1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 716} 717 718static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 719{ 720 return require_rvv(s) && 721 vext_check_isa_ill(s) && 722 vext_check_load(s, a->rd, a->nf, a->vm, eew); 723} 724 725GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 729 730static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 731{ 732 uint32_t data = 0; 733 gen_helper_ldst_us *fn; 734 static gen_helper_ldst_us * const fns[2][4] = { 735 /* masked unit stride store */ 736 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 737 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 738 /* unmasked unit stride store */ 739 { gen_helper_vse8_v, gen_helper_vse16_v, 740 gen_helper_vse32_v, gen_helper_vse64_v } 741 }; 742 743 fn = fns[a->vm][eew]; 744 if (fn == NULL) { 745 return false; 746 } 747 748 uint8_t emul = vext_get_emul(s, eew); 749 data = FIELD_DP32(data, VDATA, VM, a->vm); 750 data = FIELD_DP32(data, VDATA, LMUL, emul); 751 data = FIELD_DP32(data, VDATA, NF, a->nf); 752 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 753} 754 755static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 756{ 757 return require_rvv(s) && 758 vext_check_isa_ill(s) && 759 vext_check_store(s, a->rd, a->nf, eew); 760} 761 762GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 766 767/* 768 *** unit stride mask load and store 769 */ 770static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 771{ 772 uint32_t data = 0; 773 gen_helper_ldst_us *fn = gen_helper_vlm_v; 774 775 /* EMUL = 1, NFIELDS = 1 */ 776 data = FIELD_DP32(data, VDATA, LMUL, 0); 777 data = FIELD_DP32(data, VDATA, NF, 1); 778 /* Mask destination register are always tail-agnostic */ 779 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 780 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 781} 782 783static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 784{ 785 /* EMUL = 1, NFIELDS = 1 */ 786 return require_rvv(s) && vext_check_isa_ill(s); 787} 788 789static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 790{ 791 uint32_t data = 0; 792 gen_helper_ldst_us *fn = gen_helper_vsm_v; 793 794 /* EMUL = 1, NFIELDS = 1 */ 795 data = FIELD_DP32(data, VDATA, LMUL, 0); 796 data = FIELD_DP32(data, VDATA, NF, 1); 797 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 798} 799 800static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 801{ 802 /* EMUL = 1, NFIELDS = 1 */ 803 return require_rvv(s) && vext_check_isa_ill(s); 804} 805 806GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 807GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 808 809/* 810 *** stride load and store 811 */ 812typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 813 TCGv, TCGv_env, TCGv_i32); 814 815static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 816 uint32_t data, gen_helper_ldst_stride *fn, 817 DisasContext *s, bool is_store) 818{ 819 TCGv_ptr dest, mask; 820 TCGv base, stride; 821 TCGv_i32 desc; 822 823 TCGLabel *over = gen_new_label(); 824 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 825 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 826 827 dest = tcg_temp_new_ptr(); 828 mask = tcg_temp_new_ptr(); 829 base = get_gpr(s, rs1, EXT_NONE); 830 stride = get_gpr(s, rs2, EXT_NONE); 831 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 832 s->cfg_ptr->vlen / 8, data)); 833 834 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 835 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 836 837 fn(dest, mask, base, stride, cpu_env, desc); 838 839 tcg_temp_free_ptr(dest); 840 tcg_temp_free_ptr(mask); 841 842 if (!is_store) { 843 mark_vs_dirty(s); 844 } 845 846 gen_set_label(over); 847 return true; 848} 849 850static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 851{ 852 uint32_t data = 0; 853 gen_helper_ldst_stride *fn; 854 static gen_helper_ldst_stride * const fns[4] = { 855 gen_helper_vlse8_v, gen_helper_vlse16_v, 856 gen_helper_vlse32_v, gen_helper_vlse64_v 857 }; 858 859 fn = fns[eew]; 860 if (fn == NULL) { 861 return false; 862 } 863 864 uint8_t emul = vext_get_emul(s, eew); 865 data = FIELD_DP32(data, VDATA, VM, a->vm); 866 data = FIELD_DP32(data, VDATA, LMUL, emul); 867 data = FIELD_DP32(data, VDATA, NF, a->nf); 868 data = FIELD_DP32(data, VDATA, VTA, s->vta); 869 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 870} 871 872static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 873{ 874 return require_rvv(s) && 875 vext_check_isa_ill(s) && 876 vext_check_load(s, a->rd, a->nf, a->vm, eew); 877} 878 879GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 880GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 881GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 882GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 883 884static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 885{ 886 uint32_t data = 0; 887 gen_helper_ldst_stride *fn; 888 static gen_helper_ldst_stride * const fns[4] = { 889 /* masked stride store */ 890 gen_helper_vsse8_v, gen_helper_vsse16_v, 891 gen_helper_vsse32_v, gen_helper_vsse64_v 892 }; 893 894 uint8_t emul = vext_get_emul(s, eew); 895 data = FIELD_DP32(data, VDATA, VM, a->vm); 896 data = FIELD_DP32(data, VDATA, LMUL, emul); 897 data = FIELD_DP32(data, VDATA, NF, a->nf); 898 fn = fns[eew]; 899 if (fn == NULL) { 900 return false; 901 } 902 903 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 904} 905 906static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 907{ 908 return require_rvv(s) && 909 vext_check_isa_ill(s) && 910 vext_check_store(s, a->rd, a->nf, eew); 911} 912 913GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 914GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 915GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 916GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 917 918/* 919 *** index load and store 920 */ 921typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 922 TCGv_ptr, TCGv_env, TCGv_i32); 923 924static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 925 uint32_t data, gen_helper_ldst_index *fn, 926 DisasContext *s, bool is_store) 927{ 928 TCGv_ptr dest, mask, index; 929 TCGv base; 930 TCGv_i32 desc; 931 932 TCGLabel *over = gen_new_label(); 933 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 934 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 935 936 dest = tcg_temp_new_ptr(); 937 mask = tcg_temp_new_ptr(); 938 index = tcg_temp_new_ptr(); 939 base = get_gpr(s, rs1, EXT_NONE); 940 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 941 s->cfg_ptr->vlen / 8, data)); 942 943 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 944 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 945 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 946 947 fn(dest, mask, base, index, cpu_env, desc); 948 949 tcg_temp_free_ptr(dest); 950 tcg_temp_free_ptr(mask); 951 tcg_temp_free_ptr(index); 952 953 if (!is_store) { 954 mark_vs_dirty(s); 955 } 956 957 gen_set_label(over); 958 return true; 959} 960 961static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 962{ 963 uint32_t data = 0; 964 gen_helper_ldst_index *fn; 965 static gen_helper_ldst_index * const fns[4][4] = { 966 /* 967 * offset vector register group EEW = 8, 968 * data vector register group EEW = SEW 969 */ 970 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 971 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 972 /* 973 * offset vector register group EEW = 16, 974 * data vector register group EEW = SEW 975 */ 976 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 977 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 978 /* 979 * offset vector register group EEW = 32, 980 * data vector register group EEW = SEW 981 */ 982 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 983 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 984 /* 985 * offset vector register group EEW = 64, 986 * data vector register group EEW = SEW 987 */ 988 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 989 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 990 }; 991 992 fn = fns[eew][s->sew]; 993 994 uint8_t emul = vext_get_emul(s, s->sew); 995 data = FIELD_DP32(data, VDATA, VM, a->vm); 996 data = FIELD_DP32(data, VDATA, LMUL, emul); 997 data = FIELD_DP32(data, VDATA, NF, a->nf); 998 data = FIELD_DP32(data, VDATA, VTA, s->vta); 999 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1000} 1001 1002static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1003{ 1004 return require_rvv(s) && 1005 vext_check_isa_ill(s) && 1006 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1007} 1008 1009GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1010GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1011GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1012GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1013 1014static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1015{ 1016 uint32_t data = 0; 1017 gen_helper_ldst_index *fn; 1018 static gen_helper_ldst_index * const fns[4][4] = { 1019 /* 1020 * offset vector register group EEW = 8, 1021 * data vector register group EEW = SEW 1022 */ 1023 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1024 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1025 /* 1026 * offset vector register group EEW = 16, 1027 * data vector register group EEW = SEW 1028 */ 1029 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1030 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1031 /* 1032 * offset vector register group EEW = 32, 1033 * data vector register group EEW = SEW 1034 */ 1035 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1036 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1037 /* 1038 * offset vector register group EEW = 64, 1039 * data vector register group EEW = SEW 1040 */ 1041 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1042 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1043 }; 1044 1045 fn = fns[eew][s->sew]; 1046 1047 uint8_t emul = vext_get_emul(s, s->sew); 1048 data = FIELD_DP32(data, VDATA, VM, a->vm); 1049 data = FIELD_DP32(data, VDATA, LMUL, emul); 1050 data = FIELD_DP32(data, VDATA, NF, a->nf); 1051 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1052} 1053 1054static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1059} 1060 1061GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1062GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1063GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1064GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1065 1066/* 1067 *** unit stride fault-only-first load 1068 */ 1069static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1070 gen_helper_ldst_us *fn, DisasContext *s) 1071{ 1072 TCGv_ptr dest, mask; 1073 TCGv base; 1074 TCGv_i32 desc; 1075 1076 TCGLabel *over = gen_new_label(); 1077 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1078 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1079 1080 dest = tcg_temp_new_ptr(); 1081 mask = tcg_temp_new_ptr(); 1082 base = get_gpr(s, rs1, EXT_NONE); 1083 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1084 s->cfg_ptr->vlen / 8, data)); 1085 1086 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1087 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1088 1089 fn(dest, mask, base, cpu_env, desc); 1090 1091 tcg_temp_free_ptr(dest); 1092 tcg_temp_free_ptr(mask); 1093 mark_vs_dirty(s); 1094 gen_set_label(over); 1095 return true; 1096} 1097 1098static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1099{ 1100 uint32_t data = 0; 1101 gen_helper_ldst_us *fn; 1102 static gen_helper_ldst_us * const fns[4] = { 1103 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1104 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1105 }; 1106 1107 fn = fns[eew]; 1108 if (fn == NULL) { 1109 return false; 1110 } 1111 1112 uint8_t emul = vext_get_emul(s, eew); 1113 data = FIELD_DP32(data, VDATA, VM, a->vm); 1114 data = FIELD_DP32(data, VDATA, LMUL, emul); 1115 data = FIELD_DP32(data, VDATA, NF, a->nf); 1116 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1117 return ldff_trans(a->rd, a->rs1, data, fn, s); 1118} 1119 1120GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1121GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1122GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1123GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1124 1125/* 1126 * load and store whole register instructions 1127 */ 1128typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1129 1130static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1131 uint32_t width, gen_helper_ldst_whole *fn, 1132 DisasContext *s, bool is_store) 1133{ 1134 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1135 TCGLabel *over = gen_new_label(); 1136 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1137 1138 TCGv_ptr dest; 1139 TCGv base; 1140 TCGv_i32 desc; 1141 1142 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1143 dest = tcg_temp_new_ptr(); 1144 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1145 s->cfg_ptr->vlen / 8, data)); 1146 1147 base = get_gpr(s, rs1, EXT_NONE); 1148 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1149 1150 fn(dest, base, cpu_env, desc); 1151 1152 tcg_temp_free_ptr(dest); 1153 1154 if (!is_store) { 1155 mark_vs_dirty(s); 1156 } 1157 gen_set_label(over); 1158 1159 return true; 1160} 1161 1162/* 1163 * load and store whole register instructions ignore vtype and vl setting. 