1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69/* Destination vector register group cannot overlap source mask register. */ 70static bool require_vm(int vm, int vd) 71{ 72 return (vm != 0 || vd != 0); 73} 74 75static bool require_nf(int vd, int nf, int lmul) 76{ 77 int size = nf << MAX(lmul, 0); 78 return size <= 8 && vd + size <= 32; 79} 80 81/* 82 * Vector register should aligned with the passed-in LMUL (EMUL). 83 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 84 */ 85static bool require_align(const int8_t val, const int8_t lmul) 86{ 87 return lmul <= 0 || extract32(val, 0, lmul) == 0; 88} 89 90/* 91 * A destination vector register group can overlap a source vector 92 * register group only if one of the following holds: 93 * 1. The destination EEW equals the source EEW. 94 * 2. The destination EEW is smaller than the source EEW and the overlap 95 * is in the lowest-numbered part of the source register group. 96 * 3. The destination EEW is greater than the source EEW, the source EMUL 97 * is at least 1, and the overlap is in the highest-numbered part of 98 * the destination register group. 99 * (Section 5.2) 100 * 101 * This function returns true if one of the following holds: 102 * * Destination vector register group does not overlap a source vector 103 * register group. 104 * * Rule 3 met. 105 * For rule 1, overlap is allowed so this function doesn't need to be called. 106 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 107 * calling this function. 108 */ 109static bool require_noover(const int8_t dst, const int8_t dst_lmul, 110 const int8_t src, const int8_t src_lmul) 111{ 112 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 113 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 114 115 /* Destination EEW is greater than the source EEW, check rule 3. */ 116 if (dst_size > src_size) { 117 if (dst < src && 118 src_lmul >= 0 && 119 is_overlapped(dst, dst_size, src, src_size) && 120 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 121 return true; 122 } 123 } 124 125 return !is_overlapped(dst, dst_size, src, src_size); 126} 127 128static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 129{ 130 TCGv s1, dst; 131 132 if (!require_rvv(s) || 133 !(has_ext(s, RVV) || s->ext_zve64f)) { 134 return false; 135 } 136 137 dst = dest_gpr(s, rd); 138 139 if (rd == 0 && rs1 == 0) { 140 s1 = tcg_temp_new(); 141 tcg_gen_mov_tl(s1, cpu_vl); 142 } else if (rs1 == 0) { 143 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 144 s1 = tcg_constant_tl(RV_VLEN_MAX); 145 } else { 146 s1 = get_gpr(s, rs1, EXT_ZERO); 147 } 148 149 gen_helper_vsetvl(dst, cpu_env, s1, s2); 150 gen_set_gpr(s, rd, dst); 151 mark_vs_dirty(s); 152 153 tcg_gen_movi_tl(cpu_pc, s->pc_succ_insn); 154 tcg_gen_lookup_and_goto_ptr(); 155 s->base.is_jmp = DISAS_NORETURN; 156 157 if (rd == 0 && rs1 == 0) { 158 tcg_temp_free(s1); 159 } 160 161 return true; 162} 163 164static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 165{ 166 TCGv dst; 167 168 if (!require_rvv(s) || 169 !(has_ext(s, RVV) || s->ext_zve64f)) { 170 return false; 171 } 172 173 dst = dest_gpr(s, rd); 174 175 gen_helper_vsetvl(dst, cpu_env, s1, s2); 176 gen_set_gpr(s, rd, dst); 177 mark_vs_dirty(s); 178 tcg_gen_movi_tl(cpu_pc, s->pc_succ_insn); 179 tcg_gen_lookup_and_goto_ptr(); 180 s->base.is_jmp = DISAS_NORETURN; 181 182 return true; 183} 184 185static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 186{ 187 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 188 return do_vsetvl(s, a->rd, a->rs1, s2); 189} 190 191static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 192{ 193 TCGv s2 = tcg_constant_tl(a->zimm); 194 return do_vsetvl(s, a->rd, a->rs1, s2); 195} 196 197static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 198{ 199 TCGv s1 = tcg_const_tl(a->rs1); 200 TCGv s2 = tcg_const_tl(a->zimm); 201 return do_vsetivli(s, a->rd, s1, s2); 202} 203 204/* vector register offset from env */ 205static uint32_t vreg_ofs(DisasContext *s, int reg) 206{ 207 return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8; 208} 209 210/* check functions */ 211 212/* 213 * Vector unit-stride, strided, unit-stride segment, strided segment 214 * store check function. 215 * 216 * Rules to be checked here: 217 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 218 * 2. Destination vector register number is multiples of EMUL. 219 * (Section 3.4.2, 7.3) 220 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 221 * 4. Vector register numbers accessed by the segment load or store 222 * cannot increment past 31. (Section 7.8) 223 */ 224static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 225{ 226 int8_t emul = eew - s->sew + s->lmul; 227 return (emul >= -3 && emul <= 3) && 228 require_align(vd, emul) && 229 require_nf(vd, nf, emul); 230} 231 232/* 233 * Vector unit-stride, strided, unit-stride segment, strided segment 234 * load check function. 235 * 236 * Rules to be checked here: 237 * 1. All rules applies to store instructions are applies 238 * to load instructions. 239 * 2. Destination vector register group for a masked vector 240 * instruction cannot overlap the source mask register (v0). 241 * (Section 5.3) 242 */ 243static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 244 uint8_t eew) 245{ 246 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 247} 248 249/* 250 * Vector indexed, indexed segment store check function. 251 * 252 * Rules to be checked here: 253 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 254 * 2. Index vector register number is multiples of EMUL. 255 * (Section 3.4.2, 7.3) 256 * 3. Destination vector register number is multiples of LMUL. 257 * (Section 3.4.2, 7.3) 258 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 259 * 5. Vector register numbers accessed by the segment load or store 260 * cannot increment past 31. (Section 7.8) 261 */ 262static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 263 uint8_t eew) 264{ 265 int8_t emul = eew - s->sew + s->lmul; 266 return (emul >= -3 && emul <= 3) && 267 require_align(vs2, emul) && 268 require_align(vd, s->lmul) && 269 require_nf(vd, nf, s->lmul); 270} 271 272/* 273 * Vector indexed, indexed segment load check function. 274 * 275 * Rules to be checked here: 276 * 1. All rules applies to store instructions are applies 277 * to load instructions. 278 * 2. Destination vector register group for a masked vector 279 * instruction cannot overlap the source mask register (v0). 280 * (Section 5.3) 281 * 3. Destination vector register cannot overlap a source vector 282 * register (vs2) group. 283 * (Section 5.2) 284 * 4. Destination vector register groups cannot overlap 285 * the source vector register (vs2) group for 286 * indexed segment load instructions. (Section 7.8.3) 287 */ 288static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 289 int nf, int vm, uint8_t eew) 290{ 291 int8_t seg_vd; 292 int8_t emul = eew - s->sew + s->lmul; 293 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 294 require_vm(vm, vd); 295 296 /* Each segment register group has to follow overlap rules. */ 297 for (int i = 0; i < nf; ++i) { 298 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 299 300 if (eew > s->sew) { 301 if (seg_vd != vs2) { 302 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 303 } 304 } else if (eew < s->sew) { 305 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 306 } 307 308 /* 309 * Destination vector register groups cannot overlap 310 * the source vector register (vs2) group for 311 * indexed segment load instructions. 312 */ 313 if (nf > 1) { 314 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 315 vs2, 1 << MAX(emul, 0)); 316 } 317 } 318 return ret; 319} 320 321static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 322{ 323 return require_vm(vm, vd) && 324 require_align(vd, s->lmul) && 325 require_align(vs, s->lmul); 326} 327 328/* 329 * Check function for vector instruction with format: 330 * single-width result and single-width sources (SEW = SEW op SEW) 331 * 332 * Rules to be checked here: 333 * 1. Destination vector register group for a masked vector 334 * instruction cannot overlap the source mask register (v0). 335 * (Section 5.3) 336 * 2. Destination vector register number is multiples of LMUL. 337 * (Section 3.4.2) 338 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 339 * (Section 3.4.2) 340 */ 341static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 342{ 343 return vext_check_ss(s, vd, vs2, vm) && 344 require_align(vs1, s->lmul); 345} 346 347static bool vext_check_ms(DisasContext *s, int vd, int vs) 348{ 349 bool ret = require_align(vs, s->lmul); 350 if (vd != vs) { 351 ret &= require_noover(vd, 0, vs, s->lmul); 352 } 353 return ret; 354} 355 356/* 357 * Check function for maskable vector instruction with format: 358 * single-width result and single-width sources (SEW = SEW op SEW) 359 * 360 * Rules to be checked here: 361 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 362 * (Section 3.4.2) 363 * 2. Destination vector register cannot overlap a source vector 364 * register (vs2, vs1) group. 365 * (Section 5.2) 366 * 3. The destination vector register group for a masked vector 367 * instruction cannot overlap the source mask register (v0), 368 * unless the destination vector register is being written 369 * with a mask value (e.g., comparisons) or the scalar result 370 * of a reduction. (Section 5.3) 371 */ 372static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 373{ 374 bool ret = vext_check_ms(s, vd, vs2) && 375 require_align(vs1, s->lmul); 376 if (vd != vs1) { 377 ret &= require_noover(vd, 0, vs1, s->lmul); 378 } 379 return ret; 380} 381 382/* 383 * Common check function for vector widening instructions 384 * of double-width result (2*SEW). 385 * 386 * Rules to be checked here: 387 * 1. The largest vector register group used by an instruction 388 * can not be greater than 8 vector registers (Section 5.2): 389 * => LMUL < 8. 390 * => SEW < 64. 391 * 2. Double-width SEW cannot greater than ELEN. 392 * 3. Destination vector register number is multiples of 2 * LMUL. 393 * (Section 3.4.2) 394 * 4. Destination vector register group for a masked vector 395 * instruction cannot overlap the source mask register (v0). 396 * (Section 5.3) 397 */ 398static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 399{ 400 return (s->lmul <= 2) && 401 (s->sew < MO_64) && 402 ((s->sew + 1) <= (s->elen >> 4)) && 403 require_align(vd, s->lmul + 1) && 404 require_vm(vm, vd); 405} 406 407/* 408 * Common check function for vector narrowing instructions 409 * of single-width result (SEW) and double-width source (2*SEW). 410 * 411 * Rules to be checked here: 412 * 1. The largest vector register group used by an instruction 413 * can not be greater than 8 vector registers (Section 5.2): 414 * => LMUL < 8. 415 * => SEW < 64. 416 * 2. Double-width SEW cannot greater than ELEN. 417 * 3. Source vector register number is multiples of 2 * LMUL. 418 * (Section 3.4.2) 419 * 4. Destination vector register number is multiples of LMUL. 420 * (Section 3.4.2) 421 * 5. Destination vector register group for a masked vector 422 * instruction cannot overlap the source mask register (v0). 423 * (Section 5.3) 424 */ 425static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 426 int vm) 427{ 428 return (s->lmul <= 2) && 429 (s->sew < MO_64) && 430 ((s->sew + 1) <= (s->elen >> 4)) && 431 require_align(vs2, s->lmul + 1) && 432 require_align(vd, s->lmul) && 433 require_vm(vm, vd); 434} 435 436static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 437{ 438 return vext_wide_check_common(s, vd, vm) && 439 require_align(vs, s->lmul) && 440 require_noover(vd, s->lmul + 1, vs, s->lmul); 441} 442 443static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 444{ 445 return vext_wide_check_common(s, vd, vm) && 446 require_align(vs, s->lmul + 1); 447} 448 449/* 450 * Check function for vector instruction with format: 451 * double-width result and single-width sources (2*SEW = SEW op SEW) 452 * 453 * Rules to be checked here: 454 * 1. All rules in defined in widen common rules are applied. 455 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 456 * (Section 3.4.2) 457 * 3. Destination vector register cannot overlap a source vector 458 * register (vs2, vs1) group. 459 * (Section 5.2) 460 */ 461static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 462{ 463 return vext_check_ds(s, vd, vs2, vm) && 464 require_align(vs1, s->lmul) && 465 require_noover(vd, s->lmul + 1, vs1, s->lmul); 466} 467 468/* 469 * Check function for vector instruction with format: 470 * double-width result and double-width source1 and single-width 471 * source2 (2*SEW = 2*SEW op SEW) 472 * 473 * Rules to be checked here: 474 * 1. All rules in defined in widen common rules are applied. 475 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 4. Destination vector register cannot overlap a source vector 480 * register (vs1) group. 481 * (Section 5.2) 482 */ 483static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 484{ 485 return vext_check_ds(s, vd, vs1, vm) && 486 require_align(vs2, s->lmul + 1); 487} 488 489static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 490{ 491 bool ret = vext_narrow_check_common(s, vd, vs, vm); 492 if (vd != vs) { 493 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 494 } 495 return ret; 496} 497 498/* 499 * Check function for vector instruction with format: 500 * single-width result and double-width source 1 and single-width 501 * source 2 (SEW = 2*SEW op SEW) 502 * 503 * Rules to be checked here: 504 * 1. All rules in defined in narrow common rules are applied. 505 * 2. Destination vector register cannot overlap a source vector 506 * register (vs2) group. 507 * (Section 5.2) 508 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 509 * (Section 3.4.2) 510 */ 511static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 512{ 513 return vext_check_sd(s, vd, vs2, vm) && 514 require_align(vs1, s->lmul); 515} 516 517/* 518 * Check function for vector reduction instructions. 