1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return s->cfg_ptr->ext_zve32f; 45 case MO_64: 46 return s->cfg_ptr->ext_zve64d; 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return s->cfg_ptr->ext_zve32f; 62 case MO_32: 63 return s->cfg_ptr->ext_zve64d; 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || !s->cfg_ptr->ext_zve32f) { 177 return false; 178 } 179 180 dst = dest_gpr(s, rd); 181 182 if (rd == 0 && rs1 == 0) { 183 s1 = tcg_temp_new(); 184 tcg_gen_mov_tl(s1, cpu_vl); 185 } else if (rs1 == 0) { 186 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 187 s1 = tcg_constant_tl(RV_VLEN_MAX); 188 } else { 189 s1 = get_gpr(s, rs1, EXT_ZERO); 190 } 191 192 gen_helper_vsetvl(dst, cpu_env, s1, s2); 193 gen_set_gpr(s, rd, dst); 194 mark_vs_dirty(s); 195 196 gen_set_pc_imm(s, s->pc_succ_insn); 197 lookup_and_goto_ptr(s); 198 s->base.is_jmp = DISAS_NORETURN; 199 200 if (rd == 0 && rs1 == 0) { 201 tcg_temp_free(s1); 202 } 203 204 return true; 205} 206 207static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 208{ 209 TCGv dst; 210 211 if (!require_rvv(s) || !s->cfg_ptr->ext_zve32f) { 212 return false; 213 } 214 215 dst = dest_gpr(s, rd); 216 217 gen_helper_vsetvl(dst, cpu_env, s1, s2); 218 gen_set_gpr(s, rd, dst); 219 mark_vs_dirty(s); 220 gen_set_pc_imm(s, s->pc_succ_insn); 221 lookup_and_goto_ptr(s); 222 s->base.is_jmp = DISAS_NORETURN; 223 224 return true; 225} 226 227static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 228{ 229 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 230 return do_vsetvl(s, a->rd, a->rs1, s2); 231} 232 233static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 234{ 235 TCGv s2 = tcg_constant_tl(a->zimm); 236 return do_vsetvl(s, a->rd, a->rs1, s2); 237} 238 239static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 240{ 241 TCGv s1 = tcg_const_tl(a->rs1); 242 TCGv s2 = tcg_const_tl(a->zimm); 243 return do_vsetivli(s, a->rd, s1, s2); 244} 245 246/* vector register offset from env */ 247static uint32_t vreg_ofs(DisasContext *s, int reg) 248{ 249 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 250} 251 252/* check functions */ 253 254/* 255 * Vector unit-stride, strided, unit-stride segment, strided segment 256 * store check function. 257 * 258 * Rules to be checked here: 259 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 260 * 2. Destination vector register number is multiples of EMUL. 261 * (Section 3.4.2, 7.3) 262 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 263 * 4. Vector register numbers accessed by the segment load or store 264 * cannot increment past 31. (Section 7.8) 265 */ 266static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 267{ 268 int8_t emul = eew - s->sew + s->lmul; 269 return (emul >= -3 && emul <= 3) && 270 require_align(vd, emul) && 271 require_nf(vd, nf, emul); 272} 273 274/* 275 * Vector unit-stride, strided, unit-stride segment, strided segment 276 * load check function. 277 * 278 * Rules to be checked here: 279 * 1. All rules applies to store instructions are applies 280 * to load instructions. 281 * 2. Destination vector register group for a masked vector 282 * instruction cannot overlap the source mask register (v0). 283 * (Section 5.3) 284 */ 285static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 286 uint8_t eew) 287{ 288 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 289} 290 291/* 292 * Vector indexed, indexed segment store check function. 293 * 294 * Rules to be checked here: 295 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 296 * 2. Index vector register number is multiples of EMUL. 297 * (Section 3.4.2, 7.3) 298 * 3. Destination vector register number is multiples of LMUL. 299 * (Section 3.4.2, 7.3) 300 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 301 * 5. Vector register numbers accessed by the segment load or store 302 * cannot increment past 31. (Section 7.8) 303 */ 304static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 305 uint8_t eew) 306{ 307 int8_t emul = eew - s->sew + s->lmul; 308 bool ret = (emul >= -3 && emul <= 3) && 309 require_align(vs2, emul) && 310 require_align(vd, s->lmul) && 311 require_nf(vd, nf, s->lmul); 312 313 /* 314 * All Zve* extensions support all vector load and store instructions, 315 * except Zve64* extensions do not support EEW=64 for index values 316 * when XLEN=32. (Section 18.2) 317 */ 318 if (get_xl(s) == MXL_RV32) { 319 ret &= (!has_ext(s, RVV) && 320 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 321 } 322 323 return ret; 324} 325 326/* 327 * Vector indexed, indexed segment load check function. 328 * 329 * Rules to be checked here: 330 * 1. All rules applies to store instructions are applies 331 * to load instructions. 332 * 2. Destination vector register group for a masked vector 333 * instruction cannot overlap the source mask register (v0). 334 * (Section 5.3) 335 * 3. Destination vector register cannot overlap a source vector 336 * register (vs2) group. 337 * (Section 5.2) 338 * 4. Destination vector register groups cannot overlap 339 * the source vector register (vs2) group for 340 * indexed segment load instructions. (Section 7.8.3) 341 */ 342static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 343 int nf, int vm, uint8_t eew) 344{ 345 int8_t seg_vd; 346 int8_t emul = eew - s->sew + s->lmul; 347 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 348 require_vm(vm, vd); 349 350 /* Each segment register group has to follow overlap rules. */ 351 for (int i = 0; i < nf; ++i) { 352 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 353 354 if (eew > s->sew) { 355 if (seg_vd != vs2) { 356 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 357 } 358 } else if (eew < s->sew) { 359 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 360 } 361 362 /* 363 * Destination vector register groups cannot overlap 364 * the source vector register (vs2) group for 365 * indexed segment load instructions. 366 */ 367 if (nf > 1) { 368 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 369 vs2, 1 << MAX(emul, 0)); 370 } 371 } 372 return ret; 373} 374 375static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 376{ 377 return require_vm(vm, vd) && 378 require_align(vd, s->lmul) && 379 require_align(vs, s->lmul); 380} 381 382/* 383 * Check function for vector instruction with format: 384 * single-width result and single-width sources (SEW = SEW op SEW) 385 * 386 * Rules to be checked here: 387 * 1. Destination vector register group for a masked vector 388 * instruction cannot overlap the source mask register (v0). 389 * (Section 5.3) 390 * 2. Destination vector register number is multiples of LMUL. 391 * (Section 3.4.2) 392 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 393 * (Section 3.4.2) 394 */ 395static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 396{ 397 return vext_check_ss(s, vd, vs2, vm) && 398 require_align(vs1, s->lmul); 399} 400 401static bool vext_check_ms(DisasContext *s, int vd, int vs) 402{ 403 bool ret = require_align(vs, s->lmul); 404 if (vd != vs) { 405 ret &= require_noover(vd, 0, vs, s->lmul); 406 } 407 return ret; 408} 409 410/* 411 * Check function for maskable vector instruction with format: 412 * single-width result and single-width sources (SEW = SEW op SEW) 413 * 414 * Rules to be checked here: 415 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 416 * (Section 3.4.2) 417 * 2. Destination vector register cannot overlap a source vector 418 * register (vs2, vs1) group. 419 * (Section 5.2) 420 * 3. The destination vector register group for a masked vector 421 * instruction cannot overlap the source mask register (v0), 422 * unless the destination vector register is being written 423 * with a mask value (e.g., comparisons) or the scalar result 424 * of a reduction. (Section 5.3) 425 */ 426static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 427{ 428 bool ret = vext_check_ms(s, vd, vs2) && 429 require_align(vs1, s->lmul); 430 if (vd != vs1) { 431 ret &= require_noover(vd, 0, vs1, s->lmul); 432 } 433 return ret; 434} 435 436/* 437 * Common check function for vector widening instructions 438 * of double-width result (2*SEW). 439 * 440 * Rules to be checked here: 441 * 1. The largest vector register group used by an instruction 442 * can not be greater than 8 vector registers (Section 5.2): 443 * => LMUL < 8. 444 * => SEW < 64. 445 * 2. Double-width SEW cannot greater than ELEN. 446 * 3. Destination vector register number is multiples of 2 * LMUL. 447 * (Section 3.4.2) 448 * 4. Destination vector register group for a masked vector 449 * instruction cannot overlap the source mask register (v0). 450 * (Section 5.3) 451 */ 452static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 453{ 454 return (s->lmul <= 2) && 455 (s->sew < MO_64) && 456 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 457 require_align(vd, s->lmul + 1) && 458 require_vm(vm, vd); 459} 460 461/* 462 * Common check function for vector narrowing instructions 463 * of single-width result (SEW) and double-width source (2*SEW). 464 * 465 * Rules to be checked here: 466 * 1. The largest vector register group used by an instruction 467 * can not be greater than 8 vector registers (Section 5.2): 468 * => LMUL < 8. 469 * => SEW < 64. 470 * 2. Double-width SEW cannot greater than ELEN. 471 * 3. Source vector register number is multiples of 2 * LMUL. 472 * (Section 3.4.2) 473 * 4. Destination vector register number is multiples of LMUL. 474 * (Section 3.4.2) 475 * 5. Destination vector register group for a masked vector 476 * instruction cannot overlap the source mask register (v0). 477 * (Section 5.3) 478 */ 479static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 480 int vm) 481{ 482 return (s->lmul <= 2) && 483 (s->sew < MO_64) && 484 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 485 require_align(vs2, s->lmul + 1) && 486 require_align(vd, s->lmul) && 487 require_vm(vm, vd); 488} 489 490static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 491{ 492 return vext_wide_check_common(s, vd, vm) && 493 require_align(vs, s->lmul) && 494 require_noover(vd, s->lmul + 1, vs, s->lmul); 495} 496 497static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 498{ 499 return vext_wide_check_common(s, vd, vm) && 500 require_align(vs, s->lmul + 1); 501} 502 503/* 504 * Check function for vector instruction with format: 505 * double-width result and single-width sources (2*SEW = SEW op SEW) 506 * 507 * Rules to be checked here: 508 * 1. All rules in defined in widen common rules are applied. 509 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 510 * (Section 3.4.2) 511 * 3. Destination vector register cannot overlap a source vector 512 * register (vs2, vs1) group. 513 * (Section 5.2) 514 */ 515static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 516{ 517 return vext_check_ds(s, vd, vs2, vm) && 518 require_align(vs1, s->lmul) && 519 require_noover(vd, s->lmul + 1, vs1, s->lmul); 520} 521 522/* 523 * Check function for vector instruction with format: 524 * double-width result and double-width source1 and single-width 525 * source2 (2*SEW = 2*SEW op SEW) 526 * 527 * Rules to be checked here: 528 * 1. All rules in defined in widen common rules are applied. 529 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 530 * (Section 3.4.2) 531 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 532 * (Section 3.4.2) 533 * 4. Destination vector register cannot overlap a source vector 534 * register (vs1) group. 