1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 715} 716 717static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 718{ 719 return require_rvv(s) && 720 vext_check_isa_ill(s) && 721 vext_check_load(s, a->rd, a->nf, a->vm, eew); 722} 723 724GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 725GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 728 729static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 730{ 731 uint32_t data = 0; 732 gen_helper_ldst_us *fn; 733 static gen_helper_ldst_us * const fns[2][4] = { 734 /* masked unit stride store */ 735 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 736 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 737 /* unmasked unit stride store */ 738 { gen_helper_vse8_v, gen_helper_vse16_v, 739 gen_helper_vse32_v, gen_helper_vse64_v } 740 }; 741 742 fn = fns[a->vm][eew]; 743 if (fn == NULL) { 744 return false; 745 } 746 747 uint8_t emul = vext_get_emul(s, eew); 748 data = FIELD_DP32(data, VDATA, VM, a->vm); 749 data = FIELD_DP32(data, VDATA, LMUL, emul); 750 data = FIELD_DP32(data, VDATA, NF, a->nf); 751 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 752} 753 754static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 755{ 756 return require_rvv(s) && 757 vext_check_isa_ill(s) && 758 vext_check_store(s, a->rd, a->nf, eew); 759} 760 761GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 762GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 765 766/* 767 *** unit stride mask load and store 768 */ 769static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 770{ 771 uint32_t data = 0; 772 gen_helper_ldst_us *fn = gen_helper_vlm_v; 773 774 /* EMUL = 1, NFIELDS = 1 */ 775 data = FIELD_DP32(data, VDATA, LMUL, 0); 776 data = FIELD_DP32(data, VDATA, NF, 1); 777 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 778} 779 780static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 781{ 782 /* EMUL = 1, NFIELDS = 1 */ 783 return require_rvv(s) && vext_check_isa_ill(s); 784} 785 786static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 787{ 788 uint32_t data = 0; 789 gen_helper_ldst_us *fn = gen_helper_vsm_v; 790 791 /* EMUL = 1, NFIELDS = 1 */ 792 data = FIELD_DP32(data, VDATA, LMUL, 0); 793 data = FIELD_DP32(data, VDATA, NF, 1); 794 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 795} 796 797static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 798{ 799 /* EMUL = 1, NFIELDS = 1 */ 800 return require_rvv(s) && vext_check_isa_ill(s); 801} 802 803GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 804GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 805 806/* 807 *** stride load and store 808 */ 809typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 810 TCGv, TCGv_env, TCGv_i32); 811 812static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 813 uint32_t data, gen_helper_ldst_stride *fn, 814 DisasContext *s, bool is_store) 815{ 816 TCGv_ptr dest, mask; 817 TCGv base, stride; 818 TCGv_i32 desc; 819 820 TCGLabel *over = gen_new_label(); 821 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 822 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 823 824 dest = tcg_temp_new_ptr(); 825 mask = tcg_temp_new_ptr(); 826 base = get_gpr(s, rs1, EXT_NONE); 827 stride = get_gpr(s, rs2, EXT_NONE); 828 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 829 s->cfg_ptr->vlen / 8, data)); 830 831 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 832 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 833 834 fn(dest, mask, base, stride, cpu_env, desc); 835 836 tcg_temp_free_ptr(dest); 837 tcg_temp_free_ptr(mask); 838 839 if (!is_store) { 840 mark_vs_dirty(s); 841 } 842 843 gen_set_label(over); 844 return true; 845} 846 847static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 848{ 849 uint32_t data = 0; 850 gen_helper_ldst_stride *fn; 851 static gen_helper_ldst_stride * const fns[4] = { 852 gen_helper_vlse8_v, gen_helper_vlse16_v, 853 gen_helper_vlse32_v, gen_helper_vlse64_v 854 }; 855 856 fn = fns[eew]; 857 if (fn == NULL) { 858 return false; 859 } 860 861 uint8_t emul = vext_get_emul(s, eew); 862 data = FIELD_DP32(data, VDATA, VM, a->vm); 863 data = FIELD_DP32(data, VDATA, LMUL, emul); 864 data = FIELD_DP32(data, VDATA, NF, a->nf); 865 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 866} 867 868static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 869{ 870 return require_rvv(s) && 871 vext_check_isa_ill(s) && 872 vext_check_load(s, a->rd, a->nf, a->vm, eew); 873} 874 875GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 876GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 877GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 878GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 879 880static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 881{ 882 uint32_t data = 0; 883 gen_helper_ldst_stride *fn; 884 static gen_helper_ldst_stride * const fns[4] = { 885 /* masked stride store */ 886 gen_helper_vsse8_v, gen_helper_vsse16_v, 887 gen_helper_vsse32_v, gen_helper_vsse64_v 888 }; 889 890 uint8_t emul = vext_get_emul(s, eew); 891 data = FIELD_DP32(data, VDATA, VM, a->vm); 892 data = FIELD_DP32(data, VDATA, LMUL, emul); 893 data = FIELD_DP32(data, VDATA, NF, a->nf); 894 fn = fns[eew]; 895 if (fn == NULL) { 896 return false; 897 } 898 899 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 900} 901 902static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 903{ 904 return require_rvv(s) && 905 vext_check_isa_ill(s) && 906 vext_check_store(s, a->rd, a->nf, eew); 907} 908 909GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 910GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 911GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 912GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 913 914/* 915 *** index load and store 916 */ 917typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 918 TCGv_ptr, TCGv_env, TCGv_i32); 919 920static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 921 uint32_t data, gen_helper_ldst_index *fn, 922 DisasContext *s, bool is_store) 923{ 924 TCGv_ptr dest, mask, index; 925 TCGv base; 926 TCGv_i32 desc; 927 928 TCGLabel *over = gen_new_label(); 929 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 930 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 931 932 dest = tcg_temp_new_ptr(); 933 mask = tcg_temp_new_ptr(); 934 index = tcg_temp_new_ptr(); 935 base = get_gpr(s, rs1, EXT_NONE); 936 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 937 s->cfg_ptr->vlen / 8, data)); 938 939 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 940 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 941 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 942 943 fn(dest, mask, base, index, cpu_env, desc); 944 945 tcg_temp_free_ptr(dest); 946 tcg_temp_free_ptr(mask); 947 tcg_temp_free_ptr(index); 948 949 if (!is_store) { 950 mark_vs_dirty(s); 951 } 952 953 gen_set_label(over); 954 return true; 955} 956 957static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 958{ 959 uint32_t data = 0; 960 gen_helper_ldst_index *fn; 961 static gen_helper_ldst_index * const fns[4][4] = { 962 /* 963 * offset vector register group EEW = 8, 964 * data vector register group EEW = SEW 965 */ 966 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 967 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 968 /* 969 * offset vector register group EEW = 16, 970 * data vector register group EEW = SEW 971 */ 972 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 973 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 974 /* 975 * offset vector register group EEW = 32, 976 * data vector register group EEW = SEW 977 */ 978 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 979 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 980 /* 981 * offset vector register group EEW = 64, 982 * data vector register group EEW = SEW 983 */ 984 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 985 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 986 }; 987 988 fn = fns[eew][s->sew]; 989 990 uint8_t emul = vext_get_emul(s, s->sew); 991 data = FIELD_DP32(data, VDATA, VM, a->vm); 992 data = FIELD_DP32(data, VDATA, LMUL, emul); 993 data = FIELD_DP32(data, VDATA, NF, a->nf); 994 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 995} 996 997static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 998{ 999 return require_rvv(s) && 1000 vext_check_isa_ill(s) && 1001 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1002} 1003 1004GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1005GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1006GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1007GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1008 1009static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1010{ 1011 uint32_t data = 0; 1012 gen_helper_ldst_index *fn; 1013 static gen_helper_ldst_index * const fns[4][4] = { 1014 /* 1015 * offset vector register group EEW = 8, 1016 * data vector register group EEW = SEW 1017 */ 1018 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1019 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1020 /* 1021 * offset vector register group EEW = 16, 1022 * data vector register group EEW = SEW 1023 */ 1024 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1025 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1026 /* 1027 * offset vector register group EEW = 32, 1028 * data vector register group EEW = SEW 1029 */ 1030 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1031 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1032 /* 1033 * offset vector register group EEW = 64, 1034 * data vector register group EEW = SEW 1035 */ 1036 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1037 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1038 }; 1039 1040 fn = fns[eew][s->sew]; 1041 1042 uint8_t emul = vext_get_emul(s, s->sew); 1043 data = FIELD_DP32(data, VDATA, VM, a->vm); 1044 data = FIELD_DP32(data, VDATA, LMUL, emul); 1045 data = FIELD_DP32(data, VDATA, NF, a->nf); 1046 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1047} 1048 1049static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1050{ 1051 return require_rvv(s) && 1052 vext_check_isa_ill(s) && 1053 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1054} 1055 1056GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1057GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1058GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1059GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1060 1061/* 1062 *** unit stride fault-only-first load 1063 */ 1064static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1065 gen_helper_ldst_us *fn, DisasContext *s) 1066{ 1067 TCGv_ptr dest, mask; 1068 TCGv base; 1069 TCGv_i32 desc; 1070 1071 TCGLabel *over = gen_new_label(); 1072 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1073 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1074 1075 dest = tcg_temp_new_ptr(); 1076 mask = tcg_temp_new_ptr(); 1077 base = get_gpr(s, rs1, EXT_NONE); 1078 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1079 s->cfg_ptr->vlen / 8, data)); 1080 1081 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1082 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1083 1084 fn(dest, mask, base, cpu_env, desc); 1085 1086 tcg_temp_free_ptr(dest); 1087 tcg_temp_free_ptr(mask); 1088 mark_vs_dirty(s); 1089 gen_set_label(over); 1090 return true; 1091} 1092 1093static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1094{ 1095 uint32_t data = 0; 1096 gen_helper_ldst_us *fn; 1097 static gen_helper_ldst_us * const fns[4] = { 1098 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1099 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1100 }; 1101 1102 fn = fns[eew]; 1103 if (fn == NULL) { 1104 return false; 1105 } 1106 1107 uint8_t emul = vext_get_emul(s, eew); 1108 data = FIELD_DP32(data, VDATA, VM, a->vm); 1109 data = FIELD_DP32(data, VDATA, LMUL, emul); 1110 data = FIELD_DP32(data, VDATA, NF, a->nf); 1111 return ldff_trans(a->rd, a->rs1, data, fn, s); 1112} 1113 1114GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1115GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1116GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1117GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1118 1119/* 1120 * load and store whole register instructions 1121 */ 1122typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1123 1124static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1125 uint32_t width, gen_helper_ldst_whole *fn, 1126 DisasContext *s, bool is_store) 1127{ 1128 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1129 TCGLabel *over = gen_new_label(); 1130 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1131 1132 TCGv_ptr dest; 1133 TCGv base; 1134 TCGv_i32 desc; 1135 1136 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1137 dest = tcg_temp_new_ptr(); 1138 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1139 s->cfg_ptr->vlen / 8, data)); 1140 1141 base = get_gpr(s, rs1, EXT_NONE); 1142 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1143 1144 fn(dest, base, cpu_env, desc); 1145 1146 tcg_temp_free_ptr(dest); 1147 1148 if (!is_store) { 1149 mark_vs_dirty(s); 1150 } 1151 gen_set_label(over); 1152 1153 return true; 1154} 1155 1156/* 1157 * load and store whole register instructions ignore vtype and vl setting. 