1164 * Thus, we don't need to check vill bit. (Section 7.9) 1165 */ 1166#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1167static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1168{ \ 1169 if (require_rvv(s) && \ 1170 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1171 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1172 gen_helper_##NAME, s, IS_STORE); \ 1173 } \ 1174 return false; \ 1175} 1176 1177GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1178GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1179GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1180GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1181GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1182GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1183GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1184GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1185GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1186GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1187GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1188GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1189GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1190GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1191GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1192GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1193 1194/* 1195 * The vector whole register store instructions are encoded similar to 1196 * unmasked unit-stride store of elements with EEW=8. 1197 */ 1198GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1199GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1200GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1201GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1202 1203/* 1204 *** Vector Integer Arithmetic Instructions 1205 */ 1206 1207/* 1208 * MAXSZ returns the maximum vector size can be operated in bytes, 1209 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1210 * to accerlate vector operation. 1211 */ 1212static inline uint32_t MAXSZ(DisasContext *s) 1213{ 1214 int scale = s->lmul - 3; 1215 return s->cfg_ptr->vlen >> -scale; 1216} 1217 1218static bool opivv_check(DisasContext *s, arg_rmrr *a) 1219{ 1220 return require_rvv(s) && 1221 vext_check_isa_ill(s) && 1222 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1223} 1224 1225typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1226 uint32_t, uint32_t, uint32_t); 1227 1228static inline bool 1229do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1230 gen_helper_gvec_4_ptr *fn) 1231{ 1232 TCGLabel *over = gen_new_label(); 1233 if (!opivv_check(s, a)) { 1234 return false; 1235 } 1236 1237 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1238 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1239 1240 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1241 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1242 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1243 MAXSZ(s), MAXSZ(s)); 1244 } else { 1245 uint32_t data = 0; 1246 1247 data = FIELD_DP32(data, VDATA, VM, a->vm); 1248 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1249 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1250 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1251 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1252 cpu_env, s->cfg_ptr->vlen / 8, 1253 s->cfg_ptr->vlen / 8, data, fn); 1254 } 1255 mark_vs_dirty(s); 1256 gen_set_label(over); 1257 return true; 1258} 1259 1260/* OPIVV with GVEC IR */ 1261#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1262static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1263{ \ 1264 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1265 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1266 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1267 }; \ 1268 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1269} 1270 1271GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1272GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1273 1274typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1275 TCGv_env, TCGv_i32); 1276 1277static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1278 gen_helper_opivx *fn, DisasContext *s) 1279{ 1280 TCGv_ptr dest, src2, mask; 1281 TCGv src1; 1282 TCGv_i32 desc; 1283 uint32_t data = 0; 1284 1285 TCGLabel *over = gen_new_label(); 1286 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1287 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1288 1289 dest = tcg_temp_new_ptr(); 1290 mask = tcg_temp_new_ptr(); 1291 src2 = tcg_temp_new_ptr(); 1292 src1 = get_gpr(s, rs1, EXT_SIGN); 1293 1294 data = FIELD_DP32(data, VDATA, VM, vm); 1295 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1296 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1297 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1298 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1299 s->cfg_ptr->vlen / 8, data)); 1300 1301 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1302 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1303 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1304 1305 fn(dest, mask, src1, src2, cpu_env, desc); 1306 1307 tcg_temp_free_ptr(dest); 1308 tcg_temp_free_ptr(mask); 1309 tcg_temp_free_ptr(src2); 1310 mark_vs_dirty(s); 1311 gen_set_label(over); 1312 return true; 1313} 1314 1315static bool opivx_check(DisasContext *s, arg_rmrr *a) 1316{ 1317 return require_rvv(s) && 1318 vext_check_isa_ill(s) && 1319 vext_check_ss(s, a->rd, a->rs2, a->vm); 1320} 1321 1322typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1323 uint32_t, uint32_t); 1324 1325static inline bool 1326do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1327 gen_helper_opivx *fn) 1328{ 1329 if (!opivx_check(s, a)) { 1330 return false; 1331 } 1332 1333 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1334 TCGv_i64 src1 = tcg_temp_new_i64(); 1335 1336 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1337 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1338 src1, MAXSZ(s), MAXSZ(s)); 1339 1340 tcg_temp_free_i64(src1); 1341 mark_vs_dirty(s); 1342 return true; 1343 } 1344 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1345} 1346 1347/* OPIVX with GVEC IR */ 1348#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1349static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1350{ \ 1351 static gen_helper_opivx * const fns[4] = { \ 1352 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1353 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1354 }; \ 1355 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1356} 1357 1358GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1359GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1360 1361static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1362{ 1363 tcg_gen_vec_sub8_i64(d, b, a); 1364} 1365 1366static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1367{ 1368 tcg_gen_vec_sub16_i64(d, b, a); 1369} 1370 1371static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1372{ 1373 tcg_gen_sub_i32(ret, arg2, arg1); 1374} 1375 1376static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1377{ 1378 tcg_gen_sub_i64(ret, arg2, arg1); 1379} 1380 1381static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1382{ 1383 tcg_gen_sub_vec(vece, r, b, a); 1384} 1385 1386static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1387 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1388{ 1389 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1390 static const GVecGen2s rsub_op[4] = { 1391 { .fni8 = gen_vec_rsub8_i64, 1392 .fniv = gen_rsub_vec, 1393 .fno = gen_helper_vec_rsubs8, 1394 .opt_opc = vecop_list, 1395 .vece = MO_8 }, 1396 { .fni8 = gen_vec_rsub16_i64, 1397 .fniv = gen_rsub_vec, 1398 .fno = gen_helper_vec_rsubs16, 1399 .opt_opc = vecop_list, 1400 .vece = MO_16 }, 1401 { .fni4 = gen_rsub_i32, 1402 .fniv = gen_rsub_vec, 1403 .fno = gen_helper_vec_rsubs32, 1404 .opt_opc = vecop_list, 1405 .vece = MO_32 }, 1406 { .fni8 = gen_rsub_i64, 1407 .fniv = gen_rsub_vec, 1408 .fno = gen_helper_vec_rsubs64, 1409 .opt_opc = vecop_list, 1410 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1411 .vece = MO_64 }, 1412 }; 1413 1414 tcg_debug_assert(vece <= MO_64); 1415 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1416} 1417 1418GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1419 1420typedef enum { 1421 IMM_ZX, /* Zero-extended */ 1422 IMM_SX, /* Sign-extended */ 1423 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1424 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1425} imm_mode_t; 1426 1427static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1428{ 1429 switch (imm_mode) { 1430 case IMM_ZX: 1431 return extract64(imm, 0, 5); 1432 case IMM_SX: 1433 return sextract64(imm, 0, 5); 1434 case IMM_TRUNC_SEW: 1435 return extract64(imm, 0, s->sew + 3); 1436 case IMM_TRUNC_2SEW: 1437 return extract64(imm, 0, s->sew + 4); 1438 default: 1439 g_assert_not_reached(); 1440 } 1441} 1442 1443static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1444 gen_helper_opivx *fn, DisasContext *s, 1445 imm_mode_t imm_mode) 1446{ 1447 TCGv_ptr dest, src2, mask; 1448 TCGv src1; 1449 TCGv_i32 desc; 1450 uint32_t data = 0; 1451 1452 TCGLabel *over = gen_new_label(); 1453 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1454 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1455 1456 dest = tcg_temp_new_ptr(); 1457 mask = tcg_temp_new_ptr(); 1458 src2 = tcg_temp_new_ptr(); 1459 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1460 1461 data = FIELD_DP32(data, VDATA, VM, vm); 1462 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1463 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1464 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1465 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1466 s->cfg_ptr->vlen / 8, data)); 1467 1468 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1469 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1470 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1471 1472 fn(dest, mask, src1, src2, cpu_env, desc); 1473 1474 tcg_temp_free_ptr(dest); 1475 tcg_temp_free_ptr(mask); 1476 tcg_temp_free_ptr(src2); 1477 mark_vs_dirty(s); 1478 gen_set_label(over); 1479 return true; 1480} 1481 1482typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1483 uint32_t, uint32_t); 1484 1485static inline bool 1486do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1487 gen_helper_opivx *fn, imm_mode_t imm_mode) 1488{ 1489 if (!opivx_check(s, a)) { 1490 return false; 1491 } 1492 1493 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1494 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1495 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1496 mark_vs_dirty(s); 1497 return true; 1498 } 1499 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1500} 1501 1502/* OPIVI with GVEC IR */ 1503#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1504static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1505{ \ 1506 static gen_helper_opivx * const fns[4] = { \ 1507 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1508 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1509 }; \ 1510 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1511 fns[s->sew], IMM_MODE); \ 1512} 1513 1514GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1515 1516static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1517 int64_t c, uint32_t oprsz, uint32_t maxsz) 1518{ 1519 TCGv_i64 tmp = tcg_constant_i64(c); 1520 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1521} 1522 1523GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1524 1525/* Vector Widening Integer Add/Subtract */ 1526 1527/* OPIVV with WIDEN */ 1528static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1529{ 1530 return require_rvv(s) && 1531 vext_check_isa_ill(s) && 1532 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1533} 1534 1535static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1536 gen_helper_gvec_4_ptr *fn, 1537 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1538{ 1539 if (checkfn(s, a)) { 