535 * (Section 5.2) 536 */ 537static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 538{ 539 return vext_check_ds(s, vd, vs1, vm) && 540 require_align(vs2, s->lmul + 1); 541} 542 543static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 544{ 545 bool ret = vext_narrow_check_common(s, vd, vs, vm); 546 if (vd != vs) { 547 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 548 } 549 return ret; 550} 551 552/* 553 * Check function for vector instruction with format: 554 * single-width result and double-width source 1 and single-width 555 * source 2 (SEW = 2*SEW op SEW) 556 * 557 * Rules to be checked here: 558 * 1. All rules in defined in narrow common rules are applied. 559 * 2. Destination vector register cannot overlap a source vector 560 * register (vs2) group. 561 * (Section 5.2) 562 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 563 * (Section 3.4.2) 564 */ 565static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 566{ 567 return vext_check_sd(s, vd, vs2, vm) && 568 require_align(vs1, s->lmul); 569} 570 571/* 572 * Check function for vector reduction instructions. 573 * 574 * Rules to be checked here: 575 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 576 * (Section 3.4.2) 577 */ 578static bool vext_check_reduction(DisasContext *s, int vs2) 579{ 580 return require_align(vs2, s->lmul) && (s->vstart == 0); 581} 582 583/* 584 * Check function for vector slide instructions. 585 * 586 * Rules to be checked here: 587 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 588 * (Section 3.4.2) 589 * 2. Destination vector register number is multiples of LMUL. 590 * (Section 3.4.2) 591 * 3. Destination vector register group for a masked vector 592 * instruction cannot overlap the source mask register (v0). 593 * (Section 5.3) 594 * 4. The destination vector register group for vslideup, vslide1up, 595 * vfslide1up, cannot overlap the source vector register (vs2) group. 596 * (Section 5.2, 16.3.1, 16.3.3) 597 */ 598static bool vext_check_slide(DisasContext *s, int vd, int vs2, 599 int vm, bool is_over) 600{ 601 bool ret = require_align(vs2, s->lmul) && 602 require_align(vd, s->lmul) && 603 require_vm(vm, vd); 604 if (is_over) { 605 ret &= (vd != vs2); 606 } 607 return ret; 608} 609 610/* 611 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 612 * So RVV is also be checked in this function. 613 */ 614static bool vext_check_isa_ill(DisasContext *s) 615{ 616 return !s->vill; 617} 618 619/* common translation macro */ 620#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 621static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 622{ \ 623 if (CHECK(s, a, EEW)) { \ 624 return OP(s, a, EEW); \ 625 } \ 626 return false; \ 627} 628 629static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 630{ 631 int8_t emul = eew - s->sew + s->lmul; 632 return emul < 0 ? 0 : emul; 633} 634 635/* 636 *** unit stride load and store 637 */ 638typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 639 TCGv_env, TCGv_i32); 640 641static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 642 gen_helper_ldst_us *fn, DisasContext *s, 643 bool is_store) 644{ 645 TCGv_ptr dest, mask; 646 TCGv base; 647 TCGv_i32 desc; 648 649 TCGLabel *over = gen_new_label(); 650 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 651 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 652 653 dest = tcg_temp_new_ptr(); 654 mask = tcg_temp_new_ptr(); 655 base = get_gpr(s, rs1, EXT_NONE); 656 657 /* 658 * As simd_desc supports at most 2048 bytes, and in this implementation, 659 * the max vector group length is 4096 bytes. So split it into two parts. 660 * 661 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 662 * The second part is lmul, encoded in data of simd_desc. 663 */ 664 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 665 s->cfg_ptr->vlen / 8, data)); 666 667 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 668 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 669 670 fn(dest, mask, base, cpu_env, desc); 671 672 tcg_temp_free_ptr(dest); 673 tcg_temp_free_ptr(mask); 674 675 if (!is_store) { 676 mark_vs_dirty(s); 677 } 678 679 gen_set_label(over); 680 return true; 681} 682 683static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 684{ 685 uint32_t data = 0; 686 gen_helper_ldst_us *fn; 687 static gen_helper_ldst_us * const fns[2][4] = { 688 /* masked unit stride load */ 689 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 690 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 691 /* unmasked unit stride load */ 692 { gen_helper_vle8_v, gen_helper_vle16_v, 693 gen_helper_vle32_v, gen_helper_vle64_v } 694 }; 695 696 fn = fns[a->vm][eew]; 697 if (fn == NULL) { 698 return false; 699 } 700 701 /* 702 * Vector load/store instructions have the EEW encoded 703 * directly in the instructions. The maximum vector size is 704 * calculated with EMUL rather than LMUL. 705 */ 706 uint8_t emul = vext_get_emul(s, eew); 707 data = FIELD_DP32(data, VDATA, VM, a->vm); 708 data = FIELD_DP32(data, VDATA, LMUL, emul); 709 data = FIELD_DP32(data, VDATA, NF, a->nf); 710 data = FIELD_DP32(data, VDATA, VTA, s->vta); 711 data = FIELD_DP32(data, VDATA, VMA, s->vma); 712 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 713} 714 715static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 716{ 717 return require_rvv(s) && 718 vext_check_isa_ill(s) && 719 vext_check_load(s, a->rd, a->nf, a->vm, eew); 720} 721 722GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 723GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 724GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 725GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 726 727static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 728{ 729 uint32_t data = 0; 730 gen_helper_ldst_us *fn; 731 static gen_helper_ldst_us * const fns[2][4] = { 732 /* masked unit stride store */ 733 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 734 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 735 /* unmasked unit stride store */ 736 { gen_helper_vse8_v, gen_helper_vse16_v, 737 gen_helper_vse32_v, gen_helper_vse64_v } 738 }; 739 740 fn = fns[a->vm][eew]; 741 if (fn == NULL) { 742 return false; 743 } 744 745 uint8_t emul = vext_get_emul(s, eew); 746 data = FIELD_DP32(data, VDATA, VM, a->vm); 747 data = FIELD_DP32(data, VDATA, LMUL, emul); 748 data = FIELD_DP32(data, VDATA, NF, a->nf); 749 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 750} 751 752static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 753{ 754 return require_rvv(s) && 755 vext_check_isa_ill(s) && 756 vext_check_store(s, a->rd, a->nf, eew); 757} 758 759GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 760GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 761GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 762GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 763 764/* 765 *** unit stride mask load and store 766 */ 767static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 768{ 769 uint32_t data = 0; 770 gen_helper_ldst_us *fn = gen_helper_vlm_v; 771 772 /* EMUL = 1, NFIELDS = 1 */ 773 data = FIELD_DP32(data, VDATA, LMUL, 0); 774 data = FIELD_DP32(data, VDATA, NF, 1); 775 /* Mask destination register are always tail-agnostic */ 776 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 777 data = FIELD_DP32(data, VDATA, VMA, s->vma); 778 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 779} 780 781static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 782{ 783 /* EMUL = 1, NFIELDS = 1 */ 784 return require_rvv(s) && vext_check_isa_ill(s); 785} 786 787static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 788{ 789 uint32_t data = 0; 790 gen_helper_ldst_us *fn = gen_helper_vsm_v; 791 792 /* EMUL = 1, NFIELDS = 1 */ 793 data = FIELD_DP32(data, VDATA, LMUL, 0); 794 data = FIELD_DP32(data, VDATA, NF, 1); 795 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 796} 797 798static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 799{ 800 /* EMUL = 1, NFIELDS = 1 */ 801 return require_rvv(s) && vext_check_isa_ill(s); 802} 803 804GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 805GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 806 807/* 808 *** stride load and store 809 */ 810typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 811 TCGv, TCGv_env, TCGv_i32); 812 813static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 814 uint32_t data, gen_helper_ldst_stride *fn, 815 DisasContext *s, bool is_store) 816{ 817 TCGv_ptr dest, mask; 818 TCGv base, stride; 819 TCGv_i32 desc; 820 821 TCGLabel *over = gen_new_label(); 822 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 823 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 824 825 dest = tcg_temp_new_ptr(); 826 mask = tcg_temp_new_ptr(); 827 base = get_gpr(s, rs1, EXT_NONE); 828 stride = get_gpr(s, rs2, EXT_NONE); 829 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 830 s->cfg_ptr->vlen / 8, data)); 831 832 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 833 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 834 835 fn(dest, mask, base, stride, cpu_env, desc); 836 837 tcg_temp_free_ptr(dest); 838 tcg_temp_free_ptr(mask); 839 840 if (!is_store) { 841 mark_vs_dirty(s); 842 } 843 844 gen_set_label(over); 845 return true; 846} 847 848static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 849{ 850 uint32_t data = 0; 851 gen_helper_ldst_stride *fn; 852 static gen_helper_ldst_stride * const fns[4] = { 853 gen_helper_vlse8_v, gen_helper_vlse16_v, 854 gen_helper_vlse32_v, gen_helper_vlse64_v 855 }; 856 857 fn = fns[eew]; 858 if (fn == NULL) { 859 return false; 860 } 861 862 uint8_t emul = vext_get_emul(s, eew); 863 data = FIELD_DP32(data, VDATA, VM, a->vm); 864 data = FIELD_DP32(data, VDATA, LMUL, emul); 865 data = FIELD_DP32(data, VDATA, NF, a->nf); 866 data = FIELD_DP32(data, VDATA, VTA, s->vta); 867 data = FIELD_DP32(data, VDATA, VMA, s->vma); 868 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 869} 870 871static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 872{ 873 return require_rvv(s) && 874 vext_check_isa_ill(s) && 875 vext_check_load(s, a->rd, a->nf, a->vm, eew); 876} 877 878GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 879GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 880GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 881GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 882 883static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 884{ 885 uint32_t data = 0; 886 gen_helper_ldst_stride *fn; 887 static gen_helper_ldst_stride * const fns[4] = { 888 /* masked stride store */ 889 gen_helper_vsse8_v, gen_helper_vsse16_v, 890 gen_helper_vsse32_v, gen_helper_vsse64_v 891 }; 892 893 uint8_t emul = vext_get_emul(s, eew); 894 data = FIELD_DP32(data, VDATA, VM, a->vm); 895 data = FIELD_DP32(data, VDATA, LMUL, emul); 896 data = FIELD_DP32(data, VDATA, NF, a->nf); 897 fn = fns[eew]; 898 if (fn == NULL) { 899 return false; 900 } 901 902 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 903} 904 905static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 906{ 907 return require_rvv(s) && 908 vext_check_isa_ill(s) && 909 vext_check_store(s, a->rd, a->nf, eew); 910} 911 912GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 913GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 914GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 915GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 916 917/* 918 *** index load and store 919 */ 920typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 921 TCGv_ptr, TCGv_env, TCGv_i32); 922 923static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 924 uint32_t data, gen_helper_ldst_index *fn, 925 DisasContext *s, bool is_store) 926{ 927 TCGv_ptr dest, mask, index; 928 TCGv base; 929 TCGv_i32 desc; 930 931 TCGLabel *over = gen_new_label(); 932 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 933 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 934 935 dest = tcg_temp_new_ptr(); 936 mask = tcg_temp_new_ptr(); 