1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 656 dest = tcg_temp_new_ptr(); 657 mask = tcg_temp_new_ptr(); 658 base = get_gpr(s, rs1, EXT_NONE); 659 660 /* 661 * As simd_desc supports at most 2048 bytes, and in this implementation, 662 * the max vector group length is 4096 bytes. So split it into two parts. 663 * 664 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 665 * The second part is lmul, encoded in data of simd_desc. 666 */ 667 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 668 s->cfg_ptr->vlen / 8, data)); 669 670 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 671 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 672 673 fn(dest, mask, base, cpu_env, desc); 674 675 tcg_temp_free_ptr(dest); 676 tcg_temp_free_ptr(mask); 677 678 if (!is_store) { 679 mark_vs_dirty(s); 680 } 681 682 gen_set_label(over); 683 return true; 684} 685 686static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 687{ 688 uint32_t data = 0; 689 gen_helper_ldst_us *fn; 690 static gen_helper_ldst_us * const fns[2][4] = { 691 /* masked unit stride load */ 692 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 693 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 694 /* unmasked unit stride load */ 695 { gen_helper_vle8_v, gen_helper_vle16_v, 696 gen_helper_vle32_v, gen_helper_vle64_v } 697 }; 698 699 fn = fns[a->vm][eew]; 700 if (fn == NULL) { 701 return false; 702 } 703 704 /* 705 * Vector load/store instructions have the EEW encoded 706 * directly in the instructions. The maximum vector size is 707 * calculated with EMUL rather than LMUL. 708 */ 709 uint8_t emul = vext_get_emul(s, eew); 710 data = FIELD_DP32(data, VDATA, VM, a->vm); 711 data = FIELD_DP32(data, VDATA, LMUL, emul); 712 data = FIELD_DP32(data, VDATA, NF, a->nf); 713 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 714} 715 716static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 717{ 718 return require_rvv(s) && 719 vext_check_isa_ill(s) && 720 vext_check_load(s, a->rd, a->nf, a->vm, eew); 721} 722 723GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 724GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 725GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 727 728static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 729{ 730 uint32_t data = 0; 731 gen_helper_ldst_us *fn; 732 static gen_helper_ldst_us * const fns[2][4] = { 733 /* masked unit stride store */ 734 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 735 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 736 /* unmasked unit stride store */ 737 { gen_helper_vse8_v, gen_helper_vse16_v, 738 gen_helper_vse32_v, gen_helper_vse64_v } 739 }; 740 741 fn = fns[a->vm][eew]; 742 if (fn == NULL) { 743 return false; 744 } 745 746 uint8_t emul = vext_get_emul(s, eew); 747 data = FIELD_DP32(data, VDATA, VM, a->vm); 748 data = FIELD_DP32(data, VDATA, LMUL, emul); 749 data = FIELD_DP32(data, VDATA, NF, a->nf); 750 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 751} 752 753static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 754{ 755 return require_rvv(s) && 756 vext_check_isa_ill(s) && 757 vext_check_store(s, a->rd, a->nf, eew); 758} 759 760GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 761GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 762GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 764 765/* 766 *** unit stride mask load and store 767 */ 768static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 769{ 770 uint32_t data = 0; 771 gen_helper_ldst_us *fn = gen_helper_vlm_v; 772 773 /* EMUL = 1, NFIELDS = 1 */ 774 data = FIELD_DP32(data, VDATA, LMUL, 0); 775 data = FIELD_DP32(data, VDATA, NF, 1); 776 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 777} 778 779static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 780{ 781 /* EMUL = 1, NFIELDS = 1 */ 782 return require_rvv(s) && vext_check_isa_ill(s); 783} 784 785static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 786{ 787 uint32_t data = 0; 788 gen_helper_ldst_us *fn = gen_helper_vsm_v; 789 790 /* EMUL = 1, NFIELDS = 1 */ 791 data = FIELD_DP32(data, VDATA, LMUL, 0); 792 data = FIELD_DP32(data, VDATA, NF, 1); 793 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 794} 795 796static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 797{ 798 /* EMUL = 1, NFIELDS = 1 */ 799 return require_rvv(s) && vext_check_isa_ill(s); 800} 801 802GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 803GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 804 805/* 806 *** stride load and store 807 */ 808typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 809 TCGv, TCGv_env, TCGv_i32); 810 811static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 812 uint32_t data, gen_helper_ldst_stride *fn, 813 DisasContext *s, bool is_store) 814{ 815 TCGv_ptr dest, mask; 816 TCGv base, stride; 817 TCGv_i32 desc; 818 819 TCGLabel *over = gen_new_label(); 820 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 821 822 dest = tcg_temp_new_ptr(); 823 mask = tcg_temp_new_ptr(); 824 base = get_gpr(s, rs1, EXT_NONE); 825 stride = get_gpr(s, rs2, EXT_NONE); 826 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 827 s->cfg_ptr->vlen / 8, data)); 828 829 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 830 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 831 832 fn(dest, mask, base, stride, cpu_env, desc); 833 834 tcg_temp_free_ptr(dest); 835 tcg_temp_free_ptr(mask); 836 837 if (!is_store) { 838 mark_vs_dirty(s); 839 } 840 841 gen_set_label(over); 842 return true; 843} 844 845static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 846{ 847 uint32_t data = 0; 848 gen_helper_ldst_stride *fn; 849 static gen_helper_ldst_stride * const fns[4] = { 850 gen_helper_vlse8_v, gen_helper_vlse16_v, 851 gen_helper_vlse32_v, gen_helper_vlse64_v 852 }; 853 854 fn = fns[eew]; 855 if (fn == NULL) { 856 return false; 857 } 858 859 uint8_t emul = vext_get_emul(s, eew); 860 data = FIELD_DP32(data, VDATA, VM, a->vm); 861 data = FIELD_DP32(data, VDATA, LMUL, emul); 862 data = FIELD_DP32(data, VDATA, NF, a->nf); 863 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 864} 865 866static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 867{ 868 return require_rvv(s) && 869 vext_check_isa_ill(s) && 870 vext_check_load(s, a->rd, a->nf, a->vm, eew); 871} 872 873GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 874GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 875GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 876GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 877 878static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 879{ 880 uint32_t data = 0; 881 gen_helper_ldst_stride *fn; 882 static gen_helper_ldst_stride * const fns[4] = { 883 /* masked stride store */ 884 gen_helper_vsse8_v, gen_helper_vsse16_v, 885 gen_helper_vsse32_v, gen_helper_vsse64_v 886 }; 887 888 uint8_t emul = vext_get_emul(s, eew); 889 data = FIELD_DP32(data, VDATA, VM, a->vm); 890 data = FIELD_DP32(data, VDATA, LMUL, emul); 891 data = FIELD_DP32(data, VDATA, NF, a->nf); 892 fn = fns[eew]; 893 if (fn == NULL) { 894 return false; 895 } 896 897 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 898} 899 900static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 901{ 902 return require_rvv(s) && 903 vext_check_isa_ill(s) && 904 vext_check_store(s, a->rd, a->nf, eew); 905} 906 907GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 908GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 909GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 910GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 911 912/* 913 *** index load and store 914 */ 915typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 916 TCGv_ptr, TCGv_env, TCGv_i32); 917 918static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 919 uint32_t data, gen_helper_ldst_index *fn, 920 DisasContext *s, bool is_store) 921{ 922 TCGv_ptr dest, mask, index; 923 TCGv base; 924 TCGv_i32 desc; 925 926 TCGLabel *over = gen_new_label(); 927 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 928 929 dest = tcg_temp_new_ptr(); 930 mask = tcg_temp_new_ptr(); 931 index = tcg_temp_new_ptr(); 932 base = get_gpr(s, rs1, EXT_NONE); 933 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 934 s->cfg_ptr->vlen / 8, data)); 935 936 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 937 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 938 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 939 940 fn(dest, mask, base, index, cpu_env, desc); 941 942 tcg_temp_free_ptr(dest); 943 tcg_temp_free_ptr(mask); 944 tcg_temp_free_ptr(index); 945 946 if (!is_store) { 947 mark_vs_dirty(s); 948 } 949 950 gen_set_label(over); 951 return true; 952} 953 954static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 955{ 956 uint32_t data = 0; 957 gen_helper_ldst_index *fn; 958 static gen_helper_ldst_index * const fns[4][4] = { 959 /* 960 * offset vector register group EEW = 8, 961 * data vector register group EEW = SEW 962 */ 963 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 964 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 965 /* 966 * offset vector register group EEW = 16, 967 * data vector register group EEW = SEW 968 */ 969 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 970 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 971 /* 972 * offset vector register group EEW = 32, 973 * data vector register group EEW = SEW 974 */ 975 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 976 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 977 /* 978 * offset vector register group EEW = 64, 979 * data vector register group EEW = SEW 980 */ 981 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 982 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 983 }; 984 985 fn = fns[eew][s->sew]; 986 987 uint8_t emul = vext_get_emul(s, s->sew); 988 data = FIELD_DP32(data, VDATA, VM, a->vm); 989 data = FIELD_DP32(data, VDATA, LMUL, emul); 990 data = FIELD_DP32(data, VDATA, NF, a->nf); 991 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 992} 993 994static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 995{ 996 return require_rvv(s) && 997 vext_check_isa_ill(s) && 998 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 999} 1000 1001GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1002GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1003GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1004GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1005 1006static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1007{ 1008 uint32_t data = 0; 1009 gen_helper_ldst_index *fn; 1010 static gen_helper_ldst_index * const fns[4][4] = { 1011 /* 1012 * offset vector register group EEW = 8, 1013 * data vector register group EEW = SEW 1014 */ 1015 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1016 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1017 /* 1018 * offset vector register group EEW = 16, 1019 * data vector register group EEW = SEW 1020 */ 1021 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1022 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1023 /* 1024 * offset vector register group EEW = 32, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1028 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1029 /* 1030 * offset vector register group EEW = 64, 1031 * data vector register group EEW = SEW 1032 */ 1033 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1034 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1035 }; 1036 1037 fn = fns[eew][s->sew]; 1038 1039 uint8_t emul = vext_get_emul(s, s->sew); 1040 data = FIELD_DP32(data, VDATA, VM, a->vm); 1041 data = FIELD_DP32(data, VDATA, LMUL, emul); 1042 data = FIELD_DP32(data, VDATA, NF, a->nf); 1043 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1044} 1045 1046static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1047{ 1048 return require_rvv(s) && 1049 vext_check_isa_ill(s) && 1050 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1051} 1052 1053GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1054GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1055GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1056GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1057 1058/* 1059 *** unit stride fault-only-first load 1060 */ 1061static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1062 gen_helper_ldst_us *fn, DisasContext *s) 1063{ 1064 TCGv_ptr dest, mask; 1065 TCGv base; 1066 TCGv_i32 desc; 1067 1068 TCGLabel *over = gen_new_label(); 1069 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1070 1071 dest = tcg_temp_new_ptr(); 1072 mask = tcg_temp_new_ptr(); 1073 base = get_gpr(s, rs1, EXT_NONE); 1074 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1075 s->cfg_ptr->vlen / 8, data)); 1076 1077 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1078 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1079 1080 fn(dest, mask, base, cpu_env, desc); 1081 1082 tcg_temp_free_ptr(dest); 1083 tcg_temp_free_ptr(mask); 1084 mark_vs_dirty(s); 1085 gen_set_label(over); 1086 return true; 1087} 1088 1089static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1090{ 1091 uint32_t data = 0; 1092 gen_helper_ldst_us *fn; 1093 static gen_helper_ldst_us * const fns[4] = { 1094 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1095 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1096 }; 1097 1098 fn = fns[eew]; 1099 if (fn == NULL) { 1100 return false; 1101 } 1102 1103 uint8_t emul = vext_get_emul(s, eew); 1104 data = FIELD_DP32(data, VDATA, VM, a->vm); 1105 data = FIELD_DP32(data, VDATA, LMUL, emul); 1106 data = FIELD_DP32(data, VDATA, NF, a->nf); 1107 return ldff_trans(a->rd, a->rs1, data, fn, s); 1108} 1109 1110GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1111GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1112GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1113GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1114 1115/* 1116 * load and store whole register instructions 1117 */ 1118typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1119 1120static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1121 gen_helper_ldst_whole *fn, DisasContext *s, 1122 bool is_store) 1123{ 1124 TCGv_ptr dest; 1125 TCGv base; 1126 TCGv_i32 desc; 1127 1128 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1129 dest = tcg_temp_new_ptr(); 1130 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1131 s->cfg_ptr->vlen / 8, data)); 1132 1133 base = get_gpr(s, rs1, EXT_NONE); 1134 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1135 1136 fn(dest, base, cpu_env, desc); 1137 1138 tcg_temp_free_ptr(dest); 1139 1140 if (!is_store) { 1141 mark_vs_dirty(s); 1142 } 1143 1144 return true; 1145} 1146 1147/* 1148 * load and store whole register instructions ignore vtype and vl setting. 1149 * Thus, we don't need to check vill bit. (Section 7.9) 1150 */ 1151#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, IS_STORE) \ 1152static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1153{ \ 1154 if (require_rvv(s) && \ 1155 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1156 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, gen_helper_##NAME, \ 1157 s, IS_STORE); \ 1158 } \ 1159 return false; \ 1160} 1161 1162GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, false) 1163GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, false) 1164GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, false) 1165GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, false) 1166GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, false) 1167GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, false) 1168GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, false) 1169GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, false) 1170GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, false) 1171GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, false) 1172GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, false) 1173GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, false) 1174GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, false) 1175GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, false) 1176GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, false) 1177GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, false) 1178 1179GEN_LDST_WHOLE_TRANS(vs1r_v, 1, true) 1180GEN_LDST_WHOLE_TRANS(vs2r_v, 2, true) 1181GEN_LDST_WHOLE_TRANS(vs4r_v, 4, true) 1182GEN_LDST_WHOLE_TRANS(vs8r_v, 8, true) 1183 1184/* 1185 *** Vector Integer Arithmetic Instructions 1186 */ 1187 1188/* 1189 * MAXSZ returns the maximum vector size can be operated in bytes, 1190 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1191 * to accerlate vector operation. 1192 */ 1193static inline uint32_t MAXSZ(DisasContext *s) 1194{ 1195 int scale = s->lmul - 3; 1196 return scale < 0 ? s->cfg_ptr->vlen >> -scale : s->cfg_ptr->vlen << scale; 1197} 1198 1199static bool opivv_check(DisasContext *s, arg_rmrr *a) 1200{ 1201 return require_rvv(s) && 1202 vext_check_isa_ill(s) && 1203 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1204} 1205 1206typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1207 uint32_t, uint32_t, uint32_t); 1208 1209static inline bool 1210do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1211 gen_helper_gvec_4_ptr *fn) 1212{ 1213 TCGLabel *over = gen_new_label(); 1214 if (!opivv_check(s, a)) { 1215 return false; 1216 } 1217 1218 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1219 1220 if (a->vm && s->vl_eq_vlmax) { 1221 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1222 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1223 MAXSZ(s), MAXSZ(s)); 1224 } else { 1225 uint32_t data = 0; 1226 1227 data = FIELD_DP32(data, VDATA, VM, a->vm); 1228 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1229 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1230 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1231 cpu_env, s->cfg_ptr->vlen / 8, 1232 s->cfg_ptr->vlen / 8, data, fn); 1233 } 1234 mark_vs_dirty(s); 1235 gen_set_label(over); 1236 return true; 1237} 1238 1239/* OPIVV with GVEC IR */ 1240#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1241static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1242{ \ 1243 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1244 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1245 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1246 }; \ 1247 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1248} 1249 1250GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1251GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1252 1253typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1254 TCGv_env, TCGv_i32); 1255 1256static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1257 gen_helper_opivx *fn, DisasContext *s) 1258{ 1259 TCGv_ptr dest, src2, mask; 1260 TCGv src1; 1261 TCGv_i32 desc; 1262 uint32_t data = 0; 1263 1264 TCGLabel *over = gen_new_label(); 1265 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1266 1267 dest = tcg_temp_new_ptr(); 1268 mask = tcg_temp_new_ptr(); 1269 src2 = tcg_temp_new_ptr(); 1270 src1 = get_gpr(s, rs1, EXT_SIGN); 1271 1272 data = FIELD_DP32(data, VDATA, VM, vm); 1273 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1274 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1275 s->cfg_ptr->vlen / 8, data)); 1276 1277 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1278 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1279 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1280 1281 fn(dest, mask, src1, src2, cpu_env, desc); 1282 1283 tcg_temp_free_ptr(dest); 1284 tcg_temp_free_ptr(mask); 1285 tcg_temp_free_ptr(src2); 1286 mark_vs_dirty(s); 1287 gen_set_label(over); 1288 return true; 1289} 1290 1291static bool opivx_check(DisasContext *s, arg_rmrr *a) 1292{ 1293 return require_rvv(s) && 1294 vext_check_isa_ill(s) && 1295 vext_check_ss(s, a->rd, a->rs2, a->vm); 1296} 1297 1298typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1299 uint32_t, uint32_t); 1300 1301static inline bool 1302do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1303 gen_helper_opivx *fn) 1304{ 1305 if (!opivx_check(s, a)) { 1306 return false; 1307 } 1308 1309 if (a->vm && s->vl_eq_vlmax) { 1310 TCGv_i64 src1 = tcg_temp_new_i64(); 1311 1312 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1313 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1314 src1, MAXSZ(s), MAXSZ(s)); 1315 1316 tcg_temp_free_i64(src1); 1317 mark_vs_dirty(s); 1318 return true; 1319 } 1320 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1321} 1322 1323/* OPIVX with GVEC IR */ 1324#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1325static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1326{ \ 1327 static gen_helper_opivx * const fns[4] = { \ 1328 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1329 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1330 }; \ 1331 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1332} 1333 1334GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1335GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1336 1337static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1338{ 1339 tcg_gen_vec_sub8_i64(d, b, a); 1340} 1341 1342static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1343{ 1344 tcg_gen_vec_sub16_i64(d, b, a); 1345} 1346 1347static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1348{ 1349 tcg_gen_sub_i32(ret, arg2, arg1); 1350} 1351 1352static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1353{ 1354 tcg_gen_sub_i64(ret, arg2, arg1); 1355} 1356 1357static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1358{ 1359 tcg_gen_sub_vec(vece, r, b, a); 1360} 1361 1362static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1363 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1364{ 1365 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1366 static const GVecGen2s rsub_op[4] = { 1367 { .fni8 = gen_vec_rsub8_i64, 1368 .fniv = gen_rsub_vec, 1369 .fno = gen_helper_vec_rsubs8, 1370 .opt_opc = vecop_list, 1371 .vece = MO_8 }, 1372 { .fni8 = gen_vec_rsub16_i64, 1373 .fniv = gen_rsub_vec, 1374 .fno = gen_helper_vec_rsubs16, 1375 .opt_opc = vecop_list, 1376 .vece = MO_16 }, 1377 { .fni4 = gen_rsub_i32, 1378 .fniv = gen_rsub_vec, 1379 .fno = gen_helper_vec_rsubs32, 1380 .opt_opc = vecop_list, 1381 .vece = MO_32 }, 1382 { .fni8 = gen_rsub_i64, 1383 .fniv = gen_rsub_vec, 1384 .fno = gen_helper_vec_rsubs64, 1385 .opt_opc = vecop_list, 1386 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1387 .vece = MO_64 }, 1388 }; 1389 1390 tcg_debug_assert(vece <= MO_64); 1391 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1392} 1393 1394GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1395 1396typedef enum { 1397 IMM_ZX, /* Zero-extended */ 1398 IMM_SX, /* Sign-extended */ 1399 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1400 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1401} imm_mode_t; 1402 1403static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1404{ 1405 switch (imm_mode) { 1406 case IMM_ZX: 1407 return extract64(imm, 0, 5); 1408 case IMM_SX: 1409 return sextract64(imm, 0, 5); 1410 case IMM_TRUNC_SEW: 1411 return extract64(imm, 0, s->sew + 3); 1412 case IMM_TRUNC_2SEW: 1413 return extract64(imm, 0, s->sew + 4); 1414 default: 1415 g_assert_not_reached(); 1416 } 1417} 1418 1419static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1420 gen_helper_opivx *fn, DisasContext *s, 1421 imm_mode_t imm_mode) 1422{ 1423 TCGv_ptr dest, src2, mask; 1424 TCGv src1; 1425 TCGv_i32 desc; 1426 uint32_t data = 0; 1427 1428 TCGLabel *over = gen_new_label(); 1429 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1430 1431 dest = tcg_temp_new_ptr(); 1432 mask = tcg_temp_new_ptr(); 1433 src2 = tcg_temp_new_ptr(); 1434 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1435 1436 data = FIELD_DP32(data, VDATA, VM, vm); 1437 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1438 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1439 s->cfg_ptr->vlen / 8, data)); 1440 1441 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1442 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1443 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1444 1445 fn(dest, mask, src1, src2, cpu_env, desc); 1446 1447 tcg_temp_free_ptr(dest); 1448 tcg_temp_free_ptr(mask); 1449 tcg_temp_free_ptr(src2); 1450 mark_vs_dirty(s); 1451 gen_set_label(over); 1452 return true; 1453} 1454 1455typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1456 uint32_t, uint32_t); 1457 1458static inline bool 1459do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1460 gen_helper_opivx *fn, imm_mode_t imm_mode) 1461{ 1462 if (!opivx_check(s, a)) { 1463 return false; 1464 } 1465 1466 if (a->vm && s->vl_eq_vlmax) { 1467 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1468 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1469 mark_vs_dirty(s); 1470 return true; 1471 } 1472 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1473} 1474 1475/* OPIVI with GVEC IR */ 1476#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1477static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1478{ \ 1479 static gen_helper_opivx * const fns[4] = { \ 1480 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1481 