1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 716} 717 718static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 719{ 720 return require_rvv(s) && 721 vext_check_isa_ill(s) && 722 vext_check_load(s, a->rd, a->nf, a->vm, eew); 723} 724 725GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 729 730static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 731{ 732 uint32_t data = 0; 733 gen_helper_ldst_us *fn; 734 static gen_helper_ldst_us * const fns[2][4] = { 735 /* masked unit stride store */ 736 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 737 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 738 /* unmasked unit stride store */ 739 { gen_helper_vse8_v, gen_helper_vse16_v, 740 gen_helper_vse32_v, gen_helper_vse64_v } 741 }; 742 743 fn = fns[a->vm][eew]; 744 if (fn == NULL) { 745 return false; 746 } 747 748 uint8_t emul = vext_get_emul(s, eew); 749 data = FIELD_DP32(data, VDATA, VM, a->vm); 750 data = FIELD_DP32(data, VDATA, LMUL, emul); 751 data = FIELD_DP32(data, VDATA, NF, a->nf); 752 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 753} 754 755static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 756{ 757 return require_rvv(s) && 758 vext_check_isa_ill(s) && 759 vext_check_store(s, a->rd, a->nf, eew); 760} 761 762GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 766 767/* 768 *** unit stride mask load and store 769 */ 770static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 771{ 772 uint32_t data = 0; 773 gen_helper_ldst_us *fn = gen_helper_vlm_v; 774 775 /* EMUL = 1, NFIELDS = 1 */ 776 data = FIELD_DP32(data, VDATA, LMUL, 0); 777 data = FIELD_DP32(data, VDATA, NF, 1); 778 /* Mask destination register are always tail-agnostic */ 779 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 780 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 781} 782 783static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 784{ 785 /* EMUL = 1, NFIELDS = 1 */ 786 return require_rvv(s) && vext_check_isa_ill(s); 787} 788 789static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 790{ 791 uint32_t data = 0; 792 gen_helper_ldst_us *fn = gen_helper_vsm_v; 793 794 /* EMUL = 1, NFIELDS = 1 */ 795 data = FIELD_DP32(data, VDATA, LMUL, 0); 796 data = FIELD_DP32(data, VDATA, NF, 1); 797 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 798} 799 800static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 801{ 802 /* EMUL = 1, NFIELDS = 1 */ 803 return require_rvv(s) && vext_check_isa_ill(s); 804} 805 806GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 807GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 808 809/* 810 *** stride load and store 811 */ 812typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 813 TCGv, TCGv_env, TCGv_i32); 814 815static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 816 uint32_t data, gen_helper_ldst_stride *fn, 817 DisasContext *s, bool is_store) 818{ 819 TCGv_ptr dest, mask; 820 TCGv base, stride; 821 TCGv_i32 desc; 822 823 TCGLabel *over = gen_new_label(); 824 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 825 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 826 827 dest = tcg_temp_new_ptr(); 828 mask = tcg_temp_new_ptr(); 829 base = get_gpr(s, rs1, EXT_NONE); 830 stride = get_gpr(s, rs2, EXT_NONE); 831 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 832 s->cfg_ptr->vlen / 8, data)); 833 834 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 835 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 836 837 fn(dest, mask, base, stride, cpu_env, desc); 838 839 tcg_temp_free_ptr(dest); 840 tcg_temp_free_ptr(mask); 841 842 if (!is_store) { 843 mark_vs_dirty(s); 844 } 845 846 gen_set_label(over); 847 return true; 848} 849 850static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 851{ 852 uint32_t data = 0; 853 gen_helper_ldst_stride *fn; 854 static gen_helper_ldst_stride * const fns[4] = { 855 gen_helper_vlse8_v, gen_helper_vlse16_v, 856 gen_helper_vlse32_v, gen_helper_vlse64_v 857 }; 858 859 fn = fns[eew]; 860 if (fn == NULL) { 861 return false; 862 } 863 864 uint8_t emul = vext_get_emul(s, eew); 865 data = FIELD_DP32(data, VDATA, VM, a->vm); 866 data = FIELD_DP32(data, VDATA, LMUL, emul); 867 data = FIELD_DP32(data, VDATA, NF, a->nf); 868 data = FIELD_DP32(data, VDATA, VTA, s->vta); 869 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 870} 871 872static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 873{ 874 return require_rvv(s) && 875 vext_check_isa_ill(s) && 876 vext_check_load(s, a->rd, a->nf, a->vm, eew); 877} 878 879GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 880GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 881GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 882GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 883 884static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 885{ 886 uint32_t data = 0; 887 gen_helper_ldst_stride *fn; 888 static gen_helper_ldst_stride * const fns[4] = { 889 /* masked stride store */ 890 gen_helper_vsse8_v, gen_helper_vsse16_v, 891 gen_helper_vsse32_v, gen_helper_vsse64_v 892 }; 893 894 uint8_t emul = vext_get_emul(s, eew); 895 data = FIELD_DP32(data, VDATA, VM, a->vm); 896 data = FIELD_DP32(data, VDATA, LMUL, emul); 897 data = FIELD_DP32(data, VDATA, NF, a->nf); 898 fn = fns[eew]; 899 if (fn == NULL) { 900 return false; 901 } 902 903 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 904} 905 906static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 907{ 908 return require_rvv(s) && 909 vext_check_isa_ill(s) && 910 vext_check_store(s, a->rd, a->nf, eew); 911} 912 913GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 914GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 915GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 916GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 917 918/* 919 *** index load and store 920 */ 921typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 922 TCGv_ptr, TCGv_env, TCGv_i32); 923 924static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 925 uint32_t data, gen_helper_ldst_index *fn, 926 DisasContext *s, bool is_store) 927{ 928 TCGv_ptr dest, mask, index; 929 TCGv base; 930 TCGv_i32 desc; 931 932 TCGLabel *over = gen_new_label(); 933 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 934 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 935 936 dest = tcg_temp_new_ptr(); 937 mask = tcg_temp_new_ptr(); 938 index = tcg_temp_new_ptr(); 939 base = get_gpr(s, rs1, EXT_NONE); 940 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 941 s->cfg_ptr->vlen / 8, data)); 942 943 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 944 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 945 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 946 947 fn(dest, mask, base, index, cpu_env, desc); 948 949 tcg_temp_free_ptr(dest); 950 tcg_temp_free_ptr(mask); 951 tcg_temp_free_ptr(index); 952 953 if (!is_store) { 954 mark_vs_dirty(s); 955 } 956 957 gen_set_label(over); 958 return true; 959} 960 961static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 962{ 963 uint32_t data = 0; 964 gen_helper_ldst_index *fn; 965 static gen_helper_ldst_index * const fns[4][4] = { 966 /* 967 * offset vector register group EEW = 8, 968 * data vector register group EEW = SEW 969 */ 970 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 971 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 972 /* 973 * offset vector register group EEW = 16, 974 * data vector register group EEW = SEW 975 */ 976 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 977 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 978 /* 979 * offset vector register group EEW = 32, 980 * data vector register group EEW = SEW 981 */ 982 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 983 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 984 /* 985 * offset vector register group EEW = 64, 986 * data vector register group EEW = SEW 987 */ 988 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 989 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 990 }; 991 992 fn = fns[eew][s->sew]; 993 994 uint8_t emul = vext_get_emul(s, s->sew); 995 data = FIELD_DP32(data, VDATA, VM, a->vm); 996 data = FIELD_DP32(data, VDATA, LMUL, emul); 997 data = FIELD_DP32(data, VDATA, NF, a->nf); 998 data = FIELD_DP32(data, VDATA, VTA, s->vta); 999 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1000} 1001 1002static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1003{ 1004 return require_rvv(s) && 1005 vext_check_isa_ill(s) && 1006 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1007} 1008 1009GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1010GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1011GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1012GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1013 1014static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1015{ 1016 uint32_t data = 0; 1017 gen_helper_ldst_index *fn; 1018 static gen_helper_ldst_index * const fns[4][4] = { 1019 /* 1020 * offset vector register group EEW = 8, 1021 * data vector register group EEW = SEW 1022 */ 1023 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1024 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1025 /* 1026 * offset vector register group EEW = 16, 1027 * data vector register group EEW = SEW 1028 */ 1029 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1030 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1031 /* 1032 * offset vector register group EEW = 32, 1033 * data vector register group EEW = SEW 1034 */ 1035 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1036 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1037 /* 1038 * offset vector register group EEW = 64, 1039 * data vector register group EEW = SEW 1040 */ 1041 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1042 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1043 }; 1044 1045 fn = fns[eew][s->sew]; 1046 1047 uint8_t emul = vext_get_emul(s, s->sew); 1048 data = FIELD_DP32(data, VDATA, VM, a->vm); 1049 data = FIELD_DP32(data, VDATA, LMUL, emul); 1050 data = FIELD_DP32(data, VDATA, NF, a->nf); 1051 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1052} 1053 1054static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1059} 1060 1061GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1062GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1063GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1064GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1065 1066/* 1067 *** unit stride fault-only-first load 1068 */ 1069static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1070 gen_helper_ldst_us *fn, DisasContext *s) 1071{ 1072 TCGv_ptr dest, mask; 1073 TCGv base; 1074 TCGv_i32 desc; 1075 1076 TCGLabel *over = gen_new_label(); 1077 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1078 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1079 1080 dest = tcg_temp_new_ptr(); 1081 mask = tcg_temp_new_ptr(); 1082 base = get_gpr(s, rs1, EXT_NONE); 1083 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1084 s->cfg_ptr->vlen / 8, data)); 1085 1086 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1087 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1088 1089 fn(dest, mask, base, cpu_env, desc); 1090 1091 tcg_temp_free_ptr(dest); 1092 tcg_temp_free_ptr(mask); 1093 mark_vs_dirty(s); 1094 gen_set_label(over); 1095 return true; 1096} 1097 1098static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1099{ 1100 uint32_t data = 0; 1101 gen_helper_ldst_us *fn; 1102 static gen_helper_ldst_us * const fns[4] = { 1103 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1104 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1105 }; 1106 1107 fn = fns[eew]; 1108 if (fn == NULL) { 1109 return false; 1110 } 1111 1112 uint8_t emul = vext_get_emul(s, eew); 1113 data = FIELD_DP32(data, VDATA, VM, a->vm); 1114 data = FIELD_DP32(data, VDATA, LMUL, emul); 1115 data = FIELD_DP32(data, VDATA, NF, a->nf); 1116 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1117 return ldff_trans(a->rd, a->rs1, data, fn, s); 1118} 1119 1120GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1121GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1122GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1123GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1124 1125/* 1126 * load and store whole register instructions 1127 */ 1128typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1129 1130static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1131 uint32_t width, gen_helper_ldst_whole *fn, 1132 DisasContext *s, bool is_store) 1133{ 1134 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1135 TCGLabel *over = gen_new_label(); 1136 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1137 1138 TCGv_ptr dest; 1139 TCGv base; 1140 TCGv_i32 desc; 1141 1142 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1143 dest = tcg_temp_new_ptr(); 1144 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1145 s->cfg_ptr->vlen / 8, data)); 1146 1147 base = get_gpr(s, rs1, EXT_NONE); 1148 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1149 1150 fn(dest, base, cpu_env, desc); 1151 1152 tcg_temp_free_ptr(dest); 1153 1154 if (!is_store) { 1155 mark_vs_dirty(s); 1156 } 1157 gen_set_label(over); 1158 1159 return true; 1160} 1161 1162/* 1163 * load and store whole register instructions ignore vtype and vl setting. 