1158 * Thus, we don't need to check vill bit. (Section 7.9) 1159 */ 1160#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1161static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1162{ \ 1163 if (require_rvv(s) && \ 1164 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1165 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1166 gen_helper_##NAME, s, IS_STORE); \ 1167 } \ 1168 return false; \ 1169} 1170 1171GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1172GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1173GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1174GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1175GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1176GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1177GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1178GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1179GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1180GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1181GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1182GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1183GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1184GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1185GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1186GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1187 1188/* 1189 * The vector whole register store instructions are encoded similar to 1190 * unmasked unit-stride store of elements with EEW=8. 1191 */ 1192GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1193GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1194GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1195GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1196 1197/* 1198 *** Vector Integer Arithmetic Instructions 1199 */ 1200 1201/* 1202 * MAXSZ returns the maximum vector size can be operated in bytes, 1203 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1204 * to accerlate vector operation. 1205 */ 1206static inline uint32_t MAXSZ(DisasContext *s) 1207{ 1208 int scale = s->lmul - 3; 1209 return s->cfg_ptr->vlen >> -scale; 1210} 1211 1212static bool opivv_check(DisasContext *s, arg_rmrr *a) 1213{ 1214 return require_rvv(s) && 1215 vext_check_isa_ill(s) && 1216 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1217} 1218 1219typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1220 uint32_t, uint32_t, uint32_t); 1221 1222static inline bool 1223do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1224 gen_helper_gvec_4_ptr *fn) 1225{ 1226 TCGLabel *over = gen_new_label(); 1227 if (!opivv_check(s, a)) { 1228 return false; 1229 } 1230 1231 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1232 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1233 1234 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1235 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1236 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1237 MAXSZ(s), MAXSZ(s)); 1238 } else { 1239 uint32_t data = 0; 1240 1241 data = FIELD_DP32(data, VDATA, VM, a->vm); 1242 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1243 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1244 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1245 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1246 cpu_env, s->cfg_ptr->vlen / 8, 1247 s->cfg_ptr->vlen / 8, data, fn); 1248 } 1249 mark_vs_dirty(s); 1250 gen_set_label(over); 1251 return true; 1252} 1253 1254/* OPIVV with GVEC IR */ 1255#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1256static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1257{ \ 1258 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1259 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1260 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1261 }; \ 1262 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1263} 1264 1265GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1266GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1267 1268typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1269 TCGv_env, TCGv_i32); 1270 1271static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1272 gen_helper_opivx *fn, DisasContext *s) 1273{ 1274 TCGv_ptr dest, src2, mask; 1275 TCGv src1; 1276 TCGv_i32 desc; 1277 uint32_t data = 0; 1278 1279 TCGLabel *over = gen_new_label(); 1280 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1281 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1282 1283 dest = tcg_temp_new_ptr(); 1284 mask = tcg_temp_new_ptr(); 1285 src2 = tcg_temp_new_ptr(); 1286 src1 = get_gpr(s, rs1, EXT_SIGN); 1287 1288 data = FIELD_DP32(data, VDATA, VM, vm); 1289 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1290 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1291 s->cfg_ptr->vlen / 8, data)); 1292 1293 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1294 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1295 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1296 1297 fn(dest, mask, src1, src2, cpu_env, desc); 1298 1299 tcg_temp_free_ptr(dest); 1300 tcg_temp_free_ptr(mask); 1301 tcg_temp_free_ptr(src2); 1302 mark_vs_dirty(s); 1303 gen_set_label(over); 1304 return true; 1305} 1306 1307static bool opivx_check(DisasContext *s, arg_rmrr *a) 1308{ 1309 return require_rvv(s) && 1310 vext_check_isa_ill(s) && 1311 vext_check_ss(s, a->rd, a->rs2, a->vm); 1312} 1313 1314typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1315 uint32_t, uint32_t); 1316 1317static inline bool 1318do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1319 gen_helper_opivx *fn) 1320{ 1321 if (!opivx_check(s, a)) { 1322 return false; 1323 } 1324 1325 if (a->vm && s->vl_eq_vlmax) { 1326 TCGv_i64 src1 = tcg_temp_new_i64(); 1327 1328 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1329 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1330 src1, MAXSZ(s), MAXSZ(s)); 1331 1332 tcg_temp_free_i64(src1); 1333 mark_vs_dirty(s); 1334 return true; 1335 } 1336 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1337} 1338 1339/* OPIVX with GVEC IR */ 1340#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1341static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1342{ \ 1343 static gen_helper_opivx * const fns[4] = { \ 1344 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1345 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1346 }; \ 1347 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1348} 1349 1350GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1351GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1352 1353static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1354{ 1355 tcg_gen_vec_sub8_i64(d, b, a); 1356} 1357 1358static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1359{ 1360 tcg_gen_vec_sub16_i64(d, b, a); 1361} 1362 1363static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1364{ 1365 tcg_gen_sub_i32(ret, arg2, arg1); 1366} 1367 1368static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1369{ 1370 tcg_gen_sub_i64(ret, arg2, arg1); 1371} 1372 1373static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1374{ 1375 tcg_gen_sub_vec(vece, r, b, a); 1376} 1377 1378static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1379 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1380{ 1381 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1382 static const GVecGen2s rsub_op[4] = { 1383 { .fni8 = gen_vec_rsub8_i64, 1384 .fniv = gen_rsub_vec, 1385 .fno = gen_helper_vec_rsubs8, 1386 .opt_opc = vecop_list, 1387 .vece = MO_8 }, 1388 { .fni8 = gen_vec_rsub16_i64, 1389 .fniv = gen_rsub_vec, 1390 .fno = gen_helper_vec_rsubs16, 1391 .opt_opc = vecop_list, 1392 .vece = MO_16 }, 1393 { .fni4 = gen_rsub_i32, 1394 .fniv = gen_rsub_vec, 1395 .fno = gen_helper_vec_rsubs32, 1396 .opt_opc = vecop_list, 1397 .vece = MO_32 }, 1398 { .fni8 = gen_rsub_i64, 1399 .fniv = gen_rsub_vec, 1400 .fno = gen_helper_vec_rsubs64, 1401 .opt_opc = vecop_list, 1402 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1403 .vece = MO_64 }, 1404 }; 1405 1406 tcg_debug_assert(vece <= MO_64); 1407 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1408} 1409 1410GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1411 1412typedef enum { 1413 IMM_ZX, /* Zero-extended */ 1414 IMM_SX, /* Sign-extended */ 1415 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1416 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1417} imm_mode_t; 1418 1419static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1420{ 1421 switch (imm_mode) { 1422 case IMM_ZX: 1423 return extract64(imm, 0, 5); 1424 case IMM_SX: 1425 return sextract64(imm, 0, 5); 1426 case IMM_TRUNC_SEW: 1427 return extract64(imm, 0, s->sew + 3); 1428 case IMM_TRUNC_2SEW: 1429 return extract64(imm, 0, s->sew + 4); 1430 default: 1431 g_assert_not_reached(); 1432 } 1433} 1434 1435static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1436 gen_helper_opivx *fn, DisasContext *s, 1437 imm_mode_t imm_mode) 1438{ 1439 TCGv_ptr dest, src2, mask; 1440 TCGv src1; 1441 TCGv_i32 desc; 1442 uint32_t data = 0; 1443 1444 TCGLabel *over = gen_new_label(); 1445 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1446 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1447 1448 dest = tcg_temp_new_ptr(); 1449 mask = tcg_temp_new_ptr(); 1450 src2 = tcg_temp_new_ptr(); 1451 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1452 1453 data = FIELD_DP32(data, VDATA, VM, vm); 1454 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1455 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1456 s->cfg_ptr->vlen / 8, data)); 1457 1458 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1459 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1460 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1461 1462 fn(dest, mask, src1, src2, cpu_env, desc); 1463 1464 tcg_temp_free_ptr(dest); 1465 tcg_temp_free_ptr(mask); 1466 tcg_temp_free_ptr(src2); 1467 mark_vs_dirty(s); 1468 gen_set_label(over); 1469 return true; 1470} 1471 1472typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1473 uint32_t, uint32_t); 1474 1475static inline bool 1476do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1477 gen_helper_opivx *fn, imm_mode_t imm_mode) 1478{ 1479 if (!opivx_check(s, a)) { 1480 return false; 1481 } 1482 1483 if (a->vm && s->vl_eq_vlmax) { 1484 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1485 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1486 mark_vs_dirty(s); 1487 return true; 1488 } 1489 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1490} 1491 1492/* OPIVI with GVEC IR */ 1493#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1494static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1495{ \ 1496 static gen_helper_opivx * const fns[4] = { \ 1497 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1498 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1499 }; \ 1500 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1501 fns[s->sew], IMM_MODE); \ 1502} 1503 1504GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1505 1506static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1507 int64_t c, uint32_t oprsz, uint32_t maxsz) 1508{ 1509 TCGv_i64 tmp = tcg_constant_i64(c); 1510 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1511} 1512 1513GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1514 1515/* Vector Widening Integer Add/Subtract */ 1516 1517/* OPIVV with WIDEN */ 1518static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1519{ 1520 return require_rvv(s) && 1521 vext_check_isa_ill(s) && 1522 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1523} 1524 1525static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1526 gen_helper_gvec_4_ptr *fn, 1527 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1528{ 1529 if (checkfn(s, a)) { 1530 uint32_t data = 0; 1531 TCGLabel *over = gen_new_label(); 1532 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1533 