 vext_check_sd(s, a->rd, a->rs2, a->vm); 1862} 1863 1864/* OPIVX with NARROW */ 1865#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1866static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1867{ \ 1868 if (opiwx_narrow_check(s, a)) { \ 1869 static gen_helper_opivx * const fns[3] = { \ 1870 gen_helper_##NAME##_b, \ 1871 gen_helper_##NAME##_h, \ 1872 gen_helper_##NAME##_w, \ 1873 }; \ 1874 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1875 } \ 1876 return false; \ 1877} 1878 1879GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1880GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1881 1882/* OPIWI with NARROW */ 1883#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1884static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1885{ \ 1886 if (opiwx_narrow_check(s, a)) { \ 1887 static gen_helper_opivx * const fns[3] = { \ 1888 gen_helper_##OPIVX##_b, \ 1889 gen_helper_##OPIVX##_h, \ 1890 gen_helper_##OPIVX##_w, \ 1891 }; \ 1892 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1893 fns[s->sew], s, IMM_MODE); \ 1894 } \ 1895 return false; \ 1896} 1897 1898GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1899GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1900 1901/* Vector Integer Comparison Instructions */ 1902/* 1903 * For all comparison instructions, an illegal instruction exception is raised 1904 * if the destination vector register overlaps a source vector register group 1905 * and LMUL > 1. 1906 */ 1907static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1908{ 1909 return require_rvv(s) && 1910 vext_check_isa_ill(s) && 1911 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1912} 1913 1914GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1915GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1916GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1917GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1918GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1919GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1920 1921static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1922{ 1923 return require_rvv(s) && 1924 vext_check_isa_ill(s) && 1925 vext_check_ms(s, a->rd, a->rs2); 1926} 1927 1928GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1929GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1930GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1931GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1932GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1933GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1934GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1935GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1936 1937GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1938GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1939GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1940GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1941GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1942GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1943 1944/* Vector Integer Min/Max Instructions */ 1945GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1946GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1947GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1948GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1949GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1950GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1951GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1952GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1953 1954/* Vector Single-Width Integer Multiply Instructions */ 1955 1956static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 1957{ 1958 /* 1959 * All Zve* extensions support all vector integer instructions, 1960 * except that the vmulh integer multiply variants 1961 * that return the high word of the product 1962 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1963 * are not included for EEW=64 in Zve64*. (Section 18.2) 1964 */ 1965 return opivv_check(s, a) && 1966 (!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); 1967} 1968 1969static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 1970{ 1971 /* 1972 * All Zve* extensions support all vector integer instructions, 1973 * except that the vmulh integer multiply variants 1974 * that return the high word of the product 1975 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1976 * are not included for EEW=64 in Zve64*. (Section 18.2) 1977 */ 1978 return opivx_check(s, a) && 1979 (!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); 1980} 1981 1982GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 1983GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 1984GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 1985GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 1986GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 1987GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 1988GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 1989GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 1990 1991/* Vector Integer Divide Instructions */ 1992GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 1993GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 1994GEN_OPIVV_TRANS(vremu_vv, opivv_check) 1995GEN_OPIVV_TRANS(vrem_vv, opivv_check) 1996GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 1997GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 1998GEN_OPIVX_TRANS(vremu_vx, opivx_check) 1999GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2000 2001/* Vector Widening Integer Multiply Instructions */ 2002GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2003GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2004GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2005GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2006GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2007GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2008 2009/* Vector Single-Width Integer Multiply-Add Instructions */ 2010GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2011GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2012GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2013GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2014GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2015GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2016GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2017GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2018 2019/* Vector Widening Integer Multiply-Add Instructions */ 2020GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2021GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2022GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2023GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2024GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2025GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2026GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2027 2028/* Vector Integer Merge and Move Instructions */ 2029static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2030{ 2031 if (require_rvv(s) && 2032 vext_check_isa_ill(s) && 2033 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2034 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2035 if (s->vl_eq_vlmax) { 2036 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2037 vreg_ofs(s, a->rs1), 2038 MAXSZ(s), MAXSZ(s)); 2039 } else { 2040 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2041 static gen_helper_gvec_2_ptr * const fns[4] = { 2042 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2043 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2044 }; 2045 TCGLabel *over = gen_new_label(); 2046 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2047 2048 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2049 