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1482 }; \ 1483 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1484 fns[s->sew], IMM_MODE); \ 1485} 1486 1487GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1488 1489static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1490 int64_t c, uint32_t oprsz, uint32_t maxsz) 1491{ 1492 TCGv_i64 tmp = tcg_constant_i64(c); 1493 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1494} 1495 1496GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1497 1498/* Vector Widening Integer Add/Subtract */ 1499 1500/* OPIVV with WIDEN */ 1501static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1502{ 1503 return require_rvv(s) && 1504 vext_check_isa_ill(s) && 1505 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1506} 1507 1508static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1509 gen_helper_gvec_4_ptr *fn, 1510 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1511{ 1512 if (checkfn(s, a)) { 1513 uint32_t data = 0; 1514 TCGLabel *over = gen_new_label(); 1515 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1516 1517 data = FIELD_DP32(data, VDATA, VM, a->vm); 1518 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1519 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1520 vreg_ofs(s, a->rs1), 1521 vreg_ofs(s, a->rs2), 1522 cpu_env, s->cfg_ptr->vlen / 8, 1523 s->cfg_ptr->vlen / 8, 1524 data, fn); 1525 mark_vs_dirty(s); 1526 gen_set_label(over); 1527 return true; 1528 } 1529 return false; 1530} 1531 1532#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1533static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1534{ \ 1535 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1536 gen_helper_##NAME##_b, \ 1537 gen_helper_##NAME##_h, \ 1538 gen_helper_##NAME##_w \ 1539 }; \ 1540 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1541} 1542 1543GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1544GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1545GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1546GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1547 1548/* OPIVX with WIDEN */ 1549static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1550{ 1551 return require_rvv(s) && 1552 vext_check_isa_ill(s) && 1553 vext_check_ds(s, a->rd, a->rs2, a->vm); 1554} 1555 1556static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1557 gen_helper_opivx *fn) 1558{ 1559 if (opivx_widen_check(s, a)) { 1560 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1561 } 1562 return false; 1563} 1564 1565#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1566static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1567{ \ 1568 static gen_helper_opivx * const fns[3] = { \ 1569 gen_helper_##NAME##_b, \ 1570 gen_helper_##NAME##_h, \ 1571 gen_helper_##NAME##_w \ 1572 }; \ 1573 return do_opivx_widen(s, a, fns[s->sew]); \ 1574} 1575 1576GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1577GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1578GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1579GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1580 1581/* WIDEN OPIVV with WIDEN */ 1582static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1583{ 1584 return require_rvv(s) && 1585 vext_check_isa_ill(s) && 1586 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1587} 1588 1589static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1590 gen_helper_gvec_4_ptr *fn) 1591{ 1592 if (opiwv_widen_check(s, a)) { 1593 uint32_t data = 0; 1594 TCGLabel *over = gen_new_label(); 1595 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1596 1597 data = FIELD_DP32(data, VDATA, VM, a->vm); 1598 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1599 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1600 vreg_ofs(s, a->rs1), 1601 vreg_ofs(s, a->rs2), 1602 cpu_env, s->cfg_ptr->vlen / 8, 1603 s->cfg_ptr->vlen / 8, data, fn); 1604 mark_vs_dirty(s); 1605 gen_set_label(over); 1606 return true; 1607 } 1608 return false; 1609} 1610 1611#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1612static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1613{ \ 1614 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1615 gen_helper_##NAME##_b, \ 1616 gen_helper_##NAME##_h, \ 1617 gen_helper_##NAME##_w \ 1618 }; \ 1619 return do_opiwv_widen(s, a, fns[s->sew]); \ 1620} 1621 1622GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1623GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1624GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1625GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1626 1627/* WIDEN OPIVX with WIDEN */ 1628static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1629{ 1630 return require_rvv(s) && 1631 vext_check_isa_ill(s) && 1632 vext_check_dd(s, a->rd, a->rs2, a->vm); 1633} 1634 1635static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1636 gen_helper_opivx *fn) 1637{ 1638 if (opiwx_widen_check(s, a)) { 1639 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1640 } 1641 return false; 1642} 1643 1644#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1645static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1646{ \ 1647 static gen_helper_opivx * const fns[3] = { \ 1648 gen_helper_##NAME##_b, \ 1649 gen_helper_##NAME##_h, \ 1650 gen_helper_##NAME##_w \ 1651 }; \ 1652 return do_opiwx_widen(s, a, fns[s->sew]); \ 1653} 1654 1655GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1656GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1657GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1658GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1659 1660/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1661/* OPIVV without GVEC IR */ 1662#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1663static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1664{ \ 1665 if (CHECK(s, a)) { \ 1666 uint32_t data = 0; \ 1667 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1668 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1669 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1670 }; \ 1671 TCGLabel *over = gen_new_label(); \ 1672 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1673 \ 1674 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1675 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1676 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1677 vreg_ofs(s, a->rs1), \ 1678 vreg_ofs(s, a->rs2), cpu_env, \ 1679 s->cfg_ptr->vlen / 8, \ 1680 s->cfg_ptr->vlen / 8, data, \ 1681 fns[s->sew]); \ 1682 mark_vs_dirty(s); \ 1683 gen_set_label(over); \ 1684 return true; \ 1685 } \ 1686 return false; \ 1687} 1688 1689/* 1690 * For vadc and vsbc, an illegal instruction exception is raised if the 1691 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1692 */ 1693static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1694{ 1695 return require_rvv(s) && 1696 vext_check_isa_ill(s) && 1697 (a->rd != 0) && 1698 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1699} 1700 1701GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1702GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1703 1704/* 1705 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1706 * destination vector register overlaps a source vector register group. 1707 */ 1708static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1709{ 1710 return require_rvv(s) && 1711 vext_check_isa_ill(s) && 1712 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1713} 1714 1715GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1716GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1717 1718static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1719{ 1720 return require_rvv(s) && 1721 vext_check_isa_ill(s) && 1722 (a->rd != 0) && 1723 vext_check_ss(s, a->rd, a->rs2, a->vm); 1724} 1725 1726/* OPIVX without GVEC IR */ 1727#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1728static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1729{ \ 1730 if (CHECK(s, a)) { \ 1731 static gen_helper_opivx * const fns[4] = { \ 1732 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1733 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1734 }; \ 1735 \ 1736 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1737 } \ 1738 return false; \ 1739} 1740 1741GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1742GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1743 1744static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1745{ 1746 return require_rvv(s) && 1747 vext_check_isa_ill(s) && 1748 vext_check_ms(s, a->rd, a->rs2); 1749} 1750 1751GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1752GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1753 1754/* OPIVI without GVEC IR */ 1755#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1756static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1757{ \ 1758 if (CHECK(s, a)) { \ 1759 static gen_helper_opivx * const fns[4] = { \ 1760 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1761 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1762 }; \ 1763 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1764 fns[s->sew], s, IMM_MODE); \ 1765 } \ 1766 return false; \ 1767} 1768 1769GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1770GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1771 1772/* Vector Bitwise Logical Instructions */ 1773GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1774GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1775GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1776GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1777GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1778GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1779GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1780GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1781GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1782 1783/* Vector Single-Width Bit Shift Instructions */ 1784GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1785GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1786GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1787 1788typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1789 uint32_t, uint32_t); 1790 1791static inline bool 1792do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1793 gen_helper_opivx *fn) 1794{ 1795 if (!opivx_check(s, a)) { 1796 return false; 1797 } 1798 1799 if (a->vm && s->vl_eq_vlmax) { 1800 TCGv_i32 src1 = tcg_temp_new_i32(); 1801 1802 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1803 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1804 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1805 src1, MAXSZ(s), MAXSZ(s)); 1806 1807 tcg_temp_free_i32(src1); 1808 mark_vs_dirty(s); 1809 return true; 1810 } 1811 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1812} 1813 1814#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1815static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1816{ \ 1817 static gen_helper_opivx * const fns[4] = { \ 1818 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1819 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1820 }; \ 1821 \ 1822 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1823} 1824 1825GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1826GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1827GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1828 1829GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1830GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1831GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1832 1833/* Vector Narrowing Integer Right Shift Instructions */ 1834static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1835{ 1836 return require_rvv(s) && 1837 vext_check_isa_ill(s) && 1838 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1839} 1840 1841/* OPIVV with NARROW */ 1842#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1843static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1844{ \ 1845 if (opiwv_narrow_check(s, a)) { \ 1846 uint32_t data = 0; \ 1847 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1848 gen_helper_##NAME##_b, \ 1849 gen_helper_##NAME##_h, \ 1850 gen_helper_##NAME##_w, \ 1851 }; \ 1852 TCGLabel *over = gen_new_label(); \ 1853 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1854 \ 1855 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1856 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1857 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1858 vreg_ofs(s, a->rs1), \ 1859 vreg_ofs(s, a->rs2), cpu_env, \ 1860 s->cfg_ptr->vlen / 8, \ 1861 s->cfg_ptr->vlen / 8, data, \ 1862 fns[s->sew]); \ 1863 mark_vs_dirty(s); \ 1864 gen_set_label(over); \ 1865 return true; \ 1866 } \ 1867 return false; \ 1868} 1869GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1870GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1871 1872static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1873{ 1874 return require_rvv(s) && 1875 vext_check_isa_ill(s) && 1876 vext_check_sd(s, a->rd, a->rs2, a->vm); 1877} 1878 1879/* OPIVX with NARROW */ 1880#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1881static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1882{ \ 1883 if (opiwx_narrow_check(s, a)) { \ 1884 static gen_helper_opivx * const fns[3] = { \ 1885 gen_helper_##NAME##_b, \ 1886 gen_helper_##NAME##_h, \ 1887 gen_helper_##NAME##_w, \ 1888 }; \ 1889 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1890 } \ 1891 return false; \ 1892} 1893 1894GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1895GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1896 1897/* OPIWI with NARROW */ 1898#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1899static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1900{ \ 1901 if (opiwx_narrow_check(s, a)) { \ 1902 static gen_helper_opivx * const fns[3] = { \ 1903 gen_helper_##OPIVX##_b, \ 1904 gen_helper_##OPIVX##_h, \ 1905 gen_helper_##OPIVX##_w, \ 1906 }; \ 1907 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1908 fns[s->sew], s, IMM_MODE); \ 1909 } \ 1910 return false; \ 1911} 1912 1913GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1914GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1915 1916/* Vector Integer Comparison Instructions */ 1917/* 1918 * For all comparison instructions, an illegal instruction exception is raised 1919 * if the destination vector register overlaps a source vector register group 1920 * and LMUL > 1. 