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1534 1535 data = FIELD_DP32(data, VDATA, VM, a->vm); 1536 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1537 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1538 vreg_ofs(s, a->rs1), 1539 vreg_ofs(s, a->rs2), 1540 cpu_env, s->cfg_ptr->vlen / 8, 1541 s->cfg_ptr->vlen / 8, 1542 data, fn); 1543 mark_vs_dirty(s); 1544 gen_set_label(over); 1545 return true; 1546 } 1547 return false; 1548} 1549 1550#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1551static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1552{ \ 1553 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1554 gen_helper_##NAME##_b, \ 1555 gen_helper_##NAME##_h, \ 1556 gen_helper_##NAME##_w \ 1557 }; \ 1558 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1559} 1560 1561GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1562GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1563GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1564GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1565 1566/* OPIVX with WIDEN */ 1567static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1568{ 1569 return require_rvv(s) && 1570 vext_check_isa_ill(s) && 1571 vext_check_ds(s, a->rd, a->rs2, a->vm); 1572} 1573 1574static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1575 gen_helper_opivx *fn) 1576{ 1577 if (opivx_widen_check(s, a)) { 1578 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1579 } 1580 return false; 1581} 1582 1583#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1584static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1585{ \ 1586 static gen_helper_opivx * const fns[3] = { \ 1587 gen_helper_##NAME##_b, \ 1588 gen_helper_##NAME##_h, \ 1589 gen_helper_##NAME##_w \ 1590 }; \ 1591 return do_opivx_widen(s, a, fns[s->sew]); \ 1592} 1593 1594GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1595GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1596GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1597GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1598 1599/* WIDEN OPIVV with WIDEN */ 1600static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1601{ 1602 return require_rvv(s) && 1603 vext_check_isa_ill(s) && 1604 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1605} 1606 1607static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1608 gen_helper_gvec_4_ptr *fn) 1609{ 1610 if (opiwv_widen_check(s, a)) { 1611 uint32_t data = 0; 1612 TCGLabel *over = gen_new_label(); 1613 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1614 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1615 1616 data = FIELD_DP32(data, VDATA, VM, a->vm); 1617 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1618 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1619 vreg_ofs(s, a->rs1), 1620 vreg_ofs(s, a->rs2), 1621 cpu_env, s->cfg_ptr->vlen / 8, 1622 s->cfg_ptr->vlen / 8, data, fn); 1623 mark_vs_dirty(s); 1624 gen_set_label(over); 1625 return true; 1626 } 1627 return false; 1628} 1629 1630#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1631static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1632{ \ 1633 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1634 gen_helper_##NAME##_b, \ 1635 gen_helper_##NAME##_h, \ 1636 gen_helper_##NAME##_w \ 1637 }; \ 1638 return do_opiwv_widen(s, a, fns[s->sew]); \ 1639} 1640 1641GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1642GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1643GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1644GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1645 1646/* WIDEN OPIVX with WIDEN */ 1647static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1648{ 1649 return require_rvv(s) && 1650 vext_check_isa_ill(s) && 1651 vext_check_dd(s, a->rd, a->rs2, a->vm); 1652} 1653 1654static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1655 gen_helper_opivx *fn) 1656{ 1657 if (opiwx_widen_check(s, a)) { 1658 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1659 } 1660 return false; 1661} 1662 1663#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1664static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1665{ \ 1666 static gen_helper_opivx * const fns[3] = { \ 1667 gen_helper_##NAME##_b, \ 1668 gen_helper_##NAME##_h, \ 1669 gen_helper_##NAME##_w \ 1670 }; \ 1671 return do_opiwx_widen(s, a, fns[s->sew]); \ 1672} 1673 1674GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1675GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1676GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1677GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1678 1679/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1680/* OPIVV without GVEC IR */ 1681#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1682static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1683{ \ 1684 if (CHECK(s, a)) { \ 1685 uint32_t data = 0; \ 1686 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1687 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1688 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1689 }; \ 1690 TCGLabel *over = gen_new_label(); \ 1691 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1692 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1693 \ 1694 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1695 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1696 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1697 vreg_ofs(s, a->rs1), \ 1698 vreg_ofs(s, a->rs2), cpu_env, \ 1699 s->cfg_ptr->vlen / 8, \ 1700 s->cfg_ptr->vlen / 8, data, \ 1701 fns[s->sew]); \ 1702 mark_vs_dirty(s); \ 1703 gen_set_label(over); \ 1704 return true; \ 1705 } \ 1706 return false; \ 1707} 1708 1709/* 1710 * For vadc and vsbc, an illegal instruction exception is raised if the 1711 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1712 */ 1713static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1714{ 1715 return require_rvv(s) && 1716 vext_check_isa_ill(s) && 1717 (a->rd != 0) && 1718 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1719} 1720 1721GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1722GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1723 1724/* 1725 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1726 * destination vector register overlaps a source vector register group. 1727 */ 1728static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1729{ 1730 return require_rvv(s) && 1731 vext_check_isa_ill(s) && 1732 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1733} 1734 1735GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1736GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1737 1738static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1739{ 1740 return require_rvv(s) && 1741 vext_check_isa_ill(s) && 1742 (a->rd != 0) && 1743 vext_check_ss(s, a->rd, a->rs2, a->vm); 1744} 1745 1746/* OPIVX without GVEC IR */ 1747#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1748static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1749{ \ 1750 if (CHECK(s, a)) { \ 1751 static gen_helper_opivx * const fns[4] = { \ 1752 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1753 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1754 }; \ 1755 \ 1756 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1757 } \ 1758 return false; \ 1759} 1760 1761GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1762GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1763 1764static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1765{ 1766 return require_rvv(s) && 1767 vext_check_isa_ill(s) && 1768 vext_check_ms(s, a->rd, a->rs2); 1769} 1770 1771GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1772GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1773 1774/* OPIVI without GVEC IR */ 1775#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1776static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1777{ \ 1778 if (CHECK(s, a)) { \ 1779 static gen_helper_opivx * const fns[4] = { \ 1780 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1781 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1782 }; \ 1783 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1784 fns[s->sew], s, IMM_MODE); \ 1785 } \ 1786 return false; \ 1787} 1788 1789GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1790GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1791 1792/* Vector Bitwise Logical Instructions */ 1793GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1794GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1795GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1796GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1797GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1798GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1799GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1800GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1801GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1802 1803/* Vector Single-Width Bit Shift Instructions */ 1804GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1805GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1806GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1807 1808typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1809 uint32_t, uint32_t); 1810 1811static inline bool 1812do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1813 gen_helper_opivx *fn) 1814{ 1815 if (!opivx_check(s, a)) { 1816 return false; 1817 } 1818 1819 if (a->vm && s->vl_eq_vlmax) { 1820 TCGv_i32 src1 = tcg_temp_new_i32(); 1821 1822 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1823 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1824 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1825 src1, MAXSZ(s), MAXSZ(s)); 1826 1827 tcg_temp_free_i32(src1); 1828 mark_vs_dirty(s); 1829 return true; 1830 } 1831 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1832} 1833 1834#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1835static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1836{ \ 1837 static gen_helper_opivx * const fns[4] = { \ 1838 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1839 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1840 }; \ 1841 \ 1842 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1843} 1844 1845GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1846GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1847GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1848 1849GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1850GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1851GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1852 1853/* Vector Narrowing Integer Right Shift Instructions */ 1854static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1855{ 1856 return require_rvv(s) && 1857 vext_check_isa_ill(s) && 1858 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1859} 1860 1861/* OPIVV with NARROW */ 1862#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1863static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1864{ \ 1865 if (opiwv_narrow_check(s, a)) { \ 1866 uint32_t data = 0; \ 1867 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1868 gen_helper_##NAME##_b, \ 1869 gen_helper_##NAME##_h, \ 1870 gen_helper_##NAME##_w, \ 1871 }; \ 1872 TCGLabel *over = gen_new_label(); \ 1873 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1874 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1875 \ 1876 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1877 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1878 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1879 vreg_ofs(s, a->rs1), \ 1880 vreg_ofs(s, a->rs2), cpu_env, \ 1881 s->cfg_ptr->vlen / 8, \ 1882 s->cfg_ptr->vlen / 8, data, \ 1883 fns[s->sew]); \ 1884 mark_vs_dirty(s); \ 1885 gen_set_label(over); \ 1886 return true; \ 1887 } \ 1888 return false; \ 1889} 1890GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1891GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1892 1893static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1894{ 1895 return require_rvv(s) && 1896 vext_check_isa_ill(s) && 1897 vext_check_sd(s, a->rd, a->rs2, a->vm); 1898} 1899 1900/* OPIVX with NARROW */ 1901#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1902static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1903{ \ 1904 if (opiwx_narrow_check(s, a)) { \ 1905 static gen_helper_opivx * const fns[3] = { \ 1906 gen_helper_##NAME##_b, \ 1907 gen_helper_##NAME##_h, \ 1908 gen_helper_##NAME##_w, \ 1909 }; \ 1910 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1911 } \ 1912 return false; \ 1913} 1914 1915GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1916GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1917 1918/* OPIWI with NARROW */ 1919#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1920static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1921{ \ 1922 if (opiwx_narrow_check(s, a)) { \ 1923 static gen_helper_opivx * const fns[3] = { \ 1924 gen_helper_##OPIVX##_b, \ 1925 gen_helper_##OPIVX##_h, \ 1926 gen_helper_##OPIVX##_w, \ 1927 }; \ 1928 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1929 fns[s->sew], s, IMM_MODE); \ 1930 } \ 1931 return false; \ 1932} 1933 1934GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1935GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1936 1937/* Vector Integer Comparison Instructions */ 1938/* 1939 * For all comparison instructions, an illegal instruction exception is raised 1940 * if the destination vector register overlaps a source vector register group 1941 * and LMUL > 1. 