1540 uint32_t data = 0; 1541 TCGLabel *over = gen_new_label(); 1542 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1543 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1544 1545 data = FIELD_DP32(data, VDATA, VM, a->vm); 1546 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1547 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1548 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1549 vreg_ofs(s, a->rs1), 1550 vreg_ofs(s, a->rs2), 1551 cpu_env, s->cfg_ptr->vlen / 8, 1552 s->cfg_ptr->vlen / 8, 1553 data, fn); 1554 mark_vs_dirty(s); 1555 gen_set_label(over); 1556 return true; 1557 } 1558 return false; 1559} 1560 1561#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1562static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1563{ \ 1564 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1565 gen_helper_##NAME##_b, \ 1566 gen_helper_##NAME##_h, \ 1567 gen_helper_##NAME##_w \ 1568 }; \ 1569 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1570} 1571 1572GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1573GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1574GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1575GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1576 1577/* OPIVX with WIDEN */ 1578static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1579{ 1580 return require_rvv(s) && 1581 vext_check_isa_ill(s) && 1582 vext_check_ds(s, a->rd, a->rs2, a->vm); 1583} 1584 1585static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1586 gen_helper_opivx *fn) 1587{ 1588 if (opivx_widen_check(s, a)) { 1589 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1590 } 1591 return false; 1592} 1593 1594#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1595static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1596{ \ 1597 static gen_helper_opivx * const fns[3] = { \ 1598 gen_helper_##NAME##_b, \ 1599 gen_helper_##NAME##_h, \ 1600 gen_helper_##NAME##_w \ 1601 }; \ 1602 return do_opivx_widen(s, a, fns[s->sew]); \ 1603} 1604 1605GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1606GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1607GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1608GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1609 1610/* WIDEN OPIVV with WIDEN */ 1611static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1612{ 1613 return require_rvv(s) && 1614 vext_check_isa_ill(s) && 1615 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1616} 1617 1618static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1619 gen_helper_gvec_4_ptr *fn) 1620{ 1621 if (opiwv_widen_check(s, a)) { 1622 uint32_t data = 0; 1623 TCGLabel *over = gen_new_label(); 1624 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1625 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1626 1627 data = FIELD_DP32(data, VDATA, VM, a->vm); 1628 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1629 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1630 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1631 vreg_ofs(s, a->rs1), 1632 vreg_ofs(s, a->rs2), 1633 cpu_env, s->cfg_ptr->vlen / 8, 1634 s->cfg_ptr->vlen / 8, data, fn); 1635 mark_vs_dirty(s); 1636 gen_set_label(over); 1637 return true; 1638 } 1639 return false; 1640} 1641 1642#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1643static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1644{ \ 1645 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1646 gen_helper_##NAME##_b, \ 1647 gen_helper_##NAME##_h, \ 1648 gen_helper_##NAME##_w \ 1649 }; \ 1650 return do_opiwv_widen(s, a, fns[s->sew]); \ 1651} 1652 1653GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1654GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1655GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1656GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1657 1658/* WIDEN OPIVX with WIDEN */ 1659static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1660{ 1661 return require_rvv(s) && 1662 vext_check_isa_ill(s) && 1663 vext_check_dd(s, a->rd, a->rs2, a->vm); 1664} 1665 1666static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1667 gen_helper_opivx *fn) 1668{ 1669 if (opiwx_widen_check(s, a)) { 1670 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1671 } 1672 return false; 1673} 1674 1675#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1676static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1677{ \ 1678 static gen_helper_opivx * const fns[3] = { \ 1679 gen_helper_##NAME##_b, \ 1680 gen_helper_##NAME##_h, \ 1681 gen_helper_##NAME##_w \ 1682 }; \ 1683 return do_opiwx_widen(s, a, fns[s->sew]); \ 1684} 1685 1686GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1687GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1688GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1689GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1690 1691/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1692/* OPIVV without GVEC IR */ 1693#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1694static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1695{ \ 1696 if (CHECK(s, a)) { \ 1697 uint32_t data = 0; \ 1698 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1699 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1700 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1701 }; \ 1702 TCGLabel *over = gen_new_label(); \ 1703 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1704 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1705 \ 1706 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1707 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1708 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1709 data = \ 1710 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1711 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1712 vreg_ofs(s, a->rs1), \ 1713 vreg_ofs(s, a->rs2), cpu_env, \ 1714 s->cfg_ptr->vlen / 8, \ 1715 s->cfg_ptr->vlen / 8, data, \ 1716 fns[s->sew]); \ 1717 mark_vs_dirty(s); \ 1718 gen_set_label(over); \ 1719 return true; \ 1720 } \ 1721 return false; \ 1722} 1723 1724/* 1725 * For vadc and vsbc, an illegal instruction exception is raised if the 1726 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1727 */ 1728static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1729{ 1730 return require_rvv(s) && 1731 vext_check_isa_ill(s) && 1732 (a->rd != 0) && 1733 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1734} 1735 1736GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1737GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1738 1739/* 1740 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1741 * destination vector register overlaps a source vector register group. 1742 */ 1743static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1744{ 1745 return require_rvv(s) && 1746 vext_check_isa_ill(s) && 1747 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1748} 1749 1750GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1751GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1752 1753static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1754{ 1755 return require_rvv(s) && 1756 vext_check_isa_ill(s) && 1757 (a->rd != 0) && 1758 vext_check_ss(s, a->rd, a->rs2, a->vm); 1759} 1760 1761/* OPIVX without GVEC IR */ 1762#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1763static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1764{ \ 1765 if (CHECK(s, a)) { \ 1766 static gen_helper_opivx * const fns[4] = { \ 1767 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1768 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1769 }; \ 1770 \ 1771 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1772 } \ 1773 return false; \ 1774} 1775 1776GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1777GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1778 1779static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1780{ 1781 return require_rvv(s) && 1782 vext_check_isa_ill(s) && 1783 vext_check_ms(s, a->rd, a->rs2); 1784} 1785 1786GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1787GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1788 1789/* OPIVI without GVEC IR */ 1790#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1791static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1792{ \ 1793 if (CHECK(s, a)) { \ 1794 static gen_helper_opivx * const fns[4] = { \ 1795 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1796 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1797 }; \ 1798 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1799 fns[s->sew], s, IMM_MODE); \ 1800 } \ 1801 return false; \ 1802} 1803 1804GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1805GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1806 1807/* Vector Bitwise Logical Instructions */ 1808GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1809GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1810GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1811GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1812GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1813GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1814GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1815GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1816GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1817 1818/* Vector Single-Width Bit Shift Instructions */ 1819GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1820GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1821GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1822 1823typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1824 uint32_t, uint32_t); 1825 1826static inline bool 1827do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1828 gen_helper_opivx *fn) 1829{ 1830 if (!opivx_check(s, a)) { 1831 return false; 1832 } 1833 1834 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1835 TCGv_i32 src1 = tcg_temp_new_i32(); 1836 1837 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1838 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1839 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1840 src1, MAXSZ(s), MAXSZ(s)); 1841 1842 tcg_temp_free_i32(src1); 1843 mark_vs_dirty(s); 1844 return true; 1845 } 1846 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1847} 1848 1849#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1850static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1851{ \ 1852 static gen_helper_opivx * const fns[4] = { \ 1853 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1854 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1855 }; \ 1856 \ 1857 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1858} 1859 1860GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1861GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1862GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1863 1864GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1865GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1866GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1867 1868/* Vector Narrowing Integer Right Shift Instructions */ 1869static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1870{ 1871 return require_rvv(s) && 1872 vext_check_isa_ill(s) && 1873 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1874} 1875 1876/* OPIVV with NARROW */ 1877#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1878static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1879{ \ 1880 if (opiwv_narrow_check(s, a)) { \ 1881 uint32_t data = 0; \ 1882 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1883 gen_helper_##NAME##_b, \ 1884 gen_helper_##NAME##_h, \ 1885 gen_helper_##NAME##_w, \ 1886 }; \ 1887 TCGLabel *over = gen_new_label(); \ 1888 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1889 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1890 \ 1891 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1892 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1893 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1894 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1895 vreg_ofs(s, a->rs1), \ 1896 vreg_ofs(s, a->rs2), cpu_env, \ 1897 s->cfg_ptr->vlen / 8, \ 1898 s->cfg_ptr->vlen / 8, data, \ 1899 fns[s->sew]); \ 1900 mark_vs_dirty(s); \ 1901 gen_set_label(over); \ 1902 return true; \ 1903 } \ 1904 return false; \ 1905} 1906GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1907GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1908 1909static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1910{ 1911 return require_rvv(s) && 1912 vext_check_isa_ill(s) && 1913 vext_check_sd(s, a->rd, a->rs2, a->vm); 1914} 1915 1916/* OPIVX with NARROW */ 1917#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1918static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1919{ \ 1920 if (opiwx_narrow_check(s, a)) { \ 1921 static gen_helper_opivx * const fns[3] = { \ 1922 gen_helper_##NAME##_b, \ 1923 gen_helper_##NAME##_h, \ 1924 gen_helper_##NAME##_w, \ 1925 }; \ 1926 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1927 } \ 1928 return false; \ 1929} 1930 1931GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1932GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1933 1934/* OPIWI with NARROW */ 1935#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1936static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1937{ \ 1938 if (opiwx_narrow_check(s, a)) { \ 1939 static gen_helper_opivx * const fns[3] = { \ 1940 gen_helper_##OPIVX##_b, \ 1941 gen_helper_##OPIVX##_h, \ 1942 gen_helper_##OPIVX##_w, \ 1943 }; \ 1944 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1945 fns[s->sew], s, IMM_MODE); \ 1946 } \ 1947 return false; \ 1948} 1949 1950GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1951GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1952 1953/* Vector Integer Comparison Instructions */ 1954/* 1955 * For all comparison instructions, an illegal instruction exception is raised 1956 * if the destination vector register overlaps a source vector register group 1957 * and LMUL > 1. 