1921 */ 1922static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1923{ 1924 return require_rvv(s) && 1925 vext_check_isa_ill(s) && 1926 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1927} 1928 1929GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1930GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1931GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1932GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1933GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1934GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1935 1936static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1937{ 1938 return require_rvv(s) && 1939 vext_check_isa_ill(s) && 1940 vext_check_ms(s, a->rd, a->rs2); 1941} 1942 1943GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1944GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1945GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1946GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1947GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1948GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1949GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1950GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1951 1952GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1953GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1954GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1955GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1956GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1957GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1958 1959/* Vector Integer Min/Max Instructions */ 1960GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1961GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1962GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1963GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1964GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1965GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1966GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1967GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1968 1969/* Vector Single-Width Integer Multiply Instructions */ 1970 1971static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 1972{ 1973 /* 1974 * All Zve* extensions support all vector integer instructions, 1975 * except that the vmulh integer multiply variants 1976 * that return the high word of the product 1977 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1978 * are not included for EEW=64 in Zve64*. (Section 18.2) 1979 */ 1980 return opivv_check(s, a) && 1981 (!has_ext(s, RVV) && 1982 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 1983} 1984 1985static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 1986{ 1987 /* 1988 * All Zve* extensions support all vector integer instructions, 1989 * except that the vmulh integer multiply variants 1990 * that return the high word of the product 1991 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1992 * are not included for EEW=64 in Zve64*. (Section 18.2) 1993 */ 1994 return opivx_check(s, a) && 1995 (!has_ext(s, RVV) && 1996 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 1997} 1998 1999GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2000GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2001GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2002GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2003GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2004GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2005GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2006GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2007 2008/* Vector Integer Divide Instructions */ 2009GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2010GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2011GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2012GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2013GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2014GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2015GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2016GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2017 2018/* Vector Widening Integer Multiply Instructions */ 2019GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2020GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2021GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2022GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2023GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2024GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2025 2026/* Vector Single-Width Integer Multiply-Add Instructions */ 2027GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2028GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2029GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2030GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2031GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2032GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2033GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2034GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2035 2036/* Vector Widening Integer Multiply-Add Instructions */ 2037GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2038GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2039GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2040GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2041GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2042GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2043GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2044 2045/* Vector Integer Merge and Move Instructions */ 2046static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2047{ 2048 if (require_rvv(s) && 2049 vext_check_isa_ill(s) && 2050 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2051 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2052 if (s->vl_eq_vlmax) { 2053 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2054 vreg_ofs(s, a->rs1), 2055 MAXSZ(s), MAXSZ(s)); 2056 } else { 2057 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2058 static gen_helper_gvec_2_ptr * const fns[4] = { 2059 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2060 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2061 }; 2062 TCGLabel *over = gen_new_label(); 2063 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2064 2065 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2066 cpu_env, s->cfg_ptr->vlen / 8, 2067 s->cfg_ptr->vlen / 8, data, 2068 fns[s->sew]); 2069 gen_set_label(over); 2070 } 2071 mark_vs_dirty(s); 2072 return true; 2073 } 2074 return false; 2075} 2076 2077typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2078static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2079{ 2080 if (require_rvv(s) && 2081 vext_check_isa_ill(s) && 2082 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2083 vext_check_ss(s, a->rd, 0, 1)) { 2084 TCGv s1; 2085 TCGLabel *over = gen_new_label(); 2086 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2087 2088 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2089 2090 if (s->vl_eq_vlmax) { 2091 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2092 MAXSZ(s), MAXSZ(s), s1); 2093 } else { 2094 TCGv_i32 desc; 2095 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2096 TCGv_ptr dest = tcg_temp_new_ptr(); 2097 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2098 static gen_helper_vmv_vx * const fns[4] = { 2099 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2100 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2101 }; 2102 2103 tcg_gen_ext_tl_i64(s1_i64, s1); 2104 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2105 s->cfg_ptr->vlen / 8, data)); 2106 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2107 fns[s->sew](dest, s1_i64, cpu_env, desc); 2108 2109 tcg_temp_free_ptr(dest); 2110 tcg_temp_free_i64(s1_i64); 2111 } 2112 2113 mark_vs_dirty(s); 2114 gen_set_label(over); 2115 return true; 2116 } 2117 return false; 2118} 2119 2120static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2121{ 2122 if (require_rvv(s) && 2123 vext_check_isa_ill(s) && 2124 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2125 vext_check_ss(s, a->rd, 0, 1)) { 2126 int64_t simm = sextract64(a->rs1, 0, 5); 2127 if (s->vl_eq_vlmax) { 2128 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2129 MAXSZ(s), MAXSZ(s), simm); 2130 mark_vs_dirty(s); 2131 } else { 2132 TCGv_i32 desc; 2133 TCGv_i64 s1; 2134 TCGv_ptr dest; 2135 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2136 static gen_helper_vmv_vx * const fns[4] = { 2137 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2138 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2139 }; 2140 TCGLabel *over = gen_new_label(); 2141 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2142 2143 s1 = tcg_constant_i64(simm); 2144 dest = tcg_temp_new_ptr(); 2145 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2146 s->cfg_ptr->vlen / 8, data)); 2147 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2148 fns[s->sew](dest, s1, cpu_env, desc); 2149 2150 tcg_temp_free_ptr(dest); 2151 mark_vs_dirty(s); 2152 gen_set_label(over); 2153 } 2154 return true; 2155 } 2156 return false; 2157} 2158 2159GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2160GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2161GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2162 2163/* 2164 *** Vector Fixed-Point Arithmetic Instructions 2165 */ 2166 2167/* Vector Single-Width Saturating Add and Subtract */ 2168GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2169GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2170GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2171GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2172GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2173GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2174GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2175GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2176GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2177GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2178 2179/* Vector Single-Width Averaging Add and Subtract */ 2180GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2181GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2182GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2183GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2184GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2185GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2186GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2187GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2188 2189/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2190 2191static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2192{ 2193 /* 2194 * All Zve* extensions support all vector fixed-point arithmetic 2195 * instructions, except that vsmul.vv and vsmul.vx are not supported 2196 * for EEW=64 in Zve64*. (Section 18.2) 2197 */ 2198 return opivv_check(s, a) && 2199 (!has_ext(s, RVV) && 2200 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2201} 2202 2203static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2204{ 2205 /* 2206 * All Zve* extensions support all vector fixed-point arithmetic 2207 * instructions, except that vsmul.vv and vsmul.vx are not supported 2208 * for EEW=64 in Zve64*. (Section 18.2) 2209 */ 2210 return opivx_check(s, a) && 2211 (!has_ext(s, RVV) && 2212 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2213} 2214 2215GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2216GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2217 2218/* Vector Single-Width Scaling Shift Instructions */ 2219GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2220GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2221GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2222GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2223GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2224GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2225 2226/* Vector Narrowing Fixed-Point Clip Instructions */ 2227GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2228GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2229GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2230GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2231GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2232GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2233 2234/* 2235 *** Vector Float Point Arithmetic Instructions 2236 */ 2237 2238/* 2239 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2240 * RVF and RVD can be treated equally. 