1942 */ 1943static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1944{ 1945 return require_rvv(s) && 1946 vext_check_isa_ill(s) && 1947 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1948} 1949 1950GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1951GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1952GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1953GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1954GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1955GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1956 1957static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1958{ 1959 return require_rvv(s) && 1960 vext_check_isa_ill(s) && 1961 vext_check_ms(s, a->rd, a->rs2); 1962} 1963 1964GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1965GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1966GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1967GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1968GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1969GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1970GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1971GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1972 1973GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1974GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1975GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1976GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1977GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1978GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1979 1980/* Vector Integer Min/Max Instructions */ 1981GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1982GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1983GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1984GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1985GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1986GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1987GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1988GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1989 1990/* Vector Single-Width Integer Multiply Instructions */ 1991 1992static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 1993{ 1994 /* 1995 * All Zve* extensions support all vector integer instructions, 1996 * except that the vmulh integer multiply variants 1997 * that return the high word of the product 1998 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1999 * are not included for EEW=64 in Zve64*. (Section 18.2) 2000 */ 2001 return opivv_check(s, a) && 2002 (!has_ext(s, RVV) && 2003 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2004} 2005 2006static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2007{ 2008 /* 2009 * All Zve* extensions support all vector integer instructions, 2010 * except that the vmulh integer multiply variants 2011 * that return the high word of the product 2012 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2013 * are not included for EEW=64 in Zve64*. (Section 18.2) 2014 */ 2015 return opivx_check(s, a) && 2016 (!has_ext(s, RVV) && 2017 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2018} 2019 2020GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2021GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2022GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2023GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2024GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2025GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2026GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2027GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2028 2029/* Vector Integer Divide Instructions */ 2030GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2031GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2032GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2033GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2034GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2035GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2036GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2037GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2038 2039/* Vector Widening Integer Multiply Instructions */ 2040GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2041GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2042GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2043GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2044GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2045GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2046 2047/* Vector Single-Width Integer Multiply-Add Instructions */ 2048GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2049GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2050GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2051GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2052GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2053GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2054GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2055GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2056 2057/* Vector Widening Integer Multiply-Add Instructions */ 2058GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2059GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2060GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2061GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2062GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2063GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2064GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2065 2066/* Vector Integer Merge and Move Instructions */ 2067static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2068{ 2069 if (require_rvv(s) && 2070 vext_check_isa_ill(s) && 2071 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2072 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2073 if (s->vl_eq_vlmax) { 2074 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2075 vreg_ofs(s, a->rs1), 2076 MAXSZ(s), MAXSZ(s)); 2077 } else { 2078 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2079 static gen_helper_gvec_2_ptr * const fns[4] = { 2080 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2081 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2082 }; 2083 TCGLabel *over = gen_new_label(); 2084 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2085 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2086 2087 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2088 cpu_env, s->cfg_ptr->vlen / 8, 2089 s->cfg_ptr->vlen / 8, data, 2090 fns[s->sew]); 2091 gen_set_label(over); 2092 } 2093 mark_vs_dirty(s); 2094 return true; 2095 } 2096 return false; 2097} 2098 2099typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2100static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2101{ 2102 if (require_rvv(s) && 2103 vext_check_isa_ill(s) && 2104 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2105 vext_check_ss(s, a->rd, 0, 1)) { 2106 TCGv s1; 2107 TCGLabel *over = gen_new_label(); 2108 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2109 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2110 2111 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2112 2113 if (s->vl_eq_vlmax) { 2114 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2115 MAXSZ(s), MAXSZ(s), s1); 2116 } else { 2117 TCGv_i32 desc; 2118 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2119 TCGv_ptr dest = tcg_temp_new_ptr(); 2120 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2121 static gen_helper_vmv_vx * const fns[4] = { 2122 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2123 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2124 }; 2125 2126 tcg_gen_ext_tl_i64(s1_i64, s1); 2127 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2128 s->cfg_ptr->vlen / 8, data)); 2129 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2130 fns[s->sew](dest, s1_i64, cpu_env, desc); 2131 2132 tcg_temp_free_ptr(dest); 2133 tcg_temp_free_i64(s1_i64); 2134 } 2135 2136 mark_vs_dirty(s); 2137 gen_set_label(over); 2138 return true; 2139 } 2140 return false; 2141} 2142 2143static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2144{ 2145 if (require_rvv(s) && 2146 vext_check_isa_ill(s) && 2147 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2148 vext_check_ss(s, a->rd, 0, 1)) { 2149 int64_t simm = sextract64(a->rs1, 0, 5); 2150 if (s->vl_eq_vlmax) { 2151 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2152 MAXSZ(s), MAXSZ(s), simm); 2153 mark_vs_dirty(s); 2154 } else { 2155 TCGv_i32 desc; 2156 TCGv_i64 s1; 2157 TCGv_ptr dest; 2158 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2159 static gen_helper_vmv_vx * const fns[4] = { 2160 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2161 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2162 }; 2163 TCGLabel *over = gen_new_label(); 2164 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2165 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2166 2167 s1 = tcg_constant_i64(simm); 2168 dest = tcg_temp_new_ptr(); 2169 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2170 s->cfg_ptr->vlen / 8, data)); 2171 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2172 fns[s->sew](dest, s1, cpu_env, desc); 2173 2174 tcg_temp_free_ptr(dest); 2175 mark_vs_dirty(s); 2176 gen_set_label(over); 2177 } 2178 return true; 2179 } 2180 return false; 2181} 2182 2183GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2184GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2185GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2186 2187/* 2188 *** Vector Fixed-Point Arithmetic Instructions 2189 */ 2190 2191/* Vector Single-Width Saturating Add and Subtract */ 2192GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2193GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2194GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2195GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2196GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2197GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2198GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2199GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2200GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2201GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2202 2203/* Vector Single-Width Averaging Add and Subtract */ 2204GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2205GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2206GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2207GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2208GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2209GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2210GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2211GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2212 2213/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2214 2215static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2216{ 2217 /* 2218 * All Zve* extensions support all vector fixed-point arithmetic 2219 * instructions, except that vsmul.vv and vsmul.vx are not supported 2220 * for EEW=64 in Zve64*. (Section 18.2) 2221 */ 2222 return opivv_check(s, a) && 2223 (!has_ext(s, RVV) && 2224 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2225} 2226 2227static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2228{ 2229 /* 2230 * All Zve* extensions support all vector fixed-point arithmetic 2231 * instructions, except that vsmul.vv and vsmul.vx are not supported 2232 * for EEW=64 in Zve64*. (Section 18.2) 2233 */ 2234 return opivx_check(s, a) && 2235 (!has_ext(s, RVV) && 2236 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2237} 2238 2239GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2240GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2241 2242/* Vector Single-Width Scaling Shift Instructions */ 2243GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2244GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2245GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2246GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2247GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2248GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2249 2250/* Vector Narrowing Fixed-Point Clip Instructions */ 2251GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2252GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2253GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2254GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2255GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2256GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2257 2258/* 2259 *** Vector Float Point Arithmetic Instructions 2260 */ 2261 2262/* 2263 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2264 * RVF and RVD can be treated equally. 