1958 */ 1959static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1960{ 1961 return require_rvv(s) && 1962 vext_check_isa_ill(s) && 1963 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1964} 1965 1966GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1967GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1968GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1969GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1970GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1971GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1972 1973static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1974{ 1975 return require_rvv(s) && 1976 vext_check_isa_ill(s) && 1977 vext_check_ms(s, a->rd, a->rs2); 1978} 1979 1980GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1981GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1982GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1983GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1984GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1985GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1986GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1987GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1988 1989GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1990GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1991GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1992GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1993GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1994GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1995 1996/* Vector Integer Min/Max Instructions */ 1997GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1998GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1999GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2000GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2001GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2002GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2003GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2004GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2005 2006/* Vector Single-Width Integer Multiply Instructions */ 2007 2008static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2009{ 2010 /* 2011 * All Zve* extensions support all vector integer instructions, 2012 * except that the vmulh integer multiply variants 2013 * that return the high word of the product 2014 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2015 * are not included for EEW=64 in Zve64*. (Section 18.2) 2016 */ 2017 return opivv_check(s, a) && 2018 (!has_ext(s, RVV) && 2019 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2020} 2021 2022static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2023{ 2024 /* 2025 * All Zve* extensions support all vector integer instructions, 2026 * except that the vmulh integer multiply variants 2027 * that return the high word of the product 2028 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2029 * are not included for EEW=64 in Zve64*. (Section 18.2) 2030 */ 2031 return opivx_check(s, a) && 2032 (!has_ext(s, RVV) && 2033 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2034} 2035 2036GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2037GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2038GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2039GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2040GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2041GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2042GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2043GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2044 2045/* Vector Integer Divide Instructions */ 2046GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2047GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2048GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2049GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2050GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2051GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2052GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2053GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2054 2055/* Vector Widening Integer Multiply Instructions */ 2056GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2057GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2058GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2059GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2060GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2061GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2062 2063/* Vector Single-Width Integer Multiply-Add Instructions */ 2064GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2065GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2066GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2067GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2068GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2069GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2070GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2071GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2072 2073/* Vector Widening Integer Multiply-Add Instructions */ 2074GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2075GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2076GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2077GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2078GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2079GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2080GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2081 2082/* Vector Integer Merge and Move Instructions */ 2083static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2084{ 2085 if (require_rvv(s) && 2086 vext_check_isa_ill(s) && 2087 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2088 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2089 if (s->vl_eq_vlmax) { 2090 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2091 vreg_ofs(s, a->rs1), 2092 MAXSZ(s), MAXSZ(s)); 2093 } else { 2094 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2095 static gen_helper_gvec_2_ptr * const fns[4] = { 2096 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2097 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2098 }; 2099 TCGLabel *over = gen_new_label(); 2100 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2101 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2102 2103 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2104 cpu_env, s->cfg_ptr->vlen / 8, 2105 s->cfg_ptr->vlen / 8, data, 2106 fns[s->sew]); 2107 gen_set_label(over); 2108 } 2109 mark_vs_dirty(s); 2110 return true; 2111 } 2112 return false; 2113} 2114 2115typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2116static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2117{ 2118 if (require_rvv(s) && 2119 vext_check_isa_ill(s) && 2120 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2121 vext_check_ss(s, a->rd, 0, 1)) { 2122 TCGv s1; 2123 TCGLabel *over = gen_new_label(); 2124 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2125 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2126 2127 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2128 2129 if (s->vl_eq_vlmax) { 2130 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2131 MAXSZ(s), MAXSZ(s), s1); 2132 } else { 2133 TCGv_i32 desc; 2134 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2135 TCGv_ptr dest = tcg_temp_new_ptr(); 2136 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2137 static gen_helper_vmv_vx * const fns[4] = { 2138 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2139 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2140 }; 2141 2142 tcg_gen_ext_tl_i64(s1_i64, s1); 2143 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2144 s->cfg_ptr->vlen / 8, data)); 2145 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2146 fns[s->sew](dest, s1_i64, cpu_env, desc); 2147 2148 tcg_temp_free_ptr(dest); 2149 tcg_temp_free_i64(s1_i64); 2150 } 2151 2152 mark_vs_dirty(s); 2153 gen_set_label(over); 2154 return true; 2155 } 2156 return false; 2157} 2158 2159static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2160{ 2161 if (require_rvv(s) && 2162 vext_check_isa_ill(s) && 2163 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2164 vext_check_ss(s, a->rd, 0, 1)) { 2165 int64_t simm = sextract64(a->rs1, 0, 5); 2166 if (s->vl_eq_vlmax) { 2167 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2168 MAXSZ(s), MAXSZ(s), simm); 2169 mark_vs_dirty(s); 2170 } else { 2171 TCGv_i32 desc; 2172 TCGv_i64 s1; 2173 TCGv_ptr dest; 2174 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2175 static gen_helper_vmv_vx * const fns[4] = { 2176 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2177 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2178 }; 2179 TCGLabel *over = gen_new_label(); 2180 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2181 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2182 2183 s1 = tcg_constant_i64(simm); 2184 dest = tcg_temp_new_ptr(); 2185 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2186 s->cfg_ptr->vlen / 8, data)); 2187 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2188 fns[s->sew](dest, s1, cpu_env, desc); 2189 2190 tcg_temp_free_ptr(dest); 2191 mark_vs_dirty(s); 2192 gen_set_label(over); 2193 } 2194 return true; 2195 } 2196 return false; 2197} 2198 2199GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2200GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2201GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2202 2203/* 2204 *** Vector Fixed-Point Arithmetic Instructions 2205 */ 2206 2207/* Vector Single-Width Saturating Add and Subtract */ 2208GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2209GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2210GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2211GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2212GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2213GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2214GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2215GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2216GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2217GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2218 2219/* Vector Single-Width Averaging Add and Subtract */ 2220GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2221GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2222GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2223GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2224GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2225GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2226GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2227GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2228 2229/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2230 2231static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2232{ 2233 /* 2234 * All Zve* extensions support all vector fixed-point arithmetic 2235 * instructions, except that vsmul.vv and vsmul.vx are not supported 2236 * for EEW=64 in Zve64*. (Section 18.2) 2237 */ 2238 return opivv_check(s, a) && 2239 (!has_ext(s, RVV) && 2240 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2241} 2242 2243static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2244{ 2245 /* 2246 * All Zve* extensions support all vector fixed-point arithmetic 2247 * instructions, except that vsmul.vv and vsmul.vx are not supported 2248 * for EEW=64 in Zve64*. (Section 18.2) 2249 */ 2250 return opivx_check(s, a) && 2251 (!has_ext(s, RVV) && 2252 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2253} 2254 2255GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2256GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2257 2258/* Vector Single-Width Scaling Shift Instructions */ 2259GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2260GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2261GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2262GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2263GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2264GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2265 2266/* Vector Narrowing Fixed-Point Clip Instructions */ 2267GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2268GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2269GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2270GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2271GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2272GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2273 2274/* 2275 *** Vector Float Point Arithmetic Instructions 2276 */ 2277 2278/* 2279 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2280 * RVF and RVD can be treated equally. 