1164 * Thus, we don't need to check vill bit. (Section 7.9) 1165 */ 1166#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1167static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1168{ \ 1169 if (require_rvv(s) && \ 1170 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1171 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1172 gen_helper_##NAME, s, IS_STORE); \ 1173 } \ 1174 return false; \ 1175} 1176 1177GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1178GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1179GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1180GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1181GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1182GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1183GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1184GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1185GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1186GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1187GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1188GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1189GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1190GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1191GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1192GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1193 1194/* 1195 * The vector whole register store instructions are encoded similar to 1196 * unmasked unit-stride store of elements with EEW=8. 1197 */ 1198GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1199GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1200GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1201GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1202 1203/* 1204 *** Vector Integer Arithmetic Instructions 1205 */ 1206 1207/* 1208 * MAXSZ returns the maximum vector size can be operated in bytes, 1209 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1210 * to accerlate vector operation. 1211 */ 1212static inline uint32_t MAXSZ(DisasContext *s) 1213{ 1214 int scale = s->lmul - 3; 1215 return s->cfg_ptr->vlen >> -scale; 1216} 1217 1218static bool opivv_check(DisasContext *s, arg_rmrr *a) 1219{ 1220 return require_rvv(s) && 1221 vext_check_isa_ill(s) && 1222 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1223} 1224 1225typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1226 uint32_t, uint32_t, uint32_t); 1227 1228static inline bool 1229do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1230 gen_helper_gvec_4_ptr *fn) 1231{ 1232 TCGLabel *over = gen_new_label(); 1233 if (!opivv_check(s, a)) { 1234 return false; 1235 } 1236 1237 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1238 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1239 1240 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1241 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1242 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1243 MAXSZ(s), MAXSZ(s)); 1244 } else { 1245 uint32_t data = 0; 1246 1247 data = FIELD_DP32(data, VDATA, VM, a->vm); 1248 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1249 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1250 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1251 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1252 cpu_env, s->cfg_ptr->vlen / 8, 1253 s->cfg_ptr->vlen / 8, data, fn); 1254 } 1255 mark_vs_dirty(s); 1256 gen_set_label(over); 1257 return true; 1258} 1259 1260/* OPIVV with GVEC IR */ 1261#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1262static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1263{ \ 1264 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1265 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1266 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1267 }; \ 1268 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1269} 1270 1271GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1272GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1273 1274typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1275 TCGv_env, TCGv_i32); 1276 1277static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1278 gen_helper_opivx *fn, DisasContext *s) 1279{ 1280 TCGv_ptr dest, src2, mask; 1281 TCGv src1; 1282 TCGv_i32 desc; 1283 uint32_t data = 0; 1284 1285 TCGLabel *over = gen_new_label(); 1286 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1287 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1288 1289 dest = tcg_temp_new_ptr(); 1290 mask = tcg_temp_new_ptr(); 1291 src2 = tcg_temp_new_ptr(); 1292 src1 = get_gpr(s, rs1, EXT_SIGN); 1293 1294 data = FIELD_DP32(data, VDATA, VM, vm); 1295 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1296 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1297 s->cfg_ptr->vlen / 8, data)); 1298 1299 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1300 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1301 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1302 1303 fn(dest, mask, src1, src2, cpu_env, desc); 1304 1305 tcg_temp_free_ptr(dest); 1306 tcg_temp_free_ptr(mask); 1307 tcg_temp_free_ptr(src2); 1308 mark_vs_dirty(s); 1309 gen_set_label(over); 1310 return true; 1311} 1312 1313static bool opivx_check(DisasContext *s, arg_rmrr *a) 1314{ 1315 return require_rvv(s) && 1316 vext_check_isa_ill(s) && 1317 vext_check_ss(s, a->rd, a->rs2, a->vm); 1318} 1319 1320typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1321 uint32_t, uint32_t); 1322 1323static inline bool 1324do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1325 gen_helper_opivx *fn) 1326{ 1327 if (!opivx_check(s, a)) { 1328 return false; 1329 } 1330 1331 if (a->vm && s->vl_eq_vlmax) { 1332 TCGv_i64 src1 = tcg_temp_new_i64(); 1333 1334 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1335 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1336 src1, MAXSZ(s), MAXSZ(s)); 1337 1338 tcg_temp_free_i64(src1); 1339 mark_vs_dirty(s); 1340 return true; 1341 } 1342 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1343} 1344 1345/* OPIVX with GVEC IR */ 1346#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1347static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1348{ \ 1349 static gen_helper_opivx * const fns[4] = { \ 1350 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1351 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1352 }; \ 1353 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1354} 1355 1356GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1357GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1358 1359static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1360{ 1361 tcg_gen_vec_sub8_i64(d, b, a); 1362} 1363 1364static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1365{ 1366 tcg_gen_vec_sub16_i64(d, b, a); 1367} 1368 1369static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1370{ 1371 tcg_gen_sub_i32(ret, arg2, arg1); 1372} 1373 1374static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1375{ 1376 tcg_gen_sub_i64(ret, arg2, arg1); 1377} 1378 1379static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1380{ 1381 tcg_gen_sub_vec(vece, r, b, a); 1382} 1383 1384static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1385 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1386{ 1387 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1388 static const GVecGen2s rsub_op[4] = { 1389 { .fni8 = gen_vec_rsub8_i64, 1390 .fniv = gen_rsub_vec, 1391 .fno = gen_helper_vec_rsubs8, 1392 .opt_opc = vecop_list, 1393 .vece = MO_8 }, 1394 { .fni8 = gen_vec_rsub16_i64, 1395 .fniv = gen_rsub_vec, 1396 .fno = gen_helper_vec_rsubs16, 1397 .opt_opc = vecop_list, 1398 .vece = MO_16 }, 1399 { .fni4 = gen_rsub_i32, 1400 .fniv = gen_rsub_vec, 1401 .fno = gen_helper_vec_rsubs32, 1402 .opt_opc = vecop_list, 1403 .vece = MO_32 }, 1404 { .fni8 = gen_rsub_i64, 1405 .fniv = gen_rsub_vec, 1406 .fno = gen_helper_vec_rsubs64, 1407 .opt_opc = vecop_list, 1408 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1409 .vece = MO_64 }, 1410 }; 1411 1412 tcg_debug_assert(vece <= MO_64); 1413 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1414} 1415 1416GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1417 1418typedef enum { 1419 IMM_ZX, /* Zero-extended */ 1420 IMM_SX, /* Sign-extended */ 1421 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1422 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1423} imm_mode_t; 1424 1425static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1426{ 1427 switch (imm_mode) { 1428 case IMM_ZX: 1429 return extract64(imm, 0, 5); 1430 case IMM_SX: 1431 return sextract64(imm, 0, 5); 1432 case IMM_TRUNC_SEW: 1433 return extract64(imm, 0, s->sew + 3); 1434 case IMM_TRUNC_2SEW: 1435 return extract64(imm, 0, s->sew + 4); 1436 default: 1437 g_assert_not_reached(); 1438 } 1439} 1440 1441static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1442 gen_helper_opivx *fn, DisasContext *s, 1443 imm_mode_t imm_mode) 1444{ 1445 TCGv_ptr dest, src2, mask; 1446 TCGv src1; 1447 TCGv_i32 desc; 1448 uint32_t data = 0; 1449 1450 TCGLabel *over = gen_new_label(); 1451 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1452 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1453 1454 dest = tcg_temp_new_ptr(); 1455 mask = tcg_temp_new_ptr(); 1456 src2 = tcg_temp_new_ptr(); 1457 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1458 1459 data = FIELD_DP32(data, VDATA, VM, vm); 1460 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1461 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1462 s->cfg_ptr->vlen / 8, data)); 1463 1464 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1465 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1466 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1467 1468 fn(dest, mask, src1, src2, cpu_env, desc); 1469 1470 tcg_temp_free_ptr(dest); 1471 tcg_temp_free_ptr(mask); 1472 tcg_temp_free_ptr(src2); 1473 mark_vs_dirty(s); 1474 gen_set_label(over); 1475 return true; 1476} 1477 1478typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1479 uint32_t, uint32_t); 1480 1481static inline bool 1482do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1483 gen_helper_opivx *fn, imm_mode_t imm_mode) 1484{ 1485 if (!opivx_check(s, a)) { 1486 return false; 1487 } 1488 1489 if (a->vm && s->vl_eq_vlmax) { 1490 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1491 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1492 mark_vs_dirty(s); 1493 return true; 1494 } 1495 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1496} 1497 1498/* OPIVI with GVEC IR */ 1499#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1500static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1501{ \ 1502 static gen_helper_opivx * const fns[4] = { \ 1503 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1504 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1505 }; \ 1506 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1507 fns[s->sew], IMM_MODE); \ 1508} 1509 1510GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1511 1512static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1513 int64_t c, uint32_t oprsz, uint32_t maxsz) 1514{ 1515 TCGv_i64 tmp = tcg_constant_i64(c); 1516 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1517} 1518 1519GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1520 1521/* Vector Widening Integer Add/Subtract */ 1522 1523/* OPIVV with WIDEN */ 1524static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1525{ 1526 return require_rvv(s) && 1527 vext_check_isa_ill(s) && 1528 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1529} 1530 1531static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1532 gen_helper_gvec_4_ptr *fn, 1533 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1534{ 1535 if (checkfn(s, a)) { 1536 uint32_t data = 0; 1537 TCGLabel *over = gen_new_label(); 1538 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1539 