2241 * We don't have to deal with the cases of: SEW > FLEN. 2242 * 2243 * If SEW < FLEN, check whether input fp register is a valid 2244 * NaN-boxed value, in which case the least-significant SEW bits 2245 * of the f regsiter are used, else the canonical NaN value is used. 2246 */ 2247static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2248{ 2249 switch (s->sew) { 2250 case 1: 2251 gen_check_nanbox_h(out, in); 2252 break; 2253 case 2: 2254 gen_check_nanbox_s(out, in); 2255 break; 2256 case 3: 2257 tcg_gen_mov_i64(out, in); 2258 break; 2259 default: 2260 g_assert_not_reached(); 2261 } 2262} 2263 2264/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2265 2266/* 2267 * If the current SEW does not correspond to a supported IEEE floating-point 2268 * type, an illegal instruction exception is raised. 2269 */ 2270static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2271{ 2272 return require_rvv(s) && 2273 require_rvf(s) && 2274 vext_check_isa_ill(s) && 2275 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2276 require_zve32f(s) && 2277 require_zve64f(s); 2278} 2279 2280/* OPFVV without GVEC IR */ 2281#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2282static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2283{ \ 2284 if (CHECK(s, a)) { \ 2285 uint32_t data = 0; \ 2286 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2287 gen_helper_##NAME##_h, \ 2288 gen_helper_##NAME##_w, \ 2289 gen_helper_##NAME##_d, \ 2290 }; \ 2291 TCGLabel *over = gen_new_label(); \ 2292 gen_set_rm(s, RISCV_FRM_DYN); \ 2293 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2294 \ 2295 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2296 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2297 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2298 vreg_ofs(s, a->rs1), \ 2299 vreg_ofs(s, a->rs2), cpu_env, \ 2300 s->cfg_ptr->vlen / 8, \ 2301 s->cfg_ptr->vlen / 8, data, \ 2302 fns[s->sew - 1]); \ 2303 mark_vs_dirty(s); \ 2304 gen_set_label(over); \ 2305 return true; \ 2306 } \ 2307 return false; \ 2308} 2309GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2310GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2311 2312typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2313 TCGv_env, TCGv_i32); 2314 2315static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2316 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2317{ 2318 TCGv_ptr dest, src2, mask; 2319 TCGv_i32 desc; 2320 TCGv_i64 t1; 2321 2322 TCGLabel *over = gen_new_label(); 2323 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2324 2325 dest = tcg_temp_new_ptr(); 2326 mask = tcg_temp_new_ptr(); 2327 src2 = tcg_temp_new_ptr(); 2328 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2329 s->cfg_ptr->vlen / 8, data)); 2330 2331 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2332 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2333 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2334 2335 /* NaN-box f[rs1] */ 2336 t1 = tcg_temp_new_i64(); 2337 do_nanbox(s, t1, cpu_fpr[rs1]); 2338 2339 fn(dest, mask, t1, src2, cpu_env, desc); 2340 2341 tcg_temp_free_ptr(dest); 2342 tcg_temp_free_ptr(mask); 2343 tcg_temp_free_ptr(src2); 2344 tcg_temp_free_i64(t1); 2345 mark_vs_dirty(s); 2346 gen_set_label(over); 2347 return true; 2348} 2349 2350/* 2351 * If the current SEW does not correspond to a supported IEEE floating-point 2352 * type, an illegal instruction exception is raised 2353 */ 2354static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2355{ 2356 return require_rvv(s) && 2357 require_rvf(s) && 2358 vext_check_isa_ill(s) && 2359 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2360 require_zve32f(s) && 2361 require_zve64f(s); 2362} 2363 2364/* OPFVF without GVEC IR */ 2365#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2366static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2367{ \ 2368 if (CHECK(s, a)) { \ 2369 uint32_t data = 0; \ 2370 static gen_helper_opfvf *const fns[3] = { \ 2371 gen_helper_##NAME##_h, \ 2372 gen_helper_##NAME##_w, \ 2373 gen_helper_##NAME##_d, \ 2374 }; \ 2375 gen_set_rm(s, RISCV_FRM_DYN); \ 2376 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2377 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2378 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2379 fns[s->sew - 1], s); \ 2380 } \ 2381 return false; \ 2382} 2383 2384GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2385GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2386GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2387 2388/* Vector Widening Floating-Point Add/Subtract Instructions */ 2389static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2390{ 2391 return require_rvv(s) && 2392 require_scale_rvf(s) && 2393 (s->sew != MO_8) && 2394 vext_check_isa_ill(s) && 2395 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2396 require_scale_zve32f(s) && 2397 require_scale_zve64f(s); 2398} 2399 2400/* OPFVV with WIDEN */ 2401#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2402static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2403{ \ 2404 if (CHECK(s, a)) { \ 2405 uint32_t data = 0; \ 2406 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2407 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2408 }; \ 2409 TCGLabel *over = gen_new_label(); \ 2410 gen_set_rm(s, RISCV_FRM_DYN); \ 2411 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2412 \ 2413 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2414 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2415 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2416 vreg_ofs(s, a->rs1), \ 2417 vreg_ofs(s, a->rs2), cpu_env, \ 2418 s->cfg_ptr->vlen / 8, \ 2419 s->cfg_ptr->vlen / 8, data, \ 2420 fns[s->sew - 1]); \ 2421 mark_vs_dirty(s); \ 2422 gen_set_label(over); \ 2423 return true; \ 2424 } \ 2425 return false; \ 2426} 2427 2428GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2429GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2430 2431static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2432{ 2433 return require_rvv(s) && 2434 require_scale_rvf(s) && 2435 (s->sew != MO_8) && 2436 vext_check_isa_ill(s) && 2437 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2438 require_scale_zve32f(s) && 2439 require_scale_zve64f(s); 2440} 2441 2442/* OPFVF with WIDEN */ 2443#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2444static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2445{ \ 2446 if (opfvf_widen_check(s, a)) { \ 2447 uint32_t data = 0; \ 2448 static gen_helper_opfvf *const fns[2] = { \ 2449 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2450 }; \ 2451 gen_set_rm(s, RISCV_FRM_DYN); \ 2452 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2453 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2454 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2455 fns[s->sew - 1], s); \ 2456 } \ 2457 return false; \ 2458} 2459 2460GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2461GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2462 2463static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2464{ 2465 return require_rvv(s) && 2466 require_scale_rvf(s) && 2467 (s->sew != MO_8) && 2468 vext_check_isa_ill(s) && 2469 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2470 require_scale_zve32f(s) && 2471 require_scale_zve64f(s); 2472} 2473 2474/* WIDEN OPFVV with WIDEN */ 2475#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2476static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2477{ \ 2478 if (opfwv_widen_check(s, a)) { \ 2479 uint32_t data = 0; \ 2480 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2481 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2482 }; \ 2483 TCGLabel *over = gen_new_label(); \ 2484 gen_set_rm(s, RISCV_FRM_DYN); \ 2485 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2486 \ 2487 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2488 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2489 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2490 vreg_ofs(s, a->rs1), \ 2491 vreg_ofs(s, a->rs2), cpu_env, \ 2492 s->cfg_ptr->vlen / 8, \ 2493 s->cfg_ptr->vlen / 8, data, \ 2494 fns[s->sew - 1]); \ 2495 mark_vs_dirty(s); \ 2496 gen_set_label(over); \ 2497 return true; \ 2498 } \ 2499 return false; \ 2500} 2501 2502GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2503GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2504 2505static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2506{ 2507 return require_rvv(s) && 2508 require_scale_rvf(s) && 2509 (s->sew != MO_8) && 2510 vext_check_isa_ill(s) && 2511 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2512 require_scale_zve32f(s) && 2513 require_scale_zve64f(s); 2514} 2515 2516/* WIDEN OPFVF with WIDEN */ 2517#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2518static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2519{ \ 2520 if (opfwf_widen_check(s, a)) { \ 2521 uint32_t data = 0; \ 2522 static gen_helper_opfvf *const fns[2] = { \ 2523 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2524 }; \ 2525 gen_set_rm(s, RISCV_FRM_DYN); \ 2526 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2527 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2528 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2529 fns[s->sew - 1], s); \ 2530 } \ 2531 return false; \ 2532} 2533 2534GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2535GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2536 2537/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2538GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2539GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2540GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2541GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2542GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2543 2544/* Vector Widening Floating-Point Multiply */ 2545GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2546GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2547 2548/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2549GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2550GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2551GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2552GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2553GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2554GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2555GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2556GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2557GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2558GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2559GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2560GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2561GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2562GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2563GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2564GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2565 