2265 * We don't have to deal with the cases of: SEW > FLEN. 2266 * 2267 * If SEW < FLEN, check whether input fp register is a valid 2268 * NaN-boxed value, in which case the least-significant SEW bits 2269 * of the f regsiter are used, else the canonical NaN value is used. 2270 */ 2271static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2272{ 2273 switch (s->sew) { 2274 case 1: 2275 gen_check_nanbox_h(out, in); 2276 break; 2277 case 2: 2278 gen_check_nanbox_s(out, in); 2279 break; 2280 case 3: 2281 tcg_gen_mov_i64(out, in); 2282 break; 2283 default: 2284 g_assert_not_reached(); 2285 } 2286} 2287 2288/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2289 2290/* 2291 * If the current SEW does not correspond to a supported IEEE floating-point 2292 * type, an illegal instruction exception is raised. 2293 */ 2294static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2295{ 2296 return require_rvv(s) && 2297 require_rvf(s) && 2298 vext_check_isa_ill(s) && 2299 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2300 require_zve32f(s) && 2301 require_zve64f(s); 2302} 2303 2304/* OPFVV without GVEC IR */ 2305#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2306static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2307{ \ 2308 if (CHECK(s, a)) { \ 2309 uint32_t data = 0; \ 2310 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2311 gen_helper_##NAME##_h, \ 2312 gen_helper_##NAME##_w, \ 2313 gen_helper_##NAME##_d, \ 2314 }; \ 2315 TCGLabel *over = gen_new_label(); \ 2316 gen_set_rm(s, RISCV_FRM_DYN); \ 2317 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2318 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2319 \ 2320 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2321 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2322 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2323 vreg_ofs(s, a->rs1), \ 2324 vreg_ofs(s, a->rs2), cpu_env, \ 2325 s->cfg_ptr->vlen / 8, \ 2326 s->cfg_ptr->vlen / 8, data, \ 2327 fns[s->sew - 1]); \ 2328 mark_vs_dirty(s); \ 2329 gen_set_label(over); \ 2330 return true; \ 2331 } \ 2332 return false; \ 2333} 2334GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2335GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2336 2337typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2338 TCGv_env, TCGv_i32); 2339 2340static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2341 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2342{ 2343 TCGv_ptr dest, src2, mask; 2344 TCGv_i32 desc; 2345 TCGv_i64 t1; 2346 2347 TCGLabel *over = gen_new_label(); 2348 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2349 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2350 2351 dest = tcg_temp_new_ptr(); 2352 mask = tcg_temp_new_ptr(); 2353 src2 = tcg_temp_new_ptr(); 2354 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2355 s->cfg_ptr->vlen / 8, data)); 2356 2357 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2358 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2359 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2360 2361 /* NaN-box f[rs1] */ 2362 t1 = tcg_temp_new_i64(); 2363 do_nanbox(s, t1, cpu_fpr[rs1]); 2364 2365 fn(dest, mask, t1, src2, cpu_env, desc); 2366 2367 tcg_temp_free_ptr(dest); 2368 tcg_temp_free_ptr(mask); 2369 tcg_temp_free_ptr(src2); 2370 tcg_temp_free_i64(t1); 2371 mark_vs_dirty(s); 2372 gen_set_label(over); 2373 return true; 2374} 2375 2376/* 2377 * If the current SEW does not correspond to a supported IEEE floating-point 2378 * type, an illegal instruction exception is raised 2379 */ 2380static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2381{ 2382 return require_rvv(s) && 2383 require_rvf(s) && 2384 vext_check_isa_ill(s) && 2385 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2386 require_zve32f(s) && 2387 require_zve64f(s); 2388} 2389 2390/* OPFVF without GVEC IR */ 2391#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2392static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2393{ \ 2394 if (CHECK(s, a)) { \ 2395 uint32_t data = 0; \ 2396 static gen_helper_opfvf *const fns[3] = { \ 2397 gen_helper_##NAME##_h, \ 2398 gen_helper_##NAME##_w, \ 2399 gen_helper_##NAME##_d, \ 2400 }; \ 2401 gen_set_rm(s, RISCV_FRM_DYN); \ 2402 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2403 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2404 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2405 fns[s->sew - 1], s); \ 2406 } \ 2407 return false; \ 2408} 2409 2410GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2411GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2412GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2413 2414/* Vector Widening Floating-Point Add/Subtract Instructions */ 2415static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2416{ 2417 return require_rvv(s) && 2418 require_scale_rvf(s) && 2419 (s->sew != MO_8) && 2420 vext_check_isa_ill(s) && 2421 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2422 require_scale_zve32f(s) && 2423 require_scale_zve64f(s); 2424} 2425 2426/* OPFVV with WIDEN */ 2427#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2428static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2429{ \ 2430 if (CHECK(s, a)) { \ 2431 uint32_t data = 0; \ 2432 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2433 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2434 }; \ 2435 TCGLabel *over = gen_new_label(); \ 2436 gen_set_rm(s, RISCV_FRM_DYN); \ 2437 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2438 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2439 \ 2440 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2441 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2442 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2443 vreg_ofs(s, a->rs1), \ 2444 vreg_ofs(s, a->rs2), cpu_env, \ 2445 s->cfg_ptr->vlen / 8, \ 2446 s->cfg_ptr->vlen / 8, data, \ 2447 fns[s->sew - 1]); \ 2448 mark_vs_dirty(s); \ 2449 gen_set_label(over); \ 2450 return true; \ 2451 } \ 2452 return false; \ 2453} 2454 2455GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2456GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2457 2458static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2459{ 2460 return require_rvv(s) && 2461 require_scale_rvf(s) && 2462 (s->sew != MO_8) && 2463 vext_check_isa_ill(s) && 2464 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2465 require_scale_zve32f(s) && 2466 require_scale_zve64f(s); 2467} 2468 2469/* OPFVF with WIDEN */ 2470#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2471static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2472{ \ 2473 if (opfvf_widen_check(s, a)) { \ 2474 uint32_t data = 0; \ 2475 static gen_helper_opfvf *const fns[2] = { \ 2476 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2477 }; \ 2478 gen_set_rm(s, RISCV_FRM_DYN); \ 2479 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2480 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2481 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2482 fns[s->sew - 1], s); \ 2483 } \ 2484 return false; \ 2485} 2486 2487GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2488GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2489 2490static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2491{ 2492 return require_rvv(s) && 2493 require_scale_rvf(s) && 2494 (s->sew != MO_8) && 2495 vext_check_isa_ill(s) && 2496 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2497 require_scale_zve32f(s) && 2498 require_scale_zve64f(s); 2499} 2500 2501/* WIDEN OPFVV with WIDEN */ 2502#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2503static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2504{ \ 2505 if (opfwv_widen_check(s, a)) { \ 2506 uint32_t data = 0; \ 2507 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2508 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2509 }; \ 2510 TCGLabel *over = gen_new_label(); \ 2511 gen_set_rm(s, RISCV_FRM_DYN); \ 2512 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2513 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2514 \ 2515 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2516 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2517 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2518 vreg_ofs(s, a->rs1), \ 2519 vreg_ofs(s, a->rs2), cpu_env, \ 2520 s->cfg_ptr->vlen / 8, \ 2521 s->cfg_ptr->vlen / 8, data, \ 2522 fns[s->sew - 1]); \ 2523 mark_vs_dirty(s); \ 2524 gen_set_label(over); \ 2525 return true; \ 2526 } \ 2527 return false; \ 2528} 2529 2530GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2531GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2532 2533static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2534{ 2535 return require_rvv(s) && 2536 require_scale_rvf(s) && 2537 (s->sew != MO_8) && 2538 vext_check_isa_ill(s) && 2539 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2540 require_scale_zve32f(s) && 2541 require_scale_zve64f(s); 2542} 2543 2544/* WIDEN OPFVF with WIDEN */ 2545#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2546static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2547{ \ 2548 if (opfwf_widen_check(s, a)) { \ 2549 uint32_t data = 0; \ 2550 static gen_helper_opfvf *const fns[2] = { \ 2551 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2552 }; \ 2553 gen_set_rm(s, RISCV_FRM_DYN); \ 2554 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2555 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2556 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2557 fns[s->sew - 1], s); \ 2558 } \ 2559 return false; \ 2560} 2561 2562GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2563GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2564 2565/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2566GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2567GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2568GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2569GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2570GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2571 2572/* Vector Widening Floating-Point Multiply */ 2573GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2574GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2575 2576/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2577GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2578GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2579GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2580GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2581GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2582GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2583GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2584GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2585GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2586GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2587GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2588GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2589GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2590GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2591GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2592GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2593 2594/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2595GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2596GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2597GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2598GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2599GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2600GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2601GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2602GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2603 