2281 * We don't have to deal with the cases of: SEW > FLEN. 2282 * 2283 * If SEW < FLEN, check whether input fp register is a valid 2284 * NaN-boxed value, in which case the least-significant SEW bits 2285 * of the f regsiter are used, else the canonical NaN value is used. 2286 */ 2287static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2288{ 2289 switch (s->sew) { 2290 case 1: 2291 gen_check_nanbox_h(out, in); 2292 break; 2293 case 2: 2294 gen_check_nanbox_s(out, in); 2295 break; 2296 case 3: 2297 tcg_gen_mov_i64(out, in); 2298 break; 2299 default: 2300 g_assert_not_reached(); 2301 } 2302} 2303 2304/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2305 2306/* 2307 * If the current SEW does not correspond to a supported IEEE floating-point 2308 * type, an illegal instruction exception is raised. 2309 */ 2310static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2311{ 2312 return require_rvv(s) && 2313 require_rvf(s) && 2314 vext_check_isa_ill(s) && 2315 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2316 require_zve32f(s) && 2317 require_zve64f(s); 2318} 2319 2320/* OPFVV without GVEC IR */ 2321#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2322static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2323{ \ 2324 if (CHECK(s, a)) { \ 2325 uint32_t data = 0; \ 2326 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2327 gen_helper_##NAME##_h, \ 2328 gen_helper_##NAME##_w, \ 2329 gen_helper_##NAME##_d, \ 2330 }; \ 2331 TCGLabel *over = gen_new_label(); \ 2332 gen_set_rm(s, RISCV_FRM_DYN); \ 2333 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2334 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2335 \ 2336 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2337 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2338 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2339 vreg_ofs(s, a->rs1), \ 2340 vreg_ofs(s, a->rs2), cpu_env, \ 2341 s->cfg_ptr->vlen / 8, \ 2342 s->cfg_ptr->vlen / 8, data, \ 2343 fns[s->sew - 1]); \ 2344 mark_vs_dirty(s); \ 2345 gen_set_label(over); \ 2346 return true; \ 2347 } \ 2348 return false; \ 2349} 2350GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2351GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2352 2353typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2354 TCGv_env, TCGv_i32); 2355 2356static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2357 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2358{ 2359 TCGv_ptr dest, src2, mask; 2360 TCGv_i32 desc; 2361 TCGv_i64 t1; 2362 2363 TCGLabel *over = gen_new_label(); 2364 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2365 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2366 2367 dest = tcg_temp_new_ptr(); 2368 mask = tcg_temp_new_ptr(); 2369 src2 = tcg_temp_new_ptr(); 2370 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2371 s->cfg_ptr->vlen / 8, data)); 2372 2373 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2374 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2375 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2376 2377 /* NaN-box f[rs1] */ 2378 t1 = tcg_temp_new_i64(); 2379 do_nanbox(s, t1, cpu_fpr[rs1]); 2380 2381 fn(dest, mask, t1, src2, cpu_env, desc); 2382 2383 tcg_temp_free_ptr(dest); 2384 tcg_temp_free_ptr(mask); 2385 tcg_temp_free_ptr(src2); 2386 tcg_temp_free_i64(t1); 2387 mark_vs_dirty(s); 2388 gen_set_label(over); 2389 return true; 2390} 2391 2392/* 2393 * If the current SEW does not correspond to a supported IEEE floating-point 2394 * type, an illegal instruction exception is raised 2395 */ 2396static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2397{ 2398 return require_rvv(s) && 2399 require_rvf(s) && 2400 vext_check_isa_ill(s) && 2401 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2402 require_zve32f(s) && 2403 require_zve64f(s); 2404} 2405 2406/* OPFVF without GVEC IR */ 2407#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2408static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2409{ \ 2410 if (CHECK(s, a)) { \ 2411 uint32_t data = 0; \ 2412 static gen_helper_opfvf *const fns[3] = { \ 2413 gen_helper_##NAME##_h, \ 2414 gen_helper_##NAME##_w, \ 2415 gen_helper_##NAME##_d, \ 2416 }; \ 2417 gen_set_rm(s, RISCV_FRM_DYN); \ 2418 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2419 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2420 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2421 fns[s->sew - 1], s); \ 2422 } \ 2423 return false; \ 2424} 2425 2426GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2427GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2428GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2429 2430/* Vector Widening Floating-Point Add/Subtract Instructions */ 2431static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2432{ 2433 return require_rvv(s) && 2434 require_scale_rvf(s) && 2435 (s->sew != MO_8) && 2436 vext_check_isa_ill(s) && 2437 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2438 require_scale_zve32f(s) && 2439 require_scale_zve64f(s); 2440} 2441 2442/* OPFVV with WIDEN */ 2443#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2444static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2445{ \ 2446 if (CHECK(s, a)) { \ 2447 uint32_t data = 0; \ 2448 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2449 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2450 }; \ 2451 TCGLabel *over = gen_new_label(); \ 2452 gen_set_rm(s, RISCV_FRM_DYN); \ 2453 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2454 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2455 \ 2456 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2457 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2458 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2459 vreg_ofs(s, a->rs1), \ 2460 vreg_ofs(s, a->rs2), cpu_env, \ 2461 s->cfg_ptr->vlen / 8, \ 2462 s->cfg_ptr->vlen / 8, data, \ 2463 fns[s->sew - 1]); \ 2464 mark_vs_dirty(s); \ 2465 gen_set_label(over); \ 2466 return true; \ 2467 } \ 2468 return false; \ 2469} 2470 2471GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2472GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2473 2474static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2475{ 2476 return require_rvv(s) && 2477 require_scale_rvf(s) && 2478 (s->sew != MO_8) && 2479 vext_check_isa_ill(s) && 2480 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2481 require_scale_zve32f(s) && 2482 require_scale_zve64f(s); 2483} 2484 2485/* OPFVF with WIDEN */ 2486#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2487static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2488{ \ 2489 if (opfvf_widen_check(s, a)) { \ 2490 uint32_t data = 0; \ 2491 static gen_helper_opfvf *const fns[2] = { \ 2492 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2493 }; \ 2494 gen_set_rm(s, RISCV_FRM_DYN); \ 2495 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2496 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2497 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2498 fns[s->sew - 1], s); \ 2499 } \ 2500 return false; \ 2501} 2502 2503GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2504GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2505 2506static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2507{ 2508 return require_rvv(s) && 2509 require_scale_rvf(s) && 2510 (s->sew != MO_8) && 2511 vext_check_isa_ill(s) && 2512 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2513 require_scale_zve32f(s) && 2514 require_scale_zve64f(s); 2515} 2516 2517/* WIDEN OPFVV with WIDEN */ 2518#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2519static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2520{ \ 2521 if (opfwv_widen_check(s, a)) { \ 2522 uint32_t data = 0; \ 2523 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2524 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2525 }; \ 2526 TCGLabel *over = gen_new_label(); \ 2527 gen_set_rm(s, RISCV_FRM_DYN); \ 2528 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2529 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2530 \ 2531 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2532 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2533 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2534 vreg_ofs(s, a->rs1), \ 2535 vreg_ofs(s, a->rs2), cpu_env, \ 2536 s->cfg_ptr->vlen / 8, \ 2537 s->cfg_ptr->vlen / 8, data, \ 2538 fns[s->sew - 1]); \ 2539 mark_vs_dirty(s); \ 2540 gen_set_label(over); \ 2541 return true; \ 2542 } \ 2543 return false; \ 2544} 2545 2546GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2547GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2548 2549static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2550{ 2551 return require_rvv(s) && 2552 require_scale_rvf(s) && 2553 (s->sew != MO_8) && 2554 vext_check_isa_ill(s) && 2555 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2556 require_scale_zve32f(s) && 2557 require_scale_zve64f(s); 2558} 2559 2560/* WIDEN OPFVF with WIDEN */ 2561#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2562static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2563{ \ 2564 if (opfwf_widen_check(s, a)) { \ 2565 uint32_t data = 0; \ 2566 static gen_helper_opfvf *const fns[2] = { \ 2567 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2568 }; \ 2569 gen_set_rm(s, RISCV_FRM_DYN); \ 2570 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2571 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2572 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2573 fns[s->sew - 1], s); \ 2574 } \ 2575 return false; \ 2576} 2577 2578GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2579GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2580 2581/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2582GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2583GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2584GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2585GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2586GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2587 2588/* Vector Widening Floating-Point Multiply */ 2589GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2590GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2591 2592/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2593GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2594GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2595GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2596GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2597GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2598GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2599GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2600GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2601GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2602GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2603GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2604GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2605GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2606GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2607GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2608GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2609 