2566/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2567GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2568GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2569GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2570GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2571GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2572GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2573GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2574GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2575 2576/* Vector Floating-Point Square-Root Instruction */ 2577 2578/* 2579 * If the current SEW does not correspond to a supported IEEE floating-point 2580 * type, an illegal instruction exception is raised 2581 */ 2582static bool opfv_check(DisasContext *s, arg_rmr *a) 2583{ 2584 return require_rvv(s) && 2585 require_rvf(s) && 2586 vext_check_isa_ill(s) && 2587 /* OPFV instructions ignore vs1 check */ 2588 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2589 require_zve32f(s) && 2590 require_zve64f(s); 2591} 2592 2593static bool do_opfv(DisasContext *s, arg_rmr *a, 2594 gen_helper_gvec_3_ptr *fn, 2595 bool (*checkfn)(DisasContext *, arg_rmr *), 2596 int rm) 2597{ 2598 if (checkfn(s, a)) { 2599 if (rm != RISCV_FRM_DYN) { 2600 gen_set_rm(s, RISCV_FRM_DYN); 2601 } 2602 2603 uint32_t data = 0; 2604 TCGLabel *over = gen_new_label(); 2605 gen_set_rm(s, rm); 2606 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2607 2608 data = FIELD_DP32(data, VDATA, VM, a->vm); 2609 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2610 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2611 vreg_ofs(s, a->rs2), cpu_env, 2612 s->cfg_ptr->vlen / 8, 2613 s->cfg_ptr->vlen / 8, data, fn); 2614 mark_vs_dirty(s); 2615 gen_set_label(over); 2616 return true; 2617 } 2618 return false; 2619} 2620 2621#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2622static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2623{ \ 2624 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2625 gen_helper_##NAME##_h, \ 2626 gen_helper_##NAME##_w, \ 2627 gen_helper_##NAME##_d \ 2628 }; \ 2629 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2630} 2631 2632GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2633GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2634GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2635 2636/* Vector Floating-Point MIN/MAX Instructions */ 2637GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2638GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2639GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2640GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2641 2642/* Vector Floating-Point Sign-Injection Instructions */ 2643GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2644GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2645GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2646GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2647GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2648GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2649 2650/* Vector Floating-Point Compare Instructions */ 2651static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2652{ 2653 return require_rvv(s) && 2654 require_rvf(s) && 2655 vext_check_isa_ill(s) && 2656 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2657 require_zve32f(s) && 2658 require_zve64f(s); 2659} 2660 2661GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2662GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2663GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2664GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2665 2666static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2667{ 2668 return require_rvv(s) && 2669 require_rvf(s) && 2670 vext_check_isa_ill(s) && 2671 vext_check_ms(s, a->rd, a->rs2) && 2672 require_zve32f(s) && 2673 require_zve64f(s); 2674} 2675 2676GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2677GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2678GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2679GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2680GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2681GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2682 2683/* Vector Floating-Point Classify Instruction */ 2684GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2685 2686/* Vector Floating-Point Merge Instruction */ 2687GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2688 2689static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2690{ 2691 if (require_rvv(s) && 2692 require_rvf(s) && 2693 vext_check_isa_ill(s) && 2694 require_align(a->rd, s->lmul) && 2695 require_zve32f(s) && 2696 require_zve64f(s)) { 2697 gen_set_rm(s, RISCV_FRM_DYN); 2698 2699 TCGv_i64 t1; 2700 2701 if (s->vl_eq_vlmax) { 2702 t1 = tcg_temp_new_i64(); 2703 /* NaN-box f[rs1] */ 2704 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2705 2706 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2707 MAXSZ(s), MAXSZ(s), t1); 2708 mark_vs_dirty(s); 2709 } else { 2710 TCGv_ptr dest; 2711 TCGv_i32 desc; 2712 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2713 static gen_helper_vmv_vx * const fns[3] = { 2714 gen_helper_vmv_v_x_h, 2715 gen_helper_vmv_v_x_w, 2716 gen_helper_vmv_v_x_d, 2717 }; 2718 TCGLabel *over = gen_new_label(); 2719 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2720 2721 t1 = tcg_temp_new_i64(); 2722 /* NaN-box f[rs1] */ 2723 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2724 2725 dest = tcg_temp_new_ptr(); 2726 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2727 s->cfg_ptr->vlen / 8, data)); 2728 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2729 2730 fns[s->sew - 1](dest, t1, cpu_env, desc); 2731 2732 tcg_temp_free_ptr(dest); 2733 mark_vs_dirty(s); 2734 gen_set_label(over); 2735 } 2736 tcg_temp_free_i64(t1); 2737 return true; 2738 } 2739 return false; 2740} 2741 2742/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2743#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2744static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2745{ \ 2746 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2747 gen_helper_##HELPER##_h, \ 2748 gen_helper_##HELPER##_w, \ 2749 gen_helper_##HELPER##_d \ 2750 }; \ 2751 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2752} 2753 2754GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2755GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2756GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2757GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2758/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2759GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2760GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2761 2762/* Widening Floating-Point/Integer Type-Convert Instructions */ 2763 2764/* 2765 * If the current SEW does not correspond to a supported IEEE floating-point 2766 * type, an illegal instruction exception is raised 2767 */ 2768static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2769{ 2770 return require_rvv(s) && 2771 vext_check_isa_ill(s) && 2772 vext_check_ds(s, a->rd, a->rs2, a->vm); 2773} 2774 2775static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2776{ 2777 return opfv_widen_check(s, a) && 2778 require_rvf(s) && 2779 require_zve32f(s) && 2780 require_zve64f(s); 2781} 2782 2783static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2784{ 2785 return opfv_widen_check(s, a) && 2786 require_scale_rvf(s) && 2787 (s->sew != MO_8) && 2788 require_scale_zve32f(s) && 2789 require_scale_zve64f(s); 2790} 2791 2792#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2793static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2794{ \ 2795 if (CHECK(s, a)) { \ 2796 if (FRM != RISCV_FRM_DYN) { \ 2797 gen_set_rm(s, RISCV_FRM_DYN); \ 2798 } \ 2799 \ 2800 uint32_t data = 0; \ 2801 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2802 gen_helper_##HELPER##_h, \ 2803 gen_helper_##HELPER##_w, \ 2804 }; \ 2805 TCGLabel *over = gen_new_label(); \ 2806 gen_set_rm(s, FRM); \ 2807 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2808 \ 2809 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2810 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2811 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2812 vreg_ofs(s, a->rs2), cpu_env, \ 2813 s->cfg_ptr->vlen / 8, \ 2814 s->cfg_ptr->vlen / 8, data, \ 2815 fns[s->sew - 1]); \ 2816 mark_vs_dirty(s); \ 2817 gen_set_label(over); \ 2818 return true; \ 2819 } \ 2820 return false; \ 2821} 2822 2823GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2824 RISCV_FRM_DYN) 2825GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2826 RISCV_FRM_DYN) 2827GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2828 RISCV_FRM_DYN) 2829/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2830GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2831 RISCV_FRM_RTZ) 2832GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2833 RISCV_FRM_RTZ) 2834 2835static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2836{ 2837 return require_rvv(s) && 2838 require_scale_rvf(s) && 2839 vext_check_isa_ill(s) && 2840 /* OPFV widening instructions ignore vs1 check */ 2841 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2842 require_scale_zve32f(s) && 2843 require_scale_zve64f(s); 2844} 2845 2846#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2847static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2848{ \ 2849 if (opfxv_widen_check(s, a)) { \ 2850 uint32_t data = 0; \ 2851 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2852 gen_helper_##NAME##_b, \ 2853 gen_helper_##NAME##_h, \ 2854 gen_helper_##NAME##_w, \ 2855 }; \ 2856 TCGLabel *over = gen_new_label(); \ 2857 gen_set_rm(s, RISCV_FRM_DYN); \ 2858 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2859 \ 2860 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2861 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2862 vreg_ofs(s, a->rs2), cpu_env, \ 2863 s->cfg_ptr->vlen / 8, \ 2864 s->cfg_ptr->vlen / 8, data, \ 2865 fns[s->sew]); \ 2866 mark_vs_dirty(s); \ 2867 gen_set_label(over); \ 2868 return true; \ 2869 } \ 2870 return false; \ 2871} 2872 2873GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2874GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2875 2876/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2877 2878/* 2879 * If the current SEW does not correspond to a supported IEEE floating-point 2880 * type, an illegal instruction exception is raised 2881 */ 2882static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2883{ 2884 return require_rvv(s) && 2885 vext_check_isa_ill(s) && 2886 /* OPFV narrowing instructions ignore vs1 check */ 2887 vext_check_sd(s, a->rd, a->rs2, a->vm); 2888} 2889 2890static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2891{ 2892 return opfv_narrow_check(s, a) && 2893 require_rvf(s) && 2894 (s->sew != MO_64) && 2895 require_zve32f(s) && 2896 require_zve64f(s); 2897} 2898 2899static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2900{ 2901 return opfv_narrow_check(s, a) && 2902 require_scale_rvf(s) && 2903 (s->sew != MO_8) && 2904 require_scale_zve32f(s) && 2905 require_scale_zve64f(s); 2906} 2907 2908#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2909static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2910{ \ 2911 if (CHECK(s, a)) { \ 2912 if (FRM != RISCV_FRM_DYN) { \ 2913 gen_set_rm(s, RISCV_FRM_DYN); \ 2914 } \ 2915 \ 2916 uint32_t data = 0; \ 2917 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2918 gen_helper_##HELPER##_h, \ 2919 gen_helper_##HELPER##_w, \ 2920 }; \ 2921 TCGLabel *over = gen_new_label(); \ 2922 gen_set_rm(s, FRM); \ 2923 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2924 \ 2925 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2926 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2927 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2928 vreg_ofs(s, a->rs2), cpu_env, \ 2929 s->cfg_ptr->vlen / 8, \ 2930 s->cfg_ptr->vlen / 8, data, \ 2931 fns[s->sew - 1]); \ 2932 mark_vs_dirty(s); \ 2933 gen_set_label(over); \ 2934 return true; \ 2935 } \ 2936 return false; \ 2937} 2938 2939GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2940 RISCV_FRM_DYN) 2941GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2942 RISCV_FRM_DYN) 2943GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2944 RISCV_FRM_DYN) 2945/* Reuse the helper function from vfncvt.f.f.w */ 2946GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2947 RISCV_FRM_ROD) 2948 2949static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2950{ 2951 return require_rvv(s) && 2952 require_scale_rvf(s) && 2953 vext_check_isa_ill(s) && 2954 /* OPFV narrowing instructions