cpu_env, s->vlen / 8, s->vlen / 8, data, 2050 fns[s->sew]); 2051 gen_set_label(over); 2052 } 2053 mark_vs_dirty(s); 2054 return true; 2055 } 2056 return false; 2057} 2058 2059typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2060static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2061{ 2062 if (require_rvv(s) && 2063 vext_check_isa_ill(s) && 2064 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2065 vext_check_ss(s, a->rd, 0, 1)) { 2066 TCGv s1; 2067 TCGLabel *over = gen_new_label(); 2068 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2069 2070 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2071 2072 if (s->vl_eq_vlmax) { 2073 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2074 MAXSZ(s), MAXSZ(s), s1); 2075 } else { 2076 TCGv_i32 desc; 2077 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2078 TCGv_ptr dest = tcg_temp_new_ptr(); 2079 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2080 static gen_helper_vmv_vx * const fns[4] = { 2081 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2082 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2083 }; 2084 2085 tcg_gen_ext_tl_i64(s1_i64, s1); 2086 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2087 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2088 fns[s->sew](dest, s1_i64, cpu_env, desc); 2089 2090 tcg_temp_free_ptr(dest); 2091 tcg_temp_free_i64(s1_i64); 2092 } 2093 2094 mark_vs_dirty(s); 2095 gen_set_label(over); 2096 return true; 2097 } 2098 return false; 2099} 2100 2101static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2102{ 2103 if (require_rvv(s) && 2104 vext_check_isa_ill(s) && 2105 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2106 vext_check_ss(s, a->rd, 0, 1)) { 2107 int64_t simm = sextract64(a->rs1, 0, 5); 2108 if (s->vl_eq_vlmax) { 2109 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2110 MAXSZ(s), MAXSZ(s), simm); 2111 mark_vs_dirty(s); 2112 } else { 2113 TCGv_i32 desc; 2114 TCGv_i64 s1; 2115 TCGv_ptr dest; 2116 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2117 static gen_helper_vmv_vx * const fns[4] = { 2118 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2119 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2120 }; 2121 TCGLabel *over = gen_new_label(); 2122 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2123 2124 s1 = tcg_constant_i64(simm); 2125 dest = tcg_temp_new_ptr(); 2126 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2127 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2128 fns[s->sew](dest, s1, cpu_env, desc); 2129 2130 tcg_temp_free_ptr(dest); 2131 mark_vs_dirty(s); 2132 gen_set_label(over); 2133 } 2134 return true; 2135 } 2136 return false; 2137} 2138 2139GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2140GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2141GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2142 2143/* 2144 *** Vector Fixed-Point Arithmetic Instructions 2145 */ 2146 2147/* Vector Single-Width Saturating Add and Subtract */ 2148GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2149GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2150GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2151GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2152GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2153GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2154GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2155GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2156GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2157GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2158 2159/* Vector Single-Width Averaging Add and Subtract */ 2160GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2161GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2162GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2163GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2164GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2165GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2166GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2167GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2168 2169/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2170 2171static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2172{ 2173 /* 2174 * All Zve* extensions support all vector fixed-point arithmetic 2175 * instructions, except that vsmul.vv and vsmul.vx are not supported 2176 * for EEW=64 in Zve64*. (Section 18.2) 2177 */ 2178 return opivv_check(s, a) && 2179 (!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); 2180} 2181 2182static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2183{ 2184 /* 2185 * All Zve* extensions support all vector fixed-point arithmetic 2186 * instructions, except that vsmul.vv and vsmul.vx are not supported 2187 * for EEW=64 in Zve64*. (Section 18.2) 2188 */ 2189 return opivx_check(s, a) && 2190 (!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); 2191} 2192 2193GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2194GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2195 2196/* Vector Single-Width Scaling Shift Instructions */ 2197GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2198GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2199GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2200GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2201GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2202GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2203 2204/* Vector Narrowing Fixed-Point Clip Instructions */ 2205GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2206GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2207GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2208GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2209GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2210GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2211 2212/* 2213 *** Vector Float Point Arithmetic Instructions 2214 */ 2215 2216/* 2217 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2218 * RVF and RVD can be treated equally. 2219 * We don't have to deal with the cases of: SEW > FLEN. 2220 * 2221 * If SEW < FLEN, check whether input fp register is a valid 2222 * NaN-boxed value, in which case the least-significant SEW bits 2223 * of the f regsiter are used, else the canonical NaN value is used. 2224 */ 2225static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2226{ 2227 switch (s->sew) { 2228 case 1: 2229 gen_check_nanbox_h(out, in); 2230 break; 2231 case 2: 2232 gen_check_nanbox_s(out, in); 2233 break; 2234 case 3: 2235 tcg_gen_mov_i64(out, in); 2236 break; 2237 default: 2238 g_assert_not_reached(); 2239 } 2240} 2241 2242/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2243 2244/* 2245 * If the current SEW does not correspond to a supported IEEE floating-point 2246 * type, an illegal instruction exception is raised. 