519 * 520 * Rules to be checked here: 521 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 522 * (Section 3.4.2) 523 */ 524static bool vext_check_reduction(DisasContext *s, int vs2) 525{ 526 return require_align(vs2, s->lmul) && (s->vstart == 0); 527} 528 529/* 530 * Check function for vector slide instructions. 531 * 532 * Rules to be checked here: 533 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 534 * (Section 3.4.2) 535 * 2. Destination vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 3. Destination vector register group for a masked vector 538 * instruction cannot overlap the source mask register (v0). 539 * (Section 5.3) 540 * 4. The destination vector register group for vslideup, vslide1up, 541 * vfslide1up, cannot overlap the source vector register (vs2) group. 542 * (Section 5.2, 16.3.1, 16.3.3) 543 */ 544static bool vext_check_slide(DisasContext *s, int vd, int vs2, 545 int vm, bool is_over) 546{ 547 bool ret = require_align(vs2, s->lmul) && 548 require_align(vd, s->lmul) && 549 require_vm(vm, vd); 550 if (is_over) { 551 ret &= (vd != vs2); 552 } 553 return ret; 554} 555 556/* 557 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 558 * So RVV is also be checked in this function. 559 */ 560static bool vext_check_isa_ill(DisasContext *s) 561{ 562 return !s->vill; 563} 564 565/* common translation macro */ 566#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 567static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 568{ \ 569 if (CHECK(s, a, EEW)) { \ 570 return OP(s, a, EEW); \ 571 } \ 572 return false; \ 573} 574 575static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 576{ 577 int8_t emul = eew - s->sew + s->lmul; 578 return emul < 0 ? 0 : emul; 579} 580 581/* 582 *** unit stride load and store 583 */ 584typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 585 TCGv_env, TCGv_i32); 586 587static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 588 gen_helper_ldst_us *fn, DisasContext *s, 589 bool is_store) 590{ 591 TCGv_ptr dest, mask; 592 TCGv base; 593 TCGv_i32 desc; 594 595 TCGLabel *over = gen_new_label(); 596 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 597 598 dest = tcg_temp_new_ptr(); 599 mask = tcg_temp_new_ptr(); 600 base = get_gpr(s, rs1, EXT_NONE); 601 602 /* 603 * As simd_desc supports at most 2048 bytes, and in this implementation, 604 * the max vector group length is 4096 bytes. So split it into two parts. 605 * 606 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 607 * The second part is lmul, encoded in data of simd_desc. 608 */ 609 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 610 611 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 612 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 613 614 fn(dest, mask, base, cpu_env, desc); 615 616 tcg_temp_free_ptr(dest); 617 tcg_temp_free_ptr(mask); 618 619 if (!is_store) { 620 mark_vs_dirty(s); 621 } 622 623 gen_set_label(over); 624 return true; 625} 626 627static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 628{ 629 uint32_t data = 0; 630 gen_helper_ldst_us *fn; 631 static gen_helper_ldst_us * const fns[2][4] = { 632 /* masked unit stride load */ 633 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 634 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 635 /* unmasked unit stride load */ 636 { gen_helper_vle8_v, gen_helper_vle16_v, 637 gen_helper_vle32_v, gen_helper_vle64_v } 638 }; 639 640 fn = fns[a->vm][eew]; 641 if (fn == NULL) { 642 return false; 643 } 644 645 /* 646 * Vector load/store instructions have the EEW encoded 647 * directly in the instructions. The maximum vector size is 648 * calculated with EMUL rather than LMUL. 649 */ 650 uint8_t emul = vext_get_emul(s, eew); 651 data = FIELD_DP32(data, VDATA, VM, a->vm); 652 data = FIELD_DP32(data, VDATA, LMUL, emul); 653 data = FIELD_DP32(data, VDATA, NF, a->nf); 654 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 655} 656 657static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 658{ 659 return require_rvv(s) && 660 vext_check_isa_ill(s) && 661 vext_check_load(s, a->rd, a->nf, a->vm, eew); 662} 663 664GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 665GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 666GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 667GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 668 669static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 670{ 671 uint32_t data = 0; 672 gen_helper_ldst_us *fn; 673 static gen_helper_ldst_us * const fns[2][4] = { 674 /* masked unit stride store */ 675 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 676 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 677 /* unmasked unit stride store */ 678 { gen_helper_vse8_v, gen_helper_vse16_v, 679 gen_helper_vse32_v, gen_helper_vse64_v } 680 }; 681 682 fn = fns[a->vm][eew]; 683 if (fn == NULL) { 684 return false; 685 } 686 687 uint8_t emul = vext_get_emul(s, eew); 688 data = FIELD_DP32(data, VDATA, VM, a->vm); 689 data = FIELD_DP32(data, VDATA, LMUL, emul); 690 data = FIELD_DP32(data, VDATA, NF, a->nf); 691 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 692} 693 694static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 695{ 696 return require_rvv(s) && 697 vext_check_isa_ill(s) && 698 vext_check_store(s, a->rd, a->nf, eew); 699} 700 701GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 702GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 703GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 704GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 705 706/* 707 *** unit stride mask load and store 708 */ 709static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 710{ 711 uint32_t data = 0; 712 gen_helper_ldst_us *fn = gen_helper_vlm_v; 713 714 /* EMUL = 1, NFIELDS = 1 */ 715 data = FIELD_DP32(data, VDATA, LMUL, 0); 716 data = FIELD_DP32(data, VDATA, NF, 1); 717 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 718} 719 720static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 721{ 722 /* EMUL = 1, NFIELDS = 1 */ 723 return require_rvv(s) && vext_check_isa_ill(s); 724} 725 726static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 727{ 728 uint32_t data = 0; 729 gen_helper_ldst_us *fn = gen_helper_vsm_v; 730 731 /* EMUL = 1, NFIELDS = 1 */ 732 data = FIELD_DP32(data, VDATA, LMUL, 0); 733 data = FIELD_DP32(data, VDATA, NF, 1); 734 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 735} 736 737static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 738{ 739 /* EMUL = 1, NFIELDS = 1 */ 740 return require_rvv(s) && vext_check_isa_ill(s); 741} 742 743GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 744GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 745 746/* 747 *** stride load and store 748 */ 749typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 750 TCGv, TCGv_env, TCGv_i32); 751 752static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 753 uint32_t data, gen_helper_ldst_stride *fn, 754 DisasContext *s, bool is_store) 755{ 756 TCGv_ptr dest, mask; 757 TCGv base, stride; 758 TCGv_i32 desc; 759 760 TCGLabel *over = gen_new_label(); 761 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 762 763 dest = tcg_temp_new_ptr(); 764 mask = tcg_temp_new_ptr(); 765 base = get_gpr(s, rs1, EXT_NONE); 766 stride = get_gpr(s, rs2, EXT_NONE); 767 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 768 769 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 770 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 771 772 fn(dest, mask, base, stride, cpu_env, desc); 773 774 tcg_temp_free_ptr(dest); 775 tcg_temp_free_ptr(mask); 776 777 if (!is_store) { 778 mark_vs_dirty(s); 779 } 780 781 gen_set_label(over); 782 return true; 783} 784 785static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 786{ 787 uint32_t data = 0; 788 gen_helper_ldst_stride *fn; 789 static gen_helper_ldst_stride * const fns[4] = { 790 gen_helper_vlse8_v, gen_helper_vlse16_v, 791 gen_helper_vlse32_v, gen_helper_vlse64_v 792 }; 793 794 fn = fns[eew]; 795 if (fn == NULL) { 796 return false; 797 } 798 799 uint8_t emul = vext_get_emul(s, eew); 800 data = FIELD_DP32(data, VDATA, VM, a->vm); 801 data = FIELD_DP32(data, VDATA, LMUL, emul); 802 data = FIELD_DP32(data, VDATA, NF, a->nf); 803 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 804} 805 806static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 807{ 808 return require_rvv(s) && 809 vext_check_isa_ill(s) && 810 vext_check_load(s, a->rd, a->nf, a->vm, eew); 811} 812 813GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 814GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 815GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 816GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 817 818static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 819{ 820 uint32_t data = 0; 821 gen_helper_ldst_stride *fn; 822 static gen_helper_ldst_stride * const fns[4] = { 823 /* masked stride store */ 824 gen_helper_vsse8_v, gen_helper_vsse16_v, 825 gen_helper_vsse32_v, gen_helper_vsse64_v 826 }; 827 828 uint8_t emul = vext_get_emul(s, eew); 829 data = FIELD_DP32(data, VDATA, VM, a->vm); 830 data = FIELD_DP32(data, VDATA, LMUL, emul); 831 data = FIELD_DP32(data, VDATA, NF, a->nf); 832 fn = fns[eew]; 833 if (fn == NULL) { 834 return false; 835 } 836 837 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 838} 839 840static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 841{ 842 return require_rvv(s) && 843 vext_check_isa_ill(s) && 844 vext_check_store(s, a->rd, a->nf, eew); 845} 846 847GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 848GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 849GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 850GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 851 852/* 853 *** index load and store 854 */ 855typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 856 TCGv_ptr, TCGv_env, TCGv_i32); 857 858static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 859 uint32_t data, gen_helper_ldst_index *fn, 860 DisasContext *s, bool is_store) 861{ 862 TCGv_ptr dest, mask, index; 863 TCGv base; 864 TCGv_i32 desc; 865 866 TCGLabel *over = gen_new_label(); 867 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 868 869 dest = tcg_temp_new_ptr(); 870 mask = tcg_temp_new_ptr(); 871 index = tcg_temp_new_ptr(); 872 base = get_gpr(s, rs1, EXT_NONE); 873 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 874 875 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 876 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 877 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 878 879 fn(dest, mask, base, index, cpu_env, desc); 880 881 tcg_temp_free_ptr(dest); 882 tcg_temp_free_ptr(mask); 883 tcg_temp_free_ptr(index); 884 885 if (!is_store) { 886 mark_vs_dirty(s); 887 } 888 889 gen_set_label(over); 890 return true; 891} 892 893static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 894{ 895 uint32_t data = 0; 896 gen_helper_ldst_index *fn; 897 static gen_helper_ldst_index * const fns[4][4] = { 898 /* 899 * offset vector register group EEW = 8, 900 * data vector register group EEW = SEW 901 */ 902 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 903 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 904 /* 905 * offset vector register group EEW = 16, 906 * data vector register group EEW = SEW 907 */ 908 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 909 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 910 /* 911 * offset vector register group EEW = 32, 912 * data vector register group EEW = SEW 913 */ 914 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 915 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 916 /* 917 * offset vector register group EEW = 64, 918 * data vector register group EEW = SEW 919 */ 920 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 921 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 922 }; 923 924 fn = fns[eew][s->sew]; 925 926 uint8_t emul = vext_get_emul(s, s->sew); 927 data = FIELD_DP32(data, VDATA, VM, a->vm); 928 data = FIELD_DP32(data, VDATA, LMUL, emul); 929 data = FIELD_DP32(data, VDATA, NF, a->nf); 930 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 931} 932 933static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 934{ 935 return require_rvv(s) && 936 vext_check_isa_ill(s) && 937 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 938} 939 940GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 941GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 942GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 943GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 944 945static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 946{ 947 uint32_t data = 0; 948 gen_helper_ldst_index *fn; 949 static gen_helper_ldst_index * const fns[4][4] = { 950 /* 951 * offset vector register group EEW = 8, 952 * data vector register group EEW = SEW 953 */ 954 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 955 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 956 /* 957 * offset vector register group EEW = 16, 958 * data vector register group EEW = SEW 959 */ 960 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 961 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 962 /* 963 * offset vector register group EEW = 32, 964 * data vector register group EEW = SEW 965 */ 966 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 967 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 968 /* 969 * offset vector register group EEW = 64, 970 * data vector register group EEW = SEW 971 */ 972 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 973 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 974 }; 975 976 fn = fns[eew][s->sew]; 977 978 uint8_t emul = vext_get_emul(s, s->sew); 979 data = FIELD_DP32(data, VDATA, VM, a->vm); 980 data = FIELD_DP32(data, VDATA, LMUL, emul); 981 data = FIELD_DP32(data, VDATA, NF, a->nf); 982 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 983} 984 985static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 986{ 987 return require_rvv(s) && 988 vext_check_isa_ill(s) && 989 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 990} 991 992GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 993GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 994GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 995GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 996 997/* 998 *** unit stride fault-only-first load 999 */ 1000static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1001 gen_helper_ldst_us *fn, DisasContext *s) 1002{ 1003 TCGv_ptr dest, mask; 1004 TCGv base; 1005 TCGv_i32 desc; 1006 1007 TCGLabel *over = gen_new_label(); 1008 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1009 1010 dest = tcg_temp_new_ptr(); 1011 mask = tcg_temp_new_ptr(); 1012 base = get_gpr(s, rs1, EXT_NONE); 1013 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1014 1015 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1016 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1017 1018 fn(dest, mask, base, cpu_env, desc); 1019 1020 tcg_temp_free_ptr(dest); 1021 tcg_temp_free_ptr(mask); 1022 mark_vs_dirty(s); 1023 gen_set_label(over); 1024 return true; 1025} 1026 1027static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1028{ 1029 uint32_t data = 0; 1030 gen_helper_ldst_us *fn; 1031 static gen_helper_ldst_us * const fns[4] = { 1032 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1033 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1034 }; 1035 1036 fn = fns[eew]; 1037 if (fn == NULL) { 1038 return false; 1039 } 1040 1041 uint8_t emul = vext_get_emul(s, eew); 1042 data = FIELD_DP32(data, VDATA, VM, a->vm); 1043 data = FIELD_DP32(data, VDATA, LMUL, emul); 1044 data = FIELD_DP32(data, VDATA, NF, a->nf); 1045 return ldff_trans(a->rd, a->rs1, data, fn, s); 1046} 1047 1048GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1049GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1050GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1051GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1052 1053/* 1054 * load and store whole register instructions 1055 */ 1056typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1057 1058static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1059 gen_helper_ldst_whole *fn, DisasContext *s, 1060 bool is_store) 1061{ 1062 TCGv_ptr dest; 1063 TCGv base; 1064 TCGv_i32 desc; 1065 1066 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1067 dest = tcg_temp_new_ptr(); 1068 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1069 1070 base = get_gpr(s, rs1, EXT_NONE); 1071 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1072 1073 fn(dest, base, cpu_env, desc); 1074 1075 tcg_temp_free_ptr(dest); 1076 1077 if (!is_store) { 1078 mark_vs_dirty(s); 1079 } 1080 1081 return true; 1082} 1083 1084/* 1085 * load and store whole register instructions ignore vtype and vl setting. 1086 * Thus, we don't need to check vill bit. (Section 7.9) 1087 */ 1088#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, IS_STORE) \ 1089static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1090{ \ 1091 if (require_rvv(s) && \ 1092 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1093 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, gen_helper_##NAME, \ 1094 s, IS_STORE); \ 1095 } \ 1096 return false; \ 1097} 1098 1099GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, false) 1100GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, false) 1101GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, false) 1102GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, false) 1103GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, false) 1104GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, false) 1105GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, false) 1106GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, false) 1107GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, false) 1108GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, false) 1109GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, false) 1110GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, false) 1111GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, false) 1112GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, false) 1113GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, false) 1114GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, false) 1115 1116GEN_LDST_WHOLE_TRANS(vs1r_v, 1, true) 1117GEN_LDST_WHOLE_TRANS(vs2r_v, 2, true) 1118GEN_LDST_WHOLE_TRANS(vs4r_v, 4, true) 1119GEN_LDST_WHOLE_TRANS(vs8r_v, 8, true) 1120 1121/* 1122 *** Vector Integer Arithmetic Instructions 1123 */ 1124 1125/* 1126 * MAXSZ returns the maximum vector size can be operated in bytes, 1127 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1128 * to accerlate vector operation. 1129 */ 1130static inline uint32_t MAXSZ(DisasContext *s) 1131{ 1132 int scale = s->lmul - 3; 1133 return scale < 0 ? s->vlen >> -scale : s->vlen << scale; 1134} 1135 1136static bool opivv_check(DisasContext *s, arg_rmrr *a) 1137{ 1138 return require_rvv(s) && 1139 vext_check_isa_ill(s) && 1140 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1141} 1142 1143typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1144 uint32_t, uint32_t, uint32_t); 1145 1146static inline bool 1147do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1148 gen_helper_gvec_4_ptr *fn) 1149{ 1150 TCGLabel *over = gen_new_label(); 1151 if (!opivv_check(s, a)) { 1152 return false; 1153 } 1154 1155 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1156 1157 if (a->vm && s->vl_eq_vlmax) { 1158 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1159 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1160 MAXSZ(s), MAXSZ(s)); 1161 } else { 1162 uint32_t data = 0; 1163 1164 data = FIELD_DP32(data, VDATA, VM, a->vm); 1165 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1166 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1167 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1168 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1169 } 1170 mark_vs_dirty(s); 1171 gen_set_label(over); 1172 return true; 1173} 1174 1175/* OPIVV with GVEC IR */ 1176#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1177static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1178{ \ 1179 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1180 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1181 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1182 }; \ 1183 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1184} 1185 1186GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1187GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1188 1189typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1190 TCGv_env, TCGv_i32); 1191 1192static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1193 gen_helper_opivx *fn, DisasContext *s) 1194{ 1195 TCGv_ptr dest, src2, mask; 1196 TCGv src1; 1197 TCGv_i32 desc; 1198 uint32_t data = 0; 1199 1200 TCGLabel *over = gen_new_label(); 1201 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1202 1203 dest = tcg_temp_new_ptr(); 1204 mask = tcg_temp_new_ptr(); 1205 src2 = tcg_temp_new_ptr(); 1206 src1 = get_gpr(s, rs1, EXT_NONE); 1207 1208 data = FIELD_DP32(data, VDATA, VM, vm); 1209 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1210 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1211 1212 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1213 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1214 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1215 1216 fn(dest, mask, src1, src2, cpu_env, desc); 1217 1218 tcg_temp_free_ptr(dest); 1219 tcg_temp_free_ptr(mask); 1220 tcg_temp_free_ptr(src2); 1221 mark_vs_dirty(s); 1222 gen_set_label(over); 1223 return true; 1224} 1225 1226static bool opivx_check(DisasContext *s, arg_rmrr *a) 1227{ 1228 return require_rvv(s) && 1229 vext_check_isa_ill(s) && 1230 vext_check_ss(s, a->rd, a->rs2, a->vm); 1231} 1232 1233typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1234 uint32_t, uint32_t); 1235 1236static inline bool 1237do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1238 gen_helper_opivx *fn) 1239{ 1240 if (!opivx_check(s, a)) { 1241 return false; 1242 } 1243 1244 if (a->vm && s->vl_eq_vlmax) { 1245 TCGv_i64 src1 = tcg_temp_new_i64(); 1246 1247 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1248 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1249 src1, MAXSZ(s), MAXSZ(s)); 1250 1251 tcg_temp_free_i64(src1); 1252 mark_vs_dirty(s); 1253 return true; 1254 } 1255 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1256} 1257 1258/* OPIVX with GVEC IR */ 1259#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1260static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1261{ \ 1262 static gen_helper_opivx * const fns[4] = { \ 1263 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1264 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1265 }; \ 1266 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1267} 1268 1269GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1270GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1271 1272static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1273{ 1274 tcg_gen_vec_sub8_i64(d, b, a); 1275} 1276 1277static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1278{ 1279 tcg_gen_vec_sub16_i64(d, b, a); 1280} 1281 1282static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1283{ 1284 tcg_gen_sub_i32(ret, arg2, arg1); 1285} 1286 1287static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1288{ 1289 tcg_gen_sub_i64(ret, arg2, arg1); 1290} 1291 1292static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1293{ 1294 tcg_gen_sub_vec(vece, r, b, a); 1295} 1296 1297static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1298 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1299{ 1300 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1301 static const GVecGen2s rsub_op[4] = { 1302 { .fni8 = gen_vec_rsub8_i64, 1303 .fniv = gen_rsub_vec, 1304 .fno = gen_helper_vec_rsubs8, 1305 .opt_opc = vecop_list, 1306 .vece = MO_8 }, 1307 { .fni8 = gen_vec_rsub16_i64, 1308 .fniv = gen_rsub_vec, 1309 .fno = gen_helper_vec_rsubs16, 1310 .opt_opc = vecop_list, 1311 .vece = MO_16 }, 1312 { .fni4 = gen_rsub_i32, 1313 .fniv = gen_rsub_vec, 1314 .fno = gen_helper_vec_rsubs32, 1315 .opt_opc = vecop_list, 1316 .vece = MO_32 }, 1317 { .fni8 = gen_rsub_i64, 1318 .fniv = gen_rsub_vec, 1319 .fno = gen_helper_vec_rsubs64, 1320 .opt_opc = vecop_list, 1321 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1322 .vece = MO_64 }, 1323 }; 1324 1325 tcg_debug_assert(vece <= MO_64); 1326 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1327} 1328 1329GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1330 1331typedef enum { 1332 IMM_ZX, /* Zero-extended */ 1333 IMM_SX, /* Sign-extended */ 1334 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1335 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1336} imm_mode_t; 1337 1338static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1339{ 1340 switch (imm_mode) { 1341 case IMM_ZX: 1342 return extract64(imm, 0, 5); 1343 case IMM_SX: 1344 return sextract64(imm, 0, 5); 1345 case IMM_TRUNC_SEW: 1346 return extract64(imm, 0, s->sew + 3); 1347 case IMM_TRUNC_2SEW: 1348 return extract64(imm, 0, s->sew + 4); 1349 default: 1350 g_assert_not_reached(); 1351 } 1352} 1353 1354static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1355 gen_helper_opivx *fn, DisasContext *s, 1356 imm_mode_t imm_mode) 1357{ 1358 TCGv_ptr dest, src2, mask; 1359 TCGv src1; 1360 TCGv_i32 desc; 1361 uint32_t data = 0; 1362 1363 TCGLabel *over = gen_new_label(); 1364 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1365 1366 dest = tcg_temp_new_ptr(); 1367 mask = tcg_temp_new_ptr(); 1368 src2 = tcg_temp_new_ptr(); 1369 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1370 1371 data = FIELD_DP32(data, VDATA, VM, vm); 1372 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1373 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1374 1375 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1376 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1377 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1378 1379 fn(dest, mask, src1, src2, cpu_env, desc); 1380 1381 tcg_temp_free_ptr(dest); 1382 tcg_temp_free_ptr(mask); 1383 tcg_temp_free_ptr(src2); 1384 mark_vs_dirty(s); 1385 gen_set_label(over); 1386 return true; 1387} 1388 1389typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1390 uint32_t, uint32_t); 1391 1392static inline bool 1393do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1394 gen_helper_opivx *fn, imm_mode_t imm_mode) 1395{ 1396 if (!opivx_check(s, a)) { 1397 return false; 1398 } 1399 1400 if (a->vm && s->vl_eq_vlmax) { 1401 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1402 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1403 mark_vs_dirty(s); 1404 return true; 1405 } 1406 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1407} 1408 1409/* OPIVI with GVEC IR */ 1410#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1411static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1412{ \ 1413 static gen_helper_opivx * const fns[4] = { \ 1414 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1415 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1416 }; \ 1417 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1418 fns[s->sew], IMM_MODE); \ 1419} 1420 1421GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1422 1423static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1424 int64_t c, uint32_t oprsz, uint32_t maxsz) 1425{ 1426 TCGv_i64 tmp = tcg_constant_i64(c); 1427 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1428} 1429 1430GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1431 1432/* Vector Widening Integer Add/Subtract */ 1433 1434/* OPIVV with WIDEN */ 1435static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1436{ 1437 return require_rvv(s) && 1438 vext_check_isa_ill(s) && 1439 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1440} 1441 1442static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1443 gen_helper_gvec_4_ptr *fn, 1444 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1445{ 1446 if (checkfn(s, a)) { 1447 uint32_t data = 0; 1448 TCGLabel *over = gen_new_label(); 1449 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1450 1451 data = FIELD_DP32(data, VDATA, VM, a->vm); 