937 index = tcg_temp_new_ptr(); 938 base = get_gpr(s, rs1, EXT_NONE); 939 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 940 s->cfg_ptr->vlen / 8, data)); 941 942 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 943 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 944 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 945 946 fn(dest, mask, base, index, cpu_env, desc); 947 948 tcg_temp_free_ptr(dest); 949 tcg_temp_free_ptr(mask); 950 tcg_temp_free_ptr(index); 951 952 if (!is_store) { 953 mark_vs_dirty(s); 954 } 955 956 gen_set_label(over); 957 return true; 958} 959 960static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 961{ 962 uint32_t data = 0; 963 gen_helper_ldst_index *fn; 964 static gen_helper_ldst_index * const fns[4][4] = { 965 /* 966 * offset vector register group EEW = 8, 967 * data vector register group EEW = SEW 968 */ 969 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 970 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 971 /* 972 * offset vector register group EEW = 16, 973 * data vector register group EEW = SEW 974 */ 975 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 976 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 977 /* 978 * offset vector register group EEW = 32, 979 * data vector register group EEW = SEW 980 */ 981 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 982 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 983 /* 984 * offset vector register group EEW = 64, 985 * data vector register group EEW = SEW 986 */ 987 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 988 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 989 }; 990 991 fn = fns[eew][s->sew]; 992 993 uint8_t emul = vext_get_emul(s, s->sew); 994 data = FIELD_DP32(data, VDATA, VM, a->vm); 995 data = FIELD_DP32(data, VDATA, LMUL, emul); 996 data = FIELD_DP32(data, VDATA, NF, a->nf); 997 data = FIELD_DP32(data, VDATA, VTA, s->vta); 998 data = FIELD_DP32(data, VDATA, VMA, s->vma); 999 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1000} 1001 1002static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1003{ 1004 return require_rvv(s) && 1005 vext_check_isa_ill(s) && 1006 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1007} 1008 1009GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1010GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1011GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1012GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1013 1014static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1015{ 1016 uint32_t data = 0; 1017 gen_helper_ldst_index *fn; 1018 static gen_helper_ldst_index * const fns[4][4] = { 1019 /* 1020 * offset vector register group EEW = 8, 1021 * data vector register group EEW = SEW 1022 */ 1023 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1024 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1025 /* 1026 * offset vector register group EEW = 16, 1027 * data vector register group EEW = SEW 1028 */ 1029 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1030 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1031 /* 1032 * offset vector register group EEW = 32, 1033 * data vector register group EEW = SEW 1034 */ 1035 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1036 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1037 /* 1038 * offset vector register group EEW = 64, 1039 * data vector register group EEW = SEW 1040 */ 1041 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1042 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1043 }; 1044 1045 fn = fns[eew][s->sew]; 1046 1047 uint8_t emul = vext_get_emul(s, s->sew); 1048 data = FIELD_DP32(data, VDATA, VM, a->vm); 1049 data = FIELD_DP32(data, VDATA, LMUL, emul); 1050 data = FIELD_DP32(data, VDATA, NF, a->nf); 1051 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1052} 1053 1054static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1059} 1060 1061GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1062GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1063GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1064GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1065 1066/* 1067 *** unit stride fault-only-first load 1068 */ 1069static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1070 gen_helper_ldst_us *fn, DisasContext *s) 1071{ 1072 TCGv_ptr dest, mask; 1073 TCGv base; 1074 TCGv_i32 desc; 1075 1076 TCGLabel *over = gen_new_label(); 1077 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1078 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1079 1080 dest = tcg_temp_new_ptr(); 1081 mask = tcg_temp_new_ptr(); 1082 base = get_gpr(s, rs1, EXT_NONE); 1083 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1084 s->cfg_ptr->vlen / 8, data)); 1085 1086 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1087 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1088 1089 fn(dest, mask, base, cpu_env, desc); 1090 1091 tcg_temp_free_ptr(dest); 1092 tcg_temp_free_ptr(mask); 1093 mark_vs_dirty(s); 1094 gen_set_label(over); 1095 return true; 1096} 1097 1098static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1099{ 1100 uint32_t data = 0; 1101 gen_helper_ldst_us *fn; 1102 static gen_helper_ldst_us * const fns[4] = { 1103 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1104 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1105 }; 1106 1107 fn = fns[eew]; 1108 if (fn == NULL) { 1109 return false; 1110 } 1111 1112 uint8_t emul = vext_get_emul(s, eew); 1113 data = FIELD_DP32(data, VDATA, VM, a->vm); 1114 data = FIELD_DP32(data, VDATA, LMUL, emul); 1115 data = FIELD_DP32(data, VDATA, NF, a->nf); 1116 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1117 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1118 return ldff_trans(a->rd, a->rs1, data, fn, s); 1119} 1120 1121GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1122GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1123GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1124GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1125 1126/* 1127 * load and store whole register instructions 1128 */ 1129typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1130 1131static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1132 uint32_t width, gen_helper_ldst_whole *fn, 1133 DisasContext *s, bool is_store) 1134{ 1135 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1136 TCGLabel *over = gen_new_label(); 1137 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1138 1139 TCGv_ptr dest; 1140 TCGv base; 1141 TCGv_i32 desc; 1142 1143 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1144 dest = tcg_temp_new_ptr(); 1145 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1146 s->cfg_ptr->vlen / 8, data)); 1147 1148 base = get_gpr(s, rs1, EXT_NONE); 1149 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1150 1151 fn(dest, base, cpu_env, desc); 1152 1153 tcg_temp_free_ptr(dest); 1154 1155 if (!is_store) { 1156 mark_vs_dirty(s); 1157 } 1158 gen_set_label(over); 1159 1160 return true; 1161} 1162 1163/* 1164 * load and store whole register instructions ignore vtype and vl setting. 1165 * Thus, we don't need to check vill bit. (Section 7.9) 1166 */ 1167#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1168static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1169{ \ 1170 if (require_rvv(s) && \ 1171 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1172 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1173 gen_helper_##NAME, s, IS_STORE); \ 1174 } \ 1175 return false; \ 1176} 1177 1178GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1179GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1180GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1181GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1182GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1183GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1184GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1185GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1186GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1187GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1188GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1189GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1190GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1191GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1192GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1193GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1194 1195/* 1196 * The vector whole register store instructions are encoded similar to 1197 * unmasked unit-stride store of elements with EEW=8. 1198 */ 1199GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1200GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1201GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1202GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1203 1204/* 1205 *** Vector Integer Arithmetic Instructions 1206 */ 1207 1208/* 1209 * MAXSZ returns the maximum vector size can be operated in bytes, 1210 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1211 * to accerlate vector operation. 1212 */ 1213static inline uint32_t MAXSZ(DisasContext *s) 1214{ 1215 int scale = s->lmul - 3; 1216 return s->cfg_ptr->vlen >> -scale; 1217} 1218 1219static bool opivv_check(DisasContext *s, arg_rmrr *a) 1220{ 1221 return require_rvv(s) && 1222 vext_check_isa_ill(s) && 1223 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1224} 1225 1226typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1227 uint32_t, uint32_t, uint32_t); 1228 1229static inline bool 1230do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1231 gen_helper_gvec_4_ptr *fn) 1232{ 1233 TCGLabel *over = gen_new_label(); 1234 if (!opivv_check(s, a)) { 1235 return false; 1236 } 1237 1238 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1239 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1240 1241 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1242 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1243 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1244 MAXSZ(s), MAXSZ(s)); 1245 } else { 1246 uint32_t data = 0; 1247 1248 data = FIELD_DP32(data, VDATA, VM, a->vm); 1249 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1250 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1251 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1252 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1253 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1254 cpu_env, s->cfg_ptr->vlen / 8, 1255 s->cfg_ptr->vlen / 8, data, fn); 1256 } 1257 mark_vs_dirty(s); 1258 gen_set_label(over); 1259 return true; 1260} 1261 1262/* OPIVV with GVEC IR */ 1263#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1264static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1265{ \ 1266 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1267 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1268 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1269 }; \ 1270 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1271} 1272 1273GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1274GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1275 1276typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1277 TCGv_env, TCGv_i32); 1278 1279static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1280 gen_helper_opivx *fn, DisasContext *s) 1281{ 1282 TCGv_ptr dest, src2, mask; 1283 TCGv src1; 1284 TCGv_i32 desc; 1285 uint32_t data = 0; 1286 1287 TCGLabel *over = gen_new_label(); 1288 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1289 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1290 1291 dest = tcg_temp_new_ptr(); 1292 mask = tcg_temp_new_ptr(); 1293 src2 = tcg_temp_new_ptr(); 1294 src1 = get_gpr(s, rs1, EXT_SIGN); 