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1540 1541 data = FIELD_DP32(data, VDATA, VM, a->vm); 1542 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1543 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1544 vreg_ofs(s, a->rs1), 1545 vreg_ofs(s, a->rs2), 1546 cpu_env, s->cfg_ptr->vlen / 8, 1547 s->cfg_ptr->vlen / 8, 1548 data, fn); 1549 mark_vs_dirty(s); 1550 gen_set_label(over); 1551 return true; 1552 } 1553 return false; 1554} 1555 1556#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1557static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1558{ \ 1559 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1560 gen_helper_##NAME##_b, \ 1561 gen_helper_##NAME##_h, \ 1562 gen_helper_##NAME##_w \ 1563 }; \ 1564 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1565} 1566 1567GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1568GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1569GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1570GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1571 1572/* OPIVX with WIDEN */ 1573static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1574{ 1575 return require_rvv(s) && 1576 vext_check_isa_ill(s) && 1577 vext_check_ds(s, a->rd, a->rs2, a->vm); 1578} 1579 1580static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1581 gen_helper_opivx *fn) 1582{ 1583 if (opivx_widen_check(s, a)) { 1584 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1585 } 1586 return false; 1587} 1588 1589#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1590static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1591{ \ 1592 static gen_helper_opivx * const fns[3] = { \ 1593 gen_helper_##NAME##_b, \ 1594 gen_helper_##NAME##_h, \ 1595 gen_helper_##NAME##_w \ 1596 }; \ 1597 return do_opivx_widen(s, a, fns[s->sew]); \ 1598} 1599 1600GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1601GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1602GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1603GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1604 1605/* WIDEN OPIVV with WIDEN */ 1606static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1607{ 1608 return require_rvv(s) && 1609 vext_check_isa_ill(s) && 1610 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1611} 1612 1613static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1614 gen_helper_gvec_4_ptr *fn) 1615{ 1616 if (opiwv_widen_check(s, a)) { 1617 uint32_t data = 0; 1618 TCGLabel *over = gen_new_label(); 1619 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1620 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1621 1622 data = FIELD_DP32(data, VDATA, VM, a->vm); 1623 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1624 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1625 vreg_ofs(s, a->rs1), 1626 vreg_ofs(s, a->rs2), 1627 cpu_env, s->cfg_ptr->vlen / 8, 1628 s->cfg_ptr->vlen / 8, data, fn); 1629 mark_vs_dirty(s); 1630 gen_set_label(over); 1631 return true; 1632 } 1633 return false; 1634} 1635 1636#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1637static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1638{ \ 1639 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1640 gen_helper_##NAME##_b, \ 1641 gen_helper_##NAME##_h, \ 1642 gen_helper_##NAME##_w \ 1643 }; \ 1644 return do_opiwv_widen(s, a, fns[s->sew]); \ 1645} 1646 1647GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1648GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1649GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1650GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1651 1652/* WIDEN OPIVX with WIDEN */ 1653static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1654{ 1655 return require_rvv(s) && 1656 vext_check_isa_ill(s) && 1657 vext_check_dd(s, a->rd, a->rs2, a->vm); 1658} 1659 1660static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1661 gen_helper_opivx *fn) 1662{ 1663 if (opiwx_widen_check(s, a)) { 1664 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1665 } 1666 return false; 1667} 1668 1669#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1670static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1671{ \ 1672 static gen_helper_opivx * const fns[3] = { \ 1673 gen_helper_##NAME##_b, \ 1674 gen_helper_##NAME##_h, \ 1675 gen_helper_##NAME##_w \ 1676 }; \ 1677 return do_opiwx_widen(s, a, fns[s->sew]); \ 1678} 1679 1680GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1681GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1682GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1683GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1684 1685/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1686/* OPIVV without GVEC IR */ 1687#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1688static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1689{ \ 1690 if (CHECK(s, a)) { \ 1691 uint32_t data = 0; \ 1692 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1693 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1694 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1695 }; \ 1696 TCGLabel *over = gen_new_label(); \ 1697 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1698 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1699 \ 1700 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1701 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1702 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1703 vreg_ofs(s, a->rs1), \ 1704 vreg_ofs(s, a->rs2), cpu_env, \ 1705 s->cfg_ptr->vlen / 8, \ 1706 s->cfg_ptr->vlen / 8, data, \ 1707 fns[s->sew]); \ 1708 mark_vs_dirty(s); \ 1709 gen_set_label(over); \ 1710 return true; \ 1711 } \ 1712 return false; \ 1713} 1714 1715/* 1716 * For vadc and vsbc, an illegal instruction exception is raised if the 1717 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1718 */ 1719static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1720{ 1721 return require_rvv(s) && 1722 vext_check_isa_ill(s) && 1723 (a->rd != 0) && 1724 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1725} 1726 1727GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1728GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1729 1730/* 1731 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1732 * destination vector register overlaps a source vector register group. 1733 */ 1734static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1735{ 1736 return require_rvv(s) && 1737 vext_check_isa_ill(s) && 1738 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1739} 1740 1741GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1742GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1743 1744static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1745{ 1746 return require_rvv(s) && 1747 vext_check_isa_ill(s) && 1748 (a->rd != 0) && 1749 vext_check_ss(s, a->rd, a->rs2, a->vm); 1750} 1751 1752/* OPIVX without GVEC IR */ 1753#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1754static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1755{ \ 1756 if (CHECK(s, a)) { \ 1757 static gen_helper_opivx * const fns[4] = { \ 1758 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1759 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1760 }; \ 1761 \ 1762 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1763 } \ 1764 return false; \ 1765} 1766 1767GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1768GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1769 1770static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1771{ 1772 return require_rvv(s) && 1773 vext_check_isa_ill(s) && 1774 vext_check_ms(s, a->rd, a->rs2); 1775} 1776 1777GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1778GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1779 1780/* OPIVI without GVEC IR */ 1781#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1782static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1783{ \ 1784 if (CHECK(s, a)) { \ 1785 static gen_helper_opivx * const fns[4] = { \ 1786 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1787 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1788 }; \ 1789 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1790 fns[s->sew], s, IMM_MODE); \ 1791 } \ 1792 return false; \ 1793} 1794 1795GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1796GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1797 1798/* Vector Bitwise Logical Instructions */ 1799GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1800GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1801GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1802GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1803GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1804GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1805GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1806GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1807GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1808 1809/* Vector Single-Width Bit Shift Instructions */ 1810GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1811GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1812GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1813 1814typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1815 uint32_t, uint32_t); 1816 1817static inline bool 1818do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1819 gen_helper_opivx *fn) 1820{ 1821 if (!opivx_check(s, a)) { 1822 return false; 1823 } 1824 1825 if (a->vm && s->vl_eq_vlmax) { 1826 TCGv_i32 src1 = tcg_temp_new_i32(); 1827 1828 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1829 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1830 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1831 src1, MAXSZ(s), MAXSZ(s)); 1832 1833 tcg_temp_free_i32(src1); 1834 mark_vs_dirty(s); 1835 return true; 1836 } 1837 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1838} 1839 1840#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1841static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1842{ \ 1843 static gen_helper_opivx * const fns[4] = { \ 1844 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1845 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1846 }; \ 1847 \ 1848 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1849} 1850 1851GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1852GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1853GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1854 1855GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1856GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1857GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1858 1859/* Vector Narrowing Integer Right Shift Instructions */ 1860static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1861{ 1862 return require_rvv(s) && 1863 vext_check_isa_ill(s) && 1864 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1865} 1866 1867/* OPIVV with NARROW */ 1868#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1869static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1870{ \ 1871 if (opiwv_narrow_check(s, a)) { \ 1872 uint32_t data = 0; \ 1873 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1874 gen_helper_##NAME##_b, \ 1875 gen_helper_##NAME##_h, \ 1876 gen_helper_##NAME##_w, \ 1877 }; \ 1878 TCGLabel *over = gen_new_label(); \ 1879 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1880 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1881 \ 1882 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1883 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1884 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1885 vreg_ofs(s, a->rs1), \ 1886 vreg_ofs(s, a->rs2), cpu_env, \ 1887 s->cfg_ptr->vlen / 8, \ 1888 s->cfg_ptr->vlen / 8, data, \ 1889 fns[s->sew]); \ 1890 mark_vs_dirty(s); \ 1891 gen_set_label(over); \ 1892 return true; \ 1893 } \ 1894 return false; \ 1895} 1896GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1897GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1898 1899static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1900{ 1901 return require_rvv(s) && 1902 vext_check_isa_ill(s) && 1903 vext_check_sd(s, a->rd, a->rs2, a->vm); 1904} 1905 1906/* OPIVX with NARROW */ 1907#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1908static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1909{ \ 1910 if (opiwx_narrow_check(s, a)) { \ 1911 static gen_helper_opivx * const fns[3] = { \ 1912 gen_helper_##NAME##_b, \ 1913 gen_helper_##NAME##_h, \ 1914 gen_helper_##NAME##_w, \ 1915 }; \ 1916 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1917 } \ 1918 return false; \ 1919} 1920 1921GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1922GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1923 1924/* OPIWI with NARROW */ 1925#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1926static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1927{ \ 1928 if (opiwx_narrow_check(s, a)) { \ 1929 static gen_helper_opivx * const fns[3] = { \ 1930 gen_helper_##OPIVX##_b, \ 1931 gen_helper_##OPIVX##_h, \ 1932 gen_helper_##OPIVX##_w, \ 1933 }; \ 1934 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1935 fns[s->sew], s, IMM_MODE); \ 1936 } \ 1937 return false; \ 1938} 1939 1940GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1941GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1942 1943/* Vector Integer Comparison Instructions */ 1944/* 1945 * For all comparison instructions, an illegal instruction exception is raised 1946 * if the destination vector register overlaps a source vector register group 1947 * and LMUL > 1. 