1452 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1453 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1454 vreg_ofs(s, a->rs1), 1455 vreg_ofs(s, a->rs2), 1456 cpu_env, s->vlen / 8, s->vlen / 8, 1457 data, fn); 1458 mark_vs_dirty(s); 1459 gen_set_label(over); 1460 return true; 1461 } 1462 return false; 1463} 1464 1465#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1466static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1467{ \ 1468 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1469 gen_helper_##NAME##_b, \ 1470 gen_helper_##NAME##_h, \ 1471 gen_helper_##NAME##_w \ 1472 }; \ 1473 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1474} 1475 1476GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1477GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1478GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1479GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1480 1481/* OPIVX with WIDEN */ 1482static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1483{ 1484 return require_rvv(s) && 1485 vext_check_isa_ill(s) && 1486 vext_check_ds(s, a->rd, a->rs2, a->vm); 1487} 1488 1489static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1490 gen_helper_opivx *fn) 1491{ 1492 if (opivx_widen_check(s, a)) { 1493 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1494 } 1495 return false; 1496} 1497 1498#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1499static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1500{ \ 1501 static gen_helper_opivx * const fns[3] = { \ 1502 gen_helper_##NAME##_b, \ 1503 gen_helper_##NAME##_h, \ 1504 gen_helper_##NAME##_w \ 1505 }; \ 1506 return do_opivx_widen(s, a, fns[s->sew]); \ 1507} 1508 1509GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1510GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1511GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1512GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1513 1514/* WIDEN OPIVV with WIDEN */ 1515static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1516{ 1517 return require_rvv(s) && 1518 vext_check_isa_ill(s) && 1519 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1520} 1521 1522static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1523 gen_helper_gvec_4_ptr *fn) 1524{ 1525 if (opiwv_widen_check(s, a)) { 1526 uint32_t data = 0; 1527 TCGLabel *over = gen_new_label(); 1528 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1529 1530 data = FIELD_DP32(data, VDATA, VM, a->vm); 1531 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1532 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1533 vreg_ofs(s, a->rs1), 1534 vreg_ofs(s, a->rs2), 1535 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1536 mark_vs_dirty(s); 1537 gen_set_label(over); 1538 return true; 1539 } 1540 return false; 1541} 1542 1543#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1544static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1545{ \ 1546 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1547 gen_helper_##NAME##_b, \ 1548 gen_helper_##NAME##_h, \ 1549 gen_helper_##NAME##_w \ 1550 }; \ 1551 return do_opiwv_widen(s, a, fns[s->sew]); \ 1552} 1553 1554GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1555GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1556GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1557GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1558 1559/* WIDEN OPIVX with WIDEN */ 1560static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1561{ 1562 return require_rvv(s) && 1563 vext_check_isa_ill(s) && 1564 vext_check_dd(s, a->rd, a->rs2, a->vm); 1565} 1566 1567static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1568 gen_helper_opivx *fn) 1569{ 1570 if (opiwx_widen_check(s, a)) { 1571 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1572 } 1573 return false; 1574} 1575 1576#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1577static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1578{ \ 1579 static gen_helper_opivx * const fns[3] = { \ 1580 gen_helper_##NAME##_b, \ 1581 gen_helper_##NAME##_h, \ 1582 gen_helper_##NAME##_w \ 1583 }; \ 1584 return do_opiwx_widen(s, a, fns[s->sew]); \ 1585} 1586 1587GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1588GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1589GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1590GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1591 1592/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1593/* OPIVV without GVEC IR */ 1594#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1595static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1596{ \ 1597 if (CHECK(s, a)) { \ 1598 uint32_t data = 0; \ 1599 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1600 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1601 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1602 }; \ 1603 TCGLabel *over = gen_new_label(); \ 1604 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1605 \ 1606 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1607 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1608 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1609 vreg_ofs(s, a->rs1), \ 1610 vreg_ofs(s, a->rs2), cpu_env, \ 1611 s->vlen / 8, s->vlen / 8, data, \ 1612 fns[s->sew]); \ 1613 mark_vs_dirty(s); \ 1614 gen_set_label(over); \ 1615 return true; \ 1616 } \ 1617 return false; \ 1618} 1619 1620/* 1621 * For vadc and vsbc, an illegal instruction exception is raised if the 1622 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1623 */ 1624static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1625{ 1626 return require_rvv(s) && 1627 vext_check_isa_ill(s) && 1628 (a->rd != 0) && 1629 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1630} 1631 1632GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1633GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1634 1635/* 1636 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1637 * destination vector register overlaps a source vector register group. 1638 */ 1639static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1640{ 1641 return require_rvv(s) && 1642 vext_check_isa_ill(s) && 1643 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1644} 1645 1646GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1647GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1648 1649static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1650{ 1651 return require_rvv(s) && 1652 vext_check_isa_ill(s) && 1653 (a->rd != 0) && 1654 vext_check_ss(s, a->rd, a->rs2, a->vm); 1655} 1656 1657/* OPIVX without GVEC IR */ 1658#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1659static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1660{ \ 1661 if (CHECK(s, a)) { \ 1662 static gen_helper_opivx * const fns[4] = { \ 1663 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1664 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1665 }; \ 1666 \ 1667 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1668 } \ 1669 return false; \ 1670} 1671 1672GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1673GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1674 1675static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1676{ 1677 return require_rvv(s) && 1678 vext_check_isa_ill(s) && 1679 vext_check_ms(s, a->rd, a->rs2); 1680} 1681 1682GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1683GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1684 1685/* OPIVI without GVEC IR */ 1686#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1687static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1688{ \ 1689 if (CHECK(s, a)) { \ 1690 static gen_helper_opivx * const fns[4] = { \ 1691 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1692 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1693 }; \ 1694 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1695 fns[s->sew], s, IMM_MODE); \ 1696 } \ 1697 return false; \ 1698} 1699 1700GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1701GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1702 1703/* Vector Bitwise Logical Instructions */ 1704GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1705GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1706GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1707GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1708GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1709GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1710GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1711GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1712GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1713 1714/* Vector Single-Width Bit Shift Instructions */ 1715GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1716GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1717GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1718 1719typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1720 uint32_t, uint32_t); 1721 1722static inline bool 1723do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1724 gen_helper_opivx *fn) 1725{ 1726 if (!opivx_check(s, a)) { 1727 return false; 1728 } 1729 1730 if (a->vm && s->vl_eq_vlmax) { 1731 TCGv_i32 src1 = tcg_temp_new_i32(); 1732 1733 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1734 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1735 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1736 src1, MAXSZ(s), MAXSZ(s)); 1737 1738 tcg_temp_free_i32(src1); 1739 mark_vs_dirty(s); 1740 return true; 1741 } 1742 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1743} 1744 1745#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1746static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1747{ \ 1748 static gen_helper_opivx * const fns[4] = { \ 1749 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1750 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1751 }; \ 1752 \ 1753 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1754} 1755 1756GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1757GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1758GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1759 1760GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1761GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1762GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1763 1764/* Vector Narrowing Integer Right Shift Instructions */ 1765static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1766{ 1767 return require_rvv(s) && 1768 vext_check_isa_ill(s) && 1769 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1770} 1771 1772/* OPIVV with NARROW */ 1773#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1774static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1775{ \ 1776 if (opiwv_narrow_check(s, a)) { \ 1777 uint32_t data = 0; \ 1778 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1779 gen_helper_##NAME##_b, \ 1780 gen_helper_##NAME##_h, \ 1781 gen_helper_##NAME##_w, \ 1782 }; \ 1783 TCGLabel *over = gen_new_label(); \ 1784 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1785 \ 1786 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1787 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1788 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1789 vreg_ofs(s, a->rs1), \ 1790 vreg_ofs(s, a->rs2), cpu_env, \ 1791 s->vlen / 8, s->vlen / 8, data, \ 1792 fns[s->sew]); \ 1793 mark_vs_dirty(s); \ 1794 gen_set_label(over); \ 1795 return true; \ 1796 } \ 1797 return false; \ 1798} 1799GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1800GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1801 1802static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1803{ 1804 return require_rvv(s) && 1805 vext_check_isa_ill(s) && 1806 vext_check_sd(s, a->rd, a->rs2, a->vm); 1807} 1808 1809/* OPIVX with NARROW */ 1810#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1811static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1812{ \ 1813 if (opiwx_narrow_check(s, a)) { \ 1814 static gen_helper_opivx * const fns[3] = { \ 1815 gen_helper_##NAME##_b, \ 1816 gen_helper_##NAME##_h, \ 1817 gen_helper_##NAME##_w, \ 1818 }; \ 1819 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1820 } \ 1821 return false; \ 1822} 1823 1824GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1825GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1826 1827/* OPIWI with NARROW */ 1828#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1829static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1830{ \ 1831 if (opiwx_narrow_check(s, a)) { \ 1832 static gen_helper_opivx * const fns[3] = { \ 1833 gen_helper_##OPIVX##_b, \ 1834 gen_helper_##OPIVX##_h, \ 1835 gen_helper_##OPIVX##_w, \ 1836 }; \ 1837 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1838 fns[s->sew], s, IMM_MODE); \ 1839 } \ 1840 return false; \ 1841} 1842 1843GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1844GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1845 1846/* Vector Integer Comparison Instructions */ 1847/* 1848 * For all comparison instructions, an illegal instruction exception is raised 1849 * if the destination vector register overlaps a source vector register group 1850 * and LMUL > 1. 