2604/* Vector Floating-Point Square-Root Instruction */ 2605 2606/* 2607 * If the current SEW does not correspond to a supported IEEE floating-point 2608 * type, an illegal instruction exception is raised 2609 */ 2610static bool opfv_check(DisasContext *s, arg_rmr *a) 2611{ 2612 return require_rvv(s) && 2613 require_rvf(s) && 2614 vext_check_isa_ill(s) && 2615 /* OPFV instructions ignore vs1 check */ 2616 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2617 require_zve32f(s) && 2618 require_zve64f(s); 2619} 2620 2621static bool do_opfv(DisasContext *s, arg_rmr *a, 2622 gen_helper_gvec_3_ptr *fn, 2623 bool (*checkfn)(DisasContext *, arg_rmr *), 2624 int rm) 2625{ 2626 if (checkfn(s, a)) { 2627 if (rm != RISCV_FRM_DYN) { 2628 gen_set_rm(s, RISCV_FRM_DYN); 2629 } 2630 2631 uint32_t data = 0; 2632 TCGLabel *over = gen_new_label(); 2633 gen_set_rm(s, rm); 2634 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2635 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2636 2637 data = FIELD_DP32(data, VDATA, VM, a->vm); 2638 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2639 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2640 vreg_ofs(s, a->rs2), cpu_env, 2641 s->cfg_ptr->vlen / 8, 2642 s->cfg_ptr->vlen / 8, data, fn); 2643 mark_vs_dirty(s); 2644 gen_set_label(over); 2645 return true; 2646 } 2647 return false; 2648} 2649 2650#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2651static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2652{ \ 2653 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2654 gen_helper_##NAME##_h, \ 2655 gen_helper_##NAME##_w, \ 2656 gen_helper_##NAME##_d \ 2657 }; \ 2658 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2659} 2660 2661GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2662GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2663GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2664 2665/* Vector Floating-Point MIN/MAX Instructions */ 2666GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2667GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2668GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2669GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2670 2671/* Vector Floating-Point Sign-Injection Instructions */ 2672GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2673GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2674GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2675GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2676GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2677GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2678 2679/* Vector Floating-Point Compare Instructions */ 2680static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2681{ 2682 return require_rvv(s) && 2683 require_rvf(s) && 2684 vext_check_isa_ill(s) && 2685 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2686 require_zve32f(s) && 2687 require_zve64f(s); 2688} 2689 2690GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2691GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2692GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2693GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2694 2695static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2696{ 2697 return require_rvv(s) && 2698 require_rvf(s) && 2699 vext_check_isa_ill(s) && 2700 vext_check_ms(s, a->rd, a->rs2) && 2701 require_zve32f(s) && 2702 require_zve64f(s); 2703} 2704 2705GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2706GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2707GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2708GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2709GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2710GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2711 2712/* Vector Floating-Point Classify Instruction */ 2713GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2714 2715/* Vector Floating-Point Merge Instruction */ 2716GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2717 2718static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2719{ 2720 if (require_rvv(s) && 2721 require_rvf(s) && 2722 vext_check_isa_ill(s) && 2723 require_align(a->rd, s->lmul) && 2724 require_zve32f(s) && 2725 require_zve64f(s)) { 2726 gen_set_rm(s, RISCV_FRM_DYN); 2727 2728 TCGv_i64 t1; 2729 2730 if (s->vl_eq_vlmax) { 2731 t1 = tcg_temp_new_i64(); 2732 /* NaN-box f[rs1] */ 2733 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2734 2735 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2736 MAXSZ(s), MAXSZ(s), t1); 2737 mark_vs_dirty(s); 2738 } else { 2739 TCGv_ptr dest; 2740 TCGv_i32 desc; 2741 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2742 static gen_helper_vmv_vx * const fns[3] = { 2743 gen_helper_vmv_v_x_h, 2744 gen_helper_vmv_v_x_w, 2745 gen_helper_vmv_v_x_d, 2746 }; 2747 TCGLabel *over = gen_new_label(); 2748 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2749 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2750 2751 t1 = tcg_temp_new_i64(); 2752 /* NaN-box f[rs1] */ 2753 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2754 2755 dest = tcg_temp_new_ptr(); 2756 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2757 s->cfg_ptr->vlen / 8, data)); 2758 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2759 2760 fns[s->sew - 1](dest, t1, cpu_env, desc); 2761 2762 tcg_temp_free_ptr(dest); 2763 mark_vs_dirty(s); 2764 gen_set_label(over); 2765 } 2766 tcg_temp_free_i64(t1); 2767 return true; 2768 } 2769 return false; 2770} 2771 2772/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2773#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2774static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2775{ \ 2776 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2777 gen_helper_##HELPER##_h, \ 2778 gen_helper_##HELPER##_w, \ 2779 gen_helper_##HELPER##_d \ 2780 }; \ 2781 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2782} 2783 2784GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2785GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2786GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2787GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2788/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2789GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2790GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2791 2792/* Widening Floating-Point/Integer Type-Convert Instructions */ 2793 2794/* 2795 * If the current SEW does not correspond to a supported IEEE floating-point 2796 * type, an illegal instruction exception is raised 2797 */ 2798static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2799{ 2800 return require_rvv(s) && 2801 vext_check_isa_ill(s) && 2802 vext_check_ds(s, a->rd, a->rs2, a->vm); 2803} 2804 2805static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2806{ 2807 return opfv_widen_check(s, a) && 2808 require_rvf(s) && 2809 require_zve32f(s) && 2810 require_zve64f(s); 2811} 2812 2813static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2814{ 2815 return opfv_widen_check(s, a) && 2816 require_scale_rvf(s) && 2817 (s->sew != MO_8) && 2818 require_scale_zve32f(s) && 2819 require_scale_zve64f(s); 2820} 2821 2822#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2823static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2824{ \ 2825 if (CHECK(s, a)) { \ 2826 if (FRM != RISCV_FRM_DYN) { \ 2827 gen_set_rm(s, RISCV_FRM_DYN); \ 2828 } \ 2829 \ 2830 uint32_t data = 0; \ 2831 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2832 gen_helper_##HELPER##_h, \ 2833 gen_helper_##HELPER##_w, \ 2834 }; \ 2835 TCGLabel *over = gen_new_label(); \ 2836 gen_set_rm(s, FRM); \ 2837 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2838 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2839 \ 2840 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2841 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2842 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2843 vreg_ofs(s, a->rs2), cpu_env, \ 2844 s->cfg_ptr->vlen / 8, \ 2845 s->cfg_ptr->vlen / 8, data, \ 2846 fns[s->sew - 1]); \ 2847 mark_vs_dirty(s); \ 2848 gen_set_label(over); \ 2849 return true; \ 2850 } \ 2851 return false; \ 2852} 2853 2854GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2855 RISCV_FRM_DYN) 2856GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2857 RISCV_FRM_DYN) 2858GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2859 RISCV_FRM_DYN) 2860/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2861GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2862 RISCV_FRM_RTZ) 2863GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2864 RISCV_FRM_RTZ) 2865 2866static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2867{ 2868 return require_rvv(s) && 2869 require_scale_rvf(s) && 2870 vext_check_isa_ill(s) && 2871 /* OPFV widening instructions ignore vs1 check */ 2872 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2873 require_scale_zve32f(s) && 2874 require_scale_zve64f(s); 2875} 2876 2877#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2878static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2879{ \ 2880 if (opfxv_widen_check(s, a)) { \ 2881 uint32_t data = 0; \ 2882 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2883 gen_helper_##NAME##_b, \ 2884 gen_helper_##NAME##_h, \ 2885 gen_helper_##NAME##_w, \ 2886 }; \ 2887 TCGLabel *over = gen_new_label(); \ 2888 gen_set_rm(s, RISCV_FRM_DYN); \ 2889 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2890 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2891 \ 2892 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2893 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2894 vreg_ofs(s, a->rs2), cpu_env, \ 2895 s->cfg_ptr->vlen / 8, \ 2896 s->cfg_ptr->vlen / 8, data, \ 2897 fns[s->sew]); \ 2898 mark_vs_dirty(s); \ 2899 gen_set_label(over); \ 2900 return true; \ 2901 } \ 2902 return false; \ 2903} 2904 2905GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2906GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2907 2908/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2909 2910/* 2911 * If the current SEW does not correspond to a supported IEEE floating-point 2912 * type, an illegal instruction exception is raised 2913 */ 2914static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2915{ 2916 return require_rvv(s) && 2917 vext_check_isa_ill(s) && 2918 /* OPFV narrowing instructions ignore vs1 check */ 2919 vext_check_sd(s, a->rd, a->rs2, a->vm); 2920} 2921 2922static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2923{ 2924 return opfv_narrow_check(s, a) && 2925 require_rvf(s) && 2926 (s->sew != MO_64) && 2927 require_zve32f(s) && 2928 require_zve64f(s); 2929} 2930 2931static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2932{ 2933 return opfv_narrow_check(s, a) && 2934 require_scale_rvf(s) && 2935 (s->sew != MO_8) && 2936 require_scale_zve32f(s) && 2937 require_scale_zve64f(s); 2938} 2939 2940#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2941static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2942{ \ 2943 if (CHECK(s, a)) { \ 2944 if (FRM != RISCV_FRM_DYN) { \ 2945 gen_set_rm(s, RISCV_FRM_DYN); \ 2946 } \ 2947 \ 2948 uint32_t data = 0; \ 2949 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2950 gen_helper_##HELPER##_h, \ 2951 gen_helper_##HELPER##_w, \ 2952 }; \ 2953 TCGLabel *over = gen_new_label(); \ 2954 gen_set_rm(s, FRM); \ 2955 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2956 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2957 \ 2958 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2959 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2960 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2961 vreg_ofs(s, a->rs2), cpu_env, \ 2962 s->cfg_ptr->vlen / 8, \ 2963 s->cfg_ptr->vlen / 8, data, \ 2964 fns[s->sew - 1]); \ 2965 mark_vs_dirty(s); \ 2966 gen_set_label(over); \ 2967 return true; \ 2968 } \ 2969 return false; \ 2970} 2971 2972GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2973 RISCV_FRM_DYN) 2974GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2975 RISCV_FRM_DYN) 2976GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2977 RISCV_FRM_DYN) 2978/* Reuse the helper function from vfncvt.f.f.w */ 2979GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2980 RISCV_FRM_ROD) 2981 2982static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2983{ 2984 return require_rvv(s) && 2985 require_scale_rvf(s) && 2986 vext_check_isa_ill(s) && 2987 /* OPFV narrowing instructions ignore vs1 check */ 2988 vext_check_sd(s, a->rd, a->rs2, a->vm) && 2989 require_scale_zve32f(s) && 2990 