1948 */ 1949static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1950{ 1951 return require_rvv(s) && 1952 vext_check_isa_ill(s) && 1953 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1954} 1955 1956GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1957GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1958GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1959GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1960GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1961GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1962 1963static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1964{ 1965 return require_rvv(s) && 1966 vext_check_isa_ill(s) && 1967 vext_check_ms(s, a->rd, a->rs2); 1968} 1969 1970GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1971GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1972GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1973GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1974GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1975GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1976GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1977GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1978 1979GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1980GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1981GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1982GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1983GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1984GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1985 1986/* Vector Integer Min/Max Instructions */ 1987GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1988GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1989GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1990GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1991GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1992GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1993GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1994GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1995 1996/* Vector Single-Width Integer Multiply Instructions */ 1997 1998static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 1999{ 2000 /* 2001 * All Zve* extensions support all vector integer instructions, 2002 * except that the vmulh integer multiply variants 2003 * that return the high word of the product 2004 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2005 * are not included for EEW=64 in Zve64*. (Section 18.2) 2006 */ 2007 return opivv_check(s, a) && 2008 (!has_ext(s, RVV) && 2009 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2010} 2011 2012static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2013{ 2014 /* 2015 * All Zve* extensions support all vector integer instructions, 2016 * except that the vmulh integer multiply variants 2017 * that return the high word of the product 2018 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2019 * are not included for EEW=64 in Zve64*. (Section 18.2) 2020 */ 2021 return opivx_check(s, a) && 2022 (!has_ext(s, RVV) && 2023 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2024} 2025 2026GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2027GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2028GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2029GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2030GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2031GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2032GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2033GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2034 2035/* Vector Integer Divide Instructions */ 2036GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2037GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2038GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2039GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2040GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2041GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2042GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2043GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2044 2045/* Vector Widening Integer Multiply Instructions */ 2046GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2047GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2048GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2049GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2050GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2051GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2052 2053/* Vector Single-Width Integer Multiply-Add Instructions */ 2054GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2055GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2056GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2057GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2058GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2059GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2060GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2061GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2062 2063/* Vector Widening Integer Multiply-Add Instructions */ 2064GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2065GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2066GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2067GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2068GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2069GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2070GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2071 2072/* Vector Integer Merge and Move Instructions */ 2073static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2074{ 2075 if (require_rvv(s) && 2076 vext_check_isa_ill(s) && 2077 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2078 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2079 if (s->vl_eq_vlmax) { 2080 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2081 vreg_ofs(s, a->rs1), 2082 MAXSZ(s), MAXSZ(s)); 2083 } else { 2084 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2085 static gen_helper_gvec_2_ptr * const fns[4] = { 2086 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2087 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2088 }; 2089 TCGLabel *over = gen_new_label(); 2090 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2091 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2092 2093 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2094 cpu_env, s->cfg_ptr->vlen / 8, 2095 s->cfg_ptr->vlen / 8, data, 2096 fns[s->sew]); 2097 gen_set_label(over); 2098 } 2099 mark_vs_dirty(s); 2100 return true; 2101 } 2102 return false; 2103} 2104 2105typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2106static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2107{ 2108 if (require_rvv(s) && 2109 vext_check_isa_ill(s) && 2110 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2111 vext_check_ss(s, a->rd, 0, 1)) { 2112 TCGv s1; 2113 TCGLabel *over = gen_new_label(); 2114 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2115 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2116 2117 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2118 2119 if (s->vl_eq_vlmax) { 2120 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2121 MAXSZ(s), MAXSZ(s), s1); 2122 } else { 2123 TCGv_i32 desc; 2124 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2125 TCGv_ptr dest = tcg_temp_new_ptr(); 2126 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2127 static gen_helper_vmv_vx * const fns[4] = { 2128 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2129 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2130 }; 2131 2132 tcg_gen_ext_tl_i64(s1_i64, s1); 2133 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2134 s->cfg_ptr->vlen / 8, data)); 2135 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2136 fns[s->sew](dest, s1_i64, cpu_env, desc); 2137 2138 tcg_temp_free_ptr(dest); 2139 tcg_temp_free_i64(s1_i64); 2140 } 2141 2142 mark_vs_dirty(s); 2143 gen_set_label(over); 2144 return true; 2145 } 2146 return false; 2147} 2148 2149static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2150{ 2151 if (require_rvv(s) && 2152 vext_check_isa_ill(s) && 2153 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2154 vext_check_ss(s, a->rd, 0, 1)) { 2155 int64_t simm = sextract64(a->rs1, 0, 5); 2156 if (s->vl_eq_vlmax) { 2157 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2158 MAXSZ(s), MAXSZ(s), simm); 2159 mark_vs_dirty(s); 2160 } else { 2161 TCGv_i32 desc; 2162 TCGv_i64 s1; 2163 TCGv_ptr dest; 2164 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2165 static gen_helper_vmv_vx * const fns[4] = { 2166 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2167 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2168 }; 2169 TCGLabel *over = gen_new_label(); 2170 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2171 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2172 2173 s1 = tcg_constant_i64(simm); 2174 dest = tcg_temp_new_ptr(); 2175 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2176 s->cfg_ptr->vlen / 8, data)); 2177 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2178 fns[s->sew](dest, s1, cpu_env, desc); 2179 2180 tcg_temp_free_ptr(dest); 2181 mark_vs_dirty(s); 2182 gen_set_label(over); 2183 } 2184 return true; 2185 } 2186 return false; 2187} 2188 2189GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2190GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2191GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2192 2193/* 2194 *** Vector Fixed-Point Arithmetic Instructions 2195 */ 2196 2197/* Vector Single-Width Saturating Add and Subtract */ 2198GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2199GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2200GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2201GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2202GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2203GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2204GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2205GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2206GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2207GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2208 2209/* Vector Single-Width Averaging Add and Subtract */ 2210GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2211GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2212GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2213GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2214GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2215GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2216GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2217GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2218 2219/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2220 2221static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2222{ 2223 /* 2224 * All Zve* extensions support all vector fixed-point arithmetic 2225 * instructions, except that vsmul.vv and vsmul.vx are not supported 2226 * for EEW=64 in Zve64*. (Section 18.2) 2227 */ 2228 return opivv_check(s, a) && 2229 (!has_ext(s, RVV) && 2230 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2231} 2232 2233static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2234{ 2235 /* 2236 * All Zve* extensions support all vector fixed-point arithmetic 2237 * instructions, except that vsmul.vv and vsmul.vx are not supported 2238 * for EEW=64 in Zve64*. (Section 18.2) 2239 */ 2240 return opivx_check(s, a) && 2241 (!has_ext(s, RVV) && 2242 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2243} 2244 2245GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2246GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2247 2248/* Vector Single-Width Scaling Shift Instructions */ 2249GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2250GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2251GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2252GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2253GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2254GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2255 2256/* Vector Narrowing Fixed-Point Clip Instructions */ 2257GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2258GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2259GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2260GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2261GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2262GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2263 2264/* 2265 *** Vector Float Point Arithmetic Instructions 2266 */ 2267 2268/* 2269 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2270 * RVF and RVD can be treated equally. 