2247 */ 2248static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2249{ 2250 return require_rvv(s) && 2251 require_rvf(s) && 2252 vext_check_isa_ill(s) && 2253 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2254 require_zve32f(s) && 2255 require_zve64f(s); 2256} 2257 2258/* OPFVV without GVEC IR */ 2259#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2260static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2261{ \ 2262 if (CHECK(s, a)) { \ 2263 uint32_t data = 0; \ 2264 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2265 gen_helper_##NAME##_h, \ 2266 gen_helper_##NAME##_w, \ 2267 gen_helper_##NAME##_d, \ 2268 }; \ 2269 TCGLabel *over = gen_new_label(); \ 2270 gen_set_rm(s, RISCV_FRM_DYN); \ 2271 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2272 \ 2273 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2274 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2275 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2276 vreg_ofs(s, a->rs1), \ 2277 vreg_ofs(s, a->rs2), cpu_env, \ 2278 s->vlen / 8, s->vlen / 8, data, \ 2279 fns[s->sew - 1]); \ 2280 mark_vs_dirty(s); \ 2281 gen_set_label(over); \ 2282 return true; \ 2283 } \ 2284 return false; \ 2285} 2286GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2287GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2288 2289typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2290 TCGv_env, TCGv_i32); 2291 2292static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2293 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2294{ 2295 TCGv_ptr dest, src2, mask; 2296 TCGv_i32 desc; 2297 TCGv_i64 t1; 2298 2299 TCGLabel *over = gen_new_label(); 2300 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2301 2302 dest = tcg_temp_new_ptr(); 2303 mask = tcg_temp_new_ptr(); 2304 src2 = tcg_temp_new_ptr(); 2305 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2306 2307 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2308 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2309 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2310 2311 /* NaN-box f[rs1] */ 2312 t1 = tcg_temp_new_i64(); 2313 do_nanbox(s, t1, cpu_fpr[rs1]); 2314 2315 fn(dest, mask, t1, src2, cpu_env, desc); 2316 2317 tcg_temp_free_ptr(dest); 2318 tcg_temp_free_ptr(mask); 2319 tcg_temp_free_ptr(src2); 2320 tcg_temp_free_i64(t1); 2321 mark_vs_dirty(s); 2322 gen_set_label(over); 2323 return true; 2324} 2325 2326/* 2327 * If the current SEW does not correspond to a supported IEEE floating-point 2328 * type, an illegal instruction exception is raised 2329 */ 2330static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2331{ 2332 return require_rvv(s) && 2333 require_rvf(s) && 2334 vext_check_isa_ill(s) && 2335 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2336 require_zve32f(s) && 2337 require_zve64f(s); 2338} 2339 2340/* OPFVF without GVEC IR */ 2341#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2342static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2343{ \ 2344 if (CHECK(s, a)) { \ 2345 uint32_t data = 0; \ 2346 static gen_helper_opfvf *const fns[3] = { \ 2347 gen_helper_##NAME##_h, \ 2348 gen_helper_##NAME##_w, \ 2349 gen_helper_##NAME##_d, \ 2350 }; \ 2351 gen_set_rm(s, RISCV_FRM_DYN); \ 2352 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2353 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2354 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2355 fns[s->sew - 1], s); \ 2356 } \ 2357 return false; \ 2358} 2359 2360GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2361GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2362GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2363 2364/* Vector Widening Floating-Point Add/Subtract Instructions */ 2365static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2366{ 2367 return require_rvv(s) && 2368 require_scale_rvf(s) && 2369 (s->sew != MO_8) && 2370 vext_check_isa_ill(s) && 2371 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2372 require_scale_zve32f(s) && 2373 require_scale_zve64f(s); 2374} 2375 2376/* OPFVV with WIDEN */ 2377#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2378static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2379{ \ 2380 if (CHECK(s, a)) { \ 2381 uint32_t data = 0; \ 2382 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2383 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2384 }; \ 2385 TCGLabel *over = gen_new_label(); \ 2386 gen_set_rm(s, RISCV_FRM_DYN); \ 2387 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2388 \ 2389 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2390 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2391 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2392 vreg_ofs(s, a->rs1), \ 2393 vreg_ofs(s, a->rs2), cpu_env, \ 2394 s->vlen / 8, s->vlen / 8, data, \ 2395 fns[s->sew - 1]); \ 2396 mark_vs_dirty(s); \ 2397 gen_set_label(over); \ 2398 return true; \ 2399 } \ 2400 return false; \ 2401} 2402 2403GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2404GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2405 2406static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2407{ 2408 return require_rvv(s) && 2409 require_scale_rvf(s) && 2410 (s->sew != MO_8) && 2411 vext_check_isa_ill(s) && 2412 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2413 require_scale_zve32f(s) && 2414 require_scale_zve64f(s); 2415} 2416 2417/* OPFVF with WIDEN */ 2418#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2419static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2420{ \ 2421 if (opfvf_widen_check(s, a)) { \ 2422 uint32_t data = 0; \ 2423 static gen_helper_opfvf *const fns[2] = { \ 2424 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2425 }; \ 2426 gen_set_rm(s, RISCV_FRM_DYN); \ 2427 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2428 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2429 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2430 fns[s->sew - 1], s); \ 2431 } \ 2432 return false; \ 2433} 2434 2435GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2436GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2437 2438static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2439{ 2440 return require_rvv(s) && 2441 require_scale_rvf(s) && 2442 (s->sew != MO_8) && 2443 vext_check_isa_ill(s) && 2444 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2445 require_scale_zve32f(s) && 2446 require_scale_zve64f(s); 2447} 2448 2449/* WIDEN OPFVV with WIDEN */ 2450#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2451static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2452{ \ 2453 if (opfwv_widen_check(s, a)) { \ 2454 uint32_t data = 0; \ 2455 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2456 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2457 }; \ 2458 TCGLabel *over = gen_new_label(); \ 2459 gen_set_rm(s, RISCV_FRM_DYN); \ 2460 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2461 \ 2462 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2463 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2464 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2465 vreg_ofs(s, a->rs1), \ 2466 vreg_ofs(s, a->rs2), cpu_env, \ 2467 s->vlen / 8, s->vlen / 8, data, \ 2468 fns[s->sew - 1]); \ 2469 mark_vs_dirty(s); \ 2470 gen_set_label(over); \ 2471 return true; \ 2472 } \ 2473 return false; \ 2474} 2475 2476GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2477GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2478 2479static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2480{ 2481 return require_rvv(s) && 2482 require_scale_rvf(s) && 2483 (s->sew != MO_8) && 2484 vext_check_isa_ill(s) && 2485 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2486 require_scale_zve32f(s) && 2487 require_scale_zve64f(s); 2488} 2489 2490/* WIDEN OPFVF with WIDEN */ 2491#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2492static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2493{ \ 2494 if (opfwf_widen_check(s, a)) { \ 2495 uint32_t data = 0; \ 2496 static gen_helper_opfvf *const fns[2] = { \ 2497 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2498 }; \ 2499 gen_set_rm(s, RISCV_FRM_DYN); \ 2500 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2501 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2502 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2503 fns[s->sew - 1], s); \ 2504 } \ 2505 return false; \ 2506} 2507 2508GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2509GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2510 