2610/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2611GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2612GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2613GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2614GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2615GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2616GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2617GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2618GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2619 2620/* Vector Floating-Point Square-Root Instruction */ 2621 2622/* 2623 * If the current SEW does not correspond to a supported IEEE floating-point 2624 * type, an illegal instruction exception is raised 2625 */ 2626static bool opfv_check(DisasContext *s, arg_rmr *a) 2627{ 2628 return require_rvv(s) && 2629 require_rvf(s) && 2630 vext_check_isa_ill(s) && 2631 /* OPFV instructions ignore vs1 check */ 2632 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2633 require_zve32f(s) && 2634 require_zve64f(s); 2635} 2636 2637static bool do_opfv(DisasContext *s, arg_rmr *a, 2638 gen_helper_gvec_3_ptr *fn, 2639 bool (*checkfn)(DisasContext *, arg_rmr *), 2640 int rm) 2641{ 2642 if (checkfn(s, a)) { 2643 if (rm != RISCV_FRM_DYN) { 2644 gen_set_rm(s, RISCV_FRM_DYN); 2645 } 2646 2647 uint32_t data = 0; 2648 TCGLabel *over = gen_new_label(); 2649 gen_set_rm(s, rm); 2650 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2651 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2652 2653 data = FIELD_DP32(data, VDATA, VM, a->vm); 2654 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2655 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2656 vreg_ofs(s, a->rs2), cpu_env, 2657 s->cfg_ptr->vlen / 8, 2658 s->cfg_ptr->vlen / 8, data, fn); 2659 mark_vs_dirty(s); 2660 gen_set_label(over); 2661 return true; 2662 } 2663 return false; 2664} 2665 2666#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2667static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2668{ \ 2669 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2670 gen_helper_##NAME##_h, \ 2671 gen_helper_##NAME##_w, \ 2672 gen_helper_##NAME##_d \ 2673 }; \ 2674 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2675} 2676 2677GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2678GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2679GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2680 2681/* Vector Floating-Point MIN/MAX Instructions */ 2682GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2683GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2684GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2685GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2686 2687/* Vector Floating-Point Sign-Injection Instructions */ 2688GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2689GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2690GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2691GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2692GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2693GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2694 2695/* Vector Floating-Point Compare Instructions */ 2696static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2697{ 2698 return require_rvv(s) && 2699 require_rvf(s) && 2700 vext_check_isa_ill(s) && 2701 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2702 require_zve32f(s) && 2703 require_zve64f(s); 2704} 2705 2706GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2707GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2708GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2709GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2710 2711static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2712{ 2713 return require_rvv(s) && 2714 require_rvf(s) && 2715 vext_check_isa_ill(s) && 2716 vext_check_ms(s, a->rd, a->rs2) && 2717 require_zve32f(s) && 2718 require_zve64f(s); 2719} 2720 2721GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2722GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2723GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2724GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2725GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2726GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2727 2728/* Vector Floating-Point Classify Instruction */ 2729GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2730 2731/* Vector Floating-Point Merge Instruction */ 2732GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2733 2734static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2735{ 2736 if (require_rvv(s) && 2737 require_rvf(s) && 2738 vext_check_isa_ill(s) && 2739 require_align(a->rd, s->lmul) && 2740 require_zve32f(s) && 2741 require_zve64f(s)) { 2742 gen_set_rm(s, RISCV_FRM_DYN); 2743 2744 TCGv_i64 t1; 2745 2746 if (s->vl_eq_vlmax) { 2747 t1 = tcg_temp_new_i64(); 2748 /* NaN-box f[rs1] */ 2749 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2750 2751 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2752 MAXSZ(s), MAXSZ(s), t1); 2753 mark_vs_dirty(s); 2754 } else { 2755 TCGv_ptr dest; 2756 TCGv_i32 desc; 2757 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2758 static gen_helper_vmv_vx * const fns[3] = { 2759 gen_helper_vmv_v_x_h, 2760 gen_helper_vmv_v_x_w, 2761 gen_helper_vmv_v_x_d, 2762 }; 2763 TCGLabel *over = gen_new_label(); 2764 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2765 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2766 2767 t1 = tcg_temp_new_i64(); 2768 /* NaN-box f[rs1] */ 2769 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2770 2771 dest = tcg_temp_new_ptr(); 2772 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2773 s->cfg_ptr->vlen / 8, data)); 2774 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2775 2776 fns[s->sew - 1](dest, t1, cpu_env, desc); 2777 2778 tcg_temp_free_ptr(dest); 2779 mark_vs_dirty(s); 2780 gen_set_label(over); 2781 } 2782 tcg_temp_free_i64(t1); 2783 return true; 2784 } 2785 return false; 2786} 2787 2788/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2789#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2790static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2791{ \ 2792 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2793 gen_helper_##HELPER##_h, \ 2794 gen_helper_##HELPER##_w, \ 2795 gen_helper_##HELPER##_d \ 2796 }; \ 2797 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2798} 2799 2800GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2801GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2802GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2803GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2804/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2805GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2806GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2807 2808/* Widening Floating-Point/Integer Type-Convert Instructions */ 2809 2810/* 2811 * If the current SEW does not correspond to a supported IEEE floating-point 2812 * type, an illegal instruction exception is raised 2813 */ 2814static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2815{ 2816 return require_rvv(s) && 2817 vext_check_isa_ill(s) && 2818 vext_check_ds(s, a->rd, a->rs2, a->vm); 2819} 2820 2821static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2822{ 2823 return opfv_widen_check(s, a) && 2824 require_rvf(s) && 2825 require_zve32f(s) && 2826 require_zve64f(s); 2827} 2828 2829static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2830{ 2831 return opfv_widen_check(s, a) && 2832 require_scale_rvf(s) && 2833 (s->sew != MO_8) && 2834 require_scale_zve32f(s) && 2835 require_scale_zve64f(s); 2836} 2837 2838#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2839static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2840{ \ 2841 if (CHECK(s, a)) { \ 2842 if (FRM != RISCV_FRM_DYN) { \ 2843 gen_set_rm(s, RISCV_FRM_DYN); \ 2844 } \ 2845 \ 2846 uint32_t data = 0; \ 2847 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2848 gen_helper_##HELPER##_h, \ 2849 gen_helper_##HELPER##_w, \ 2850 }; \ 2851 TCGLabel *over = gen_new_label(); \ 2852 gen_set_rm(s, FRM); \ 2853 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2854 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2855 \ 2856 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2857 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2858 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2859 vreg_ofs(s, a->rs2), cpu_env, \ 2860 s->cfg_ptr->vlen / 8, \ 2861 s->cfg_ptr->vlen / 8, data, \ 2862 fns[s->sew - 1]); \ 2863 mark_vs_dirty(s); \ 2864 gen_set_label(over); \ 2865 return true; \ 2866 } \ 2867 return false; \ 2868} 2869 2870GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2871 RISCV_FRM_DYN) 2872GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2873 RISCV_FRM_DYN) 2874GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2875 RISCV_FRM_DYN) 2876/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2877GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2878 RISCV_FRM_RTZ) 2879GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2880 RISCV_FRM_RTZ) 2881 2882static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2883{ 2884 return require_rvv(s) && 2885 require_scale_rvf(s) && 2886 vext_check_isa_ill(s) && 2887 /* OPFV widening instructions ignore vs1 check */ 2888 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2889 require_scale_zve32f(s) && 2890 require_scale_zve64f(s); 2891} 2892 2893#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2894static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2895{ \ 2896 if (opfxv_widen_check(s, a)) { \ 2897 uint32_t data = 0; \ 2898 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2899 gen_helper_##NAME##_b, \ 2900 gen_helper_##NAME##_h, \ 2901 gen_helper_##NAME##_w, \ 2902 }; \ 2903 TCGLabel *over = gen_new_label(); \ 2904 gen_set_rm(s, RISCV_FRM_DYN); \ 2905 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2906 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2907 \ 2908 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2909 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2910 vreg_ofs(s, a->rs2), cpu_env, \ 2911 s->cfg_ptr->vlen / 8, \ 2912 s->cfg_ptr->vlen / 8, data, \ 2913 fns[s->sew]); \ 2914 mark_vs_dirty(s); \ 2915 gen_set_label(over); \ 2916 return true; \ 2917 } \ 2918 return false; \ 2919} 2920 2921GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2922GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2923 2924/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2925 2926/* 2927 * If the current SEW does not correspond to a supported IEEE floating-point 2928 * type, an illegal instruction exception is raised 2929 */ 2930static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2931{ 2932 return require_rvv(s) && 2933 vext_check_isa_ill(s) && 2934 /* OPFV narrowing instructions ignore vs1 check */ 2935 vext_check_sd(s, a->rd, a->rs2, a->vm); 2936} 2937 2938static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2939{ 2940 return opfv_narrow_check(s, a) && 2941 require_rvf(s) && 2942 (s->sew != MO_64) && 2943 require_zve32f(s) && 2944 require_zve64f(s); 2945} 2946 2947static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2948{ 2949 return opfv_narrow_check(s, a) && 2950 require_scale_rvf(s) && 2951 (s->sew != MO_8) && 2952 require_scale_zve32f(s) && 2953 require_scale_zve64f(s); 2954} 2955 2956#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2957static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2958{ \ 2959 if (CHECK(s, a)) { \ 2960 if (FRM != RISCV_FRM_DYN) { \ 2961 gen_set_rm(s, RISCV_FRM_DYN); \ 2962 } \ 2963 \ 2964 uint32_t data = 0; \ 2965 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2966 gen_helper_##HELPER##_h, \ 2967 gen_helper_##HELPER##_w, \ 2968 }; \ 2969 TCGLabel *over = gen_new_label(); \ 2970 gen_set_rm(s, FRM); \ 2971 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2972 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2973 \ 2974 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2975 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2976 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2977 vreg_ofs(s, a->rs2), cpu_env, \ 2978 s->cfg_ptr->vlen / 8, \ 2979 s->cfg_ptr->vlen / 8, data, \ 2980 fns[s->sew - 1]); \ 2981 mark_vs_dirty(s); \ 2982 gen_set_label(over); \ 2983 return true; \ 2984 } \ 2985 return false; \ 2986} 2987 2988GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2989 RISCV_FRM_DYN) 2990GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2991 RISCV_FRM_DYN) 2992GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2993 RISCV_FRM_DYN) 2994/* Reuse the helper function from vfncvt.f.f.w */ 2995GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2996 RISCV_FRM_ROD) 2997 2998static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2999{ 3000 return require_rvv(s) && 3001 require_scale_rvf(s) && 3002 vext_check_isa_ill(s) && 