1851 */ 1852static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1853{ 1854 return require_rvv(s) && 1855 vext_check_isa_ill(s) && 1856 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1857} 1858 1859GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1860GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1861GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1862GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1863GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1864GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1865 1866static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1867{ 1868 return require_rvv(s) && 1869 vext_check_isa_ill(s) && 1870 vext_check_ms(s, a->rd, a->rs2); 1871} 1872 1873GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1874GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1875GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1876GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1877GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1878GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1879GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1880GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1881 1882GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1883GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1884GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1885GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1886GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1887GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1888 1889/* Vector Integer Min/Max Instructions */ 1890GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1891GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1892GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1893GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1894GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1895GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1896GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1897GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1898 1899/* Vector Single-Width Integer Multiply Instructions */ 1900GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 1901GEN_OPIVV_TRANS(vmulh_vv, opivv_check) 1902GEN_OPIVV_TRANS(vmulhu_vv, opivv_check) 1903GEN_OPIVV_TRANS(vmulhsu_vv, opivv_check) 1904GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 1905GEN_OPIVX_TRANS(vmulh_vx, opivx_check) 1906GEN_OPIVX_TRANS(vmulhu_vx, opivx_check) 1907GEN_OPIVX_TRANS(vmulhsu_vx, opivx_check) 1908 1909/* Vector Integer Divide Instructions */ 1910GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 1911GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 1912GEN_OPIVV_TRANS(vremu_vv, opivv_check) 1913GEN_OPIVV_TRANS(vrem_vv, opivv_check) 1914GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 1915GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 1916GEN_OPIVX_TRANS(vremu_vx, opivx_check) 1917GEN_OPIVX_TRANS(vrem_vx, opivx_check) 1918 1919/* Vector Widening Integer Multiply Instructions */ 1920GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 1921GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 1922GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 1923GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 1924GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 1925GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 1926 1927/* Vector Single-Width Integer Multiply-Add Instructions */ 1928GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 1929GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 1930GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 1931GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 1932GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 1933GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 1934GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 1935GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 1936 1937/* Vector Widening Integer Multiply-Add Instructions */ 1938GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 1939GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 1940GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 1941GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 1942GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 1943GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 1944GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 1945 1946/* Vector Integer Merge and Move Instructions */ 1947static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 1948{ 1949 if (require_rvv(s) && 1950 vext_check_isa_ill(s) && 1951 /* vmv.v.v has rs2 = 0 and vm = 1 */ 1952 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 1953 if (s->vl_eq_vlmax) { 1954 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 1955 vreg_ofs(s, a->rs1), 1956 MAXSZ(s), MAXSZ(s)); 1957 } else { 1958 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1959 static gen_helper_gvec_2_ptr * const fns[4] = { 1960 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 1961 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 1962 }; 1963 TCGLabel *over = gen_new_label(); 1964 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1965 1966 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 1967 cpu_env, s->vlen / 8, s->vlen / 8, data, 1968 fns[s->sew]); 1969 gen_set_label(over); 1970 } 1971 mark_vs_dirty(s); 1972 return true; 1973 } 1974 return false; 1975} 1976 1977typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 1978static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 1979{ 1980 if (require_rvv(s) && 1981 vext_check_isa_ill(s) && 1982 /* vmv.v.x has rs2 = 0 and vm = 1 */ 1983 vext_check_ss(s, a->rd, 0, 1)) { 1984 TCGv s1; 1985 TCGLabel *over = gen_new_label(); 1986 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1987 1988 s1 = get_gpr(s, a->rs1, EXT_SIGN); 1989 1990 if (s->vl_eq_vlmax) { 1991 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 1992 MAXSZ(s), MAXSZ(s), s1); 1993 } else { 1994 TCGv_i32 desc; 1995 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 1996 TCGv_ptr dest = tcg_temp_new_ptr(); 1997 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1998 static gen_helper_vmv_vx * const fns[4] = { 1999 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2000 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2001 }; 2002 2003 tcg_gen_ext_tl_i64(s1_i64, s1); 2004 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2005 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2006 fns[s->sew](dest, s1_i64, cpu_env, desc); 2007 2008 tcg_temp_free_ptr(dest); 2009 tcg_temp_free_i64(s1_i64); 2010 } 2011 2012 mark_vs_dirty(s); 2013 gen_set_label(over); 2014 return true; 2015 } 2016 return false; 2017} 2018 2019static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2020{ 2021 if (require_rvv(s) && 2022 vext_check_isa_ill(s) && 2023 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2024 vext_check_ss(s, a->rd, 0, 1)) { 2025 int64_t simm = sextract64(a->rs1, 0, 5); 2026 if (s->vl_eq_vlmax) { 2027 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2028 MAXSZ(s), MAXSZ(s), simm); 2029 mark_vs_dirty(s); 2030 } else { 2031 TCGv_i32 desc; 2032 TCGv_i64 s1; 2033 TCGv_ptr dest; 2034 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2035 static gen_helper_vmv_vx * const fns[4] = { 2036 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2037 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2038 }; 2039 TCGLabel *over = gen_new_label(); 2040 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2041 2042 s1 = tcg_constant_i64(simm); 2043 dest = tcg_temp_new_ptr(); 2044 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2045 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2046 fns[s->sew](dest, s1, cpu_env, desc); 2047 2048 tcg_temp_free_ptr(dest); 2049 mark_vs_dirty(s); 2050 gen_set_label(over); 2051 } 2052 return true; 2053 } 2054 return false; 2055} 2056 2057GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2058GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2059GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2060 2061/* 2062 *** Vector Fixed-Point Arithmetic Instructions 2063 */ 2064 2065/* Vector Single-Width Saturating Add and Subtract */ 2066GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2067GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2068GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2069GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2070GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2071GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2072GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2073GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2074GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2075GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2076 2077/* Vector Single-Width Averaging Add and Subtract */ 2078GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2079GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2080GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2081GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2082GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2083GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2084GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2085GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2086 2087/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2088GEN_OPIVV_TRANS(vsmul_vv, opivv_check) 2089GEN_OPIVX_TRANS(vsmul_vx, opivx_check) 2090 2091/* Vector Single-Width Scaling Shift Instructions */ 2092GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2093GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2094GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2095GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2096GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2097GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2098 2099/* Vector Narrowing Fixed-Point Clip Instructions */ 2100GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2101GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2102GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2103GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2104GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2105GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2106 2107/* 2108 *** Vector Float Point Arithmetic Instructions 2109 */ 2110 2111/* 2112 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2113 * RVF and RVD can be treated equally. 2114 * We don't have to deal with the cases of: SEW > FLEN. 2115 * 2116 * If SEW < FLEN, check whether input fp register is a valid 2117 * NaN-boxed value, in which case the least-significant SEW bits 2118 * of the f regsiter are used, else the canonical NaN value is used. 2119 */ 2120static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2121{ 2122 switch (s->sew) { 2123 case 1: 2124 gen_check_nanbox_h(out, in); 2125 break; 2126 case 2: 2127 gen_check_nanbox_s(out, in); 2128 break; 2129 case 3: 2130 tcg_gen_mov_i64(out, in); 2131 break; 2132 default: 2133 g_assert_not_reached(); 2134 } 2135} 2136 2137/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2138 2139/* 2140 * If the current SEW does not correspond to a supported IEEE floating-point 2141 * type, an illegal instruction exception is raised. 2142 */ 2143static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2144{ 2145 return require_rvv(s) && 2146 require_rvf(s) && 2147 vext_check_isa_ill(s) && 2148 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 2149} 2150 2151/* OPFVV without GVEC IR */ 2152#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2153static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2154{ \ 2155 if (CHECK(s, a)) { \ 2156 uint32_t data = 0; \ 2157 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2158 gen_helper_##NAME##_h, \ 2159 gen_helper_##NAME##_w, \ 2160 gen_helper_##NAME##_d, \ 2161 }; \ 2162 TCGLabel *over = gen_new_label(); \ 2163 gen_set_rm(s, RISCV_FRM_DYN); \ 2164 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2165 \ 2166 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2167 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2168 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2169 vreg_ofs(s, a->rs1), \ 2170 vreg_ofs(s, a->rs2), cpu_env, \ 2171 s->vlen / 8, s->vlen / 8, data, \ 2172 fns[s->sew - 1]); \ 2173 mark_vs_dirty(s); \ 2174 gen_set_label(over); \ 2175 return true; \ 2176 } \ 2177 return false; \ 2178} 2179GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2180GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2181 2182typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2183 TCGv_env, TCGv_i32); 2184 2185static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2186 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2187{ 2188 TCGv_ptr dest, src2, mask; 2189 TCGv_i32 desc; 2190 TCGv_i64 t1; 2191 2192 TCGLabel *over = gen_new_label(); 2193 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2194 2195 dest = tcg_temp_new_ptr(); 2196 mask = tcg_temp_new_ptr(); 2197 src2 = tcg_temp_new_ptr(); 2198 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2199 2200 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2201 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2202 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2203 2204 /* NaN-box f[rs1] */ 2205 t1 = tcg_temp_new_i64(); 2206 do_nanbox(s, t1, cpu_fpr[rs1]); 2207 2208 fn(dest, mask, t1, src2, cpu_env, desc); 2209 2210 tcg_temp_free_ptr(dest); 2211 tcg_temp_free_ptr(mask); 2212 tcg_temp_free_ptr(src2); 2213 tcg_temp_free_i64(t1); 2214 mark_vs_dirty(s); 2215 gen_set_label(over); 2216 return true; 2217} 2218 2219/* 2220 * If the current SEW does not correspond to a supported IEEE floating-point 2221 * type, an illegal instruction exception is raised 2222 */ 2223static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2224{ 2225 return require_rvv(s) && 2226 require_rvf(s) && 2227 vext_check_isa_ill(s) && 2228 vext_check_ss(s, a->rd, a->rs2, a->vm); 2229} 2230 2231/* OPFVF without GVEC IR */ 2232#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2233static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2234{ \ 2235 if (CHECK(s, a)) { \ 2236 uint32_t data = 0; \ 2237 static gen_helper_opfvf *const fns[3] = { \ 2238 gen_helper_##NAME##_h, \ 2239 gen_helper_##NAME##_w, \ 2240 gen_helper_##NAME##_d, \ 2241 }; \ 2242 gen_set_rm(s, RISCV_FRM_DYN); \ 2243 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2244 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2245 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2246 fns[s->sew - 1], s); \ 2247 } \ 2248 return false; \ 2249} 2250 2251GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2252GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2253GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2254 2255/* Vector Widening Floating-Point Add/Subtract Instructions */ 2256static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2257{ 2258 return require_rvv(s) && 2259 require_scale_rvf(s) && 2260 (s->sew != MO_8) && 2261 vext_check_isa_ill(s) && 2262 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 2263} 