2511/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2512GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2513GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2514GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2515GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2516GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2517 2518/* Vector Widening Floating-Point Multiply */ 2519GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2520GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2521 2522/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2523GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2524GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2525GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2526GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2527GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2528GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2529GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2530GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2531GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2532GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2533GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2534GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2535GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2536GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2537GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2538GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2539 2540/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2541GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2542GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2543GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2544GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2545GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2546GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2547GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2548GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2549 2550/* Vector Floating-Point Square-Root Instruction */ 2551 2552/* 2553 * If the current SEW does not correspond to a supported IEEE floating-point 2554 * type, an illegal instruction exception is raised 2555 */ 2556static bool opfv_check(DisasContext *s, arg_rmr *a) 2557{ 2558 return require_rvv(s) && 2559 require_rvf(s) && 2560 vext_check_isa_ill(s) && 2561 /* OPFV instructions ignore vs1 check */ 2562 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2563 require_zve32f(s) && 2564 require_zve64f(s); 2565} 2566 2567static bool do_opfv(DisasContext *s, arg_rmr *a, 2568 gen_helper_gvec_3_ptr *fn, 2569 bool (*checkfn)(DisasContext *, arg_rmr *), 2570 int rm) 2571{ 2572 if (checkfn(s, a)) { 2573 if (rm != RISCV_FRM_DYN) { 2574 gen_set_rm(s, RISCV_FRM_DYN); 2575 } 2576 2577 uint32_t data = 0; 2578 TCGLabel *over = gen_new_label(); 2579 gen_set_rm(s, rm); 2580 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2581 2582 data = FIELD_DP32(data, VDATA, VM, a->vm); 2583 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2584 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2585 vreg_ofs(s, a->rs2), cpu_env, 2586 s->vlen / 8, s->vlen / 8, data, fn); 2587 mark_vs_dirty(s); 2588 gen_set_label(over); 2589 return true; 2590 } 2591 return false; 2592} 2593 2594#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2595static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2596{ \ 2597 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2598 gen_helper_##NAME##_h, \ 2599 gen_helper_##NAME##_w, \ 2600 gen_helper_##NAME##_d \ 2601 }; \ 2602 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2603} 2604 2605GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2606GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2607GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2608 2609/* Vector Floating-Point MIN/MAX Instructions */ 2610GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2611GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2612GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2613GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2614 2615/* Vector Floating-Point Sign-Injection Instructions */ 2616GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2617GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2618GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2619GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2620GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2621GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2622 2623/* Vector Floating-Point Compare Instructions */ 2624static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2625{ 2626 return require_rvv(s) && 2627 require_rvf(s) && 2628 vext_check_isa_ill(s) && 2629 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2630 require_zve32f(s) && 2631 require_zve64f(s); 2632} 2633 2634GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2635GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2636GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2637GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2638 2639static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2640{ 2641 return require_rvv(s) && 2642 require_rvf(s) && 2643 vext_check_isa_ill(s) && 2644 vext_check_ms(s, a->rd, a->rs2) && 2645 require_zve32f(s) && 2646 require_zve64f(s); 2647} 2648 2649GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2650GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2651GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2652GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2653GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2654GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2655 2656/* Vector Floating-Point Classify Instruction */ 2657GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2658 2659/* Vector Floating-Point Merge Instruction */ 2660GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2661 2662static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2663{ 2664 if (require_rvv(s) && 2665 require_rvf(s) && 2666 vext_check_isa_ill(s) && 2667 require_align(a->rd, s->lmul) && 2668 require_zve32f(s) && 2669 require_zve64f(s)) { 2670 gen_set_rm(s, RISCV_FRM_DYN); 2671 2672 TCGv_i64 t1; 2673 2674 if (s->vl_eq_vlmax) { 2675 t1 = tcg_temp_new_i64(); 2676 /* NaN-box f[rs1] */ 2677 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2678 2679 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2680 MAXSZ(s), MAXSZ(s), t1); 2681 mark_vs_dirty(s); 2682 } else { 2683 TCGv_ptr dest; 2684 TCGv_i32 desc; 2685 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2686 static gen_helper_vmv_vx * const fns[3] = { 2687 gen_helper_vmv_v_x_h, 2688 gen_helper_vmv_v_x_w, 2689 gen_helper_vmv_v_x_d, 2690 }; 2691 TCGLabel *over = gen_new_label(); 2692 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2693 2694 t1 = tcg_temp_new_i64(); 2695 /* NaN-box f[rs1] */ 2696 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2697 2698 dest = tcg_temp_new_ptr(); 2699 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2700 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2701 2702 fns[s->sew - 1](dest, t1, cpu_env, desc); 2703 2704 tcg_temp_free_ptr(dest); 2705 mark_vs_dirty(s); 2706 gen_set_label(over); 2707 } 2708 tcg_temp_free_i64(t1); 2709 return true; 2710 } 2711 return false; 2712} 2713 2714/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2715#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2716static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2717{ \ 2718 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2719 gen_helper_##HELPER##_h, \ 2720 gen_helper_##HELPER##_w, \ 2721 gen_helper_##HELPER##_d \ 2722 }; \ 2723 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2724} 2725 