1295 1296 data = FIELD_DP32(data, VDATA, VM, vm); 1297 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1298 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1299 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1300 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1301 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1302 s->cfg_ptr->vlen / 8, data)); 1303 1304 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1305 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1306 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1307 1308 fn(dest, mask, src1, src2, cpu_env, desc); 1309 1310 tcg_temp_free_ptr(dest); 1311 tcg_temp_free_ptr(mask); 1312 tcg_temp_free_ptr(src2); 1313 mark_vs_dirty(s); 1314 gen_set_label(over); 1315 return true; 1316} 1317 1318static bool opivx_check(DisasContext *s, arg_rmrr *a) 1319{ 1320 return require_rvv(s) && 1321 vext_check_isa_ill(s) && 1322 vext_check_ss(s, a->rd, a->rs2, a->vm); 1323} 1324 1325typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1326 uint32_t, uint32_t); 1327 1328static inline bool 1329do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1330 gen_helper_opivx *fn) 1331{ 1332 if (!opivx_check(s, a)) { 1333 return false; 1334 } 1335 1336 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1337 TCGv_i64 src1 = tcg_temp_new_i64(); 1338 1339 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1340 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1341 src1, MAXSZ(s), MAXSZ(s)); 1342 1343 tcg_temp_free_i64(src1); 1344 mark_vs_dirty(s); 1345 return true; 1346 } 1347 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1348} 1349 1350/* OPIVX with GVEC IR */ 1351#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1352static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1353{ \ 1354 static gen_helper_opivx * const fns[4] = { \ 1355 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1356 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1357 }; \ 1358 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1359} 1360 1361GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1362GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1363 1364static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1365{ 1366 tcg_gen_vec_sub8_i64(d, b, a); 1367} 1368 1369static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1370{ 1371 tcg_gen_vec_sub16_i64(d, b, a); 1372} 1373 1374static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1375{ 1376 tcg_gen_sub_i32(ret, arg2, arg1); 1377} 1378 1379static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1380{ 1381 tcg_gen_sub_i64(ret, arg2, arg1); 1382} 1383 1384static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1385{ 1386 tcg_gen_sub_vec(vece, r, b, a); 1387} 1388 1389static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1390 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1391{ 1392 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1393 static const GVecGen2s rsub_op[4] = { 1394 { .fni8 = gen_vec_rsub8_i64, 1395 .fniv = gen_rsub_vec, 1396 .fno = gen_helper_vec_rsubs8, 1397 .opt_opc = vecop_list, 1398 .vece = MO_8 }, 1399 { .fni8 = gen_vec_rsub16_i64, 1400 .fniv = gen_rsub_vec, 1401 .fno = gen_helper_vec_rsubs16, 1402 .opt_opc = vecop_list, 1403 .vece = MO_16 }, 1404 { .fni4 = gen_rsub_i32, 1405 .fniv = gen_rsub_vec, 1406 .fno = gen_helper_vec_rsubs32, 1407 .opt_opc = vecop_list, 1408 .vece = MO_32 }, 1409 { .fni8 = gen_rsub_i64, 1410 .fniv = gen_rsub_vec, 1411 .fno = gen_helper_vec_rsubs64, 1412 .opt_opc = vecop_list, 1413 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1414 .vece = MO_64 }, 1415 }; 1416 1417 tcg_debug_assert(vece <= MO_64); 1418 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1419} 1420 1421GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1422 1423typedef enum { 1424 IMM_ZX, /* Zero-extended */ 1425 IMM_SX, /* Sign-extended */ 1426 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1427 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1428} imm_mode_t; 1429 1430static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1431{ 1432 switch (imm_mode) { 1433 case IMM_ZX: 1434 return extract64(imm, 0, 5); 1435 case IMM_SX: 1436 return sextract64(imm, 0, 5); 1437 case IMM_TRUNC_SEW: 1438 return extract64(imm, 0, s->sew + 3); 1439 case IMM_TRUNC_2SEW: 1440 return extract64(imm, 0, s->sew + 4); 1441 default: 1442 g_assert_not_reached(); 1443 } 1444} 1445 1446static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1447 gen_helper_opivx *fn, DisasContext *s, 1448 imm_mode_t imm_mode) 1449{ 1450 TCGv_ptr dest, src2, mask; 1451 TCGv src1; 1452 TCGv_i32 desc; 1453 uint32_t data = 0; 1454 1455 TCGLabel *over = gen_new_label(); 1456 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1457 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1458 1459 dest = tcg_temp_new_ptr(); 1460 mask = tcg_temp_new_ptr(); 1461 src2 = tcg_temp_new_ptr(); 1462 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1463 1464 data = FIELD_DP32(data, VDATA, VM, vm); 1465 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1466 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1467 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1468 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1469 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1470 s->cfg_ptr->vlen / 8, data)); 1471 1472 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1473 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1474 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1475 1476 fn(dest, mask, src1, src2, cpu_env, desc); 1477 1478 tcg_temp_free_ptr(dest); 1479 tcg_temp_free_ptr(mask); 1480 tcg_temp_free_ptr(src2); 1481 mark_vs_dirty(s); 1482 gen_set_label(over); 1483 return true; 1484} 1485 1486typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1487 uint32_t, uint32_t); 1488 1489static inline bool 1490do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1491 gen_helper_opivx *fn, imm_mode_t imm_mode) 1492{ 1493 if (!opivx_check(s, a)) { 1494 return false; 1495 } 1496 1497 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1498 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1499 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1500 mark_vs_dirty(s); 1501 return true; 1502 } 1503 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1504} 1505 1506/* OPIVI with GVEC IR */ 1507#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1508static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1509{ \ 1510 static gen_helper_opivx * const fns[4] = { \ 1511 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1512 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1513 }; \ 1514 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1515 fns[s->sew], IMM_MODE); \ 1516} 1517 1518GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1519 1520static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1521 int64_t c, uint32_t oprsz, uint32_t maxsz) 1522{ 1523 TCGv_i64 tmp = tcg_constant_i64(c); 1524 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1525} 1526 1527GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1528 1529/* Vector Widening Integer Add/Subtract */ 1530 1531/* OPIVV with WIDEN */ 1532static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1533{ 1534 return require_rvv(s) && 1535 vext_check_isa_ill(s) && 1536 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1537} 1538 1539static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1540 gen_helper_gvec_4_ptr *fn, 1541 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1542{ 1543 if (checkfn(s, a)) { 1544 uint32_t data = 0; 1545 TCGLabel *over = gen_new_label(); 1546 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1547 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1548 1549 data = FIELD_DP32(data, VDATA, VM, a->vm); 1550 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1551 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1552 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1553 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1554 vreg_ofs(s, a->rs1), 1555 vreg_ofs(s, a->rs2), 1556 cpu_env, s->cfg_ptr->vlen / 8, 1557 s->cfg_ptr->vlen / 8, 1558 data, fn); 1559 mark_vs_dirty(s); 1560 gen_set_label(over); 1561 return true; 1562 } 1563 return false; 1564} 1565 1566#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1567static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1568{ \ 1569 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1570 gen_helper_##NAME##_b, \ 1571 gen_helper_##NAME##_h, \ 1572 gen_helper_##NAME##_w \ 1573 }; \ 1574 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1575} 1576 1577GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1578GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1579GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1580GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1581 1582/* OPIVX with WIDEN */ 1583static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1584{ 1585 return require_rvv(s) && 1586 vext_check_isa_ill(s) && 1587 vext_check_ds(s, a->rd, a->rs2, a->vm); 1588} 1589 1590static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1591 gen_helper_opivx *fn) 1592{ 1593 if (opivx_widen_check(s, a)) { 1594 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1595 } 1596 return false; 1597} 1598 1599#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1600static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1601{ \ 1602 static gen_helper_opivx * const fns[3] = { \ 1603 gen_helper_##NAME##_b, \ 1604 gen_helper_##NAME##_h, \ 1605 gen_helper_##NAME##_w \ 1606 }; \ 1607 return do_opivx_widen(s, a, fns[s->sew]); \ 1608} 1609 1610GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1611GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1612GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1613GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1614 1615/* WIDEN OPIVV with WIDEN */ 1616static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1617{ 1618 return require_rvv(s) && 1619 vext_check_isa_ill(s) && 1620 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1621} 1622 1623static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1624 gen_helper_gvec_4_ptr *fn) 1625{ 1626 if (opiwv_widen_check(s, a)) { 1627 uint32_t data = 0; 1628 TCGLabel *over = gen_new_label(); 1629 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1630 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1631 1632 data = FIELD_DP32(data, VDATA, VM, a->vm); 1633 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1634 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1635 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1636 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1637 vreg_ofs(s, a->rs1), 1638 vreg_ofs(s, a->rs2), 1639 cpu_env, s->cfg_ptr->vlen / 8, 1640 s->cfg_ptr->vlen / 8, data, fn); 1641 mark_vs_dirty(s); 1642 gen_set_label(over); 1643 return true; 1644 } 1645 return false; 1646} 1647 1648#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1649static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1650{ \ 1651 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1652 gen_helper_##NAME##_b, \ 1653 gen_helper_##NAME##_h, \ 1654 gen_helper_##NAME##_w \ 1655 }; \ 1656 return do_opiwv_widen(s, a, fns[s->sew]); \ 1657} 1658 1659GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1660GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1661GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1662GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1663 1664/* WIDEN OPIVX with WIDEN */ 1665static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1666{ 1667 return require_rvv(s) && 1668 vext_check_isa_ill(s) && 1669 vext_check_dd(s, a->rd, a->rs2, a->vm); 