3003 /* OPFV narrowing instructions ignore vs1 check */ 3004 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3005 require_scale_zve32f(s) && 3006 require_scale_zve64f(s); 3007} 3008 3009#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3010static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3011{ \ 3012 if (opxfv_narrow_check(s, a)) { \ 3013 if (FRM != RISCV_FRM_DYN) { \ 3014 gen_set_rm(s, RISCV_FRM_DYN); \ 3015 } \ 3016 \ 3017 uint32_t data = 0; \ 3018 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3019 gen_helper_##HELPER##_b, \ 3020 gen_helper_##HELPER##_h, \ 3021 gen_helper_##HELPER##_w, \ 3022 }; \ 3023 TCGLabel *over = gen_new_label(); \ 3024 gen_set_rm(s, FRM); \ 3025 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3026 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3027 \ 3028 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3029 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3030 vreg_ofs(s, a->rs2), cpu_env, \ 3031 s->cfg_ptr->vlen / 8, \ 3032 s->cfg_ptr->vlen / 8, data, \ 3033 fns[s->sew]); \ 3034 mark_vs_dirty(s); \ 3035 gen_set_label(over); \ 3036 return true; \ 3037 } \ 3038 return false; \ 3039} 3040 3041GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3042GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3043/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3044GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3045GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3046 3047/* 3048 *** Vector Reduction Operations 3049 */ 3050/* Vector Single-Width Integer Reduction Instructions */ 3051static bool reduction_check(DisasContext *s, arg_rmrr *a) 3052{ 3053 return require_rvv(s) && 3054 vext_check_isa_ill(s) && 3055 vext_check_reduction(s, a->rs2); 3056} 3057 3058GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3059GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3060GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3061GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3062GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3063GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3064GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3065GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3066 3067/* Vector Widening Integer Reduction Instructions */ 3068static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3069{ 3070 return reduction_check(s, a) && (s->sew < MO_64) && 3071 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3072} 3073 3074GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3075GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3076 3077/* Vector Single-Width Floating-Point Reduction Instructions */ 3078static bool freduction_check(DisasContext *s, arg_rmrr *a) 3079{ 3080 return reduction_check(s, a) && 3081 require_rvf(s) && 3082 require_zve32f(s) && 3083 require_zve64f(s); 3084} 3085 3086GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3087GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3088GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3089 3090/* Vector Widening Floating-Point Reduction Instructions */ 3091static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3092{ 3093 return reduction_widen_check(s, a) && 3094 require_scale_rvf(s) && 3095 (s->sew != MO_8); 3096} 3097 3098GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3099 3100/* 3101 *** Vector Mask Operations 3102 */ 3103 3104/* Vector Mask-Register Logical Instructions */ 3105#define GEN_MM_TRANS(NAME) \ 3106static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3107{ \ 3108 if (require_rvv(s) && \ 3109 vext_check_isa_ill(s)) { \ 3110 uint32_t data = 0; \ 3111 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3112 TCGLabel *over = gen_new_label(); \ 3113 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3114 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3115 \ 3116 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3117 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3118 vreg_ofs(s, a->rs1), \ 3119 vreg_ofs(s, a->rs2), cpu_env, \ 3120 s->cfg_ptr->vlen / 8, \ 3121 s->cfg_ptr->vlen / 8, data, fn); \ 3122 mark_vs_dirty(s); \ 3123 gen_set_label(over); \ 3124 return true; \ 3125 } \ 3126 return false; \ 3127} 3128 3129GEN_MM_TRANS(vmand_mm) 3130GEN_MM_TRANS(vmnand_mm) 3131GEN_MM_TRANS(vmandn_mm) 3132GEN_MM_TRANS(vmxor_mm) 3133GEN_MM_TRANS(vmor_mm) 3134GEN_MM_TRANS(vmnor_mm) 3135GEN_MM_TRANS(vmorn_mm) 3136GEN_MM_TRANS(vmxnor_mm) 3137 3138/* Vector count population in mask vcpop */ 3139static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3140{ 3141 if (require_rvv(s) && 3142 vext_check_isa_ill(s) && 3143 s->vstart == 0) { 3144 TCGv_ptr src2, mask; 3145 TCGv dst; 3146 TCGv_i32 desc; 3147 uint32_t data = 0; 3148 data = FIELD_DP32(data, VDATA, VM, a->vm); 3149 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3150 3151 mask = tcg_temp_new_ptr(); 3152 src2 = tcg_temp_new_ptr(); 3153 dst = dest_gpr(s, a->rd); 3154 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3155 s->cfg_ptr->vlen / 8, data)); 3156 3157 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3158 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3159 3160 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3161 gen_set_gpr(s, a->rd, dst); 3162 3163 tcg_temp_free_ptr(mask); 3164 tcg_temp_free_ptr(src2); 3165 3166 return true; 3167 } 3168 return false; 3169} 3170 3171/* vmfirst find-first-set mask bit */ 3172static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3173{ 3174 if (require_rvv(s) && 3175 vext_check_isa_ill(s) && 3176 s->vstart == 0) { 3177 TCGv_ptr src2, mask; 3178 TCGv dst; 3179 TCGv_i32 desc; 3180 uint32_t data = 0; 3181 data = FIELD_DP32(data, VDATA, VM, a->vm); 3182 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3183 3184 mask = tcg_temp_new_ptr(); 3185 src2 = tcg_temp_new_ptr(); 3186 dst = dest_gpr(s, a->rd); 3187 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3188 s->cfg_ptr->vlen / 8, data)); 3189 3190 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3191 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3192 3193 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3194 gen_set_gpr(s, a->rd, dst); 3195 3196 tcg_temp_free_ptr(mask); 3197 tcg_temp_free_ptr(src2); 3198 return true; 3199 } 3200 return false; 3201} 3202 3203/* vmsbf.m set-before-first mask bit */ 3204/* vmsif.m set-includ-first mask bit */ 3205/* vmsof.m set-only-first mask bit */ 3206#define GEN_M_TRANS(NAME) \ 3207static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3208{ \ 3209 if (require_rvv(s) && \ 3210 vext_check_isa_ill(s) && \ 3211 require_vm(a->vm, a->rd) && \ 3212 (a->rd != a->rs2) && \ 3213 (s->vstart == 0)) { \ 3214 uint32_t data = 0; \ 3215 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3216 TCGLabel *over = gen_new_label(); \ 3217 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3218 \ 3219 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3220 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3221 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3222 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3223 cpu_env, s->cfg_ptr->vlen / 8, \ 3224 s->cfg_ptr->vlen / 8, \ 3225 data, fn); \ 3226 mark_vs_dirty(s); \ 3227 gen_set_label(over); \ 3228 return true; \ 3229 } \ 3230 return false; \ 3231} 3232 3233GEN_M_TRANS(vmsbf_m) 3234GEN_M_TRANS(vmsif_m) 3235GEN_M_TRANS(vmsof_m) 3236 3237/* 3238 * Vector Iota Instruction 3239 * 3240 * 1. The destination register cannot overlap the source register. 3241 * 2. If masked, cannot overlap the mask register ('v0'). 3242 * 3. An illegal instruction exception is raised if vstart is non-zero. 3243 */ 3244static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3245{ 3246 if (require_rvv(s) && 3247 vext_check_isa_ill(s) && 3248 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3249 require_vm(a->vm, a->rd) && 3250 require_align(a->rd, s->lmul) && 3251 (s->vstart == 0)) { 3252 uint32_t data = 0; 3253 TCGLabel *over = gen_new_label(); 3254 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3255 3256 data = FIELD_DP32(data, VDATA, VM, a->vm); 3257 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3258 static gen_helper_gvec_3_ptr * const fns[4] = { 3259 gen_helper_viota_m_b, gen_helper_viota_m_h, 3260 gen_helper_viota_m_w, gen_helper_viota_m_d, 3261 }; 3262 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3263 vreg_ofs(s, a->rs2), cpu_env, 3264 s->cfg_ptr->vlen / 8, 3265 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3266 mark_vs_dirty(s); 3267 gen_set_label(over); 3268 return true; 3269 } 3270 return false; 3271} 3272 3273/* Vector Element Index Instruction */ 3274static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3275{ 3276 if (require_rvv(s) && 3277 vext_check_isa_ill(s) && 3278 require_align(a->rd, s->lmul) && 3279 require_vm(a->vm, a->rd)) { 3280 uint32_t data = 0; 3281 TCGLabel *over = gen_new_label(); 3282 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3283 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3284 3285 data = FIELD_DP32(data, VDATA, VM, a->vm); 3286 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3287 static gen_helper_gvec_2_ptr * const fns[4] = { 3288 gen_helper_vid_v_b, gen_helper_vid_v_h, 3289 gen_helper_vid_v_w, gen_helper_vid_v_d, 3290 }; 3291 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3292 cpu_env, s->cfg_ptr->vlen / 8, 3293 s->cfg_ptr->vlen / 8, 3294 data, fns[s->sew]); 3295 mark_vs_dirty(s); 3296 gen_set_label(over); 3297 return true; 3298 } 3299 return false; 3300} 3301 3302/* 3303 *** Vector Permutation Instructions 3304 */ 3305 3306static void load_element(TCGv_i64 dest, TCGv_ptr base, 3307 int ofs, int sew, bool sign) 3308{ 3309 switch (sew) { 3310 case MO_8: 3311 if (!sign) { 3312 tcg_gen_ld8u_i64(dest, base, ofs); 3313 } else { 3314 tcg_gen_ld8s_i64(dest, base, ofs); 3315 } 3316 break; 3317 case MO_16: 3318 if (!sign) { 3319 tcg_gen_ld16u_i64(dest, base, ofs); 3320 } else { 3321 tcg_gen_ld16s_i64(dest, base, ofs); 3322 } 3323 break; 3324 case MO_32: 3325 if (!sign) { 3326 tcg_gen_ld32u_i64(dest, base, ofs); 3327 } else { 3328 tcg_gen_ld32s_i64(dest, base, ofs); 3329 } 3330 break; 3331 case MO_64: 3332 tcg_gen_ld_i64(dest, base, ofs); 3333 break; 3334 default: 3335 g_assert_not_reached(); 3336 break; 3337 } 3338} 3339 3340/* offset of the idx element with base regsiter r */ 3341static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3342{ 3343#if HOST_BIG_ENDIAN 3344 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3345#else 3346 return vreg_ofs(s, r) + (idx << s->sew); 3347#endif 3348} 3349 3350/* adjust the index according to the endian */ 3351static void endian_adjust(TCGv_i32 ofs, int sew) 3352{ 3353#if HOST_BIG_ENDIAN 3354 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3355#endif 3356} 3357 3358/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3359static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3360 int vreg, TCGv idx, int vlmax) 3361{ 3362 TCGv_i32 ofs = tcg_temp_new_i32(); 3363 TCGv_ptr base = tcg_temp_new_ptr(); 3364 TCGv_i64 t_idx = tcg_temp_new_i64(); 3365 TCGv_i64 t_vlmax, t_zero; 3366 3367 /* 3368 * Mask the index to the length so that we do 3369 * not produce an out-of-range load. 3370 */ 3371 tcg_gen_trunc_tl_i32(ofs, idx); 3372 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3373 3374 /* Convert the index to an offset. */ 3375 endian_adjust(ofs, s->sew); 3376 tcg_gen_shli_i32(ofs, ofs, s->sew); 3377 3378 /* Convert the index to a pointer. */ 3379 tcg_gen_ext_i32_ptr(base, ofs); 3380 tcg_gen_add_ptr(base, base, cpu_env); 3381 3382 /* Perform the load. */ 3383 load_element(dest, base, 3384 vreg_ofs(s, vreg), s->sew, false); 3385 tcg_temp_free_ptr(base); 3386 tcg_temp_free_i32(ofs); 3387 3388 /* Flush out-of-range indexing to zero. */ 3389 t_vlmax = tcg_constant_i64(vlmax); 3390 t_zero = tcg_constant_i64(0); 3391 tcg_gen_extu_tl_i64(t_idx, idx); 3392 3393 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3394 t_vlmax, dest, t_zero); 3395 3396 tcg_temp_free_i64(t_idx); 3397} 3398 3399static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3400 int vreg, int idx, bool sign) 3401{ 3402 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3403} 3404 3405/* Integer Scalar Move Instruction */ 3406 3407static void store_element(TCGv_i64 val, TCGv_ptr base, 3408 int ofs, int sew) 3409{ 3410 switch (sew) { 3411 case MO_8: 3412 tcg_gen_st8_i64(val, base, ofs); 3413 break; 3414 case MO_16: 3415 tcg_gen_st16_i64(val, base, ofs); 3416 break; 3417 case MO_32: 3418 tcg_gen_st32_i64(val, base, ofs); 3419 break; 3420 case MO_64: 3421 tcg_gen_st_i64(val, base, ofs); 3422 break; 3423 default: 3424 g_assert_not_reached(); 3425 break; 3426 } 3427} 3428 3429/* 3430 * Store vreg[idx] = val. 3431 * The index must be in range of VLMAX. 