2726GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2727GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2728GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2729GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2730/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2731GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2732GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2733 2734/* Widening Floating-Point/Integer Type-Convert Instructions */ 2735 2736/* 2737 * If the current SEW does not correspond to a supported IEEE floating-point 2738 * type, an illegal instruction exception is raised 2739 */ 2740static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2741{ 2742 return require_rvv(s) && 2743 vext_check_isa_ill(s) && 2744 vext_check_ds(s, a->rd, a->rs2, a->vm); 2745} 2746 2747static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2748{ 2749 return opfv_widen_check(s, a) && 2750 require_rvf(s) && 2751 require_zve32f(s) && 2752 require_zve64f(s); 2753} 2754 2755static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2756{ 2757 return opfv_widen_check(s, a) && 2758 require_scale_rvf(s) && 2759 (s->sew != MO_8) && 2760 require_scale_zve32f(s) && 2761 require_scale_zve64f(s); 2762} 2763 2764#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2765static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2766{ \ 2767 if (CHECK(s, a)) { \ 2768 if (FRM != RISCV_FRM_DYN) { \ 2769 gen_set_rm(s, RISCV_FRM_DYN); \ 2770 } \ 2771 \ 2772 uint32_t data = 0; \ 2773 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2774 gen_helper_##HELPER##_h, \ 2775 gen_helper_##HELPER##_w, \ 2776 }; \ 2777 TCGLabel *over = gen_new_label(); \ 2778 gen_set_rm(s, FRM); \ 2779 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2780 \ 2781 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2782 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2783 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2784 vreg_ofs(s, a->rs2), cpu_env, \ 2785 s->vlen / 8, s->vlen / 8, data, \ 2786 fns[s->sew - 1]); \ 2787 mark_vs_dirty(s); \ 2788 gen_set_label(over); \ 2789 return true; \ 2790 } \ 2791 return false; \ 2792} 2793 2794GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2795 RISCV_FRM_DYN) 2796GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2797 RISCV_FRM_DYN) 2798GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2799 RISCV_FRM_DYN) 2800/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2801GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2802 RISCV_FRM_RTZ) 2803GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2804 RISCV_FRM_RTZ) 2805 2806static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2807{ 2808 return require_rvv(s) && 2809 require_scale_rvf(s) && 2810 vext_check_isa_ill(s) && 2811 /* OPFV widening instructions ignore vs1 check */ 2812 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2813 require_scale_zve32f(s) && 2814 require_scale_zve64f(s); 2815} 2816 2817#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2818static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2819{ \ 2820 if (opfxv_widen_check(s, a)) { \ 2821 uint32_t data = 0; \ 2822 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2823 gen_helper_##NAME##_b, \ 2824 gen_helper_##NAME##_h, \ 2825 gen_helper_##NAME##_w, \ 2826 }; \ 2827 TCGLabel *over = gen_new_label(); \ 2828 gen_set_rm(s, RISCV_FRM_DYN); \ 2829 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2830 \ 2831 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2832 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2833 vreg_ofs(s, a->rs2), cpu_env, \ 2834 s->vlen / 8, s->vlen / 8, data, \ 2835 fns[s->sew]); \ 2836 mark_vs_dirty(s); \ 2837 gen_set_label(over); \ 2838 return true; \ 2839 } \ 2840 return false; \ 2841} 2842 2843GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2844GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2845 2846/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2847 2848/* 2849 * If the current SEW does not correspond to a supported IEEE floating-point 2850 * type, an illegal instruction exception is raised 2851 */ 2852static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2853{ 2854 return require_rvv(s) && 2855 vext_check_isa_ill(s) && 2856 /* OPFV narrowing instructions ignore vs1 check */ 2857 vext_check_sd(s, a->rd, a->rs2, a->vm); 2858} 2859 2860static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2861{ 2862 return opfv_narrow_check(s, a) && 2863 require_rvf(s) && 2864 (s->sew != MO_64) && 2865 require_zve64f(s); 2866} 2867 2868static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2869{ 2870 return opfv_narrow_check(s, a) && 2871 require_scale_rvf(s) && 2872 (s->sew != MO_8) && 2873 require_scale_zve64f(s); 2874} 2875 2876#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2877static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2878{ \ 2879 if (CHECK(s, a)) { \ 2880 if (FRM != RISCV_FRM_DYN) { \ 2881 gen_set_rm(s, RISCV_FRM_DYN); \ 2882 } \ 2883 \ 2884 uint32_t data = 0; \ 2885 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2886 gen_helper_##HELPER##_h, \ 2887 gen_helper_##HELPER##_w, \ 2888 }; \ 2889 TCGLabel *over = gen_new_label(); \ 2890 gen_set_rm(s, FRM); \ 2891 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2892 \ 2893 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2894 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2895 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2896 vreg_ofs(s, a->rs2), cpu_env, \ 2897 s->vlen / 8, s->vlen / 8, data, \ 2898 fns[s->sew - 1]); \ 2899 mark_vs_dirty(s); \ 2900 gen_set_label(over); \ 2901 return true; \ 2902 } \ 2903 return false; \ 2904} 2905 2906GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2907 RISCV_FRM_DYN) 2908GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2909 RISCV_FRM_DYN) 2910GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2911 RISCV_FRM_DYN) 2912/* Reuse the helper function from vfncvt.f.f.w */ 2913GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2914 RISCV_FRM_ROD) 2915 2916static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2917{ 2918 return require_rvv(s) && 2919 require_scale_rvf(s) && 2920 vext_check_isa_ill(s) && 2921 /* OPFV narrowing instructions ignore vs1 check */ 2922 vext_check_sd(s, a->rd, a->rs2, a->vm) && 2923 require_scale_zve64f(s); 2924} 2925 2926#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2927static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2928{ \ 2929 if (opxfv_narrow_check(s, a)) { \ 2930 if (FRM != RISCV_FRM_DYN) { \ 2931 gen_set_rm(s, RISCV_FRM_DYN); \ 2932 } \ 2933 \ 2934 uint32_t data = 0; \ 2935 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2936 gen_helper_##HELPER##_b, \ 2937 gen_helper_##HELPER##_h, \ 2938 gen_helper_##HELPER##_w, \ 2939 }; \ 2940 TCGLabel *over = gen_new_label(); \ 2941 gen_set_rm(s, FRM); \ 2942 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2943 \ 2944 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2945 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2946 vreg_ofs(s, a->rs2), cpu_env, \ 2947 s->vlen / 8, s->vlen / 8, data, \ 2948 fns[s->sew]); \ 2949 mark_vs_dirty(s); \ 2950 gen_set_label(over); \ 2951 return true; \ 2952 } \ 2953 return false; \ 2954} 2955 2956GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 2957GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 2958/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 2959GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 2960GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 2961 2962/* 2963 *** Vector Reduction Operations 2964 */ 2965/* Vector Single-Width Integer Reduction Instructions */ 2966static bool reduction_check(DisasContext *s, arg_rmrr *a) 2967{ 2968 return require_rvv(s) && 2969 vext_check_isa_ill(s) && 2970 vext_check_reduction(s, a->rs2); 2971} 2972 2973GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 