2264 2265/* OPFVV with WIDEN */ 2266#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2267static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2268{ \ 2269 if (CHECK(s, a)) { \ 2270 uint32_t data = 0; \ 2271 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2272 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2273 }; \ 2274 TCGLabel *over = gen_new_label(); \ 2275 gen_set_rm(s, RISCV_FRM_DYN); \ 2276 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2277 \ 2278 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2279 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2280 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2281 vreg_ofs(s, a->rs1), \ 2282 vreg_ofs(s, a->rs2), cpu_env, \ 2283 s->vlen / 8, s->vlen / 8, data, \ 2284 fns[s->sew - 1]); \ 2285 mark_vs_dirty(s); \ 2286 gen_set_label(over); \ 2287 return true; \ 2288 } \ 2289 return false; \ 2290} 2291 2292GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2293GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2294 2295static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2296{ 2297 return require_rvv(s) && 2298 require_scale_rvf(s) && 2299 (s->sew != MO_8) && 2300 vext_check_isa_ill(s) && 2301 vext_check_ds(s, a->rd, a->rs2, a->vm); 2302} 2303 2304/* OPFVF with WIDEN */ 2305#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2306static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2307{ \ 2308 if (opfvf_widen_check(s, a)) { \ 2309 uint32_t data = 0; \ 2310 static gen_helper_opfvf *const fns[2] = { \ 2311 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2312 }; \ 2313 gen_set_rm(s, RISCV_FRM_DYN); \ 2314 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2315 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2316 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2317 fns[s->sew - 1], s); \ 2318 } \ 2319 return false; \ 2320} 2321 2322GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2323GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2324 2325static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2326{ 2327 return require_rvv(s) && 2328 require_scale_rvf(s) && 2329 (s->sew != MO_8) && 2330 vext_check_isa_ill(s) && 2331 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 2332} 2333 2334/* WIDEN OPFVV with WIDEN */ 2335#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2336static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2337{ \ 2338 if (opfwv_widen_check(s, a)) { \ 2339 uint32_t data = 0; \ 2340 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2341 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2342 }; \ 2343 TCGLabel *over = gen_new_label(); \ 2344 gen_set_rm(s, RISCV_FRM_DYN); \ 2345 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2346 \ 2347 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2348 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2349 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2350 vreg_ofs(s, a->rs1), \ 2351 vreg_ofs(s, a->rs2), cpu_env, \ 2352 s->vlen / 8, s->vlen / 8, data, \ 2353 fns[s->sew - 1]); \ 2354 mark_vs_dirty(s); \ 2355 gen_set_label(over); \ 2356 return true; \ 2357 } \ 2358 return false; \ 2359} 2360 2361GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2362GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2363 2364static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2365{ 2366 return require_rvv(s) && 2367 require_scale_rvf(s) && 2368 (s->sew != MO_8) && 2369 vext_check_isa_ill(s) && 2370 vext_check_dd(s, a->rd, a->rs2, a->vm); 2371} 2372 2373/* WIDEN OPFVF with WIDEN */ 2374#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2375static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2376{ \ 2377 if (opfwf_widen_check(s, a)) { \ 2378 uint32_t data = 0; \ 2379 static gen_helper_opfvf *const fns[2] = { \ 2380 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2381 }; \ 2382 gen_set_rm(s, RISCV_FRM_DYN); \ 2383 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2384 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2385 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2386 fns[s->sew - 1], s); \ 2387 } \ 2388 return false; \ 2389} 2390 2391GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2392GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2393 2394/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2395GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2396GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2397GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2398GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2399GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2400 2401/* Vector Widening Floating-Point Multiply */ 2402GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2403GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2404 2405/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2406GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2407GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2408GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2409GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2410GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2411GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2412GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2413GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2414GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2415GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2416GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2417GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2418GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2419GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2420GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2421GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2422 2423/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2424GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2425GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2426GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2427GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2428GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2429GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2430GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2431GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2432 2433/* Vector Floating-Point Square-Root Instruction */ 2434 2435/* 2436 * If the current SEW does not correspond to a supported IEEE floating-point 2437 * type, an illegal instruction exception is raised 2438 */ 2439static bool opfv_check(DisasContext *s, arg_rmr *a) 2440{ 2441 return require_rvv(s) && 2442 require_rvf(s) && 2443 vext_check_isa_ill(s) && 2444 /* OPFV instructions ignore vs1 check */ 2445 vext_check_ss(s, a->rd, a->rs2, a->vm); 2446} 2447 2448static bool do_opfv(DisasContext *s, arg_rmr *a, 2449 gen_helper_gvec_3_ptr *fn, 2450 bool (*checkfn)(DisasContext *, arg_rmr *), 2451 int rm) 2452{ 2453 if (checkfn(s, a)) { 2454 if (rm != RISCV_FRM_DYN) { 2455 gen_set_rm(s, RISCV_FRM_DYN); 2456 } 2457 2458 uint32_t data = 0; 2459 TCGLabel *over = gen_new_label(); 2460 gen_set_rm(s, rm); 2461 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2462 2463 data = FIELD_DP32(data, VDATA, VM, a->vm); 2464 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2465 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2466 vreg_ofs(s, a->rs2), cpu_env, 2467 s->vlen / 8, s->vlen / 8, data, fn); 2468 mark_vs_dirty(s); 2469 gen_set_label(over); 2470 return true; 2471 } 2472 return false; 2473} 2474 2475#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2476static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2477{ \ 2478 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2479 gen_helper_##NAME##_h, \ 2480 gen_helper_##NAME##_w, \ 2481 gen_helper_##NAME##_d \ 2482 }; \ 2483 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2484} 2485 2486GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2487GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2488GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2489 2490/* Vector Floating-Point MIN/MAX Instructions */ 2491GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2492GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2493GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2494GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2495 2496/* Vector Floating-Point Sign-Injection Instructions */ 2497GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2498GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2499GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2500GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2501GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2502GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2503 2504/* Vector Floating-Point Compare Instructions */ 2505static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2506{ 2507 return require_rvv(s) && 2508 require_rvf(s) && 2509 vext_check_isa_ill(s) && 2510 vext_check_mss(s, a->rd, a->rs1, a->rs2); 2511} 2512 2513GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2514GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2515GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2516GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2517 2518static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2519{ 2520 return require_rvv(s) && 2521 require_rvf(s) && 2522 vext_check_isa_ill(s) && 2523 vext_check_ms(s, a->rd, a->rs2); 2524} 2525 2526GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2527GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2528GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2529GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2530GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2531GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2532 2533/* Vector Floating-Point Classify Instruction */ 2534GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2535 2536/* Vector Floating-Point Merge Instruction */ 2537GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2538 2539static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2540{ 2541 if (require_rvv(s) && 2542 require_rvf(s) && 2543 vext_check_isa_ill(s) && 2544 require_align(a->rd, s->lmul)) { 2545 gen_set_rm(s, RISCV_FRM_DYN); 2546 2547 TCGv_i64 t1; 2548 2549 if (s->vl_eq_vlmax) { 2550 t1 = tcg_temp_new_i64(); 2551 /* NaN-box f[rs1] */ 2552 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2553 2554 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2555 MAXSZ(s), MAXSZ(s), t1); 2556 mark_vs_dirty(s); 2557 } else { 2558 TCGv_ptr dest; 2559 TCGv_i32 desc; 2560 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2561 static gen_helper_vmv_vx * const fns[3] = { 2562 gen_helper_vmv_v_x_h, 2563 gen_helper_vmv_v_x_w, 2564 gen_helper_vmv_v_x_d, 2565 }; 2566 TCGLabel *over = gen_new_label(); 2567 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2568 2569 t1 = tcg_temp_new_i64(); 2570 /* NaN-box f[rs1] */ 2571 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2572 2573 dest = tcg_temp_new_ptr(); 2574 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2575 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2576 2577 fns[s->sew - 1](dest, t1, cpu_env, desc); 2578 2579 tcg_temp_free_ptr(dest); 2580 mark_vs_dirty(s); 2581 gen_set_label(over); 2582 } 2583 tcg_temp_free_i64(t1); 2584 return true; 2585 } 2586 return false; 2587} 2588 2589/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2590#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2591static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2592{ \ 2593 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2594 gen_helper_##HELPER##_h, \ 2595 gen_helper_##HELPER##_w, \ 2596 gen_helper_##HELPER##_d \ 2597 }; \ 2598 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2599} 2600 2601GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2602GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2603GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2604GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2605/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2606GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2607GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2608 2609/* Widening Floating-Point/Integer Type-Convert Instructions */ 2610 2611/* 2612 * If the current SEW does not correspond to a supported IEEE floating-point 2613 * type, an illegal instruction exception is raised 2614 */ 2615static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2616{ 2617 return require_rvv(s) && 2618 vext_check_isa_ill(s) && 2619 vext_check_ds(s, a->rd, a->rs2, a->vm); 2620} 2621 2622static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2623{ 2624 return opfv_widen_check(s, a) && 2625 require_rvf(s); 2626} 2627 2628static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2629{ 2630 return opfv_widen_check(s, a) && 2631 require_scale_rvf(s) && 2632 (s->sew != MO_8); 2633} 2634 2635#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2636static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2637{ \ 2638 if (CHECK(s, a)) { \ 2639 if (FRM != RISCV_FRM_DYN) { \ 2640 gen_set_rm(s, RISCV_FRM_DYN); \ 2641 } \ 2642 \ 2643 uint32_t data = 0; \ 2644 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2645 gen_helper_##HELPER##_h, \ 2646 gen_helper_##HELPER##_w, \ 2647 }; \ 2648 TCGLabel *over = gen_new_label(); \ 2649 gen_set_rm(s, FRM); \ 2650 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2651 \ 2652 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2653 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2654 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2655 vreg_ofs(s, a->rs2), cpu_env, \ 2656 s->vlen / 8, s->vlen / 8, data, \ 2657 fns[s->sew - 1]); \ 2658 mark_vs_dirty(s); \ 2659 gen_set_label(over); \ 2660 return true; \ 2661 } \ 2662 return false; \ 2663} 2664 2665GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2666 RISCV_FRM_DYN) 2667GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2668 RISCV_FRM_DYN) 2669GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2670 RISCV_FRM_DYN) 