1670} 1671 1672static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1673 gen_helper_opivx *fn) 1674{ 1675 if (opiwx_widen_check(s, a)) { 1676 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1677 } 1678 return false; 1679} 1680 1681#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1682static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1683{ \ 1684 static gen_helper_opivx * const fns[3] = { \ 1685 gen_helper_##NAME##_b, \ 1686 gen_helper_##NAME##_h, \ 1687 gen_helper_##NAME##_w \ 1688 }; \ 1689 return do_opiwx_widen(s, a, fns[s->sew]); \ 1690} 1691 1692GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1693GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1694GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1695GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1696 1697/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1698/* OPIVV without GVEC IR */ 1699#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1700static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1701{ \ 1702 if (CHECK(s, a)) { \ 1703 uint32_t data = 0; \ 1704 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1705 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1706 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1707 }; \ 1708 TCGLabel *over = gen_new_label(); \ 1709 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1710 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1711 \ 1712 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1713 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1714 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1715 data = \ 1716 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1717 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 1718 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1719 vreg_ofs(s, a->rs1), \ 1720 vreg_ofs(s, a->rs2), cpu_env, \ 1721 s->cfg_ptr->vlen / 8, \ 1722 s->cfg_ptr->vlen / 8, data, \ 1723 fns[s->sew]); \ 1724 mark_vs_dirty(s); \ 1725 gen_set_label(over); \ 1726 return true; \ 1727 } \ 1728 return false; \ 1729} 1730 1731/* 1732 * For vadc and vsbc, an illegal instruction exception is raised if the 1733 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1734 */ 1735static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1736{ 1737 return require_rvv(s) && 1738 vext_check_isa_ill(s) && 1739 (a->rd != 0) && 1740 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1741} 1742 1743GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1744GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1745 1746/* 1747 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1748 * destination vector register overlaps a source vector register group. 1749 */ 1750static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1751{ 1752 return require_rvv(s) && 1753 vext_check_isa_ill(s) && 1754 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1755} 1756 1757GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1758GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1759 1760static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1761{ 1762 return require_rvv(s) && 1763 vext_check_isa_ill(s) && 1764 (a->rd != 0) && 1765 vext_check_ss(s, a->rd, a->rs2, a->vm); 1766} 1767 1768/* OPIVX without GVEC IR */ 1769#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1770static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1771{ \ 1772 if (CHECK(s, a)) { \ 1773 static gen_helper_opivx * const fns[4] = { \ 1774 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1775 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1776 }; \ 1777 \ 1778 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1779 } \ 1780 return false; \ 1781} 1782 1783GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1784GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1785 1786static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1787{ 1788 return require_rvv(s) && 1789 vext_check_isa_ill(s) && 1790 vext_check_ms(s, a->rd, a->rs2); 1791} 1792 1793GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1794GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1795 1796/* OPIVI without GVEC IR */ 1797#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1798static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1799{ \ 1800 if (CHECK(s, a)) { \ 1801 static gen_helper_opivx * const fns[4] = { \ 1802 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1803 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1804 }; \ 1805 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1806 fns[s->sew], s, IMM_MODE); \ 1807 } \ 1808 return false; \ 1809} 1810 1811GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1812GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1813 1814/* Vector Bitwise Logical Instructions */ 1815GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1816GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1817GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1818GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1819GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1820GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1821GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1822GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1823GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1824 1825/* Vector Single-Width Bit Shift Instructions */ 1826GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1827GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1828GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1829 1830typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1831 uint32_t, uint32_t); 1832 1833static inline bool 1834do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1835 gen_helper_opivx *fn) 1836{ 1837 if (!opivx_check(s, a)) { 1838 return false; 1839 } 1840 1841 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1842 TCGv_i32 src1 = tcg_temp_new_i32(); 1843 1844 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1845 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1846 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1847 src1, MAXSZ(s), MAXSZ(s)); 1848 1849 tcg_temp_free_i32(src1); 1850 mark_vs_dirty(s); 1851 return true; 1852 } 1853 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1854} 1855 1856#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1857static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1858{ \ 1859 static gen_helper_opivx * const fns[4] = { \ 1860 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1861 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1862 }; \ 1863 \ 1864 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1865} 1866 1867GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1868GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1869GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1870 1871GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1872GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1873GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1874 1875/* Vector Narrowing Integer Right Shift Instructions */ 1876static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1877{ 1878 return require_rvv(s) && 1879 vext_check_isa_ill(s) && 1880 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1881} 1882 1883/* OPIVV with NARROW */ 1884#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1885static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1886{ \ 1887 if (opiwv_narrow_check(s, a)) { \ 1888 uint32_t data = 0; \ 1889 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1890 gen_helper_##NAME##_b, \ 1891 gen_helper_##NAME##_h, \ 1892 gen_helper_##NAME##_w, \ 1893 }; \ 1894 TCGLabel *over = gen_new_label(); \ 1895 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1896 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1897 \ 1898 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1899 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1900 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1901 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 1902 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1903 vreg_ofs(s, a->rs1), \ 1904 vreg_ofs(s, a->rs2), cpu_env, \ 1905 s->cfg_ptr->vlen / 8, \ 1906 s->cfg_ptr->vlen / 8, data, \ 1907 fns[s->sew]); \ 1908 mark_vs_dirty(s); \ 1909 gen_set_label(over); \ 1910 return true; \ 1911 } \ 1912 return false; \ 1913} 1914GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1915GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1916 1917static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1918{ 1919 return require_rvv(s) && 1920 vext_check_isa_ill(s) && 1921 vext_check_sd(s, a->rd, a->rs2, a->vm); 1922} 1923 1924/* OPIVX with NARROW */ 1925#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1926static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1927{ \ 1928 if (opiwx_narrow_check(s, a)) { \ 1929 static gen_helper_opivx * const fns[3] = { \ 1930 gen_helper_##NAME##_b, \ 1931 gen_helper_##NAME##_h, \ 1932 gen_helper_##NAME##_w, \ 1933 }; \ 1934 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1935 } \ 1936 return false; \ 1937} 1938 1939GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1940GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1941 1942/* OPIWI with NARROW */ 1943#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1944static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1945{ \ 1946 if (opiwx_narrow_check(s, a)) { \ 1947 static gen_helper_opivx * const fns[3] = { \ 1948 gen_helper_##OPIVX##_b, \ 1949 gen_helper_##OPIVX##_h, \ 1950 gen_helper_##OPIVX##_w, \ 1951 }; \ 1952 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1953 fns[s->sew], s, IMM_MODE); \ 1954 } \ 1955 return false; \ 1956} 1957 1958GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1959GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1960 1961/* Vector Integer Comparison Instructions */ 1962/* 1963 * For all comparison instructions, an illegal instruction exception is raised 1964 * if the destination vector register overlaps a source vector register group 1965 * and LMUL > 1. 