2974GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 2975GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 2976GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 2977GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 2978GEN_OPIVV_TRANS(vredand_vs, reduction_check) 2979GEN_OPIVV_TRANS(vredor_vs, reduction_check) 2980GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 2981 2982/* Vector Widening Integer Reduction Instructions */ 2983static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 2984{ 2985 return reduction_check(s, a) && (s->sew < MO_64) && 2986 ((s->sew + 1) <= (s->elen >> 4)); 2987} 2988 2989GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 2990GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 2991 2992/* Vector Single-Width Floating-Point Reduction Instructions */ 2993static bool freduction_check(DisasContext *s, arg_rmrr *a) 2994{ 2995 return reduction_check(s, a) && 2996 require_rvf(s) && 2997 require_zve32f(s) && 2998 require_zve64f(s); 2999} 3000 3001GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3002GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3003GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3004 3005/* Vector Widening Floating-Point Reduction Instructions */ 3006static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3007{ 3008 return reduction_widen_check(s, a) && 3009 require_scale_rvf(s) && 3010 (s->sew != MO_8); 3011} 3012 3013GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3014 3015/* 3016 *** Vector Mask Operations 3017 */ 3018 3019/* Vector Mask-Register Logical Instructions */ 3020#define GEN_MM_TRANS(NAME) \ 3021static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3022{ \ 3023 if (require_rvv(s) && \ 3024 vext_check_isa_ill(s)) { \ 3025 uint32_t data = 0; \ 3026 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3027 TCGLabel *over = gen_new_label(); \ 3028 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3029 \ 3030 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3031 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3032 vreg_ofs(s, a->rs1), \ 3033 vreg_ofs(s, a->rs2), cpu_env, \ 3034 s->vlen / 8, s->vlen / 8, data, fn); \ 3035 mark_vs_dirty(s); \ 3036 gen_set_label(over); \ 3037 return true; \ 3038 } \ 3039 return false; \ 3040} 3041 3042GEN_MM_TRANS(vmand_mm) 3043GEN_MM_TRANS(vmnand_mm) 3044GEN_MM_TRANS(vmandn_mm) 3045GEN_MM_TRANS(vmxor_mm) 3046GEN_MM_TRANS(vmor_mm) 3047GEN_MM_TRANS(vmnor_mm) 3048GEN_MM_TRANS(vmorn_mm) 3049GEN_MM_TRANS(vmxnor_mm) 3050 3051/* Vector count population in mask vcpop */ 3052static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3053{ 3054 if (require_rvv(s) && 3055 vext_check_isa_ill(s) && 3056 s->vstart == 0) { 3057 TCGv_ptr src2, mask; 3058 TCGv dst; 3059 TCGv_i32 desc; 3060 uint32_t data = 0; 3061 data = FIELD_DP32(data, VDATA, VM, a->vm); 3062 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3063 3064 mask = tcg_temp_new_ptr(); 3065 src2 = tcg_temp_new_ptr(); 3066 dst = dest_gpr(s, a->rd); 3067 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 3068 3069 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3070 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3071 3072 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3073 gen_set_gpr(s, a->rd, dst); 3074 3075 tcg_temp_free_ptr(mask); 3076 tcg_temp_free_ptr(src2); 3077 3078 return true; 3079 } 3080 return false; 3081} 3082 3083/* vmfirst find-first-set mask bit */ 3084static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3085{ 3086 if (require_rvv(s) && 3087 vext_check_isa_ill(s) && 3088 s->vstart == 0) { 3089 TCGv_ptr src2, mask; 3090 TCGv dst; 3091 TCGv_i32 desc; 3092 uint32_t data = 0; 3093 data = FIELD_DP32(data, VDATA, VM, a->vm); 3094 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3095 3096 mask = tcg_temp_new_ptr(); 3097 src2 = tcg_temp_new_ptr(); 3098 dst = dest_gpr(s, a->rd); 3099 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 3100 3101 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3102 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3103 3104 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3105 gen_set_gpr(s, a->rd, dst); 3106 3107 tcg_temp_free_ptr(mask); 3108 tcg_temp_free_ptr(src2); 3109 return true; 3110 } 3111 return false; 3112} 3113 3114/* vmsbf.m set-before-first mask bit */ 3115/* vmsif.m set-includ-first mask bit */ 3116/* vmsof.m set-only-first mask bit */ 3117#define GEN_M_TRANS(NAME) \ 3118static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3119{ \ 3120 if (require_rvv(s) && \ 3121 vext_check_isa_ill(s) && \ 3122 require_vm(a->vm, a->rd) && \ 3123 (a->rd != a->rs2) && \ 3124 (s->vstart == 0)) { \ 3125 uint32_t data = 0; \ 3126 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3127 TCGLabel *over = gen_new_label(); \ 3128 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3129 \ 3130 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3131 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3132 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3133 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3134 cpu_env, s->vlen / 8, s->vlen / 8, \ 3135 data, fn); \ 3136 mark_vs_dirty(s); \ 3137 gen_set_label(over); \ 3138 return true; \ 3139 } \ 3140 return false; \ 3141} 3142 3143GEN_M_TRANS(vmsbf_m) 3144GEN_M_TRANS(vmsif_m) 3145GEN_M_TRANS(vmsof_m) 3146 3147/* 3148 * Vector Iota Instruction 3149 * 3150 * 1. The destination register cannot overlap the source register. 3151 * 2. If masked, cannot overlap the mask register ('v0'). 3152 * 3. An illegal instruction exception is raised if vstart is non-zero. 3153 */ 3154static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3155{ 3156 if (require_rvv(s) && 3157 vext_check_isa_ill(s) && 3158 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3159 require_vm(a->vm, a->rd) && 3160 require_align(a->rd, s->lmul) && 3161 (s->vstart == 0)) { 3162 uint32_t data = 0; 3163 TCGLabel *over = gen_new_label(); 3164 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3165 3166 data = FIELD_DP32(data, VDATA, VM, a->vm); 3167 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3168 static gen_helper_gvec_3_ptr * const fns[4] = { 3169 gen_helper_viota_m_b, gen_helper_viota_m_h, 3170 gen_helper_viota_m_w, gen_helper_viota_m_d, 3171 }; 3172 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3173 vreg_ofs(s, a->rs2), cpu_env, 3174 s->vlen / 8, s->vlen / 8, data, fns[s->sew]); 3175 mark_vs_dirty(s); 3176 gen_set_label(over); 3177 return true; 3178 } 3179 return false; 3180} 3181 3182/* Vector Element Index Instruction */ 3183static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3184{ 3185 if (require_rvv(s) && 3186 vext_check_isa_ill(s) && 3187 require_align(a->rd, s->lmul) && 3188 require_vm(a->vm, a->rd)) { 3189 uint32_t data = 0; 3190 TCGLabel *over = gen_new_label(); 3191 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3192 3193 data = FIELD_DP32(data, VDATA, VM, a->vm); 3194 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3195 static gen_helper_gvec_2_ptr * const fns[4] = { 3196 gen_helper_vid_v_b, gen_helper_vid_v_h, 3197 gen_helper_vid_v_w, gen_helper_vid_v_d, 3198 }; 3199 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3200 cpu_env, s->vlen / 8, s->vlen / 8, 3201 data, fns[s->sew]); 3202 mark_vs_dirty(s); 3203 gen_set_label(over); 3204 return true; 3205 } 3206 return false; 3207} 3208 3209/* 3210 *** Vector Permutation Instructions 3211 */ 3212 3213static void load_element(TCGv_i64 dest, TCGv_ptr base, 3214 int ofs, int sew, bool sign) 3215{ 3216 switch (sew) { 3217 case MO_8: 3218 if (!sign) { 3219 tcg_gen_ld8u_i64(dest, base, ofs); 3220 } else { 3221 tcg_gen_ld8s_i64(dest, base, ofs); 3222 } 3223 break; 3224 case MO_16: 3225 if (!sign) { 3226 