require_scale_zve64f(s); 2991} 2992 2993#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2994static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2995{ \ 2996 if (opxfv_narrow_check(s, a)) { \ 2997 if (FRM != RISCV_FRM_DYN) { \ 2998 gen_set_rm(s, RISCV_FRM_DYN); \ 2999 } \ 3000 \ 3001 uint32_t data = 0; \ 3002 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3003 gen_helper_##HELPER##_b, \ 3004 gen_helper_##HELPER##_h, \ 3005 gen_helper_##HELPER##_w, \ 3006 }; \ 3007 TCGLabel *over = gen_new_label(); \ 3008 gen_set_rm(s, FRM); \ 3009 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3010 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3011 \ 3012 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3013 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3014 vreg_ofs(s, a->rs2), cpu_env, \ 3015 s->cfg_ptr->vlen / 8, \ 3016 s->cfg_ptr->vlen / 8, data, \ 3017 fns[s->sew]); \ 3018 mark_vs_dirty(s); \ 3019 gen_set_label(over); \ 3020 return true; \ 3021 } \ 3022 return false; \ 3023} 3024 3025GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3026GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3027/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3028GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3029GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3030 3031/* 3032 *** Vector Reduction Operations 3033 */ 3034/* Vector Single-Width Integer Reduction Instructions */ 3035static bool reduction_check(DisasContext *s, arg_rmrr *a) 3036{ 3037 return require_rvv(s) && 3038 vext_check_isa_ill(s) && 3039 vext_check_reduction(s, a->rs2); 3040} 3041 3042GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3043GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3044GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3045GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3046GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3047GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3048GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3049GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3050 3051/* Vector Widening Integer Reduction Instructions */ 3052static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3053{ 3054 return reduction_check(s, a) && (s->sew < MO_64) && 3055 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3056} 3057 3058GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3059GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3060 3061/* Vector Single-Width Floating-Point Reduction Instructions */ 3062static bool freduction_check(DisasContext *s, arg_rmrr *a) 3063{ 3064 return reduction_check(s, a) && 3065 require_rvf(s) && 3066 require_zve32f(s) && 3067 require_zve64f(s); 3068} 3069 3070GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3071GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3072GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3073 3074/* Vector Widening Floating-Point Reduction Instructions */ 3075static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3076{ 3077 return reduction_widen_check(s, a) && 3078 require_scale_rvf(s) && 3079 (s->sew != MO_8); 3080} 3081 3082GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3083 3084/* 3085 *** Vector Mask Operations 3086 */ 3087 3088/* Vector Mask-Register Logical Instructions */ 3089#define GEN_MM_TRANS(NAME) \ 3090static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3091{ \ 3092 if (require_rvv(s) && \ 3093 vext_check_isa_ill(s)) { \ 3094 uint32_t data = 0; \ 3095 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3096 TCGLabel *over = gen_new_label(); \ 3097 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3098 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3099 \ 3100 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3101 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3102 vreg_ofs(s, a->rs1), \ 3103 vreg_ofs(s, a->rs2), cpu_env, \ 3104 s->cfg_ptr->vlen / 8, \ 3105 s->cfg_ptr->vlen / 8, data, fn); \ 3106 mark_vs_dirty(s); \ 3107 gen_set_label(over); \ 3108 return true; \ 3109 } \ 3110 return false; \ 3111} 3112 3113GEN_MM_TRANS(vmand_mm) 3114GEN_MM_TRANS(vmnand_mm) 3115GEN_MM_TRANS(vmandn_mm) 3116GEN_MM_TRANS(vmxor_mm) 3117GEN_MM_TRANS(vmor_mm) 3118GEN_MM_TRANS(vmnor_mm) 3119GEN_MM_TRANS(vmorn_mm) 3120GEN_MM_TRANS(vmxnor_mm) 3121 3122/* Vector count population in mask vcpop */ 3123static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3124{ 3125 if (require_rvv(s) && 3126 vext_check_isa_ill(s) && 3127 s->vstart == 0) { 3128 TCGv_ptr src2, mask; 3129 TCGv dst; 3130 TCGv_i32 desc; 3131 uint32_t data = 0; 3132 data = FIELD_DP32(data, VDATA, VM, a->vm); 3133 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3134 3135 mask = tcg_temp_new_ptr(); 3136 src2 = tcg_temp_new_ptr(); 3137 dst = dest_gpr(s, a->rd); 3138 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3139 s->cfg_ptr->vlen / 8, data)); 3140 3141 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3142 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3143 3144 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3145 gen_set_gpr(s, a->rd, dst); 3146 3147 tcg_temp_free_ptr(mask); 3148 tcg_temp_free_ptr(src2); 3149 3150 return true; 3151 } 3152 return false; 3153} 3154 3155/* vmfirst find-first-set mask bit */ 3156static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3157{ 3158 if (require_rvv(s) && 3159 vext_check_isa_ill(s) && 3160 s->vstart == 0) { 3161 TCGv_ptr src2, mask; 3162 TCGv dst; 3163 TCGv_i32 desc; 3164 uint32_t data = 0; 3165 data = FIELD_DP32(data, VDATA, VM, a->vm); 3166 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3167 3168 mask = tcg_temp_new_ptr(); 3169 src2 = tcg_temp_new_ptr(); 3170 dst = dest_gpr(s, a->rd); 3171 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3172 s->cfg_ptr->vlen / 8, data)); 3173 3174 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3175 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3176 3177 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3178 gen_set_gpr(s, a->rd, dst); 3179 3180 tcg_temp_free_ptr(mask); 3181 tcg_temp_free_ptr(src2); 3182 return true; 3183 } 3184 return false; 3185} 3186 3187/* vmsbf.m set-before-first mask bit */ 3188/* vmsif.m set-includ-first mask bit */ 3189/* vmsof.m set-only-first mask bit */ 3190#define GEN_M_TRANS(NAME) \ 3191static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3192{ \ 3193 if (require_rvv(s) && \ 3194 vext_check_isa_ill(s) && \ 3195 require_vm(a->vm, a->rd) && \ 3196 (a->rd != a->rs2) && \ 3197 (s->vstart == 0)) { \ 3198 uint32_t data = 0; \ 3199 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3200 TCGLabel *over = gen_new_label(); \ 3201 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3202 \ 3203 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3204 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3205 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3206 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3207 cpu_env, s->cfg_ptr->vlen / 8, \ 3208 s->cfg_ptr->vlen / 8, \ 3209 data, fn); \ 3210 mark_vs_dirty(s); \ 3211 gen_set_label(over); \ 3212 return true; \ 3213 } \ 3214 return false; \ 3215} 3216 3217GEN_M_TRANS(vmsbf_m) 3218GEN_M_TRANS(vmsif_m) 3219GEN_M_TRANS(vmsof_m) 3220 3221/* 3222 * Vector Iota Instruction 3223 * 3224 * 1. The destination register cannot overlap the source register. 3225 * 2. If masked, cannot overlap the mask register ('v0'). 3226 * 3. An illegal instruction exception is raised if vstart is non-zero. 3227 */ 3228static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3229{ 3230 if (require_rvv(s) && 3231 vext_check_isa_ill(s) && 3232 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3233 require_vm(a->vm, a->rd) && 3234 require_align(a->rd, s->lmul) && 3235 (s->vstart == 0)) { 3236 uint32_t data = 0; 3237 TCGLabel *over = gen_new_label(); 3238 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3239 3240 data = FIELD_DP32(data, VDATA, VM, a->vm); 3241 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3242 static gen_helper_gvec_3_ptr * const fns[4] = { 3243 gen_helper_viota_m_b, gen_helper_viota_m_h, 3244 gen_helper_viota_m_w, gen_helper_viota_m_d, 3245 }; 3246 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3247 vreg_ofs(s, a->rs2), cpu_env, 3248 s->cfg_ptr->vlen / 8, 3249 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3250 mark_vs_dirty(s); 3251 gen_set_label(over); 3252 return true; 3253 } 3254 return false; 3255} 3256 3257/* Vector Element Index Instruction */ 3258static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3259{ 3260 if (require_rvv(s) && 3261 vext_check_isa_ill(s) && 3262 require_align(a->rd, s->lmul) && 3263 require_vm(a->vm, a->rd)) { 3264 uint32_t data = 0; 3265 TCGLabel *over = gen_new_label(); 3266 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3267 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3268 3269 data = FIELD_DP32(data, VDATA, VM, a->vm); 3270 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3271 static gen_helper_gvec_2_ptr * const fns[4] = { 3272 gen_helper_vid_v_b, gen_helper_vid_v_h, 3273 gen_helper_vid_v_w, gen_helper_vid_v_d, 3274 }; 3275 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3276 cpu_env, s->cfg_ptr->vlen / 8, 3277 s->cfg_ptr->vlen / 8, 3278 data, fns[s->sew]); 3279 mark_vs_dirty(s); 3280 gen_set_label(over); 3281 return true; 3282 } 3283 return false; 3284} 3285 3286/* 3287 *** Vector Permutation Instructions 3288 */ 3289 3290static void load_element(TCGv_i64 dest, TCGv_ptr base, 3291 int ofs, int sew, bool sign) 3292{ 3293 switch (sew) { 3294 case MO_8: 3295 if (!sign) { 3296 tcg_gen_ld8u_i64(dest, base, ofs); 3297 } else { 3298 tcg_gen_ld8s_i64(dest, base, ofs); 3299 } 3300 break; 3301 case MO_16: 3302 if (!sign) { 3303 tcg_gen_ld16u_i64(dest, base, ofs); 3304 } else { 3305 tcg_gen_ld16s_i64(dest, base, ofs); 3306 } 3307 break; 3308 case MO_32: 3309 if (!sign) { 3310 tcg_gen_ld32u_i64(dest, base, ofs); 3311 } else { 3312 tcg_gen_ld32s_i64(dest, base, ofs); 3313 } 3314 break; 3315 case MO_64: 3316 tcg_gen_ld_i64(dest, base, ofs); 3317 break; 3318 default: 3319 g_assert_not_reached(); 3320 break; 3321 } 3322} 3323 3324/* offset of the idx element with base regsiter r */ 3325static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3326{ 3327#if HOST_BIG_ENDIAN 3328 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3329#else 3330 return vreg_ofs(s, r) + (idx << s->sew); 3331#endif 3332} 3333 3334/* adjust the index according to the endian */ 3335static void endian_adjust(TCGv_i32 ofs, int sew) 3336{ 3337#if HOST_BIG_ENDIAN 3338 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3339#endif 3340} 3341 3342/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3343static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3344 int vreg, TCGv idx, int vlmax) 3345{ 3346 TCGv_i32 ofs = tcg_temp_new_i32(); 3347 TCGv_ptr base = tcg_temp_new_ptr(); 3348 TCGv_i64 t_idx = tcg_temp_new_i64(); 3349 TCGv_i64 t_vlmax, t_zero; 3350 3351 /* 3352 * Mask the index to the length so that we do 3353 * not produce an out-of-range load. 3354 */ 3355 tcg_gen_trunc_tl_i32(ofs, idx); 3356 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3357 3358 /* Convert the index to an offset. */ 3359 endian_adjust(ofs, s->sew); 3360 tcg_gen_shli_i32(ofs, ofs, s->sew); 3361 3362 /* Convert the index to a pointer. */ 3363 tcg_gen_ext_i32_ptr(base, ofs); 3364 tcg_gen_add_ptr(base, base, cpu_env); 3365 3366 /* Perform the load. */ 3367 load_element(dest, base, 3368 vreg_ofs(s, vreg), s->sew, false); 3369 tcg_temp_free_ptr(base); 3370 tcg_temp_free_i32(ofs); 3371 3372 /* Flush out-of-range indexing to zero. */ 3373 t_vlmax = tcg_constant_i64(vlmax); 3374 t_zero = tcg_constant_i64(0); 3375 tcg_gen_extu_tl_i64(t_idx, idx); 3376 3377 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3378 t_vlmax, dest, t_zero); 3379 3380 tcg_temp_free_i64(t_idx); 3381} 3382 3383static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3384 int vreg, int idx, bool sign) 3385{ 3386 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3387} 3388 3389/* Integer Scalar Move Instruction */ 3390 3391static void store_element(TCGv_i64 val, TCGv_ptr base, 3392 int ofs, int sew) 3393{ 3394 switch (sew) { 3395 case MO_8: 3396 tcg_gen_st8_i64(val, base, ofs); 3397 break; 3398 case MO_16: 3399 tcg_gen_st16_i64(val, base, ofs); 3400 break; 3401 case MO_32: 3402 tcg_gen_st32_i64(val, base, ofs); 3403 break; 3404 case MO_64: 3405 tcg_gen_st_i64(val, base, ofs); 3406 break; 3407 default: 3408 g_assert_not_reached(); 3409 break; 3410 } 3411} 3412 3413/* 3414 * Store vreg[idx] = val. 3415 * The index must be in range of VLMAX. 