2271 * We don't have to deal with the cases of: SEW > FLEN. 2272 * 2273 * If SEW < FLEN, check whether input fp register is a valid 2274 * NaN-boxed value, in which case the least-significant SEW bits 2275 * of the f regsiter are used, else the canonical NaN value is used. 2276 */ 2277static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2278{ 2279 switch (s->sew) { 2280 case 1: 2281 gen_check_nanbox_h(out, in); 2282 break; 2283 case 2: 2284 gen_check_nanbox_s(out, in); 2285 break; 2286 case 3: 2287 tcg_gen_mov_i64(out, in); 2288 break; 2289 default: 2290 g_assert_not_reached(); 2291 } 2292} 2293 2294/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2295 2296/* 2297 * If the current SEW does not correspond to a supported IEEE floating-point 2298 * type, an illegal instruction exception is raised. 2299 */ 2300static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2301{ 2302 return require_rvv(s) && 2303 require_rvf(s) && 2304 vext_check_isa_ill(s) && 2305 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2306 require_zve32f(s) && 2307 require_zve64f(s); 2308} 2309 2310/* OPFVV without GVEC IR */ 2311#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2312static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2313{ \ 2314 if (CHECK(s, a)) { \ 2315 uint32_t data = 0; \ 2316 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2317 gen_helper_##NAME##_h, \ 2318 gen_helper_##NAME##_w, \ 2319 gen_helper_##NAME##_d, \ 2320 }; \ 2321 TCGLabel *over = gen_new_label(); \ 2322 gen_set_rm(s, RISCV_FRM_DYN); \ 2323 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2324 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2325 \ 2326 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2327 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2328 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2329 vreg_ofs(s, a->rs1), \ 2330 vreg_ofs(s, a->rs2), cpu_env, \ 2331 s->cfg_ptr->vlen / 8, \ 2332 s->cfg_ptr->vlen / 8, data, \ 2333 fns[s->sew - 1]); \ 2334 mark_vs_dirty(s); \ 2335 gen_set_label(over); \ 2336 return true; \ 2337 } \ 2338 return false; \ 2339} 2340GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2341GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2342 2343typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2344 TCGv_env, TCGv_i32); 2345 2346static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2347 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2348{ 2349 TCGv_ptr dest, src2, mask; 2350 TCGv_i32 desc; 2351 TCGv_i64 t1; 2352 2353 TCGLabel *over = gen_new_label(); 2354 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2355 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2356 2357 dest = tcg_temp_new_ptr(); 2358 mask = tcg_temp_new_ptr(); 2359 src2 = tcg_temp_new_ptr(); 2360 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2361 s->cfg_ptr->vlen / 8, data)); 2362 2363 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2364 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2365 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2366 2367 /* NaN-box f[rs1] */ 2368 t1 = tcg_temp_new_i64(); 2369 do_nanbox(s, t1, cpu_fpr[rs1]); 2370 2371 fn(dest, mask, t1, src2, cpu_env, desc); 2372 2373 tcg_temp_free_ptr(dest); 2374 tcg_temp_free_ptr(mask); 2375 tcg_temp_free_ptr(src2); 2376 tcg_temp_free_i64(t1); 2377 mark_vs_dirty(s); 2378 gen_set_label(over); 2379 return true; 2380} 2381 2382/* 2383 * If the current SEW does not correspond to a supported IEEE floating-point 2384 * type, an illegal instruction exception is raised 2385 */ 2386static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2387{ 2388 return require_rvv(s) && 2389 require_rvf(s) && 2390 vext_check_isa_ill(s) && 2391 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2392 require_zve32f(s) && 2393 require_zve64f(s); 2394} 2395 2396/* OPFVF without GVEC IR */ 2397#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2398static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2399{ \ 2400 if (CHECK(s, a)) { \ 2401 uint32_t data = 0; \ 2402 static gen_helper_opfvf *const fns[3] = { \ 2403 gen_helper_##NAME##_h, \ 2404 gen_helper_##NAME##_w, \ 2405 gen_helper_##NAME##_d, \ 2406 }; \ 2407 gen_set_rm(s, RISCV_FRM_DYN); \ 2408 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2409 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2410 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2411 fns[s->sew - 1], s); \ 2412 } \ 2413 return false; \ 2414} 2415 2416GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2417GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2418GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2419 2420/* Vector Widening Floating-Point Add/Subtract Instructions */ 2421static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2422{ 2423 return require_rvv(s) && 2424 require_scale_rvf(s) && 2425 (s->sew != MO_8) && 2426 vext_check_isa_ill(s) && 2427 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2428 require_scale_zve32f(s) && 2429 require_scale_zve64f(s); 2430} 2431 2432/* OPFVV with WIDEN */ 2433#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2434static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2435{ \ 2436 if (CHECK(s, a)) { \ 2437 uint32_t data = 0; \ 2438 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2439 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2440 }; \ 2441 TCGLabel *over = gen_new_label(); \ 2442 gen_set_rm(s, RISCV_FRM_DYN); \ 2443 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2444 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2445 \ 2446 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2447 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2448 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2449 vreg_ofs(s, a->rs1), \ 2450 vreg_ofs(s, a->rs2), cpu_env, \ 2451 s->cfg_ptr->vlen / 8, \ 2452 s->cfg_ptr->vlen / 8, data, \ 2453 fns[s->sew - 1]); \ 2454 mark_vs_dirty(s); \ 2455 gen_set_label(over); \ 2456 return true; \ 2457 } \ 2458 return false; \ 2459} 2460 2461GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2462GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2463 2464static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2465{ 2466 return require_rvv(s) && 2467 require_scale_rvf(s) && 2468 (s->sew != MO_8) && 2469 vext_check_isa_ill(s) && 2470 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2471 require_scale_zve32f(s) && 2472 require_scale_zve64f(s); 2473} 2474 2475/* OPFVF with WIDEN */ 2476#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2477static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2478{ \ 2479 if (opfvf_widen_check(s, a)) { \ 2480 uint32_t data = 0; \ 2481 static gen_helper_opfvf *const fns[2] = { \ 2482 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2483 }; \ 2484 gen_set_rm(s, RISCV_FRM_DYN); \ 2485 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2486 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2487 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2488 fns[s->sew - 1], s); \ 2489 } \ 2490 return false; \ 2491} 2492 2493GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2494GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2495 2496static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2497{ 2498 return require_rvv(s) && 2499 require_scale_rvf(s) && 2500 (s->sew != MO_8) && 2501 vext_check_isa_ill(s) && 2502 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2503 require_scale_zve32f(s) && 2504 require_scale_zve64f(s); 2505} 2506 2507/* WIDEN OPFVV with WIDEN */ 2508#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2509static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2510{ \ 2511 if (opfwv_widen_check(s, a)) { \ 2512 uint32_t data = 0; \ 2513 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2514 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2515 }; \ 2516 TCGLabel *over = gen_new_label(); \ 2517 gen_set_rm(s, RISCV_FRM_DYN); \ 2518 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2519 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2520 \ 2521 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2522 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2523 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2524 vreg_ofs(s, a->rs1), \ 2525 vreg_ofs(s, a->rs2), cpu_env, \ 2526 s->cfg_ptr->vlen / 8, \ 2527 s->cfg_ptr->vlen / 8, data, \ 2528 fns[s->sew - 1]); \ 2529 mark_vs_dirty(s); \ 2530 gen_set_label(over); \ 2531 return true; \ 2532 } \ 2533 return false; \ 2534} 2535 2536GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2537GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2538 2539static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2540{ 2541 return require_rvv(s) && 2542 require_scale_rvf(s) && 2543 (s->sew != MO_8) && 2544 vext_check_isa_ill(s) && 2545 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2546 require_scale_zve32f(s) && 2547 require_scale_zve64f(s); 2548} 2549 2550/* WIDEN OPFVF with WIDEN */ 2551#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2552static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2553{ \ 2554 if (opfwf_widen_check(s, a)) { \ 2555 uint32_t data = 0; \ 2556 static gen_helper_opfvf *const fns[2] = { \ 2557 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2558 }; \ 2559 gen_set_rm(s, RISCV_FRM_DYN); \ 2560 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2561 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2562 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2563 fns[s->sew - 1], s); \ 2564 } \ 2565 return false; \ 2566} 2567 2568GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2569GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2570 2571/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2572GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2573GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2574GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2575GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2576GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2577 2578/* Vector Widening Floating-Point Multiply */ 2579GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2580GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2581 2582/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2583GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2584GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2585GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2586GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2587GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2588GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2589GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2590GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2591GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2592GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2593GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2594GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2595GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2596GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2597GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2598GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2599 2600/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2601GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2602GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2603GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2604GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2605GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2606GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2607GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2608GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2609 