tcg_gen_ld16u_i64(dest, base, ofs); 3227 } else { 3228 tcg_gen_ld16s_i64(dest, base, ofs); 3229 } 3230 break; 3231 case MO_32: 3232 if (!sign) { 3233 tcg_gen_ld32u_i64(dest, base, ofs); 3234 } else { 3235 tcg_gen_ld32s_i64(dest, base, ofs); 3236 } 3237 break; 3238 case MO_64: 3239 tcg_gen_ld_i64(dest, base, ofs); 3240 break; 3241 default: 3242 g_assert_not_reached(); 3243 break; 3244 } 3245} 3246 3247/* offset of the idx element with base regsiter r */ 3248static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3249{ 3250#ifdef HOST_WORDS_BIGENDIAN 3251 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3252#else 3253 return vreg_ofs(s, r) + (idx << s->sew); 3254#endif 3255} 3256 3257/* adjust the index according to the endian */ 3258static void endian_adjust(TCGv_i32 ofs, int sew) 3259{ 3260#ifdef HOST_WORDS_BIGENDIAN 3261 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3262#endif 3263} 3264 3265/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3266static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3267 int vreg, TCGv idx, int vlmax) 3268{ 3269 TCGv_i32 ofs = tcg_temp_new_i32(); 3270 TCGv_ptr base = tcg_temp_new_ptr(); 3271 TCGv_i64 t_idx = tcg_temp_new_i64(); 3272 TCGv_i64 t_vlmax, t_zero; 3273 3274 /* 3275 * Mask the index to the length so that we do 3276 * not produce an out-of-range load. 3277 */ 3278 tcg_gen_trunc_tl_i32(ofs, idx); 3279 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3280 3281 /* Convert the index to an offset. */ 3282 endian_adjust(ofs, s->sew); 3283 tcg_gen_shli_i32(ofs, ofs, s->sew); 3284 3285 /* Convert the index to a pointer. */ 3286 tcg_gen_ext_i32_ptr(base, ofs); 3287 tcg_gen_add_ptr(base, base, cpu_env); 3288 3289 /* Perform the load. */ 3290 load_element(dest, base, 3291 vreg_ofs(s, vreg), s->sew, false); 3292 tcg_temp_free_ptr(base); 3293 tcg_temp_free_i32(ofs); 3294 3295 /* Flush out-of-range indexing to zero. */ 3296 t_vlmax = tcg_constant_i64(vlmax); 3297 t_zero = tcg_constant_i64(0); 3298 tcg_gen_extu_tl_i64(t_idx, idx); 3299 3300 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3301 t_vlmax, dest, t_zero); 3302 3303 tcg_temp_free_i64(t_idx); 3304} 3305 3306static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3307 int vreg, int idx, bool sign) 3308{ 3309 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3310} 3311 3312/* Integer Scalar Move Instruction */ 3313 3314static void store_element(TCGv_i64 val, TCGv_ptr base, 3315 int ofs, int sew) 3316{ 3317 switch (sew) { 3318 case MO_8: 3319 tcg_gen_st8_i64(val, base, ofs); 3320 break; 3321 case MO_16: 3322 tcg_gen_st16_i64(val, base, ofs); 3323 break; 3324 case MO_32: 3325 tcg_gen_st32_i64(val, base, ofs); 3326 break; 3327 case MO_64: 3328 tcg_gen_st_i64(val, base, ofs); 3329 break; 3330 default: 3331 g_assert_not_reached(); 3332 break; 3333 } 3334} 3335 3336/* 3337 * Store vreg[idx] = val. 3338 * The index must be in range of VLMAX. 3339 */ 3340static void vec_element_storei(DisasContext *s, int vreg, 3341 int idx, TCGv_i64 val) 3342{ 3343 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3344} 3345 3346/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3347static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3348{ 3349 if (require_rvv(s) && 3350 vext_check_isa_ill(s)) { 3351 TCGv_i64 t1; 3352 TCGv dest; 3353 3354 t1 = tcg_temp_new_i64(); 3355 dest = tcg_temp_new(); 3356 /* 3357 * load vreg and sign-extend to 64 bits, 3358 * then truncate to XLEN bits before storing to gpr. 3359 */ 3360 vec_element_loadi(s, t1, a->rs2, 0, true); 3361 tcg_gen_trunc_i64_tl(dest, t1); 3362 gen_set_gpr(s, a->rd, dest); 3363 tcg_temp_free_i64(t1); 3364 tcg_temp_free(dest); 3365 3366 return true; 3367 } 3368 return false; 3369} 3370 3371/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3372static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3373{ 3374 if (require_rvv(s) && 3375 vext_check_isa_ill(s)) { 3376 /* This instruction ignores LMUL and vector register groups */ 3377 TCGv_i64 t1; 3378 TCGv s1; 3379 TCGLabel *over = gen_new_label(); 3380 3381 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3382 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3383 3384 t1 = tcg_temp_new_i64(); 3385 3386 /* 3387 * load gpr and sign-extend to 64 bits, 3388 * then truncate to SEW bits when storing to vreg. 3389 */ 3390 s1 = get_gpr(s, a->rs1, EXT_NONE); 3391 tcg_gen_ext_tl_i64(t1, s1); 3392 vec_element_storei(s, a->rd, 0, t1); 3393 tcg_temp_free_i64(t1); 3394 mark_vs_dirty(s); 3395 gen_set_label(over); 3396 return true; 3397 } 3398 return false; 3399} 3400 3401/* Floating-Point Scalar Move Instructions */ 3402static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3403{ 3404 if (require_rvv(s) && 3405 require_rvf(s) && 3406 vext_check_isa_ill(s) && 3407 require_zve32f(s) && 3408 require_zve64f(s)) { 3409 gen_set_rm(s, RISCV_FRM_DYN); 3410 3411 unsigned int ofs = (8 << s->sew); 3412 unsigned int len = 64 - ofs; 3413 TCGv_i64 t_nan; 3414 3415 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3416 /* NaN-box f[rd] as necessary for SEW */ 3417 if (len) { 3418 t_nan = tcg_constant_i64(UINT64_MAX); 3419 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3420 t_nan, ofs, len); 3421 } 3422 3423 mark_fs_dirty(s); 3424 return true; 3425 } 3426 return false; 3427} 3428 3429/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3430static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3431{ 3432 if (require_rvv(s) && 3433 require_rvf(s) && 3434 vext_check_isa_ill(s) && 3435 require_zve32f(s) && 3436 require_zve64f(s)) { 3437 gen_set_rm(s, RISCV_FRM_DYN); 3438 3439 /* The instructions ignore LMUL and vector register group. */ 3440 TCGv_i64 t1; 3441 TCGLabel *over = gen_new_label(); 3442 3443 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3444 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3445 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3446 3447 /* NaN-box f[rs1] */ 3448 t1 = tcg_temp_new_i64(); 3449 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3450 3451 vec_element_storei(s, a->rd, 0, t1); 3452 tcg_temp_free_i64(t1); 3453 mark_vs_dirty(s); 3454 gen_set_label(over); 3455 return true; 3456 } 3457 return false; 3458} 3459 3460/* Vector Slide Instructions */ 3461static bool slideup_check(DisasContext *s, arg_rmrr *a) 3462{ 3463 return require_rvv(s) && 3464 vext_check_isa_ill(s) && 3465 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3466} 3467 3468GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3469GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3470GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3471 3472static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3473{ 3474 return require_rvv(s) && 3475 vext_check_isa_ill(s) && 3476 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3477} 3478 3479GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3480GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3481GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3482 3483/* Vector Floating-Point Slide Instructions */ 3484static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3485{ 3486 return slideup_check(s, a) && 3487 require_rvf(s) && 3488 require_zve32f(s) && 3489 require_zve64f(s); 3490} 3491 3492static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3493{ 3494 return slidedown_check(s, a) && 3495 require_rvf(s) && 3496 require_zve32f(s) && 3497 require_zve64f(s); 3498} 3499 3500GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3501GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3502 3503/* Vector Register Gather Instruction */ 3504static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3505{ 3506 return require_rvv(s) && 3507 vext_check_isa_ill(s) && 3508 require_align(a->rd, s->lmul) && 3509 require_align(a->rs1, s->lmul) && 3510 