3416 */ 3417static void vec_element_storei(DisasContext *s, int vreg, 3418 int idx, TCGv_i64 val) 3419{ 3420 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3421} 3422 3423/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3424static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3425{ 3426 if (require_rvv(s) && 3427 vext_check_isa_ill(s)) { 3428 TCGv_i64 t1; 3429 TCGv dest; 3430 3431 t1 = tcg_temp_new_i64(); 3432 dest = tcg_temp_new(); 3433 /* 3434 * load vreg and sign-extend to 64 bits, 3435 * then truncate to XLEN bits before storing to gpr. 3436 */ 3437 vec_element_loadi(s, t1, a->rs2, 0, true); 3438 tcg_gen_trunc_i64_tl(dest, t1); 3439 gen_set_gpr(s, a->rd, dest); 3440 tcg_temp_free_i64(t1); 3441 tcg_temp_free(dest); 3442 3443 return true; 3444 } 3445 return false; 3446} 3447 3448/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3449static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3450{ 3451 if (require_rvv(s) && 3452 vext_check_isa_ill(s)) { 3453 /* This instruction ignores LMUL and vector register groups */ 3454 TCGv_i64 t1; 3455 TCGv s1; 3456 TCGLabel *over = gen_new_label(); 3457 3458 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3459 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3460 3461 t1 = tcg_temp_new_i64(); 3462 3463 /* 3464 * load gpr and sign-extend to 64 bits, 3465 * then truncate to SEW bits when storing to vreg. 3466 */ 3467 s1 = get_gpr(s, a->rs1, EXT_NONE); 3468 tcg_gen_ext_tl_i64(t1, s1); 3469 vec_element_storei(s, a->rd, 0, t1); 3470 tcg_temp_free_i64(t1); 3471 mark_vs_dirty(s); 3472 gen_set_label(over); 3473 return true; 3474 } 3475 return false; 3476} 3477 3478/* Floating-Point Scalar Move Instructions */ 3479static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3480{ 3481 if (require_rvv(s) && 3482 require_rvf(s) && 3483 vext_check_isa_ill(s) && 3484 require_zve32f(s) && 3485 require_zve64f(s)) { 3486 gen_set_rm(s, RISCV_FRM_DYN); 3487 3488 unsigned int ofs = (8 << s->sew); 3489 unsigned int len = 64 - ofs; 3490 TCGv_i64 t_nan; 3491 3492 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3493 /* NaN-box f[rd] as necessary for SEW */ 3494 if (len) { 3495 t_nan = tcg_constant_i64(UINT64_MAX); 3496 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3497 t_nan, ofs, len); 3498 } 3499 3500 mark_fs_dirty(s); 3501 return true; 3502 } 3503 return false; 3504} 3505 3506/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3507static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3508{ 3509 if (require_rvv(s) && 3510 require_rvf(s) && 3511 vext_check_isa_ill(s) && 3512 require_zve32f(s) && 3513 require_zve64f(s)) { 3514 gen_set_rm(s, RISCV_FRM_DYN); 3515 3516 /* The instructions ignore LMUL and vector register group. */ 3517 TCGv_i64 t1; 3518 TCGLabel *over = gen_new_label(); 3519 3520 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3521 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3522 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3523 3524 /* NaN-box f[rs1] */ 3525 t1 = tcg_temp_new_i64(); 3526 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3527 3528 vec_element_storei(s, a->rd, 0, t1); 3529 tcg_temp_free_i64(t1); 3530 mark_vs_dirty(s); 3531 gen_set_label(over); 3532 return true; 3533 } 3534 return false; 3535} 3536 3537/* Vector Slide Instructions */ 3538static bool slideup_check(DisasContext *s, arg_rmrr *a) 3539{ 3540 return require_rvv(s) && 3541 vext_check_isa_ill(s) && 3542 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3543} 3544 3545GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3546GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3547GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3548 3549static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3550{ 3551 return require_rvv(s) && 3552 vext_check_isa_ill(s) && 3553 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3554} 3555 3556GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3557GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3558GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3559 3560/* Vector Floating-Point Slide Instructions */ 3561static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3562{ 3563 return slideup_check(s, a) && 3564 require_rvf(s) && 3565 require_zve32f(s) && 3566 require_zve64f(s); 3567} 3568 3569static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3570{ 3571 return slidedown_check(s, a) && 3572 require_rvf(s) && 3573 require_zve32f(s) && 3574 require_zve64f(s); 3575} 3576 3577GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3578GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3579 3580/* Vector Register Gather Instruction */ 3581static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3582{ 3583 return require_rvv(s) && 3584 vext_check_isa_ill(s) && 3585 require_align(a->rd, s->lmul) && 3586 require_align(a->rs1, s->lmul) && 3587 require_align(a->rs2, s->lmul) && 3588 (a->rd != a->rs2 && a->rd != a->rs1) && 3589 require_vm(a->vm, a->rd); 3590} 3591 3592static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3593{ 3594 int8_t emul = MO_16 - s->sew + s->lmul; 3595 return require_rvv(s) && 3596 vext_check_isa_ill(s) && 3597 (emul >= -3 && emul <= 3) && 3598 require_align(a->rd, s->lmul) && 3599 require_align(a->rs1, emul) && 3600 require_align(a->rs2, s->lmul) && 3601 (a->rd != a->rs2 && a->rd != a->rs1) && 3602 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3603 a->rs1, 1 << MAX(emul, 0)) && 3604 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3605 a->rs2, 1 << MAX(s->lmul, 0)) && 3606 require_vm(a->vm, a->rd); 3607} 3608 3609GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3610GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3611 3612static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3613{ 3614 return require_rvv(s) && 3615 vext_check_isa_ill(s) && 3616 require_align(a->rd, s->lmul) && 3617 require_align(a->rs2, s->lmul) && 3618 (a->rd != a->rs2) && 3619 require_vm(a->vm, a->rd); 3620} 3621 3622/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3623static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3624{ 3625 if (!vrgather_vx_check(s, a)) { 3626 return false; 3627 } 3628 3629 if (a->vm && s->vl_eq_vlmax) { 3630 int scale = s->lmul - (s->sew + 3); 3631 int vlmax = s->cfg_ptr->vlen >> -scale; 3632 TCGv_i64 dest = tcg_temp_new_i64(); 3633 3634 if (a->rs1 == 0) { 3635 vec_element_loadi(s, dest, a->rs2, 0, false); 3636 } else { 3637 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3638 } 3639 3640 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3641 MAXSZ(s), MAXSZ(s), dest); 3642 tcg_temp_free_i64(dest); 3643 mark_vs_dirty(s); 3644 } else { 3645 static gen_helper_opivx * const fns[4] = { 3646 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3647 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3648 }; 3649 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3650 } 3651 return true; 3652} 3653 3654/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3655static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3656{ 3657 if (!vrgather_vx_check(s, a)) { 3658 return false; 3659 } 3660 3661 if (a->vm && s->vl_eq_vlmax) { 3662 int scale = s->lmul - (s->sew + 3); 3663 int vlmax = s->cfg_ptr->vlen >> -scale; 3664 if (a->rs1 >= vlmax) { 3665 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3666 MAXSZ(s), MAXSZ(s), 0); 3667 } else { 3668 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3669 endian_ofs(s, a->rs2, a->rs1), 3670 MAXSZ(s), MAXSZ(s)); 3671 } 3672 mark_vs_dirty(s); 3673 } else { 3674 static gen_helper_opivx * const fns[4] = { 3675 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3676 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3677 }; 3678 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3679 s, IMM_ZX); 3680 } 3681 return true; 3682} 3683 3684/* 3685 * Vector Compress Instruction 3686 * 3687 * The destination vector register group cannot overlap the 3688 * source vector register group or the source mask register. 3689 */ 3690static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3691{ 3692 return require_rvv(s) && 3693 vext_check_isa_ill(s) && 3694 require_align(a->rd, s->lmul) && 3695 require_align(a->rs2, s->lmul) && 3696 (a->rd != a->rs2) && 3697 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3698 (s->vstart == 0); 3699} 3700 3701static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3702{ 3703 if (vcompress_vm_check(s, a)) { 3704 uint32_t data = 0; 3705 static gen_helper_gvec_4_ptr * const fns[4] = { 3706 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3707 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3708 }; 3709 TCGLabel *over = gen_new_label(); 3710 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3711 3712 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3713 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3714 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3715 cpu_env, s->cfg_ptr->vlen / 8, 3716 s->cfg_ptr->vlen / 8, data, 3717 fns[s->sew]); 3718 mark_vs_dirty(s); 3719 gen_set_label(over); 3720 return true; 3721 } 3722 return false; 3723} 3724 3725/* 3726 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3727 * Thus, we don't need to check vill bit. (Section 16.6) 3728 */ 3729#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3730static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3731{ \ 3732 if (require_rvv(s) && \ 3733 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3734 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3735 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3736 if (s->vstart == 0) { \ 3737 /* EEW = 8 */ \ 3738 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3739 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3740 mark_vs_dirty(s); \ 3741 } else { \ 3742 TCGLabel *over = gen_new_label(); \ 3743 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3744 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3745 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3746 mark_vs_dirty(s); \ 3747 gen_set_label(over); \ 3748 } \ 3749 return true; \ 3750 } \ 3751 return false; \ 3752} 3753 3754GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3755GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3756GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3757GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3758 3759static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3760{ 3761 uint8_t from = (s->sew + 3) - div; 3762 bool ret = require_rvv(s) && 3763 (from >= 3 && from <= 8) && 3764 (a->rd != a->rs2) && 3765 require_align(a->rd, s->lmul) && 3766 require_align(a->rs2, s->lmul - div) && 3767 require_vm(a->vm, a->rd) && 3768 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3769 return ret; 3770} 3771 3772static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3773{ 3774 uint32_t data = 0; 3775 gen_helper_gvec_3_ptr *fn; 3776 TCGLabel *over = gen_new_label(); 3777 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3778 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3779 3780 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3781 { 3782 NULL, gen_helper_vzext_vf2_h, 3783 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3784 }, 3785 { 3786 NULL, NULL, 3787 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3788 }, 3789 { 3790 NULL, NULL, 3791 NULL, gen_helper_vzext_vf8_d 3792 }, 3793 { 3794 NULL, gen_helper_vsext_vf2_h, 3795 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3796 }, 3797 { 3798 NULL, NULL, 3799 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3800 }, 3801 { 3802 NULL, NULL, 3803 NULL, gen_helper_vsext_vf8_d 3804 } 3805 }; 3806 3807 fn = fns[seq][s->sew]; 3808 if (fn == NULL) { 3809 return false; 3810 } 3811 3812 data = FIELD_DP32(data, VDATA, VM, a->vm); 3813 3814 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3815 vreg_ofs(s, a->rs2), cpu_env, 3816 s->cfg_ptr->vlen / 8, 3817 s->cfg_ptr->vlen / 8, data, fn); 3818 3819 mark_vs_dirty(s); 3820 gen_set_label(over); 3821 return true; 3822} 3823 3824/* Vector Integer Extension */ 3825#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3826static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3827{ \ 3828 if (int_ext_check(s, a, DIV)) { \ 3829 return int_ext_op(s, a, SEQ); \ 3830 } \ 3831 return false; \ 3832} 3833 3834GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3835GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3836GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3837GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3838GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3839GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3840