2610/* Vector Floating-Point Square-Root Instruction */ 2611 2612/* 2613 * If the current SEW does not correspond to a supported IEEE floating-point 2614 * type, an illegal instruction exception is raised 2615 */ 2616static bool opfv_check(DisasContext *s, arg_rmr *a) 2617{ 2618 return require_rvv(s) && 2619 require_rvf(s) && 2620 vext_check_isa_ill(s) && 2621 /* OPFV instructions ignore vs1 check */ 2622 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2623 require_zve32f(s) && 2624 require_zve64f(s); 2625} 2626 2627static bool do_opfv(DisasContext *s, arg_rmr *a, 2628 gen_helper_gvec_3_ptr *fn, 2629 bool (*checkfn)(DisasContext *, arg_rmr *), 2630 int rm) 2631{ 2632 if (checkfn(s, a)) { 2633 if (rm != RISCV_FRM_DYN) { 2634 gen_set_rm(s, RISCV_FRM_DYN); 2635 } 2636 2637 uint32_t data = 0; 2638 TCGLabel *over = gen_new_label(); 2639 gen_set_rm(s, rm); 2640 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2641 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2642 2643 data = FIELD_DP32(data, VDATA, VM, a->vm); 2644 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2645 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2646 vreg_ofs(s, a->rs2), cpu_env, 2647 s->cfg_ptr->vlen / 8, 2648 s->cfg_ptr->vlen / 8, data, fn); 2649 mark_vs_dirty(s); 2650 gen_set_label(over); 2651 return true; 2652 } 2653 return false; 2654} 2655 2656#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2657static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2658{ \ 2659 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2660 gen_helper_##NAME##_h, \ 2661 gen_helper_##NAME##_w, \ 2662 gen_helper_##NAME##_d \ 2663 }; \ 2664 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2665} 2666 2667GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2668GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2669GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2670 2671/* Vector Floating-Point MIN/MAX Instructions */ 2672GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2673GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2674GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2675GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2676 2677/* Vector Floating-Point Sign-Injection Instructions */ 2678GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2679GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2680GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2681GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2682GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2683GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2684 2685/* Vector Floating-Point Compare Instructions */ 2686static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2687{ 2688 return require_rvv(s) && 2689 require_rvf(s) && 2690 vext_check_isa_ill(s) && 2691 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2692 require_zve32f(s) && 2693 require_zve64f(s); 2694} 2695 2696GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2697GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2698GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2699GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2700 2701static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2702{ 2703 return require_rvv(s) && 2704 require_rvf(s) && 2705 vext_check_isa_ill(s) && 2706 vext_check_ms(s, a->rd, a->rs2) && 2707 require_zve32f(s) && 2708 require_zve64f(s); 2709} 2710 2711GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2712GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2713GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2714GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2715GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2716GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2717 2718/* Vector Floating-Point Classify Instruction */ 2719GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2720 2721/* Vector Floating-Point Merge Instruction */ 2722GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2723 2724static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2725{ 2726 if (require_rvv(s) && 2727 require_rvf(s) && 2728 vext_check_isa_ill(s) && 2729 require_align(a->rd, s->lmul) && 2730 require_zve32f(s) && 2731 require_zve64f(s)) { 2732 gen_set_rm(s, RISCV_FRM_DYN); 2733 2734 TCGv_i64 t1; 2735 2736 if (s->vl_eq_vlmax) { 2737 t1 = tcg_temp_new_i64(); 2738 /* NaN-box f[rs1] */ 2739 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2740 2741 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2742 MAXSZ(s), MAXSZ(s), t1); 2743 mark_vs_dirty(s); 2744 } else { 2745 TCGv_ptr dest; 2746 TCGv_i32 desc; 2747 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2748 static gen_helper_vmv_vx * const fns[3] = { 2749 gen_helper_vmv_v_x_h, 2750 gen_helper_vmv_v_x_w, 2751 gen_helper_vmv_v_x_d, 2752 }; 2753 TCGLabel *over = gen_new_label(); 2754 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2755 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2756 2757 t1 = tcg_temp_new_i64(); 2758 /* NaN-box f[rs1] */ 2759 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2760 2761 dest = tcg_temp_new_ptr(); 2762 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2763 s->cfg_ptr->vlen / 8, data)); 2764 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2765 2766 fns[s->sew - 1](dest, t1, cpu_env, desc); 2767 2768 tcg_temp_free_ptr(dest); 2769 mark_vs_dirty(s); 2770 gen_set_label(over); 2771 } 2772 tcg_temp_free_i64(t1); 2773 return true; 2774 } 2775 return false; 2776} 2777 2778/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2779#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2780static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2781{ \ 2782 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2783 gen_helper_##HELPER##_h, \ 2784 gen_helper_##HELPER##_w, \ 2785 gen_helper_##HELPER##_d \ 2786 }; \ 2787 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2788} 2789 2790GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2791GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2792GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2793GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2794/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2795GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2796GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2797 2798/* Widening Floating-Point/Integer Type-Convert Instructions */ 2799 2800/* 2801 * If the current SEW does not correspond to a supported IEEE floating-point 2802 * type, an illegal instruction exception is raised 2803 */ 2804static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2805{ 2806 return require_rvv(s) && 2807 vext_check_isa_ill(s) && 2808 vext_check_ds(s, a->rd, a->rs2, a->vm); 2809} 2810 2811static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2812{ 2813 return opfv_widen_check(s, a) && 2814 require_rvf(s) && 2815 require_zve32f(s) && 2816 require_zve64f(s); 2817} 2818 2819static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2820{ 2821 return opfv_widen_check(s, a) && 2822 require_scale_rvf(s) && 2823 (s->sew != MO_8) && 2824 require_scale_zve32f(s) && 2825 require_scale_zve64f(s); 2826} 2827 2828#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2829static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2830{ \ 2831 if (CHECK(s, a)) { \ 2832 if (FRM != RISCV_FRM_DYN) { \ 2833 gen_set_rm(s, RISCV_FRM_DYN); \ 2834 } \ 2835 \ 2836 uint32_t data = 0; \ 2837 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2838 gen_helper_##HELPER##_h, \ 2839 gen_helper_##HELPER##_w, \ 2840 }; \ 2841 TCGLabel *over = gen_new_label(); \ 2842 gen_set_rm(s, FRM); \ 2843 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2844 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2845 \ 2846 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2847 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2848 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2849 vreg_ofs(s, a->rs2), cpu_env, \ 2850 s->cfg_ptr->vlen / 8, \ 2851 s->cfg_ptr->vlen / 8, data, \ 2852 fns[s->sew - 1]); \ 2853 mark_vs_dirty(s); \ 2854 gen_set_label(over); \ 2855 return true; \ 2856 } \ 2857 return false; \ 2858} 2859 2860GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2861 RISCV_FRM_DYN) 2862GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2863 RISCV_FRM_DYN) 2864GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2865 RISCV_FRM_DYN) 2866/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2867GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2868 RISCV_FRM_RTZ) 2869GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2870 RISCV_FRM_RTZ) 2871 2872static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2873{ 2874 return require_rvv(s) && 2875 require_scale_rvf(s) && 2876 vext_check_isa_ill(s) && 2877 /* OPFV widening instructions ignore vs1 check */ 2878 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2879 require_scale_zve32f(s) && 2880 require_scale_zve64f(s); 2881} 2882 2883#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2884static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2885{ \ 2886 if (opfxv_widen_check(s, a)) { \ 2887 uint32_t data = 0; \ 2888 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2889 gen_helper_##NAME##_b, \ 2890 gen_helper_##NAME##_h, \ 2891 gen_helper_##NAME##_w, \ 2892 }; \ 2893 TCGLabel *over = gen_new_label(); \ 2894 gen_set_rm(s, RISCV_FRM_DYN); \ 2895 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2896 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2897 \ 2898 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2899 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2900 vreg_ofs(s, a->rs2), cpu_env, \ 2901 s->cfg_ptr->vlen / 8, \ 2902 s->cfg_ptr->vlen / 8, data, \ 2903 fns[s->sew]); \ 2904 mark_vs_dirty(s); \ 2905 gen_set_label(over); \ 2906 return true; \ 2907 } \ 2908 return false; \ 2909} 2910 2911GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2912GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2913 2914/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2915 2916/* 2917 * If the current SEW does not correspond to a supported IEEE floating-point 2918 * type, an illegal instruction exception is raised 2919 */ 2920static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2921{ 2922 return require_rvv(s) && 2923 vext_check_isa_ill(s) && 2924 /* OPFV narrowing instructions ignore vs1 check */ 2925 vext_check_sd(s, a->rd, a->rs2, a->vm); 2926} 2927 2928static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2929{ 2930 return opfv_narrow_check(s, a) && 2931 require_rvf(s) && 2932 (s->sew != MO_64) && 2933 require_zve32f(s) && 2934 require_zve64f(s); 2935} 2936 2937static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2938{ 2939 return opfv_narrow_check(s, a) && 2940 require_scale_rvf(s) && 2941 (s->sew != MO_8) && 2942 require_scale_zve32f(s) && 2943 require_scale_zve64f(s); 2944} 2945 2946#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2947static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2948{ \ 2949 if (CHECK(s, a)) { \ 2950 if (FRM != RISCV_FRM_DYN) { \ 2951 gen_set_rm(s, RISCV_FRM_DYN); \ 2952 } \ 2953 \ 2954 uint32_t data = 0; \ 2955 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2956 gen_helper_##HELPER##_h, \ 2957 gen_helper_##HELPER##_w, \ 2958 }; \ 2959 TCGLabel *over = gen_new_label(); \ 2960 gen_set_rm(s, FRM); \ 2961 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2962 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2963 \ 2964 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2965 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2966 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2967 vreg_ofs(s, a->rs2), cpu_env, \ 2968 s->cfg_ptr->vlen / 8, \ 2969 s->cfg_ptr->vlen / 8, data, \ 2970 fns[s->sew - 1]); \ 2971 mark_vs_dirty(s); \ 2972 gen_set_label(over); \ 2973 return true; \ 2974 } \ 2975 return false; \ 2976} 2977 2978GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2979 RISCV_FRM_DYN) 2980GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2981 RISCV_FRM_DYN) 2982GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2983 RISCV_FRM_DYN) 2984/* Reuse the helper function from vfncvt.f.f.w */ 2985GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2986 RISCV_FRM_ROD) 2987 2988static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2989{ 2990 return require_rvv(s) && 2991 require_scale_rvf(s) && 2992 vext_check_isa_ill(s) && 2993 /* OPFV narrowing instructions ignore vs1 check */ 2994 vext_check_sd(s, a->rd, a->rs2, a->vm) && 2995 require_scale_zve32f(s) && 