1966 */ 1967static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1968{ 1969 return require_rvv(s) && 1970 vext_check_isa_ill(s) && 1971 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1972} 1973 1974GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1975GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1976GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1977GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1978GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1979GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1980 1981static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1982{ 1983 return require_rvv(s) && 1984 vext_check_isa_ill(s) && 1985 vext_check_ms(s, a->rd, a->rs2); 1986} 1987 1988GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1989GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1990GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1991GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1992GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1993GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1994GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1995GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1996 1997GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1998GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1999GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 2000GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 2001GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 2002GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 2003 2004/* Vector Integer Min/Max Instructions */ 2005GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 2006GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 2007GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2008GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2009GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2010GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2011GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2012GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2013 2014/* Vector Single-Width Integer Multiply Instructions */ 2015 2016static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2017{ 2018 /* 2019 * All Zve* extensions support all vector integer instructions, 2020 * except that the vmulh integer multiply variants 2021 * that return the high word of the product 2022 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2023 * are not included for EEW=64 in Zve64*. (Section 18.2) 2024 */ 2025 return opivv_check(s, a) && 2026 (!has_ext(s, RVV) && 2027 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2028} 2029 2030static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2031{ 2032 /* 2033 * All Zve* extensions support all vector integer instructions, 2034 * except that the vmulh integer multiply variants 2035 * that return the high word of the product 2036 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2037 * are not included for EEW=64 in Zve64*. (Section 18.2) 2038 */ 2039 return opivx_check(s, a) && 2040 (!has_ext(s, RVV) && 2041 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2042} 2043 2044GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2045GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2046GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2047GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2048GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2049GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2050GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2051GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2052 2053/* Vector Integer Divide Instructions */ 2054GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2055GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2056GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2057GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2058GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2059GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2060GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2061GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2062 2063/* Vector Widening Integer Multiply Instructions */ 2064GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2065GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2066GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2067GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2068GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2069GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2070 2071/* Vector Single-Width Integer Multiply-Add Instructions */ 2072GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2073GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2074GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2075GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2076GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2077GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2078GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2079GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2080 2081/* Vector Widening Integer Multiply-Add Instructions */ 2082GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2083GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2084GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2085GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2086GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2087GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2088GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2089 2090/* Vector Integer Merge and Move Instructions */ 2091static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2092{ 2093 if (require_rvv(s) && 2094 vext_check_isa_ill(s) && 2095 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2096 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2097 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2098 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2099 vreg_ofs(s, a->rs1), 2100 MAXSZ(s), MAXSZ(s)); 2101 } else { 2102 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2103 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2104 static gen_helper_gvec_2_ptr * const fns[4] = { 2105 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2106 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2107 }; 2108 TCGLabel *over = gen_new_label(); 2109 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2110 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2111 2112 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2113 cpu_env, s->cfg_ptr->vlen / 8, 2114 s->cfg_ptr->vlen / 8, data, 2115 fns[s->sew]); 2116 gen_set_label(over); 2117 } 2118 mark_vs_dirty(s); 2119 return true; 2120 } 2121 return false; 2122} 2123 2124typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2125static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2126{ 2127 if (require_rvv(s) && 2128 vext_check_isa_ill(s) && 2129 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2130 vext_check_ss(s, a->rd, 0, 1)) { 2131 TCGv s1; 2132 TCGLabel *over = gen_new_label(); 2133 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2134 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2135 2136 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2137 2138 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2139 if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { 2140 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2141 tcg_gen_ext_tl_i64(s1_i64, s1); 2142 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2143 MAXSZ(s), MAXSZ(s), s1_i64); 2144 tcg_temp_free_i64(s1_i64); 2145 } else { 2146 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2147 MAXSZ(s), MAXSZ(s), s1); 2148 } 2149 } else { 2150 TCGv_i32 desc; 2151 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2152 TCGv_ptr dest = tcg_temp_new_ptr(); 2153 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2154 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2155 static gen_helper_vmv_vx * const fns[4] = { 2156 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2157 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2158 }; 2159 2160 tcg_gen_ext_tl_i64(s1_i64, s1); 2161 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2162 s->cfg_ptr->vlen / 8, data)); 2163 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2164 fns[s->sew](dest, s1_i64, cpu_env, desc); 2165 2166 tcg_temp_free_ptr(dest); 2167 tcg_temp_free_i64(s1_i64); 2168 } 2169 2170 mark_vs_dirty(s); 2171 gen_set_label(over); 2172 return true; 2173 } 2174 return false; 2175} 2176 2177static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2178{ 2179 if (require_rvv(s) && 2180 vext_check_isa_ill(s) && 2181 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2182 vext_check_ss(s, a->rd, 0, 1)) { 2183 int64_t simm = sextract64(a->rs1, 0, 5); 2184 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2185 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2186 MAXSZ(s), MAXSZ(s), simm); 2187 mark_vs_dirty(s); 2188 } else { 2189 TCGv_i32 desc; 2190 TCGv_i64 s1; 2191 TCGv_ptr dest; 2192 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2193 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2194 static gen_helper_vmv_vx * const fns[4] = { 2195 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2196 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2197 }; 2198 TCGLabel *over = gen_new_label(); 2199 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2200 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2201 2202 s1 = tcg_constant_i64(simm); 2203 dest = tcg_temp_new_ptr(); 2204 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2205 s->cfg_ptr->vlen / 8, data)); 2206 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2207 fns[s->sew](dest, s1, cpu_env, desc); 2208 2209 tcg_temp_free_ptr(dest); 2210 mark_vs_dirty(s); 2211 gen_set_label(over); 2212 } 2213 return true; 2214 } 2215 return false; 2216} 2217 2218GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2219GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2220GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2221 2222/* 2223 *** Vector Fixed-Point Arithmetic Instructions 2224 */ 2225 2226/* Vector Single-Width Saturating Add and Subtract */ 2227GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2228GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2229GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2230GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2231GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2232GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2233GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2234GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2235GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2236GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2237 2238/* Vector Single-Width Averaging Add and Subtract */ 2239GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2240GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2241GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2242GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2243GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2244GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2245GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2246GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2247 2248/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2249 2250static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2251{ 2252 /* 2253 * All Zve* extensions support all vector fixed-point arithmetic 2254 * instructions, except that vsmul.vv and vsmul.vx are not supported 2255 * for EEW=64 in Zve64*. (Section 18.2) 2256 */ 2257 return opivv_check(s, a) && 2258 (!has_ext(s, RVV) && 2259 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2260} 2261 2262static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2263{ 2264 /* 2265 * All Zve* extensions support all vector fixed-point arithmetic 2266 * instructions, except that vsmul.vv and vsmul.vx are not supported 2267 * for EEW=64 in Zve64*. (Section 18.2) 2268 */ 2269 return opivx_check(s, a) && 2270 (!has_ext(s, RVV) && 2271 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2272} 2273 2274GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2275GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2276 2277/* Vector Single-Width Scaling Shift Instructions */ 2278GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2279GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2280GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2281GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2282GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2283GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2284 2285/* Vector Narrowing Fixed-Point Clip Instructions */ 2286GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2287GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2288GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2289GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2290GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2291GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2292 2293/* 2294 *** Vector Float Point Arithmetic Instructions 2295 */ 2296 2297/* 2298 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2299 * RVF and RVD can be treated equally. 