3432 */ 3433static void vec_element_storei(DisasContext *s, int vreg, 3434 int idx, TCGv_i64 val) 3435{ 3436 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3437} 3438 3439/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3440static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3441{ 3442 if (require_rvv(s) && 3443 vext_check_isa_ill(s)) { 3444 TCGv_i64 t1; 3445 TCGv dest; 3446 3447 t1 = tcg_temp_new_i64(); 3448 dest = tcg_temp_new(); 3449 /* 3450 * load vreg and sign-extend to 64 bits, 3451 * then truncate to XLEN bits before storing to gpr. 3452 */ 3453 vec_element_loadi(s, t1, a->rs2, 0, true); 3454 tcg_gen_trunc_i64_tl(dest, t1); 3455 gen_set_gpr(s, a->rd, dest); 3456 tcg_temp_free_i64(t1); 3457 tcg_temp_free(dest); 3458 3459 return true; 3460 } 3461 return false; 3462} 3463 3464/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3465static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3466{ 3467 if (require_rvv(s) && 3468 vext_check_isa_ill(s)) { 3469 /* This instruction ignores LMUL and vector register groups */ 3470 TCGv_i64 t1; 3471 TCGv s1; 3472 TCGLabel *over = gen_new_label(); 3473 3474 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3475 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3476 3477 t1 = tcg_temp_new_i64(); 3478 3479 /* 3480 * load gpr and sign-extend to 64 bits, 3481 * then truncate to SEW bits when storing to vreg. 3482 */ 3483 s1 = get_gpr(s, a->rs1, EXT_NONE); 3484 tcg_gen_ext_tl_i64(t1, s1); 3485 vec_element_storei(s, a->rd, 0, t1); 3486 tcg_temp_free_i64(t1); 3487 mark_vs_dirty(s); 3488 gen_set_label(over); 3489 return true; 3490 } 3491 return false; 3492} 3493 3494/* Floating-Point Scalar Move Instructions */ 3495static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3496{ 3497 if (require_rvv(s) && 3498 require_rvf(s) && 3499 vext_check_isa_ill(s) && 3500 require_zve32f(s) && 3501 require_zve64f(s)) { 3502 gen_set_rm(s, RISCV_FRM_DYN); 3503 3504 unsigned int ofs = (8 << s->sew); 3505 unsigned int len = 64 - ofs; 3506 TCGv_i64 t_nan; 3507 3508 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3509 /* NaN-box f[rd] as necessary for SEW */ 3510 if (len) { 3511 t_nan = tcg_constant_i64(UINT64_MAX); 3512 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3513 t_nan, ofs, len); 3514 } 3515 3516 mark_fs_dirty(s); 3517 return true; 3518 } 3519 return false; 3520} 3521 3522/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3523static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3524{ 3525 if (require_rvv(s) && 3526 require_rvf(s) && 3527 vext_check_isa_ill(s) && 3528 require_zve32f(s) && 3529 require_zve64f(s)) { 3530 gen_set_rm(s, RISCV_FRM_DYN); 3531 3532 /* The instructions ignore LMUL and vector register group. */ 3533 TCGv_i64 t1; 3534 TCGLabel *over = gen_new_label(); 3535 3536 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3537 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3538 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3539 3540 /* NaN-box f[rs1] */ 3541 t1 = tcg_temp_new_i64(); 3542 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3543 3544 vec_element_storei(s, a->rd, 0, t1); 3545 tcg_temp_free_i64(t1); 3546 mark_vs_dirty(s); 3547 gen_set_label(over); 3548 return true; 3549 } 3550 return false; 3551} 3552 3553/* Vector Slide Instructions */ 3554static bool slideup_check(DisasContext *s, arg_rmrr *a) 3555{ 3556 return require_rvv(s) && 3557 vext_check_isa_ill(s) && 3558 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3559} 3560 3561GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3562GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3563GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3564 3565static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3566{ 3567 return require_rvv(s) && 3568 vext_check_isa_ill(s) && 3569 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3570} 3571 3572GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3573GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3574GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3575 3576/* Vector Floating-Point Slide Instructions */ 3577static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3578{ 3579 return slideup_check(s, a) && 3580 require_rvf(s) && 3581 require_zve32f(s) && 3582 require_zve64f(s); 3583} 3584 3585static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3586{ 3587 return slidedown_check(s, a) && 3588 require_rvf(s) && 3589 require_zve32f(s) && 3590 require_zve64f(s); 3591} 3592 3593GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3594GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3595 3596/* Vector Register Gather Instruction */ 3597static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3598{ 3599 return require_rvv(s) && 3600 vext_check_isa_ill(s) && 3601 require_align(a->rd, s->lmul) && 3602 require_align(a->rs1, s->lmul) && 3603 require_align(a->rs2, s->lmul) && 3604 (a->rd != a->rs2 && a->rd != a->rs1) && 3605 require_vm(a->vm, a->rd); 3606} 3607 3608static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3609{ 3610 int8_t emul = MO_16 - s->sew + s->lmul; 3611 return require_rvv(s) && 3612 vext_check_isa_ill(s) && 3613 (emul >= -3 && emul <= 3) && 3614 require_align(a->rd, s->lmul) && 3615 require_align(a->rs1, emul) && 3616 require_align(a->rs2, s->lmul) && 3617 (a->rd != a->rs2 && a->rd != a->rs1) && 3618 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3619 a->rs1, 1 << MAX(emul, 0)) && 3620 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3621 a->rs2, 1 << MAX(s->lmul, 0)) && 3622 require_vm(a->vm, a->rd); 3623} 3624 3625GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3626GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3627 3628static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3629{ 3630 return require_rvv(s) && 3631 vext_check_isa_ill(s) && 3632 require_align(a->rd, s->lmul) && 3633 require_align(a->rs2, s->lmul) && 3634 (a->rd != a->rs2) && 3635 require_vm(a->vm, a->rd); 3636} 3637 3638/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3639static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3640{ 3641 if (!vrgather_vx_check(s, a)) { 3642 return false; 3643 } 3644 3645 if (a->vm && s->vl_eq_vlmax) { 3646 int scale = s->lmul - (s->sew + 3); 3647 int vlmax = s->cfg_ptr->vlen >> -scale; 3648 TCGv_i64 dest = tcg_temp_new_i64(); 3649 3650 if (a->rs1 == 0) { 3651 vec_element_loadi(s, dest, a->rs2, 0, false); 3652 } else { 3653 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3654 } 3655 3656 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3657 MAXSZ(s), MAXSZ(s), dest); 3658 tcg_temp_free_i64(dest); 3659 mark_vs_dirty(s); 3660 } else { 3661 static gen_helper_opivx * const fns[4] = { 3662 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3663 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3664 }; 3665 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3666 } 3667 return true; 3668} 3669 3670/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3671static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3672{ 3673 if (!vrgather_vx_check(s, a)) { 3674 return false; 3675 } 3676 3677 if (a->vm && s->vl_eq_vlmax) { 3678 int scale = s->lmul - (s->sew + 3); 3679 int vlmax = s->cfg_ptr->vlen >> -scale; 3680 if (a->rs1 >= vlmax) { 3681 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3682 MAXSZ(s), MAXSZ(s), 0); 3683 } else { 3684 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3685 endian_ofs(s, a->rs2, a->rs1), 3686 MAXSZ(s), MAXSZ(s)); 3687 } 3688 mark_vs_dirty(s); 3689 } else { 3690 static gen_helper_opivx * const fns[4] = { 3691 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3692 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3693 }; 3694 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3695 s, IMM_ZX); 3696 } 3697 return true; 3698} 3699 3700/* 3701 * Vector Compress Instruction 3702 * 3703 * The destination vector register group cannot overlap the 3704 * source vector register group or the source mask register. 3705 */ 3706static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3707{ 3708 return require_rvv(s) && 3709 vext_check_isa_ill(s) && 3710 require_align(a->rd, s->lmul) && 3711 require_align(a->rs2, s->lmul) && 3712 (a->rd != a->rs2) && 3713 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3714 (s->vstart == 0); 3715} 3716 3717static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3718{ 3719 if (vcompress_vm_check(s, a)) { 3720 uint32_t data = 0; 3721 static gen_helper_gvec_4_ptr * const fns[4] = { 3722 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3723 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3724 }; 3725 TCGLabel *over = gen_new_label(); 3726 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3727 3728 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3729 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3730 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3731 cpu_env, s->cfg_ptr->vlen / 8, 3732 s->cfg_ptr->vlen / 8, data, 3733 fns[s->sew]); 3734 mark_vs_dirty(s); 3735 gen_set_label(over); 3736 return true; 3737 } 3738 return false; 3739} 3740 3741/* 3742 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3743 * Thus, we don't need to check vill bit. (Section 16.6) 3744 */ 3745#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3746static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3747{ \ 3748 if (require_rvv(s) && \ 3749 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3750 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3751 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3752 if (s->vstart == 0) { \ 3753 /* EEW = 8 */ \ 3754 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3755 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3756 mark_vs_dirty(s); \ 3757 } else { \ 3758 TCGLabel *over = gen_new_label(); \ 3759 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3760 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3761 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3762 mark_vs_dirty(s); \ 3763 gen_set_label(over); \ 3764 } \ 3765 return true; \ 3766 } \ 3767 return false; \ 3768} 3769 3770GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3771GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3772GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3773GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3774 3775static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3776{ 3777 uint8_t from = (s->sew + 3) - div; 3778 bool ret = require_rvv(s) && 3779 (from >= 3 && from <= 8) && 3780 (a->rd != a->rs2) && 3781 require_align(a->rd, s->lmul) && 3782 require_align(a->rs2, s->lmul - div) && 3783 require_vm(a->vm, a->rd) && 3784 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3785 return ret; 3786} 3787 3788static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3789{ 3790 uint32_t data = 0; 3791 gen_helper_gvec_3_ptr *fn; 3792 TCGLabel *over = gen_new_label(); 3793 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3794 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3795 3796 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3797 { 3798 NULL, gen_helper_vzext_vf2_h, 3799 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3800 }, 3801 { 3802 NULL, NULL, 3803 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3804 }, 3805 { 3806 NULL, NULL, 3807 NULL, gen_helper_vzext_vf8_d 3808 }, 3809 { 3810 NULL, gen_helper_vsext_vf2_h, 3811 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3812 }, 3813 { 3814 NULL, NULL, 3815 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3816 }, 3817 { 3818 NULL, NULL, 3819 NULL, gen_helper_vsext_vf8_d 3820 } 3821 }; 3822 3823 fn = fns[seq][s->sew]; 3824 if (fn == NULL) { 3825 return false; 3826 } 3827 3828 data = FIELD_DP32(data, VDATA, VM, a->vm); 3829 3830 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3831 vreg_ofs(s, a->rs2), cpu_env, 3832 s->cfg_ptr->vlen / 8, 3833 s->cfg_ptr->vlen / 8, data, fn); 3834 3835 mark_vs_dirty(s); 3836 gen_set_label(over); 3837 return true; 3838} 3839 3840/* Vector Integer Extension */ 3841#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3842static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3843{ \ 3844 if (int_ext_check(s, a, DIV)) { \ 3845 return int_ext_op(s, a, SEQ); \ 3846 } \ 3847 return false; \ 3848} 3849 3850GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3851GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3852GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3853GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3854GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3855GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3856