require_align(a->rs2, s->lmul) && 3511 (a->rd != a->rs2 && a->rd != a->rs1) && 3512 require_vm(a->vm, a->rd); 3513} 3514 3515static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3516{ 3517 int8_t emul = MO_16 - s->sew + s->lmul; 3518 return require_rvv(s) && 3519 vext_check_isa_ill(s) && 3520 (emul >= -3 && emul <= 3) && 3521 require_align(a->rd, s->lmul) && 3522 require_align(a->rs1, emul) && 3523 require_align(a->rs2, s->lmul) && 3524 (a->rd != a->rs2 && a->rd != a->rs1) && 3525 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3526 a->rs1, 1 << MAX(emul, 0)) && 3527 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3528 a->rs2, 1 << MAX(s->lmul, 0)) && 3529 require_vm(a->vm, a->rd); 3530} 3531 3532GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3533GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3534 3535static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3536{ 3537 return require_rvv(s) && 3538 vext_check_isa_ill(s) && 3539 require_align(a->rd, s->lmul) && 3540 require_align(a->rs2, s->lmul) && 3541 (a->rd != a->rs2) && 3542 require_vm(a->vm, a->rd); 3543} 3544 3545/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3546static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3547{ 3548 if (!vrgather_vx_check(s, a)) { 3549 return false; 3550 } 3551 3552 if (a->vm && s->vl_eq_vlmax) { 3553 int scale = s->lmul - (s->sew + 3); 3554 int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; 3555 TCGv_i64 dest = tcg_temp_new_i64(); 3556 3557 if (a->rs1 == 0) { 3558 vec_element_loadi(s, dest, a->rs2, 0, false); 3559 } else { 3560 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3561 } 3562 3563 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3564 MAXSZ(s), MAXSZ(s), dest); 3565 tcg_temp_free_i64(dest); 3566 mark_vs_dirty(s); 3567 } else { 3568 static gen_helper_opivx * const fns[4] = { 3569 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3570 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3571 }; 3572 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3573 } 3574 return true; 3575} 3576 3577/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3578static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3579{ 3580 if (!vrgather_vx_check(s, a)) { 3581 return false; 3582 } 3583 3584 if (a->vm && s->vl_eq_vlmax) { 3585 int scale = s->lmul - (s->sew + 3); 3586 int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; 3587 if (a->rs1 >= vlmax) { 3588 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3589 MAXSZ(s), MAXSZ(s), 0); 3590 } else { 3591 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3592 endian_ofs(s, a->rs2, a->rs1), 3593 MAXSZ(s), MAXSZ(s)); 3594 } 3595 mark_vs_dirty(s); 3596 } else { 3597 static gen_helper_opivx * const fns[4] = { 3598 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3599 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3600 }; 3601 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3602 s, IMM_ZX); 3603 } 3604 return true; 3605} 3606 3607/* 3608 * Vector Compress Instruction 3609 * 3610 * The destination vector register group cannot overlap the 3611 * source vector register group or the source mask register. 3612 */ 3613static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3614{ 3615 return require_rvv(s) && 3616 vext_check_isa_ill(s) && 3617 require_align(a->rd, s->lmul) && 3618 require_align(a->rs2, s->lmul) && 3619 (a->rd != a->rs2) && 3620 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3621 (s->vstart == 0); 3622} 3623 3624static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3625{ 3626 if (vcompress_vm_check(s, a)) { 3627 uint32_t data = 0; 3628 static gen_helper_gvec_4_ptr * const fns[4] = { 3629 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3630 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3631 }; 3632 TCGLabel *over = gen_new_label(); 3633 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3634 3635 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3636 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3637 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3638 cpu_env, s->vlen / 8, s->vlen / 8, data, 3639 fns[s->sew]); 3640 mark_vs_dirty(s); 3641 gen_set_label(over); 3642 return true; 3643 } 3644 return false; 3645} 3646 3647/* 3648 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3649 * Thus, we don't need to check vill bit. (Section 16.6) 3650 */ 3651#define GEN_VMV_WHOLE_TRANS(NAME, LEN, SEQ) \ 3652static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3653{ \ 3654 if (require_rvv(s) && \ 3655 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3656 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3657 uint32_t maxsz = (s->vlen >> 3) * LEN; \ 3658 if (s->vstart == 0) { \ 3659 /* EEW = 8 */ \ 3660 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3661 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3662 mark_vs_dirty(s); \ 3663 } else { \ 3664 TCGLabel *over = gen_new_label(); \ 3665 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3666 \ 3667 static gen_helper_gvec_2_ptr * const fns[4] = { \ 3668 gen_helper_vmv1r_v, gen_helper_vmv2r_v, \ 3669 gen_helper_vmv4r_v, gen_helper_vmv8r_v, \ 3670 }; \ 3671 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3672 cpu_env, maxsz, maxsz, 0, fns[SEQ]); \ 3673 mark_vs_dirty(s); \ 3674 gen_set_label(over); \ 3675 } \ 3676 return true; \ 3677 } \ 3678 return false; \ 3679} 3680 3681GEN_VMV_WHOLE_TRANS(vmv1r_v, 1, 0) 3682GEN_VMV_WHOLE_TRANS(vmv2r_v, 2, 1) 3683GEN_VMV_WHOLE_TRANS(vmv4r_v, 4, 2) 3684GEN_VMV_WHOLE_TRANS(vmv8r_v, 8, 3) 3685 3686static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3687{ 3688 uint8_t from = (s->sew + 3) - div; 3689 bool ret = require_rvv(s) && 3690 (from >= 3 && from <= 8) && 3691 (a->rd != a->rs2) && 3692 require_align(a->rd, s->lmul) && 3693 require_align(a->rs2, s->lmul - div) && 3694 require_vm(a->vm, a->rd) && 3695 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3696 return ret; 3697} 3698 3699static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3700{ 3701 uint32_t data = 0; 3702 gen_helper_gvec_3_ptr *fn; 3703 TCGLabel *over = gen_new_label(); 3704 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3705 3706 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3707 { 3708 NULL, gen_helper_vzext_vf2_h, 3709 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3710 }, 3711 { 3712 NULL, NULL, 3713 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3714 }, 3715 { 3716 NULL, NULL, 3717 NULL, gen_helper_vzext_vf8_d 3718 }, 3719 { 3720 NULL, gen_helper_vsext_vf2_h, 3721 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3722 }, 3723 { 3724 NULL, NULL, 3725 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3726 }, 3727 { 3728 NULL, NULL, 3729 NULL, gen_helper_vsext_vf8_d 3730 } 3731 }; 3732 3733 fn = fns[seq][s->sew]; 3734 if (fn == NULL) { 3735 return false; 3736 } 3737 3738 data = FIELD_DP32(data, VDATA, VM, a->vm); 3739 3740 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3741 vreg_ofs(s, a->rs2), cpu_env, 3742 s->vlen / 8, s->vlen / 8, data, fn); 3743 3744 mark_vs_dirty(s); 3745 gen_set_label(over); 3746 return true; 3747} 3748 3749/* Vector Integer Extension */ 3750#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3751static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3752{ \ 3753 if (int_ext_check(s, a, DIV)) { \ 3754 return int_ext_op(s, a, SEQ); \ 3755 } \ 3756 return false; \ 3757} 3758 3759GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3760GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3761GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3762GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3763GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3764GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3765