2996 require_scale_zve64f(s); 2997} 2998 2999#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3000static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3001{ \ 3002 if (opxfv_narrow_check(s, a)) { \ 3003 if (FRM != RISCV_FRM_DYN) { \ 3004 gen_set_rm(s, RISCV_FRM_DYN); \ 3005 } \ 3006 \ 3007 uint32_t data = 0; \ 3008 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3009 gen_helper_##HELPER##_b, \ 3010 gen_helper_##HELPER##_h, \ 3011 gen_helper_##HELPER##_w, \ 3012 }; \ 3013 TCGLabel *over = gen_new_label(); \ 3014 gen_set_rm(s, FRM); \ 3015 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3016 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3017 \ 3018 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3019 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3020 vreg_ofs(s, a->rs2), cpu_env, \ 3021 s->cfg_ptr->vlen / 8, \ 3022 s->cfg_ptr->vlen / 8, data, \ 3023 fns[s->sew]); \ 3024 mark_vs_dirty(s); \ 3025 gen_set_label(over); \ 3026 return true; \ 3027 } \ 3028 return false; \ 3029} 3030 3031GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3032GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3033/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3034GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3035GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3036 3037/* 3038 *** Vector Reduction Operations 3039 */ 3040/* Vector Single-Width Integer Reduction Instructions */ 3041static bool reduction_check(DisasContext *s, arg_rmrr *a) 3042{ 3043 return require_rvv(s) && 3044 vext_check_isa_ill(s) && 3045 vext_check_reduction(s, a->rs2); 3046} 3047 3048GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3049GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3050GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3051GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3052GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3053GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3054GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3055GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3056 3057/* Vector Widening Integer Reduction Instructions */ 3058static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3059{ 3060 return reduction_check(s, a) && (s->sew < MO_64) && 3061 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3062} 3063 3064GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3065GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3066 3067/* Vector Single-Width Floating-Point Reduction Instructions */ 3068static bool freduction_check(DisasContext *s, arg_rmrr *a) 3069{ 3070 return reduction_check(s, a) && 3071 require_rvf(s) && 3072 require_zve32f(s) && 3073 require_zve64f(s); 3074} 3075 3076GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3077GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3078GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3079 3080/* Vector Widening Floating-Point Reduction Instructions */ 3081static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3082{ 3083 return reduction_widen_check(s, a) && 3084 require_scale_rvf(s) && 3085 (s->sew != MO_8); 3086} 3087 3088GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3089 3090/* 3091 *** Vector Mask Operations 3092 */ 3093 3094/* Vector Mask-Register Logical Instructions */ 3095#define GEN_MM_TRANS(NAME) \ 3096static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3097{ \ 3098 if (require_rvv(s) && \ 3099 vext_check_isa_ill(s)) { \ 3100 uint32_t data = 0; \ 3101 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3102 TCGLabel *over = gen_new_label(); \ 3103 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3104 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3105 \ 3106 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3107 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3108 vreg_ofs(s, a->rs1), \ 3109 vreg_ofs(s, a->rs2), cpu_env, \ 3110 s->cfg_ptr->vlen / 8, \ 3111 s->cfg_ptr->vlen / 8, data, fn); \ 3112 mark_vs_dirty(s); \ 3113 gen_set_label(over); \ 3114 return true; \ 3115 } \ 3116 return false; \ 3117} 3118 3119GEN_MM_TRANS(vmand_mm) 3120GEN_MM_TRANS(vmnand_mm) 3121GEN_MM_TRANS(vmandn_mm) 3122GEN_MM_TRANS(vmxor_mm) 3123GEN_MM_TRANS(vmor_mm) 3124GEN_MM_TRANS(vmnor_mm) 3125GEN_MM_TRANS(vmorn_mm) 3126GEN_MM_TRANS(vmxnor_mm) 3127 3128/* Vector count population in mask vcpop */ 3129static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3130{ 3131 if (require_rvv(s) && 3132 vext_check_isa_ill(s) && 3133 s->vstart == 0) { 3134 TCGv_ptr src2, mask; 3135 TCGv dst; 3136 TCGv_i32 desc; 3137 uint32_t data = 0; 3138 data = FIELD_DP32(data, VDATA, VM, a->vm); 3139 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3140 3141 mask = tcg_temp_new_ptr(); 3142 src2 = tcg_temp_new_ptr(); 3143 dst = dest_gpr(s, a->rd); 3144 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3145 s->cfg_ptr->vlen / 8, data)); 3146 3147 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3148 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3149 3150 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3151 gen_set_gpr(s, a->rd, dst); 3152 3153 tcg_temp_free_ptr(mask); 3154 tcg_temp_free_ptr(src2); 3155 3156 return true; 3157 } 3158 return false; 3159} 3160 3161/* vmfirst find-first-set mask bit */ 3162static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3163{ 3164 if (require_rvv(s) && 3165 vext_check_isa_ill(s) && 3166 s->vstart == 0) { 3167 TCGv_ptr src2, mask; 3168 TCGv dst; 3169 TCGv_i32 desc; 3170 uint32_t data = 0; 3171 data = FIELD_DP32(data, VDATA, VM, a->vm); 3172 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3173 3174 mask = tcg_temp_new_ptr(); 3175 src2 = tcg_temp_new_ptr(); 3176 dst = dest_gpr(s, a->rd); 3177 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3178 s->cfg_ptr->vlen / 8, data)); 3179 3180 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3181 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3182 3183 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3184 gen_set_gpr(s, a->rd, dst); 3185 3186 tcg_temp_free_ptr(mask); 3187 tcg_temp_free_ptr(src2); 3188 return true; 3189 } 3190 return false; 3191} 3192 3193/* vmsbf.m set-before-first mask bit */ 3194/* vmsif.m set-includ-first mask bit */ 3195/* vmsof.m set-only-first mask bit */ 3196#define GEN_M_TRANS(NAME) \ 3197static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3198{ \ 3199 if (require_rvv(s) && \ 3200 vext_check_isa_ill(s) && \ 3201 require_vm(a->vm, a->rd) && \ 3202 (a->rd != a->rs2) && \ 3203 (s->vstart == 0)) { \ 3204 uint32_t data = 0; \ 3205 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3206 TCGLabel *over = gen_new_label(); \ 3207 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3208 \ 3209 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3210 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3211 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3212 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3213 cpu_env, s->cfg_ptr->vlen / 8, \ 3214 s->cfg_ptr->vlen / 8, \ 3215 data, fn); \ 3216 mark_vs_dirty(s); \ 3217 gen_set_label(over); \ 3218 return true; \ 3219 } \ 3220 return false; \ 3221} 3222 3223GEN_M_TRANS(vmsbf_m) 3224GEN_M_TRANS(vmsif_m) 3225GEN_M_TRANS(vmsof_m) 3226 3227/* 3228 * Vector Iota Instruction 3229 * 3230 * 1. The destination register cannot overlap the source register. 3231 * 2. If masked, cannot overlap the mask register ('v0'). 3232 * 3. An illegal instruction exception is raised if vstart is non-zero. 3233 */ 3234static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3235{ 3236 if (require_rvv(s) && 3237 vext_check_isa_ill(s) && 3238 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3239 require_vm(a->vm, a->rd) && 3240 require_align(a->rd, s->lmul) && 3241 (s->vstart == 0)) { 3242 uint32_t data = 0; 3243 TCGLabel *over = gen_new_label(); 3244 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3245 3246 data = FIELD_DP32(data, VDATA, VM, a->vm); 3247 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3248 static gen_helper_gvec_3_ptr * const fns[4] = { 3249 gen_helper_viota_m_b, gen_helper_viota_m_h, 3250 gen_helper_viota_m_w, gen_helper_viota_m_d, 3251 }; 3252 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3253 vreg_ofs(s, a->rs2), cpu_env, 3254 s->cfg_ptr->vlen / 8, 3255 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3256 mark_vs_dirty(s); 3257 gen_set_label(over); 3258 return true; 3259 } 3260 return false; 3261} 3262 3263/* Vector Element Index Instruction */ 3264static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3265{ 3266 if (require_rvv(s) && 3267 vext_check_isa_ill(s) && 3268 require_align(a->rd, s->lmul) && 3269 require_vm(a->vm, a->rd)) { 3270 uint32_t data = 0; 3271 TCGLabel *over = gen_new_label(); 3272 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3273 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3274 3275 data = FIELD_DP32(data, VDATA, VM, a->vm); 3276 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3277 static gen_helper_gvec_2_ptr * const fns[4] = { 3278 gen_helper_vid_v_b, gen_helper_vid_v_h, 3279 gen_helper_vid_v_w, gen_helper_vid_v_d, 3280 }; 3281 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3282 cpu_env, s->cfg_ptr->vlen / 8, 3283 s->cfg_ptr->vlen / 8, 3284 data, fns[s->sew]); 3285 mark_vs_dirty(s); 3286 gen_set_label(over); 3287 return true; 3288 } 3289 return false; 3290} 3291 3292/* 3293 *** Vector Permutation Instructions 3294 */ 3295 3296static void load_element(TCGv_i64 dest, TCGv_ptr base, 3297 int ofs, int sew, bool sign) 3298{ 3299 switch (sew) { 3300 case MO_8: 3301 if (!sign) { 3302 tcg_gen_ld8u_i64(dest, base, ofs); 3303 } else { 3304 tcg_gen_ld8s_i64(dest, base, ofs); 3305 } 3306 break; 3307 case MO_16: 3308 if (!sign) { 3309 tcg_gen_ld16u_i64(dest, base, ofs); 3310 } else { 3311 tcg_gen_ld16s_i64(dest, base, ofs); 3312 } 3313 break; 3314 case MO_32: 3315 if (!sign) { 3316 tcg_gen_ld32u_i64(dest, base, ofs); 3317 } else { 3318 tcg_gen_ld32s_i64(dest, base, ofs); 3319 } 3320 break; 3321 case MO_64: 3322 tcg_gen_ld_i64(dest, base, ofs); 3323 break; 3324 default: 3325 g_assert_not_reached(); 3326 break; 3327 } 3328} 3329 3330/* offset of the idx element with base regsiter r */ 3331static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3332{ 3333#if HOST_BIG_ENDIAN 3334 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3335#else 3336 return vreg_ofs(s, r) + (idx << s->sew); 3337#endif 3338} 3339 3340/* adjust the index according to the endian */ 3341static void endian_adjust(TCGv_i32 ofs, int sew) 3342{ 3343#if HOST_BIG_ENDIAN 3344 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3345#endif 3346} 3347 3348/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3349static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3350 int vreg, TCGv idx, int vlmax) 3351{ 3352 TCGv_i32 ofs = tcg_temp_new_i32(); 3353 TCGv_ptr base = tcg_temp_new_ptr(); 3354 TCGv_i64 t_idx = tcg_temp_new_i64(); 3355 TCGv_i64 t_vlmax, t_zero; 3356 3357 /* 3358 * Mask the index to the length so that we do 3359 * not produce an out-of-range load. 3360 */ 3361 tcg_gen_trunc_tl_i32(ofs, idx); 3362 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3363 3364 /* Convert the index to an offset. */ 3365 endian_adjust(ofs, s->sew); 3366 tcg_gen_shli_i32(ofs, ofs, s->sew); 3367 3368 /* Convert the index to a pointer. */ 3369 tcg_gen_ext_i32_ptr(base, ofs); 3370 tcg_gen_add_ptr(base, base, cpu_env); 3371 3372 /* Perform the load. */ 3373 load_element(dest, base, 3374 vreg_ofs(s, vreg), s->sew, false); 3375 tcg_temp_free_ptr(base); 3376 tcg_temp_free_i32(ofs); 3377 3378 /* Flush out-of-range indexing to zero. */ 3379 t_vlmax = tcg_constant_i64(vlmax); 3380 t_zero = tcg_constant_i64(0); 3381 tcg_gen_extu_tl_i64(t_idx, idx); 3382 3383 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3384 t_vlmax, dest, t_zero); 3385 3386 tcg_temp_free_i64(t_idx); 3387} 3388 3389static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3390 int vreg, int idx, bool sign) 3391{ 3392 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3393} 3394 3395/* Integer Scalar Move Instruction */ 3396 3397static void store_element(TCGv_i64 val, TCGv_ptr base, 3398 int ofs, int sew) 3399{ 3400 switch (sew) { 3401 case MO_8: 3402 tcg_gen_st8_i64(val, base, ofs); 3403 break; 3404 case MO_16: 3405 tcg_gen_st16_i64(val, base, ofs); 3406 break; 3407 case MO_32: 3408 tcg_gen_st32_i64(val, base, ofs); 3409 break; 3410 case MO_64: 3411 tcg_gen_st_i64(val, base, ofs); 3412 break; 3413 default: 3414 g_assert_not_reached(); 3415 break; 3416 } 3417} 3418 3419/* 3420 * Store vreg[idx] = val. 3421 * The index must be in range of VLMAX. 