ignore vs1 check */ 2955 vext_check_sd(s, a->rd, a->rs2, a->vm) && 2956 require_scale_zve32f(s) && 2957 require_scale_zve64f(s); 2958} 2959 2960#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2961static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2962{ \ 2963 if (opxfv_narrow_check(s, a)) { \ 2964 if (FRM != RISCV_FRM_DYN) { \ 2965 gen_set_rm(s, RISCV_FRM_DYN); \ 2966 } \ 2967 \ 2968 uint32_t data = 0; \ 2969 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2970 gen_helper_##HELPER##_b, \ 2971 gen_helper_##HELPER##_h, \ 2972 gen_helper_##HELPER##_w, \ 2973 }; \ 2974 TCGLabel *over = gen_new_label(); \ 2975 gen_set_rm(s, FRM); \ 2976 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2977 \ 2978 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2979 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2980 vreg_ofs(s, a->rs2), cpu_env, \ 2981 s->cfg_ptr->vlen / 8, \ 2982 s->cfg_ptr->vlen / 8, data, \ 2983 fns[s->sew]); \ 2984 mark_vs_dirty(s); \ 2985 gen_set_label(over); \ 2986 return true; \ 2987 } \ 2988 return false; \ 2989} 2990 2991GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 2992GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 2993/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 2994GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 2995GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 2996 2997/* 2998 *** Vector Reduction Operations 2999 */ 3000/* Vector Single-Width Integer Reduction Instructions */ 3001static bool reduction_check(DisasContext *s, arg_rmrr *a) 3002{ 3003 return require_rvv(s) && 3004 vext_check_isa_ill(s) && 3005 vext_check_reduction(s, a->rs2); 3006} 3007 3008GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3009GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3010GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3011GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3012GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3013GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3014GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3015GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3016 3017/* Vector Widening Integer Reduction Instructions */ 3018static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3019{ 3020 return reduction_check(s, a) && (s->sew < MO_64) && 3021 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3022} 3023 3024GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3025GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3026 3027/* Vector Single-Width Floating-Point Reduction Instructions */ 3028static bool freduction_check(DisasContext *s, arg_rmrr *a) 3029{ 3030 return reduction_check(s, a) && 3031 require_rvf(s) && 3032 require_zve32f(s) && 3033 require_zve64f(s); 3034} 3035 3036GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3037GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3038GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3039 3040/* Vector Widening Floating-Point Reduction Instructions */ 3041static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3042{ 3043 return reduction_widen_check(s, a) && 3044 require_scale_rvf(s) && 3045 (s->sew != MO_8); 3046} 3047 3048GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3049 3050/* 3051 *** Vector Mask Operations 3052 */ 3053 3054/* Vector Mask-Register Logical Instructions */ 3055#define GEN_MM_TRANS(NAME) \ 3056static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3057{ \ 3058 if (require_rvv(s) && \ 3059 vext_check_isa_ill(s)) { \ 3060 uint32_t data = 0; \ 3061 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3062 TCGLabel *over = gen_new_label(); \ 3063 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3064 \ 3065 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3066 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3067 vreg_ofs(s, a->rs1), \ 3068 vreg_ofs(s, a->rs2), cpu_env, \ 3069 s->cfg_ptr->vlen / 8, \ 3070 s->cfg_ptr->vlen / 8, data, fn); \ 3071 mark_vs_dirty(s); \ 3072 gen_set_label(over); \ 3073 return true; \ 3074 } \ 3075 return false; \ 3076} 3077 3078GEN_MM_TRANS(vmand_mm) 3079GEN_MM_TRANS(vmnand_mm) 3080GEN_MM_TRANS(vmandn_mm) 3081GEN_MM_TRANS(vmxor_mm) 3082GEN_MM_TRANS(vmor_mm) 3083GEN_MM_TRANS(vmnor_mm) 3084GEN_MM_TRANS(vmorn_mm) 3085GEN_MM_TRANS(vmxnor_mm) 3086 3087/* Vector count population in mask vcpop */ 3088static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3089{ 3090 if (require_rvv(s) && 3091 vext_check_isa_ill(s) && 3092 s->vstart == 0) { 3093 TCGv_ptr src2, mask; 3094 TCGv dst; 3095 TCGv_i32 desc; 3096 uint32_t data = 0; 3097 data = FIELD_DP32(data, VDATA, VM, a->vm); 3098 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3099 3100 mask = tcg_temp_new_ptr(); 3101 src2 = tcg_temp_new_ptr(); 3102 dst = dest_gpr(s, a->rd); 3103 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3104 s->cfg_ptr->vlen / 8, data)); 3105 3106 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3107 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3108 3109 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3110 gen_set_gpr(s, a->rd, dst); 3111 3112 tcg_temp_free_ptr(mask); 3113 tcg_temp_free_ptr(src2); 3114 3115 return true; 3116 } 3117 return false; 3118} 3119 3120/* vmfirst find-first-set mask bit */ 3121static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3122{ 3123 if (require_rvv(s) && 3124 vext_check_isa_ill(s) && 3125 s->vstart == 0) { 3126 TCGv_ptr src2, mask; 3127 TCGv dst; 3128 TCGv_i32 desc; 3129 uint32_t data = 0; 3130 data = FIELD_DP32(data, VDATA, VM, a->vm); 3131 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3132 3133 mask = tcg_temp_new_ptr(); 3134 src2 = tcg_temp_new_ptr(); 3135 dst = dest_gpr(s, a->rd); 3136 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3137 s->cfg_ptr->vlen / 8, data)); 3138 3139 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3140 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3141 3142 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3143 gen_set_gpr(s, a->rd, dst); 3144 3145 tcg_temp_free_ptr(mask); 3146 tcg_temp_free_ptr(src2); 3147 return true; 3148 } 3149 return false; 3150} 3151 3152/* vmsbf.m set-before-first mask bit */ 3153/* vmsif.m set-includ-first mask bit */ 3154/* vmsof.m set-only-first mask bit */ 3155#define GEN_M_TRANS(NAME) \ 3156static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3157{ \ 3158 if (require_rvv(s) && \ 3159 vext_check_isa_ill(s) && \ 3160 require_vm(a->vm, a->rd) && \ 3161 (a->rd != a->rs2) && \ 3162 (s->vstart == 0)) { \ 3163 uint32_t data = 0; \ 3164 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3165 TCGLabel *over = gen_new_label(); \ 3166 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3167 \ 3168 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3169 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3170 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3171 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3172 cpu_env, s->cfg_ptr->vlen / 8, \ 3173 s->cfg_ptr->vlen / 8, \ 3174 data, fn); \ 3175 mark_vs_dirty(s); \ 3176 gen_set_label(over); \ 3177 return true; \ 3178 } \ 3179 return false; \ 3180} 3181 3182GEN_M_TRANS(vmsbf_m) 3183GEN_M_TRANS(vmsif_m) 3184GEN_M_TRANS(vmsof_m) 3185 3186/* 3187 * Vector Iota Instruction 3188 * 3189 * 1. The destination register cannot overlap the source register. 3190 * 2. If masked, cannot overlap the mask register ('v0'). 3191 * 3. An illegal instruction exception is raised if vstart is non-zero. 3192 */ 3193static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3194{ 3195 if (require_rvv(s) && 3196 vext_check_isa_ill(s) && 3197 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3198 require_vm(a->vm, a->rd) && 3199 require_align(a->rd, s->lmul) && 3200 (s->vstart == 0)) { 3201 uint32_t data = 0; 3202 TCGLabel *over = gen_new_label(); 3203 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3204 3205 data = FIELD_DP32(data, VDATA, VM, a->vm); 3206 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3207 static gen_helper_gvec_3_ptr * const fns[4] = { 3208 gen_helper_viota_m_b, gen_helper_viota_m_h, 3209 gen_helper_viota_m_w, gen_helper_viota_m_d, 3210 }; 3211 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3212 vreg_ofs(s, a->rs2), cpu_env, 3213 s->cfg_ptr->vlen / 8, 3214 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3215 mark_vs_dirty(s); 3216 gen_set_label(over); 3217 return true; 3218 } 3219 return false; 3220} 3221 3222/* Vector Element Index Instruction */ 3223static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3224{ 3225 if (require_rvv(s) && 3226 vext_check_isa_ill(s) && 3227 require_align(a->rd, s->lmul) && 3228 require_vm(a->vm, a->rd)) { 3229 uint32_t data = 0; 3230 TCGLabel *over = gen_new_label(); 3231 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3232 3233 data = FIELD_DP32(data, VDATA, VM, a->vm); 3234 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3235 static gen_helper_gvec_2_ptr * const fns[4] = { 3236 gen_helper_vid_v_b, gen_helper_vid_v_h, 3237 gen_helper_vid_v_w, gen_helper_vid_v_d, 3238 }; 3239 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3240 cpu_env, s->cfg_ptr->vlen / 8, 3241 s->cfg_ptr->vlen / 8, 3242 data, fns[s->sew]); 3243 mark_vs_dirty(s); 3244 gen_set_label(over); 3245 return true; 3246 } 3247 return false; 3248} 3249 3250/* 3251 *** Vector Permutation Instructions 3252 */ 3253 3254static void load_element(TCGv_i64 dest, TCGv_ptr base, 3255 int ofs, int sew, bool sign) 3256{ 3257 switch (sew) { 3258 case MO_8: 3259 if (!sign) { 3260 tcg_gen_ld8u_i64(dest, base, ofs); 3261 } else { 3262 tcg_gen_ld8s_i64(dest, base, ofs); 3263 } 3264 break; 3265 case MO_16: 3266 if (!sign) { 3267 tcg_gen_ld16u_i64(dest, base, ofs); 3268 } else { 3269 tcg_gen_ld16s_i64(dest, base, ofs); 3270 } 3271 break; 3272 case MO_32: 3273 if (!sign) { 3274 tcg_gen_ld32u_i64(dest, base, ofs); 3275 } else { 3276 tcg_gen_ld32s_i64(dest, base, ofs); 3277 } 3278 break; 3279 case MO_64: 3280 tcg_gen_ld_i64(dest, base, ofs); 3281 break; 3282 default: 3283 g_assert_not_reached(); 3284 break; 3285 } 3286} 3287 3288/* offset of the idx element with base regsiter r */ 3289static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3290{ 3291#ifdef HOST_WORDS_BIGENDIAN 3292 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3293#else 3294 return vreg_ofs(s, r) + (idx << s->sew); 3295#endif 3296} 3297 3298/* adjust the index according to the endian */ 3299static void endian_adjust(TCGv_i32 ofs, int sew) 3300{ 3301#ifdef HOST_WORDS_BIGENDIAN 3302 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3303#endif 3304} 3305 3306/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3307static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3308 int vreg, TCGv idx, int vlmax) 3309{ 3310 TCGv_i32 ofs = tcg_temp_new_i32(); 3311 TCGv_ptr base = tcg_temp_new_ptr(); 3312 TCGv_i64 t_idx = tcg_temp_new_i64(); 3313 TCGv_i64 t_vlmax, t_zero; 3314 3315 /* 3316 * Mask the index to the length so that we do 3317 * not produce an out-of-range load. 3318 */ 3319 tcg_gen_trunc_tl_i32(ofs, idx); 3320 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3321 3322 /* Convert the index to an offset. */ 3323 endian_adjust(ofs, s->sew); 3324 tcg_gen_shli_i32(ofs, ofs, s->sew); 3325 3326 /* Convert the index to a pointer. */ 3327 tcg_gen_ext_i32_ptr(base, ofs); 3328 tcg_gen_add_ptr(base, base, cpu_env); 3329 3330 /* Perform the load. */ 3331 load_element(dest, base, 3332 vreg_ofs(s, vreg), s->sew, false); 3333 tcg_temp_free_ptr(base); 3334 tcg_temp_free_i32(ofs); 3335 3336 /* Flush out-of-range indexing to zero. */ 3337 t_vlmax = tcg_constant_i64(vlmax); 3338 t_zero = tcg_constant_i64(0); 3339 tcg_gen_extu_tl_i64(t_idx, idx); 3340 3341 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3342 t_vlmax, dest, t_zero); 3343 3344 tcg_temp_free_i64(t_idx); 3345} 3346 3347static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3348 int vreg, int idx, bool sign) 3349{ 3350 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3351} 3352 3353/* Integer Scalar Move Instruction */ 3354 3355static void store_element(TCGv_i64 val, TCGv_ptr base, 3356 int ofs, int sew) 3357{ 3358 switch (sew) { 3359 case MO_8: 3360 tcg_gen_st8_i64(val, base, ofs); 3361 break; 3362 case MO_16: 3363 tcg_gen_st16_i64(val, base, ofs); 3364 break; 3365 case MO_32: 3366 tcg_gen_st32_i64(val, base, ofs); 3367 break; 3368 case MO_64: 3369 tcg_gen_st_i64(val, base, ofs); 3370 break; 3371 default: 3372 g_assert_not_reached(); 3373 break; 3374 } 3375} 3376 3377/* 3378 * Store vreg[idx] = val. 3379 * The index must be in range of VLMAX. 