2300 * We don't have to deal with the cases of: SEW > FLEN. 2301 * 2302 * If SEW < FLEN, check whether input fp register is a valid 2303 * NaN-boxed value, in which case the least-significant SEW bits 2304 * of the f regsiter are used, else the canonical NaN value is used. 2305 */ 2306static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2307{ 2308 switch (s->sew) { 2309 case 1: 2310 gen_check_nanbox_h(out, in); 2311 break; 2312 case 2: 2313 gen_check_nanbox_s(out, in); 2314 break; 2315 case 3: 2316 tcg_gen_mov_i64(out, in); 2317 break; 2318 default: 2319 g_assert_not_reached(); 2320 } 2321} 2322 2323/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2324 2325/* 2326 * If the current SEW does not correspond to a supported IEEE floating-point 2327 * type, an illegal instruction exception is raised. 2328 */ 2329static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2330{ 2331 return require_rvv(s) && 2332 require_rvf(s) && 2333 vext_check_isa_ill(s) && 2334 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2335 require_zve32f(s) && 2336 require_zve64f(s); 2337} 2338 2339/* OPFVV without GVEC IR */ 2340#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2341static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2342{ \ 2343 if (CHECK(s, a)) { \ 2344 uint32_t data = 0; \ 2345 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2346 gen_helper_##NAME##_h, \ 2347 gen_helper_##NAME##_w, \ 2348 gen_helper_##NAME##_d, \ 2349 }; \ 2350 TCGLabel *over = gen_new_label(); \ 2351 gen_set_rm(s, RISCV_FRM_DYN); \ 2352 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2353 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2354 \ 2355 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2356 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2357 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2358 data = \ 2359 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2360 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2361 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2362 vreg_ofs(s, a->rs1), \ 2363 vreg_ofs(s, a->rs2), cpu_env, \ 2364 s->cfg_ptr->vlen / 8, \ 2365 s->cfg_ptr->vlen / 8, data, \ 2366 fns[s->sew - 1]); \ 2367 mark_vs_dirty(s); \ 2368 gen_set_label(over); \ 2369 return true; \ 2370 } \ 2371 return false; \ 2372} 2373GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2374GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2375 2376typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2377 TCGv_env, TCGv_i32); 2378 2379static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2380 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2381{ 2382 TCGv_ptr dest, src2, mask; 2383 TCGv_i32 desc; 2384 TCGv_i64 t1; 2385 2386 TCGLabel *over = gen_new_label(); 2387 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2388 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2389 2390 dest = tcg_temp_new_ptr(); 2391 mask = tcg_temp_new_ptr(); 2392 src2 = tcg_temp_new_ptr(); 2393 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2394 s->cfg_ptr->vlen / 8, data)); 2395 2396 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2397 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2398 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2399 2400 /* NaN-box f[rs1] */ 2401 t1 = tcg_temp_new_i64(); 2402 do_nanbox(s, t1, cpu_fpr[rs1]); 2403 2404 fn(dest, mask, t1, src2, cpu_env, desc); 2405 2406 tcg_temp_free_ptr(dest); 2407 tcg_temp_free_ptr(mask); 2408 tcg_temp_free_ptr(src2); 2409 tcg_temp_free_i64(t1); 2410 mark_vs_dirty(s); 2411 gen_set_label(over); 2412 return true; 2413} 2414 2415/* 2416 * If the current SEW does not correspond to a supported IEEE floating-point 2417 * type, an illegal instruction exception is raised 2418 */ 2419static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2420{ 2421 return require_rvv(s) && 2422 require_rvf(s) && 2423 vext_check_isa_ill(s) && 2424 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2425 require_zve32f(s) && 2426 require_zve64f(s); 2427} 2428 2429/* OPFVF without GVEC IR */ 2430#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2431static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2432{ \ 2433 if (CHECK(s, a)) { \ 2434 uint32_t data = 0; \ 2435 static gen_helper_opfvf *const fns[3] = { \ 2436 gen_helper_##NAME##_h, \ 2437 gen_helper_##NAME##_w, \ 2438 gen_helper_##NAME##_d, \ 2439 }; \ 2440 gen_set_rm(s, RISCV_FRM_DYN); \ 2441 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2442 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2443 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2444 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2445 s->cfg_vta_all_1s); \ 2446 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2447 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2448 fns[s->sew - 1], s); \ 2449 } \ 2450 return false; \ 2451} 2452 2453GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2454GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2455GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2456 2457/* Vector Widening Floating-Point Add/Subtract Instructions */ 2458static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2459{ 2460 return require_rvv(s) && 2461 require_scale_rvf(s) && 2462 (s->sew != MO_8) && 2463 vext_check_isa_ill(s) && 2464 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2465 require_scale_zve32f(s) && 2466 require_scale_zve64f(s); 2467} 2468 2469/* OPFVV with WIDEN */ 2470#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2471static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2472{ \ 2473 if (CHECK(s, a)) { \ 2474 uint32_t data = 0; \ 2475 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2476 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2477 }; \ 2478 TCGLabel *over = gen_new_label(); \ 2479 gen_set_rm(s, RISCV_FRM_DYN); \ 2480 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2481 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2482 \ 2483 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2484 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2485 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2486 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2487 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2488 vreg_ofs(s, a->rs1), \ 2489 vreg_ofs(s, a->rs2), cpu_env, \ 2490 s->cfg_ptr->vlen / 8, \ 2491 s->cfg_ptr->vlen / 8, data, \ 2492 fns[s->sew - 1]); \ 2493 mark_vs_dirty(s); \ 2494 gen_set_label(over); \ 2495 return true; \ 2496 } \ 2497 return false; \ 2498} 2499 2500GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2501GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2502 2503static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2504{ 2505 return require_rvv(s) && 2506 require_scale_rvf(s) && 2507 (s->sew != MO_8) && 2508 vext_check_isa_ill(s) && 2509 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2510 require_scale_zve32f(s) && 2511 require_scale_zve64f(s); 2512} 2513 2514/* OPFVF with WIDEN */ 2515#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2516static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2517{ \ 2518 if (opfvf_widen_check(s, a)) { \ 2519 uint32_t data = 0; \ 2520 static gen_helper_opfvf *const fns[2] = { \ 2521 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2522 }; \ 2523 gen_set_rm(s, RISCV_FRM_DYN); \ 2524 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2525 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2526 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2527 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2528 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2529 fns[s->sew - 1], s); \ 2530 } \ 2531 return false; \ 2532} 2533 2534GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2535GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2536 2537static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2538{ 2539 return require_rvv(s) && 2540 require_scale_rvf(s) && 2541 (s->sew != MO_8) && 2542 vext_check_isa_ill(s) && 2543 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2544 require_scale_zve32f(s) && 2545 require_scale_zve64f(s); 2546} 2547 2548/* WIDEN OPFVV with WIDEN */ 2549#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2550static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2551{ \ 2552 if (opfwv_widen_check(s, a)) { \ 2553 uint32_t data = 0; \ 2554 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2555 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2556 }; \ 2557 TCGLabel *over = gen_new_label(); \ 2558 gen_set_rm(s, RISCV_FRM_DYN); \ 2559 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2560 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2561 \ 2562 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2563 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2564 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2565 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2566 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2567 vreg_ofs(s, a->rs1), \ 2568 vreg_ofs(s, a->rs2), cpu_env, \ 2569 s->cfg_ptr->vlen / 8, \ 2570 s->cfg_ptr->vlen / 8, data, \ 2571 fns[s->sew - 1]); \ 2572 mark_vs_dirty(s); \ 2573 gen_set_label(over); \ 2574 return true; \ 2575 } \ 2576 return false; \ 2577} 2578 2579GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2580GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2581 2582static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2583{ 2584 return require_rvv(s) && 2585 require_scale_rvf(s) && 2586 (s->sew != MO_8) && 2587 vext_check_isa_ill(s) && 2588 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2589 require_scale_zve32f(s) && 2590 require_scale_zve64f(s); 2591} 2592 2593/* WIDEN OPFVF with WIDEN */ 2594#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2595static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2596{ \ 2597 if (opfwf_widen_check(s, a)) { \ 2598 uint32_t data = 0; \ 2599 static gen_helper_opfvf *const fns[2] = { \ 2600 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2601 }; \ 2602 gen_set_rm(s, RISCV_FRM_DYN); \ 2603 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2604 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2605 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2606 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2607 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2608 fns[s->sew - 1], s); \ 2609 } \ 2610 return false; \ 2611} 2612 2613GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2614GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2615 2616/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2617GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2618GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2619GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2620GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2621GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2622 2623/* Vector Widening Floating-Point Multiply */ 2624GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2625GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2626 2627/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2628GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2629GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2630GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2631GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2632GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2633GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2634GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2635GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2636GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2637GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2638GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2639GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2640GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2641GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2642GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2643GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2644 