3422 */ 3423static void vec_element_storei(DisasContext *s, int vreg, 3424 int idx, TCGv_i64 val) 3425{ 3426 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3427} 3428 3429/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3430static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3431{ 3432 if (require_rvv(s) && 3433 vext_check_isa_ill(s)) { 3434 TCGv_i64 t1; 3435 TCGv dest; 3436 3437 t1 = tcg_temp_new_i64(); 3438 dest = tcg_temp_new(); 3439 /* 3440 * load vreg and sign-extend to 64 bits, 3441 * then truncate to XLEN bits before storing to gpr. 3442 */ 3443 vec_element_loadi(s, t1, a->rs2, 0, true); 3444 tcg_gen_trunc_i64_tl(dest, t1); 3445 gen_set_gpr(s, a->rd, dest); 3446 tcg_temp_free_i64(t1); 3447 tcg_temp_free(dest); 3448 3449 return true; 3450 } 3451 return false; 3452} 3453 3454/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3455static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3456{ 3457 if (require_rvv(s) && 3458 vext_check_isa_ill(s)) { 3459 /* This instruction ignores LMUL and vector register groups */ 3460 TCGv_i64 t1; 3461 TCGv s1; 3462 TCGLabel *over = gen_new_label(); 3463 3464 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3465 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3466 3467 t1 = tcg_temp_new_i64(); 3468 3469 /* 3470 * load gpr and sign-extend to 64 bits, 3471 * then truncate to SEW bits when storing to vreg. 3472 */ 3473 s1 = get_gpr(s, a->rs1, EXT_NONE); 3474 tcg_gen_ext_tl_i64(t1, s1); 3475 vec_element_storei(s, a->rd, 0, t1); 3476 tcg_temp_free_i64(t1); 3477 mark_vs_dirty(s); 3478 gen_set_label(over); 3479 return true; 3480 } 3481 return false; 3482} 3483 3484/* Floating-Point Scalar Move Instructions */ 3485static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3486{ 3487 if (require_rvv(s) && 3488 require_rvf(s) && 3489 vext_check_isa_ill(s) && 3490 require_zve32f(s) && 3491 require_zve64f(s)) { 3492 gen_set_rm(s, RISCV_FRM_DYN); 3493 3494 unsigned int ofs = (8 << s->sew); 3495 unsigned int len = 64 - ofs; 3496 TCGv_i64 t_nan; 3497 3498 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3499 /* NaN-box f[rd] as necessary for SEW */ 3500 if (len) { 3501 t_nan = tcg_constant_i64(UINT64_MAX); 3502 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3503 t_nan, ofs, len); 3504 } 3505 3506 mark_fs_dirty(s); 3507 return true; 3508 } 3509 return false; 3510} 3511 3512/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3513static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3514{ 3515 if (require_rvv(s) && 3516 require_rvf(s) && 3517 vext_check_isa_ill(s) && 3518 require_zve32f(s) && 3519 require_zve64f(s)) { 3520 gen_set_rm(s, RISCV_FRM_DYN); 3521 3522 /* The instructions ignore LMUL and vector register group. */ 3523 TCGv_i64 t1; 3524 TCGLabel *over = gen_new_label(); 3525 3526 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3527 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3528 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3529 3530 /* NaN-box f[rs1] */ 3531 t1 = tcg_temp_new_i64(); 3532 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3533 3534 vec_element_storei(s, a->rd, 0, t1); 3535 tcg_temp_free_i64(t1); 3536 mark_vs_dirty(s); 3537 gen_set_label(over); 3538 return true; 3539 } 3540 return false; 3541} 3542 3543/* Vector Slide Instructions */ 3544static bool slideup_check(DisasContext *s, arg_rmrr *a) 3545{ 3546 return require_rvv(s) && 3547 vext_check_isa_ill(s) && 3548 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3549} 3550 3551GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3552GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3553GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3554 3555static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3556{ 3557 return require_rvv(s) && 3558 vext_check_isa_ill(s) && 3559 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3560} 3561 3562GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3563GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3564GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3565 3566/* Vector Floating-Point Slide Instructions */ 3567static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3568{ 3569 return slideup_check(s, a) && 3570 require_rvf(s) && 3571 require_zve32f(s) && 3572 require_zve64f(s); 3573} 3574 3575static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3576{ 3577 return slidedown_check(s, a) && 3578 require_rvf(s) && 3579 require_zve32f(s) && 3580 require_zve64f(s); 3581} 3582 3583GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3584GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3585 3586/* Vector Register Gather Instruction */ 3587static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3588{ 3589 return require_rvv(s) && 3590 vext_check_isa_ill(s) && 3591 require_align(a->rd, s->lmul) && 3592 require_align(a->rs1, s->lmul) && 3593 require_align(a->rs2, s->lmul) && 3594 (a->rd != a->rs2 && a->rd != a->rs1) && 3595 require_vm(a->vm, a->rd); 3596} 3597 3598static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3599{ 3600 int8_t emul = MO_16 - s->sew + s->lmul; 3601 return require_rvv(s) && 3602 vext_check_isa_ill(s) && 3603 (emul >= -3 && emul <= 3) && 3604 require_align(a->rd, s->lmul) && 3605 require_align(a->rs1, emul) && 3606 require_align(a->rs2, s->lmul) && 3607 (a->rd != a->rs2 && a->rd != a->rs1) && 3608 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3609 a->rs1, 1 << MAX(emul, 0)) && 3610 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3611 a->rs2, 1 << MAX(s->lmul, 0)) && 3612 require_vm(a->vm, a->rd); 3613} 3614 3615GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3616GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3617 3618static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3619{ 3620 return require_rvv(s) && 3621 vext_check_isa_ill(s) && 3622 require_align(a->rd, s->lmul) && 3623 require_align(a->rs2, s->lmul) && 3624 (a->rd != a->rs2) && 3625 require_vm(a->vm, a->rd); 3626} 3627 3628/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3629static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3630{ 3631 if (!vrgather_vx_check(s, a)) { 3632 return false; 3633 } 3634 3635 if (a->vm && s->vl_eq_vlmax) { 3636 int scale = s->lmul - (s->sew + 3); 3637 int vlmax = s->cfg_ptr->vlen >> -scale; 3638 TCGv_i64 dest = tcg_temp_new_i64(); 3639 3640 if (a->rs1 == 0) { 3641 vec_element_loadi(s, dest, a->rs2, 0, false); 3642 } else { 3643 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3644 } 3645 3646 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3647 MAXSZ(s), MAXSZ(s), dest); 3648 tcg_temp_free_i64(dest); 3649 mark_vs_dirty(s); 3650 } else { 3651 static gen_helper_opivx * const fns[4] = { 3652 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3653 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3654 }; 3655 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3656 } 3657 return true; 3658} 3659 3660/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3661static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3662{ 3663 if (!vrgather_vx_check(s, a)) { 3664 return false; 3665 } 3666 3667 if (a->vm && s->vl_eq_vlmax) { 3668 int scale = s->lmul - (s->sew + 3); 3669 int vlmax = s->cfg_ptr->vlen >> -scale; 3670 if (a->rs1 >= vlmax) { 3671 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3672 MAXSZ(s), MAXSZ(s), 0); 3673 } else { 3674 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3675 endian_ofs(s, a->rs2, a->rs1), 3676 MAXSZ(s), MAXSZ(s)); 3677 } 3678 mark_vs_dirty(s); 3679 } else { 3680 static gen_helper_opivx * const fns[4] = { 3681 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3682 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3683 }; 3684 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3685 s, IMM_ZX); 3686 } 3687 return true; 3688} 3689 3690/* 3691 * Vector Compress Instruction 3692 * 3693 * The destination vector register group cannot overlap the 3694 * source vector register group or the source mask register. 3695 */ 3696static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3697{ 3698 return require_rvv(s) && 3699 vext_check_isa_ill(s) && 3700 require_align(a->rd, s->lmul) && 3701 require_align(a->rs2, s->lmul) && 3702 (a->rd != a->rs2) && 3703 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3704 (s->vstart == 0); 3705} 3706 3707static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3708{ 3709 if (vcompress_vm_check(s, a)) { 3710 uint32_t data = 0; 3711 static gen_helper_gvec_4_ptr * const fns[4] = { 3712 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3713 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3714 }; 3715 TCGLabel *over = gen_new_label(); 3716 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3717 3718 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3719 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3720 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3721 cpu_env, s->cfg_ptr->vlen / 8, 3722 s->cfg_ptr->vlen / 8, data, 3723 fns[s->sew]); 3724 mark_vs_dirty(s); 3725 gen_set_label(over); 3726 return true; 3727 } 3728 return false; 3729} 3730 3731/* 3732 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3733 * Thus, we don't need to check vill bit. (Section 16.6) 3734 */ 3735#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3736static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3737{ \ 3738 if (require_rvv(s) && \ 3739 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3740 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3741 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3742 if (s->vstart == 0) { \ 3743 /* EEW = 8 */ \ 3744 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3745 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3746 mark_vs_dirty(s); \ 3747 } else { \ 3748 TCGLabel *over = gen_new_label(); \ 3749 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3750 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3751 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3752 mark_vs_dirty(s); \ 3753 gen_set_label(over); \ 3754 } \ 3755 return true; \ 3756 } \ 3757 return false; \ 3758} 3759 3760GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3761GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3762GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3763GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3764 3765static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3766{ 3767 uint8_t from = (s->sew + 3) - div; 3768 bool ret = require_rvv(s) && 3769 (from >= 3 && from <= 8) && 3770 (a->rd != a->rs2) && 3771 require_align(a->rd, s->lmul) && 3772 require_align(a->rs2, s->lmul - div) && 3773 require_vm(a->vm, a->rd) && 3774 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3775 return ret; 3776} 3777 3778static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3779{ 3780 uint32_t data = 0; 3781 gen_helper_gvec_3_ptr *fn; 3782 TCGLabel *over = gen_new_label(); 3783 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3784 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3785 3786 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3787 { 3788 NULL, gen_helper_vzext_vf2_h, 3789 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3790 }, 3791 { 3792 NULL, NULL, 3793 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3794 }, 3795 { 3796 NULL, NULL, 3797 NULL, gen_helper_vzext_vf8_d 3798 }, 3799 { 3800 NULL, gen_helper_vsext_vf2_h, 3801 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3802 }, 3803 { 3804 NULL, NULL, 3805 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3806 }, 3807 { 3808 NULL, NULL, 3809 NULL, gen_helper_vsext_vf8_d 3810 } 3811 }; 3812 3813 fn = fns[seq][s->sew]; 3814 if (fn == NULL) { 3815 return false; 3816 } 3817 3818 data = FIELD_DP32(data, VDATA, VM, a->vm); 3819 3820 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3821 vreg_ofs(s, a->rs2), cpu_env, 3822 s->cfg_ptr->vlen / 8, 3823 s->cfg_ptr->vlen / 8, data, fn); 3824 3825 mark_vs_dirty(s); 3826 gen_set_label(over); 3827 return true; 3828} 3829 3830/* Vector Integer Extension */ 3831#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3832static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3833{ \ 3834 if (int_ext_check(s, a, DIV)) { \ 3835 return int_ext_op(s, a, SEQ); \ 3836 } \ 3837 return false; \ 3838} 3839 3840GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3841GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3842GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3843GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3844GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3845GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3846