3380 */ 3381static void vec_element_storei(DisasContext *s, int vreg, 3382 int idx, TCGv_i64 val) 3383{ 3384 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3385} 3386 3387/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3388static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3389{ 3390 if (require_rvv(s) && 3391 vext_check_isa_ill(s)) { 3392 TCGv_i64 t1; 3393 TCGv dest; 3394 3395 t1 = tcg_temp_new_i64(); 3396 dest = tcg_temp_new(); 3397 /* 3398 * load vreg and sign-extend to 64 bits, 3399 * then truncate to XLEN bits before storing to gpr. 3400 */ 3401 vec_element_loadi(s, t1, a->rs2, 0, true); 3402 tcg_gen_trunc_i64_tl(dest, t1); 3403 gen_set_gpr(s, a->rd, dest); 3404 tcg_temp_free_i64(t1); 3405 tcg_temp_free(dest); 3406 3407 return true; 3408 } 3409 return false; 3410} 3411 3412/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3413static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3414{ 3415 if (require_rvv(s) && 3416 vext_check_isa_ill(s)) { 3417 /* This instruction ignores LMUL and vector register groups */ 3418 TCGv_i64 t1; 3419 TCGv s1; 3420 TCGLabel *over = gen_new_label(); 3421 3422 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3423 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3424 3425 t1 = tcg_temp_new_i64(); 3426 3427 /* 3428 * load gpr and sign-extend to 64 bits, 3429 * then truncate to SEW bits when storing to vreg. 3430 */ 3431 s1 = get_gpr(s, a->rs1, EXT_NONE); 3432 tcg_gen_ext_tl_i64(t1, s1); 3433 vec_element_storei(s, a->rd, 0, t1); 3434 tcg_temp_free_i64(t1); 3435 mark_vs_dirty(s); 3436 gen_set_label(over); 3437 return true; 3438 } 3439 return false; 3440} 3441 3442/* Floating-Point Scalar Move Instructions */ 3443static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3444{ 3445 if (require_rvv(s) && 3446 require_rvf(s) && 3447 vext_check_isa_ill(s) && 3448 require_zve32f(s) && 3449 require_zve64f(s)) { 3450 gen_set_rm(s, RISCV_FRM_DYN); 3451 3452 unsigned int ofs = (8 << s->sew); 3453 unsigned int len = 64 - ofs; 3454 TCGv_i64 t_nan; 3455 3456 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3457 /* NaN-box f[rd] as necessary for SEW */ 3458 if (len) { 3459 t_nan = tcg_constant_i64(UINT64_MAX); 3460 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3461 t_nan, ofs, len); 3462 } 3463 3464 mark_fs_dirty(s); 3465 return true; 3466 } 3467 return false; 3468} 3469 3470/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3471static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3472{ 3473 if (require_rvv(s) && 3474 require_rvf(s) && 3475 vext_check_isa_ill(s) && 3476 require_zve32f(s) && 3477 require_zve64f(s)) { 3478 gen_set_rm(s, RISCV_FRM_DYN); 3479 3480 /* The instructions ignore LMUL and vector register group. */ 3481 TCGv_i64 t1; 3482 TCGLabel *over = gen_new_label(); 3483 3484 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3485 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3486 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3487 3488 /* NaN-box f[rs1] */ 3489 t1 = tcg_temp_new_i64(); 3490 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3491 3492 vec_element_storei(s, a->rd, 0, t1); 3493 tcg_temp_free_i64(t1); 3494 mark_vs_dirty(s); 3495 gen_set_label(over); 3496 return true; 3497 } 3498 return false; 3499} 3500 3501/* Vector Slide Instructions */ 3502static bool slideup_check(DisasContext *s, arg_rmrr *a) 3503{ 3504 return require_rvv(s) && 3505 vext_check_isa_ill(s) && 3506 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3507} 3508 3509GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3510GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3511GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3512 3513static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3514{ 3515 return require_rvv(s) && 3516 vext_check_isa_ill(s) && 3517 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3518} 3519 3520GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3521GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3522GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3523 3524/* Vector Floating-Point Slide Instructions */ 3525static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3526{ 3527 return slideup_check(s, a) && 3528 require_rvf(s) && 3529 require_zve32f(s) && 3530 require_zve64f(s); 3531} 3532 3533static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3534{ 3535 return slidedown_check(s, a) && 3536 require_rvf(s) && 3537 require_zve32f(s) && 3538 require_zve64f(s); 3539} 3540 3541GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3542GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3543 3544/* Vector Register Gather Instruction */ 3545static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3546{ 3547 return require_rvv(s) && 3548 vext_check_isa_ill(s) && 3549 require_align(a->rd, s->lmul) && 3550 require_align(a->rs1, s->lmul) && 3551 require_align(a->rs2, s->lmul) && 3552 (a->rd != a->rs2 && a->rd != a->rs1) && 3553 require_vm(a->vm, a->rd); 3554} 3555 3556static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3557{ 3558 int8_t emul = MO_16 - s->sew + s->lmul; 3559 return require_rvv(s) && 3560 vext_check_isa_ill(s) && 3561 (emul >= -3 && emul <= 3) && 3562 require_align(a->rd, s->lmul) && 3563 require_align(a->rs1, emul) && 3564 require_align(a->rs2, s->lmul) && 3565 (a->rd != a->rs2 && a->rd != a->rs1) && 3566 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3567 a->rs1, 1 << MAX(emul, 0)) && 3568 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3569 a->rs2, 1 << MAX(s->lmul, 0)) && 3570 require_vm(a->vm, a->rd); 3571} 3572 3573GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3574GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3575 3576static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3577{ 3578 return require_rvv(s) && 3579 vext_check_isa_ill(s) && 3580 require_align(a->rd, s->lmul) && 3581 require_align(a->rs2, s->lmul) && 3582 (a->rd != a->rs2) && 3583 require_vm(a->vm, a->rd); 3584} 3585 3586/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3587static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3588{ 3589 if (!vrgather_vx_check(s, a)) { 3590 return false; 3591 } 3592 3593 if (a->vm && s->vl_eq_vlmax) { 3594 int scale = s->lmul - (s->sew + 3); 3595 int vlmax = scale < 0 ? 3596 s->cfg_ptr->vlen >> -scale : s->cfg_ptr->vlen << scale; 3597 TCGv_i64 dest = tcg_temp_new_i64(); 3598 3599 if (a->rs1 == 0) { 3600 vec_element_loadi(s, dest, a->rs2, 0, false); 3601 } else { 3602 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3603 } 3604 3605 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3606 MAXSZ(s), MAXSZ(s), dest); 3607 tcg_temp_free_i64(dest); 3608 mark_vs_dirty(s); 3609 } else { 3610 static gen_helper_opivx * const fns[4] = { 3611 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3612 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3613 }; 3614 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3615 } 3616 return true; 3617} 3618 3619/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3620static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3621{ 3622 if (!vrgather_vx_check(s, a)) { 3623 return false; 3624 } 3625 3626 if (a->vm && s->vl_eq_vlmax) { 3627 int scale = s->lmul - (s->sew + 3); 3628 int vlmax = scale < 0 ? 3629 s->cfg_ptr->vlen >> -scale : s->cfg_ptr->vlen << scale; 3630 if (a->rs1 >= vlmax) { 3631 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3632 MAXSZ(s), MAXSZ(s), 0); 3633 } else { 3634 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3635 endian_ofs(s, a->rs2, a->rs1), 3636 MAXSZ(s), MAXSZ(s)); 3637 } 3638 mark_vs_dirty(s); 3639 } else { 3640 static gen_helper_opivx * const fns[4] = { 3641 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3642 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3643 }; 3644 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3645 s, IMM_ZX); 3646 } 3647 return true; 3648} 3649 3650/* 3651 * Vector Compress Instruction 3652 * 3653 * The destination vector register group cannot overlap the 3654 * source vector register group or the source mask register. 3655 */ 3656static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3657{ 3658 return require_rvv(s) && 3659 vext_check_isa_ill(s) && 3660 require_align(a->rd, s->lmul) && 3661 require_align(a->rs2, s->lmul) && 3662 (a->rd != a->rs2) && 3663 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3664 (s->vstart == 0); 3665} 3666 3667static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3668{ 3669 if (vcompress_vm_check(s, a)) { 3670 uint32_t data = 0; 3671 static gen_helper_gvec_4_ptr * const fns[4] = { 3672 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3673 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3674 }; 3675 TCGLabel *over = gen_new_label(); 3676 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3677 3678 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3679 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3680 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3681 cpu_env, s->cfg_ptr->vlen / 8, 3682 s->cfg_ptr->vlen / 8, data, 3683 fns[s->sew]); 3684 mark_vs_dirty(s); 3685 gen_set_label(over); 3686 return true; 3687 } 3688 return false; 3689} 3690 3691/* 3692 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3693 * Thus, we don't need to check vill bit. (Section 16.6) 3694 */ 3695#define GEN_VMV_WHOLE_TRANS(NAME, LEN, SEQ) \ 3696static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3697{ \ 3698 if (require_rvv(s) && \ 3699 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3700 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3701 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3702 if (s->vstart == 0) { \ 3703 /* EEW = 8 */ \ 3704 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3705 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3706 mark_vs_dirty(s); \ 3707 } else { \ 3708 TCGLabel *over = gen_new_label(); \ 3709 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3710 \ 3711 static gen_helper_gvec_2_ptr * const fns[4] = { \ 3712 gen_helper_vmv1r_v, gen_helper_vmv2r_v, \ 3713 gen_helper_vmv4r_v, gen_helper_vmv8r_v, \ 3714 }; \ 3715 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3716 cpu_env, maxsz, maxsz, 0, fns[SEQ]); \ 3717 mark_vs_dirty(s); \ 3718 gen_set_label(over); \ 3719 } \ 3720 return true; \ 3721 } \ 3722 return false; \ 3723} 3724 3725GEN_VMV_WHOLE_TRANS(vmv1r_v, 1, 0) 3726GEN_VMV_WHOLE_TRANS(vmv2r_v, 2, 1) 3727GEN_VMV_WHOLE_TRANS(vmv4r_v, 4, 2) 3728GEN_VMV_WHOLE_TRANS(vmv8r_v, 8, 3) 3729 3730static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3731{ 3732 uint8_t from = (s->sew + 3) - div; 3733 bool ret = require_rvv(s) && 3734 (from >= 3 && from <= 8) && 3735 (a->rd != a->rs2) && 3736 require_align(a->rd, s->lmul) && 3737 require_align(a->rs2, s->lmul - div) && 3738 require_vm(a->vm, a->rd) && 3739 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3740 return ret; 3741} 3742 3743static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3744{ 3745 uint32_t data = 0; 3746 gen_helper_gvec_3_ptr *fn; 3747 TCGLabel *over = gen_new_label(); 3748 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3749 3750 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3751 { 3752 NULL, gen_helper_vzext_vf2_h, 3753 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3754 }, 3755 { 3756 NULL, NULL, 3757 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3758 }, 3759 { 3760 NULL, NULL, 3761 NULL, gen_helper_vzext_vf8_d 3762 }, 3763 { 3764 NULL, gen_helper_vsext_vf2_h, 3765 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3766 }, 3767 { 3768 NULL, NULL, 3769 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3770 }, 3771 { 3772 NULL, NULL, 3773 NULL, gen_helper_vsext_vf8_d 3774 } 3775 }; 3776 3777 fn = fns[seq][s->sew]; 3778 if (fn == NULL) { 3779 return false; 3780 } 3781 3782 data = FIELD_DP32(data, VDATA, VM, a->vm); 3783 3784 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3785 vreg_ofs(s, a->rs2), cpu_env, 3786 s->cfg_ptr->vlen / 8, 3787 s->cfg_ptr->vlen / 8, data, fn); 3788 3789 mark_vs_dirty(s); 3790 gen_set_label(over); 3791 return true; 3792} 3793 3794/* Vector Integer Extension */ 3795#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3796static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3797{ \ 3798 if (int_ext_check(s, a, DIV)) { \ 3799 return int_ext_op(s, a, SEQ); \ 3800 } \ 3801 return false; \ 3802} 3803 3804GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3805GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3806GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3807GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3808GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3809GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3810