2671/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2672GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2673 RISCV_FRM_RTZ) 2674GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2675 RISCV_FRM_RTZ) 2676 2677static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2678{ 2679 return require_rvv(s) && 2680 require_scale_rvf(s) && 2681 vext_check_isa_ill(s) && 2682 /* OPFV widening instructions ignore vs1 check */ 2683 vext_check_ds(s, a->rd, a->rs2, a->vm); 2684} 2685 2686#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2687static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2688{ \ 2689 if (opfxv_widen_check(s, a)) { \ 2690 uint32_t data = 0; \ 2691 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2692 gen_helper_##NAME##_b, \ 2693 gen_helper_##NAME##_h, \ 2694 gen_helper_##NAME##_w, \ 2695 }; \ 2696 TCGLabel *over = gen_new_label(); \ 2697 gen_set_rm(s, RISCV_FRM_DYN); \ 2698 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2699 \ 2700 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2701 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2702 vreg_ofs(s, a->rs2), cpu_env, \ 2703 s->vlen / 8, s->vlen / 8, data, \ 2704 fns[s->sew]); \ 2705 mark_vs_dirty(s); \ 2706 gen_set_label(over); \ 2707 return true; \ 2708 } \ 2709 return false; \ 2710} 2711 2712GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2713GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2714 2715/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2716 2717/* 2718 * If the current SEW does not correspond to a supported IEEE floating-point 2719 * type, an illegal instruction exception is raised 2720 */ 2721static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2722{ 2723 return require_rvv(s) && 2724 vext_check_isa_ill(s) && 2725 /* OPFV narrowing instructions ignore vs1 check */ 2726 vext_check_sd(s, a->rd, a->rs2, a->vm); 2727} 2728 2729static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2730{ 2731 return opfv_narrow_check(s, a) && 2732 require_rvf(s) && 2733 (s->sew != MO_64); 2734} 2735 2736static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2737{ 2738 return opfv_narrow_check(s, a) && 2739 require_scale_rvf(s) && 2740 (s->sew != MO_8); 2741} 2742 2743#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2744static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2745{ \ 2746 if (CHECK(s, a)) { \ 2747 if (FRM != RISCV_FRM_DYN) { \ 2748 gen_set_rm(s, RISCV_FRM_DYN); \ 2749 } \ 2750 \ 2751 uint32_t data = 0; \ 2752 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2753 gen_helper_##HELPER##_h, \ 2754 gen_helper_##HELPER##_w, \ 2755 }; \ 2756 TCGLabel *over = gen_new_label(); \ 2757 gen_set_rm(s, FRM); \ 2758 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2759 \ 2760 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2761 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2762 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2763 vreg_ofs(s, a->rs2), cpu_env, \ 2764 s->vlen / 8, s->vlen / 8, data, \ 2765 fns[s->sew - 1]); \ 2766 mark_vs_dirty(s); \ 2767 gen_set_label(over); \ 2768 return true; \ 2769 } \ 2770 return false; \ 2771} 2772 2773GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2774 RISCV_FRM_DYN) 2775GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2776 RISCV_FRM_DYN) 2777GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2778 RISCV_FRM_DYN) 2779/* Reuse the helper function from vfncvt.f.f.w */ 2780GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2781 RISCV_FRM_ROD) 2782 2783static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2784{ 2785 return require_rvv(s) && 2786 require_scale_rvf(s) && 2787 vext_check_isa_ill(s) && 2788 /* OPFV narrowing instructions ignore vs1 check */ 2789 vext_check_sd(s, a->rd, a->rs2, a->vm); 2790} 2791 2792#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2793static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2794{ \ 2795 if (opxfv_narrow_check(s, a)) { \ 2796 if (FRM != RISCV_FRM_DYN) { \ 2797 gen_set_rm(s, RISCV_FRM_DYN); \ 2798 } \ 2799 \ 2800 uint32_t data = 0; \ 2801 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2802 gen_helper_##HELPER##_b, \ 2803 gen_helper_##HELPER##_h, \ 2804 gen_helper_##HELPER##_w, \ 2805 }; \ 2806 TCGLabel *over = gen_new_label(); \ 2807 gen_set_rm(s, FRM); \ 2808 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2809 \ 2810 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2811 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2812 vreg_ofs(s, a->rs2), cpu_env, \ 2813 s->vlen / 8, s->vlen / 8, data, \ 2814 fns[s->sew]); \ 2815 mark_vs_dirty(s); \ 2816 gen_set_label(over); \ 2817 return true; \ 2818 } \ 2819 return false; \ 2820} 2821 2822GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 2823GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 2824/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 2825GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 2826GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 2827 2828/* 2829 *** Vector Reduction Operations 2830 */ 2831/* Vector Single-Width Integer Reduction Instructions */ 2832static bool reduction_check(DisasContext *s, arg_rmrr *a) 2833{ 2834 return require_rvv(s) && 2835 vext_check_isa_ill(s) && 2836 vext_check_reduction(s, a->rs2); 2837} 2838 2839GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 2840GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 2841GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 2842GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 2843GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 2844GEN_OPIVV_TRANS(vredand_vs, reduction_check) 2845GEN_OPIVV_TRANS(vredor_vs, reduction_check) 2846GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 2847 2848/* Vector Widening Integer Reduction Instructions */ 2849static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 2850{ 2851 return reduction_check(s, a) && (s->sew < MO_64) && 2852 ((s->sew + 1) <= (s->elen >> 4)); 2853} 2854 2855GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 2856GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 2857 2858/* Vector Single-Width Floating-Point Reduction Instructions */ 2859static bool freduction_check(DisasContext *s, arg_rmrr *a) 2860{ 2861 return reduction_check(s, a) && 2862 require_rvf(s); 2863} 2864 2865GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 2866GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 2867GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 2868 2869/* Vector Widening Floating-Point Reduction Instructions */ 2870static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 2871{ 2872 return reduction_widen_check(s, a) && 2873 require_scale_rvf(s) && 2874 (s->sew != MO_8); 2875} 2876 2877GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 2878 2879/* 2880 *** Vector Mask Operations 2881 */ 2882 2883/* Vector Mask-Register Logical Instructions */ 2884#define GEN_MM_TRANS(NAME) \ 2885static bool trans_##NAME(DisasContext *s, arg_r *a) \ 2886{ \ 2887 if (require_rvv(s) && \ 2888 vext_check_isa_ill(s)) { \ 2889 uint32_t data = 0; \ 2890 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 2891 TCGLabel *over = gen_new_label(); \ 2892 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2893 \ 2894 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2895 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2896 vreg_ofs(s, a->rs1), \ 2897 vreg_ofs(s, a->rs2), cpu_env, \ 2898 s->vlen / 8, s->vlen / 8, data, fn); \ 2899 mark_vs_dirty(s); \ 2900 gen_set_label(over); \ 2901 return true; \ 2902 } \ 2903 return false; \ 2904} 2905 2906GEN_MM_TRANS(vmand_mm) 2907GEN_MM_TRANS(vmnand_mm) 2908GEN_MM_TRANS(vmandn_mm) 2909GEN_MM_TRANS(vmxor_mm) 2910GEN_MM_TRANS(vmor_mm) 2911GEN_MM_TRANS(vmnor_mm) 2912GEN_MM_TRANS(vmorn_mm) 2913GEN_MM_TRANS(vmxnor_mm) 2914 2915/* Vector count population in mask vcpop */ 2916static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 2917{ 2918 if (require_rvv(s) && 2919 vext_check_isa_ill(s) && 2920 s->vstart == 0) { 2921 TCGv_ptr src2, mask; 2922 TCGv dst; 2923 TCGv_i32 desc; 2924 uint32_t data = 0; 2925 data = FIELD_DP32(data, VDATA, VM, a->vm); 2926 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2927 2928 mask = tcg_temp_new_ptr(); 2929 src2 = tcg_temp_new_ptr(); 2930 dst = dest_gpr(s, a->rd); 2931 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2932 2933 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 2934 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2935 2936 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 2937 gen_set_gpr(s, a->rd, dst); 2938 2939 tcg_temp_free_ptr(mask); 2940 tcg_temp_free_ptr(src2); 2941 2942 return true; 2943 } 2944 return false; 2945} 2946 2947/* vmfirst find-first-set mask bit */ 2948static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 2949{ 2950 if (require_rvv(s) && 2951 vext_check_isa_ill(s) && 2952 s->vstart == 0) { 2953 TCGv_ptr src2, mask; 2954 TCGv dst; 2955 TCGv_i32 desc; 2956 uint32_t data = 0; 2957 data = FIELD_DP32(data, VDATA, VM, a->vm); 2958 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2959 2960 mask = tcg_temp_new_ptr(); 2961 src2 = tcg_temp_new_ptr(); 2962 dst = dest_gpr(s, a->rd); 2963 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2964 2965 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 2966 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2967 2968 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 2969 gen_set_gpr(s, a->rd, dst); 2970 2971 tcg_temp_free_ptr(mask); 2972 tcg_temp_free_ptr(src2); 2973 return true; 2974 } 2975 return false; 2976} 2977 2978/* vmsbf.m set-before-first mask bit */ 2979/* vmsif.m set-includ-first mask bit */ 2980/* vmsof.m set-only-first mask bit */ 2981#define GEN_M_TRANS(NAME) \ 2982static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2983{ \ 2984 if (require_rvv(s) && \ 2985 vext_check_isa_ill(s) && \ 2986 require_vm(a->vm, a->rd) && \ 2987 (a->rd != a->rs2) && \ 2988 (s->vstart == 0)) { \ 2989 uint32_t data = 0; \ 2990 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 2991 TCGLabel *over = gen_new_label(); \ 2992 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2993 \ 2994 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2995 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2996 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 2997 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 2998 cpu_env, s->vlen / 8, s->vlen / 8, \ 2999 data, fn); \ 3000 mark_vs_dirty(s); \ 3001 gen_set_label(over); \ 3002 return true; \ 3003 } \ 3004 return false; \ 3005} 3006 3007GEN_M_TRANS(vmsbf_m) 3008GEN_M_TRANS(vmsif_m) 3009GEN_M_TRANS(vmsof_m) 3010 3011/* 3012 * Vector Iota Instruction 3013 * 3014 * 1. The destination register cannot overlap the source register. 3015 * 2. If masked, cannot overlap the mask register ('v0'). 3016 * 3. An illegal instruction exception is raised if vstart is non-zero. 3017 */ 3018static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3019{ 3020 if (require_rvv(s) && 3021 vext_check_isa_ill(s) && 3022 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3023 require_vm(a->vm, a->rd) && 3024 require_align(a->rd, s->lmul) && 3025 (s->vstart == 0)) { 3026 uint32_t data = 0; 3027 TCGLabel *over = gen_new_label(); 3028 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3029 3030 data = FIELD_DP32(data, VDATA, VM, a->vm); 3031 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3032 static gen_helper_gvec_3_ptr * const fns[4] = { 3033 gen_helper_viota_m_b, gen_helper_viota_m_h, 3034 gen_helper_viota_m_w, gen_helper_viota_m_d, 3035 }; 3036 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3037 vreg_ofs(s, a->rs2), cpu_env, 3038 s->vlen / 8, s->vlen / 8, data, fns[s->sew]); 3039 mark_vs_dirty(s); 3040 gen_set_label(over); 3041 return true; 3042 } 3043 return false; 3044} 3045 3046/* Vector Element Index Instruction */ 3047static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3048{ 3049 if (require_rvv(s) && 3050 vext_check_isa_ill(s) && 3051 require_align(a->rd, s->lmul) && 3052 require_vm(a->vm, a->rd)) { 3053 uint32_t data = 0; 3054 TCGLabel *over = gen_new_label(); 3055 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3056 3057 data = FIELD_DP32(data, VDATA, VM, a->vm); 3058 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3059 static gen_helper_gvec_2_ptr * const fns[4] = { 3060 gen_helper_vid_v_b, gen_helper_vid_v_h, 3061 gen_helper_vid_v_w, gen_helper_vid_v_d, 3062 }; 3063 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3064 cpu_env, s->vlen / 8, s->vlen / 8, 3065 data, fns[s->sew]); 3066 mark_vs_dirty(s); 3067 gen_set_label(over); 3068 return true; 3069 } 3070 return false; 3071} 3072 3073/* 3074 *** Vector Permutation Instructions 3075 */ 3076 3077static void load_element(TCGv_i64 dest, TCGv_ptr base, 3078 int ofs, int sew, bool sign) 3079{ 3080 switch (sew) { 3081 case MO_8: 3082 if (!sign) { 3083 tcg_gen_ld8u_i64(dest, base, ofs); 3084 } else { 3085 tcg_gen_ld8s_i64(dest, base, ofs); 3086 } 3087 break; 3088 case MO_16: 3089 if (!sign) { 3090 tcg_gen_ld16u_i64(dest, base, ofs); 3091 } else { 3092 tcg_gen_ld16s_i64(dest, base, ofs); 3093 } 3094 break; 3095 case MO_32: 3096 if (!sign) { 3097 tcg_gen_ld32u_i64(dest, base, ofs); 3098 } else { 3099 tcg_gen_ld32s_i64(dest, base, ofs); 3100 } 3101 break; 3102 case MO_64: 3103 tcg_gen_ld_i64(dest, base, ofs); 3104 break; 3105 default: 3106 g_assert_not_reached(); 3107 break; 3108 } 3109} 3110 3111/* offset of the idx element with base regsiter r */ 3112static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3113{ 3114#ifdef HOST_WORDS_BIGENDIAN 3115 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3116#else 3117 return vreg_ofs(s, r) + (idx << s->sew); 3118#endif 3119} 3120 3121/* adjust the index according to the endian */ 3122static void endian_adjust(TCGv_i32 ofs, int sew) 3123{ 3124#ifdef HOST_WORDS_BIGENDIAN 3125 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3126#endif 3127} 3128 3129/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3130static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3131 int vreg, TCGv idx, int vlmax) 3132{ 3133 TCGv_i32 ofs = tcg_temp_new_i32(); 3134 TCGv_ptr base = tcg_temp_new_ptr(); 3135 TCGv_i64 t_idx = tcg_temp_new_i64(); 3136 TCGv_i64 t_vlmax, t_zero; 3137 3138 /* 3139 * Mask the index to the length so that we do 3140 * not produce an out-of-range load. 3141 */ 3142 tcg_gen_trunc_tl_i32(ofs, idx); 3143 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3144 3145 /* Convert the index to an offset. */ 3146 endian_adjust(ofs, s->sew); 3147 tcg_gen_shli_i32(ofs, ofs, s->sew); 3148 3149 /* Convert the index to a pointer. */ 3150 tcg_gen_ext_i32_ptr(base, ofs); 3151 tcg_gen_add_ptr(base, base, cpu_env); 3152 3153 /* Perform the load. */ 3154 load_element(dest, base, 3155 vreg_ofs(s, vreg), s->sew, false); 3156 tcg_temp_free_ptr(base); 3157 tcg_temp_free_i32(ofs); 3158 3159 /* Flush out-of-range indexing to zero. */ 3160 t_vlmax = tcg_constant_i64(vlmax); 3161 t_zero = tcg_constant_i64(0); 3162 tcg_gen_extu_tl_i64(t_idx, idx); 3163 3164 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3165 t_vlmax, dest, t_zero); 3166 3167 tcg_temp_free_i64(t_idx); 3168} 3169 3170static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3171 int vreg, int idx, bool sign) 3172{ 3173 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3174} 3175 3176/* Integer Scalar Move Instruction */ 3177 3178static void store_element(TCGv_i64 val, TCGv_ptr base, 3179 int ofs, int sew) 3180{ 3181 switch (sew) { 3182 case MO_8: 3183 tcg_gen_st8_i64(val, base, ofs); 3184 break; 3185 case MO_16: 3186 tcg_gen_st16_i64(val, base, ofs); 3187 break; 3188 case MO_32: 3189 tcg_gen_st32_i64(val, base, ofs); 3190 break; 3191 case MO_64: 3192 tcg_gen_st_i64(val, base, ofs); 3193 break; 3194 default: 3195 g_assert_not_reached(); 3196 break; 3197 } 3198} 3199 3200/* 3201 * Store vreg[idx] = val. 3202 * The index must be in range of VLMAX. 3203 */ 3204static void vec_element_storei(DisasContext *s, int vreg, 3205 int idx, TCGv_i64 val) 3206{ 3207 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3208} 3209 3210/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3211static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3212{ 3213 if (require_rvv(s) && 3214 vext_check_isa_ill(s)) { 3215 TCGv_i64 t1; 3216 TCGv dest; 3217 3218 t1 = tcg_temp_new_i64(); 3219 dest = tcg_temp_new(); 3220 /* 3221 * load vreg and sign-extend to 64 bits, 3222 * then truncate to XLEN bits before storing to gpr. 3223 */ 3224 vec_element_loadi(s, t1, a->rs2, 0, true); 3225 tcg_gen_trunc_i64_tl(dest, t1); 3226 gen_set_gpr(s, a->rd, dest); 3227 tcg_temp_free_i64(t1); 3228 tcg_temp_free(dest); 3229 3230 return true; 3231 } 3232 return false; 3233} 3234 3235/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3236static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3237{ 3238 if (require_rvv(s) && 3239 vext_check_isa_ill(s)) { 3240 /* This instruction ignores LMUL and vector register groups */ 3241 TCGv_i64 t1; 3242 TCGv s1; 3243 TCGLabel *over = gen_new_label(); 3244 3245 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3246 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3247 3248 t1 = tcg_temp_new_i64(); 3249 3250 /* 3251 * load gpr and sign-extend to 64 bits, 3252 * then truncate to SEW bits when storing to vreg. 3253 */ 3254 s1 = get_gpr(s, a->rs1, EXT_NONE); 3255 tcg_gen_ext_tl_i64(t1, s1); 3256 vec_element_storei(s, a->rd, 0, t1); 3257 tcg_temp_free_i64(t1); 3258 mark_vs_dirty(s); 3259 gen_set_label(over); 3260 return true; 3261 } 3262 return false; 3263} 3264 3265/* Floating-Point Scalar Move Instructions */ 3266static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3267{ 3268 if (require_rvv(s) && 3269 require_rvf(s) && 3270 vext_check_isa_ill(s)) { 3271 gen_set_rm(s, RISCV_FRM_DYN); 3272 3273 unsigned int ofs = (8 << s->sew); 3274 unsigned int len = 64 - ofs; 3275 TCGv_i64 t_nan; 3276 3277 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3278 /* NaN-box f[rd] as necessary for SEW */ 3279 if (len) { 3280 t_nan = tcg_constant_i64(UINT64_MAX); 3281 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3282 t_nan, ofs, len); 3283 } 3284 3285 mark_fs_dirty(s); 3286 return true; 3287 } 3288 return false; 3289} 3290 3291/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3292static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3293{ 3294 if (require_rvv(s) && 3295 require_rvf(s) && 3296 vext_check_isa_ill(s)) { 3297 gen_set_rm(s, RISCV_FRM_DYN); 3298 3299 /* The instructions ignore LMUL and vector register group. */ 3300 TCGv_i64 t1; 3301 TCGLabel *over = gen_new_label(); 3302 3303 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3304 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3305 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3306 3307 /* NaN-box f[rs1] */ 3308 t1 = tcg_temp_new_i64(); 3309 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3310 3311 vec_element_storei(s, a->rd, 0, t1); 3312 tcg_temp_free_i64(t1); 3313 mark_vs_dirty(s); 3314 gen_set_label(over); 3315 return true; 3316 } 3317 return false; 3318} 3319 3320/* Vector Slide Instructions */ 3321static bool slideup_check(DisasContext *s, arg_rmrr *a) 3322{ 3323 return require_rvv(s) && 3324 vext_check_isa_ill(s) && 3325 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3326} 3327 3328GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3329GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3330GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3331 3332static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3333{ 3334 return require_rvv(s) && 3335 vext_check_isa_ill(s) && 3336 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3337} 3338 3339GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3340GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3341GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3342 3343/* Vector Floating-Point Slide Instructions */ 3344static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3345{ 3346 return slideup_check(s, a) && 3347 require_rvf(s); 3348} 3349 3350static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3351{ 3352 return slidedown_check(s, a) && 3353 require_rvf(s); 3354} 3355 3356GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3357GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3358 3359/* Vector Register Gather Instruction */ 3360static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3361{ 3362 return require_rvv(s) && 3363 vext_check_isa_ill(s) && 3364 require_align(a->rd, s->lmul) && 3365 require_align(a->rs1, s->lmul) && 3366 require_align(a->rs2, s->lmul) && 3367 (a->rd != a->rs2 && a->rd != a->rs1) && 3368 require_vm(a->vm, a->rd); 3369} 3370 3371static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3372{ 3373 int8_t emul = MO_16 - s->sew + s->lmul; 3374 return require_rvv(s) && 3375 vext_check_isa_ill(s) && 3376 (emul >= -3 && emul <= 3) && 3377 require_align(a->rd, s->lmul) && 3378 require_align(a->rs1, emul) && 3379 require_align(a->rs2, s->lmul) && 3380 (a->rd != a->rs2 && a->rd != a->rs1) && 3381 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3382 a->rs1, 1 << MAX(emul, 0)) && 3383 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3384 a->rs2, 1 << MAX(s->lmul, 0)) && 3385 require_vm(a->vm, a->rd); 3386} 3387 3388GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3389GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3390 3391static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3392{ 3393 return require_rvv(s) && 3394 vext_check_isa_ill(s) && 3395 require_align(a->rd, s->lmul) && 3396 require_align(a->rs2, s->lmul) && 3397 (a->rd != a->rs2) && 3398 require_vm(a->vm, a->rd); 3399} 3400 3401/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3402static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3403{ 3404 if (!vrgather_vx_check(s, a)) { 3405 return false; 3406 } 3407 3408 if (a->vm && s->vl_eq_vlmax) { 3409 int scale = s->lmul - (s->sew + 3); 3410 int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; 3411 TCGv_i64 dest = tcg_temp_new_i64(); 3412 3413 if (a->rs1 == 0) { 3414 vec_element_loadi(s, dest, a->rs2, 0, false); 3415 } else { 3416 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3417 } 3418 3419 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3420 MAXSZ(s), MAXSZ(s), dest); 3421 tcg_temp_free_i64(dest); 3422 mark_vs_dirty(s); 3423 } else { 3424 static gen_helper_opivx * const fns[4] = { 3425 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3426 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3427 }; 3428 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3429 } 3430 return true; 3431} 3432 3433/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3434static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3435{ 3436 if (!vrgather_vx_check(s, a)) { 3437 return false; 3438 } 3439 3440 if (a->vm && s->vl_eq_vlmax) { 3441 int scale = s->lmul - (s->sew + 3); 3442 int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; 3443 if (a->rs1 >= vlmax) { 3444 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3445 MAXSZ(s), MAXSZ(s), 0); 3446 } else { 3447 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3448 endian_ofs(s, a->rs2, a->rs1), 3449 MAXSZ(s), MAXSZ(s)); 3450 } 3451 mark_vs_dirty(s); 3452 } else { 3453 static gen_helper_opivx * const fns[4] = { 3454 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3455 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3456 }; 3457 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3458 s, IMM_ZX); 3459 } 3460 return true; 3461} 3462 3463/* 3464 * Vector Compress Instruction 3465 * 3466 * The destination vector register group cannot overlap the 3467 * source vector register group or the source mask register. 3468 */ 3469static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3470{ 3471 return require_rvv(s) && 3472 vext_check_isa_ill(s) && 3473 require_align(a->rd, s->lmul) && 3474 require_align(a->rs2, s->lmul) && 3475 (a->rd != a->rs2) && 3476 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3477 (s->vstart == 0); 3478} 3479 3480static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3481{ 3482 if (vcompress_vm_check(s, a)) { 3483 uint32_t data = 0; 3484 static gen_helper_gvec_4_ptr * const fns[4] = { 3485 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3486 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3487 }; 3488 TCGLabel *over = gen_new_label(); 3489 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3490 3491 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3492 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3493 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3494 cpu_env, s->vlen / 8, s->vlen / 8, data, 3495 fns[s->sew]); 3496 mark_vs_dirty(s); 3497 gen_set_label(over); 3498 return true; 3499 } 3500 return false; 3501} 3502 3503/* 3504 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3505 * Thus, we don't need to check vill bit. (Section 16.6) 3506 */ 3507#define GEN_VMV_WHOLE_TRANS(NAME, LEN, SEQ) \ 3508static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3509{ \ 3510 if (require_rvv(s) && \ 3511 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3512 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3513 uint32_t maxsz = (s->vlen >> 3) * LEN; \ 3514 if (s->vstart == 0) { \ 3515 /* EEW = 8 */ \ 3516 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3517 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3518 mark_vs_dirty(s); \ 3519 } else { \ 3520 TCGLabel *over = gen_new_label(); \ 3521 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3522 \ 3523 static gen_helper_gvec_2_ptr * const fns[4] = { \ 3524 gen_helper_vmv1r_v, gen_helper_vmv2r_v, \ 3525 gen_helper_vmv4r_v, gen_helper_vmv8r_v, \ 3526 }; \ 3527 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3528 cpu_env, maxsz, maxsz, 0, fns[SEQ]); \ 3529 mark_vs_dirty(s); \ 3530 gen_set_label(over); \ 3531 } \ 3532 return true; \ 3533 } \ 3534 return false; \ 3535} 3536 3537GEN_VMV_WHOLE_TRANS(vmv1r_v, 1, 0) 3538GEN_VMV_WHOLE_TRANS(vmv2r_v, 2, 1) 3539GEN_VMV_WHOLE_TRANS(vmv4r_v, 4, 2) 3540GEN_VMV_WHOLE_TRANS(vmv8r_v, 8, 3) 3541 3542static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3543{ 3544 uint8_t from = (s->sew + 3) - div; 3545 bool ret = require_rvv(s) && 3546 (from >= 3 && from <= 8) && 3547 (a->rd != a->rs2) && 3548 require_align(a->rd, s->lmul) && 3549 require_align(a->rs2, s->lmul - div) && 3550 require_vm(a->vm, a->rd) && 3551 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3552 return ret; 3553} 3554 3555static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3556{ 3557 uint32_t data = 0; 3558 gen_helper_gvec_3_ptr *fn; 3559 TCGLabel *over = gen_new_label(); 3560 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3561 3562 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3563 { 3564 NULL, gen_helper_vzext_vf2_h, 3565 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3566 }, 3567 { 3568 NULL, NULL, 3569 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3570 }, 3571 { 3572 NULL, NULL, 3573 NULL, gen_helper_vzext_vf8_d 3574 }, 3575 { 3576 NULL, gen_helper_vsext_vf2_h, 3577 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3578 }, 3579 { 3580 NULL, NULL, 3581 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3582 }, 3583 { 3584 NULL, NULL, 3585 NULL, gen_helper_vsext_vf8_d 3586 } 3587 }; 3588 3589 fn = fns[seq][s->sew]; 3590 if (fn == NULL) { 3591 return false; 3592 } 3593 3594 data = FIELD_DP32(data, VDATA, VM, a->vm); 3595 3596 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3597 vreg_ofs(s, a->rs2), cpu_env, 3598 s->vlen / 8, s->vlen / 8, data, fn); 3599 3600 mark_vs_dirty(s); 3601 gen_set_label(over); 3602 return true; 3603} 3604 3605/* Vector Integer Extension */ 3606#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3607static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3608{ \ 3609 if (int_ext_check(s, a, DIV)) { \ 3610 return int_ext_op(s, a, SEQ); \ 3611 } \ 3612 return false; \ 3613} 3614 3615GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3616GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3617GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3618GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3619GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3620GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3621