2645/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2646GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2647GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2648GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2649GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2650GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2651GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2652GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2653GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2654 2655/* Vector Floating-Point Square-Root Instruction */ 2656 2657/* 2658 * If the current SEW does not correspond to a supported IEEE floating-point 2659 * type, an illegal instruction exception is raised 2660 */ 2661static bool opfv_check(DisasContext *s, arg_rmr *a) 2662{ 2663 return require_rvv(s) && 2664 require_rvf(s) && 2665 vext_check_isa_ill(s) && 2666 /* OPFV instructions ignore vs1 check */ 2667 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2668 require_zve32f(s) && 2669 require_zve64f(s); 2670} 2671 2672static bool do_opfv(DisasContext *s, arg_rmr *a, 2673 gen_helper_gvec_3_ptr *fn, 2674 bool (*checkfn)(DisasContext *, arg_rmr *), 2675 int rm) 2676{ 2677 if (checkfn(s, a)) { 2678 uint32_t data = 0; 2679 TCGLabel *over = gen_new_label(); 2680 gen_set_rm_chkfrm(s, rm); 2681 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2682 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2683 2684 data = FIELD_DP32(data, VDATA, VM, a->vm); 2685 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2686 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2687 data = FIELD_DP32(data, VDATA, VMA, s->vma); 2688 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2689 vreg_ofs(s, a->rs2), cpu_env, 2690 s->cfg_ptr->vlen / 8, 2691 s->cfg_ptr->vlen / 8, data, fn); 2692 mark_vs_dirty(s); 2693 gen_set_label(over); 2694 return true; 2695 } 2696 return false; 2697} 2698 2699#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2700static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2701{ \ 2702 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2703 gen_helper_##NAME##_h, \ 2704 gen_helper_##NAME##_w, \ 2705 gen_helper_##NAME##_d \ 2706 }; \ 2707 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2708} 2709 2710GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2711GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2712GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2713 2714/* Vector Floating-Point MIN/MAX Instructions */ 2715GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2716GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2717GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2718GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2719 2720/* Vector Floating-Point Sign-Injection Instructions */ 2721GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2722GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2723GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2724GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2725GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2726GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2727 2728/* Vector Floating-Point Compare Instructions */ 2729static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2730{ 2731 return require_rvv(s) && 2732 require_rvf(s) && 2733 vext_check_isa_ill(s) && 2734 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2735 require_zve32f(s) && 2736 require_zve64f(s); 2737} 2738 2739GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2740GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2741GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2742GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2743 2744static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2745{ 2746 return require_rvv(s) && 2747 require_rvf(s) && 2748 vext_check_isa_ill(s) && 2749 vext_check_ms(s, a->rd, a->rs2) && 2750 require_zve32f(s) && 2751 require_zve64f(s); 2752} 2753 2754GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2755GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2756GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2757GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2758GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2759GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2760 2761/* Vector Floating-Point Classify Instruction */ 2762GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2763 2764/* Vector Floating-Point Merge Instruction */ 2765GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2766 2767static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2768{ 2769 if (require_rvv(s) && 2770 require_rvf(s) && 2771 vext_check_isa_ill(s) && 2772 require_align(a->rd, s->lmul) && 2773 require_zve32f(s) && 2774 require_zve64f(s)) { 2775 gen_set_rm(s, RISCV_FRM_DYN); 2776 2777 TCGv_i64 t1; 2778 2779 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2780 t1 = tcg_temp_new_i64(); 2781 /* NaN-box f[rs1] */ 2782 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2783 2784 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2785 MAXSZ(s), MAXSZ(s), t1); 2786 mark_vs_dirty(s); 2787 } else { 2788 TCGv_ptr dest; 2789 TCGv_i32 desc; 2790 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2791 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2792 data = FIELD_DP32(data, VDATA, VMA, s->vma); 2793 static gen_helper_vmv_vx * const fns[3] = { 2794 gen_helper_vmv_v_x_h, 2795 gen_helper_vmv_v_x_w, 2796 gen_helper_vmv_v_x_d, 2797 }; 2798 TCGLabel *over = gen_new_label(); 2799 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2800 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2801 2802 t1 = tcg_temp_new_i64(); 2803 /* NaN-box f[rs1] */ 2804 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2805 2806 dest = tcg_temp_new_ptr(); 2807 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2808 s->cfg_ptr->vlen / 8, data)); 2809 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2810 2811 fns[s->sew - 1](dest, t1, cpu_env, desc); 2812 2813 tcg_temp_free_ptr(dest); 2814 mark_vs_dirty(s); 2815 gen_set_label(over); 2816 } 2817 tcg_temp_free_i64(t1); 2818 return true; 2819 } 2820 return false; 2821} 2822 2823/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2824#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2825static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2826{ \ 2827 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2828 gen_helper_##HELPER##_h, \ 2829 gen_helper_##HELPER##_w, \ 2830 gen_helper_##HELPER##_d \ 2831 }; \ 2832 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2833} 2834 2835GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2836GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2837GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2838GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2839/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2840GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2841GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2842 2843/* Widening Floating-Point/Integer Type-Convert Instructions */ 2844 2845/* 2846 * If the current SEW does not correspond to a supported IEEE floating-point 2847 * type, an illegal instruction exception is raised 2848 */ 2849static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2850{ 2851 return require_rvv(s) && 2852 vext_check_isa_ill(s) && 2853 vext_check_ds(s, a->rd, a->rs2, a->vm); 2854} 2855 2856static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2857{ 2858 return opfv_widen_check(s, a) && 2859 require_rvf(s) && 2860 require_zve32f(s) && 2861 require_zve64f(s); 2862} 2863 2864static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2865{ 2866 return opfv_widen_check(s, a) && 2867 require_scale_rvf(s) && 2868 (s->sew != MO_8) && 2869 require_scale_zve32f(s) && 2870 require_scale_zve64f(s); 2871} 2872 2873#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2874static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2875{ \ 2876 if (CHECK(s, a)) { \ 2877 uint32_t data = 0; \ 2878 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2879 gen_helper_##HELPER##_h, \ 2880 gen_helper_##HELPER##_w, \ 2881 }; \ 2882 TCGLabel *over = gen_new_label(); \ 2883 gen_set_rm_chkfrm(s, FRM); \ 2884 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2885 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2886 \ 2887 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2888 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2889 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2890 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2891 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2892 vreg_ofs(s, a->rs2), cpu_env, \ 2893 s->cfg_ptr->vlen / 8, \ 2894 s->cfg_ptr->vlen / 8, data, \ 2895 fns[s->sew - 1]); \ 2896 mark_vs_dirty(s); \ 2897 gen_set_label(over); \ 2898 return true; \ 2899 } \ 2900 return false; \ 2901} 2902 2903GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2904 RISCV_FRM_DYN) 2905GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2906 RISCV_FRM_DYN) 2907GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2908 RISCV_FRM_DYN) 2909/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2910GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2911 RISCV_FRM_RTZ) 2912GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2913 RISCV_FRM_RTZ) 2914 2915static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2916{ 2917 return require_rvv(s) && 2918 require_scale_rvf(s) && 2919 vext_check_isa_ill(s) && 2920 /* OPFV widening instructions ignore vs1 check */ 2921 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2922 require_scale_zve32f(s) && 2923 require_scale_zve64f(s); 2924} 2925 2926#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2927static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2928{ \ 2929 if (opfxv_widen_check(s, a)) { \ 2930 uint32_t data = 0; \ 2931 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2932 gen_helper_##NAME##_b, \ 2933 gen_helper_##NAME##_h, \ 2934 gen_helper_##NAME##_w, \ 2935 }; \ 2936 TCGLabel *over = gen_new_label(); \ 2937 gen_set_rm(s, RISCV_FRM_DYN); \ 2938 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2939 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2940 \ 2941 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2942 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2943 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2944 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 2945 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2946 vreg_ofs(s, a->rs2), cpu_env, \ 2947 s->cfg_ptr->vlen / 8, \ 2948 s->cfg_ptr->vlen / 8, data, \ 2949 fns[s->sew]); \ 2950 mark_vs_dirty(s); \ 2951 gen_set_label(over); \ 2952 return true; \ 2953 } \ 2954 return false; \ 2955} 2956 2957GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2958GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2959 2960/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2961 2962/* 2963 * If the current SEW does not correspond to a supported IEEE floating-point 2964 * type, an illegal instruction exception is raised 2965 */ 2966static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2967{ 2968 return require_rvv(s) && 2969 vext_check_isa_ill(s) && 2970 /* OPFV narrowing instructions ignore vs1 check */ 2971 vext_check_sd(s, a->rd, a->rs2, a->vm); 2972} 2973 2974static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2975{ 2976 return opfv_narrow_check(s, a) && 2977 require_rvf(s) && 2978 (s->sew != MO_64) && 2979 require_zve32f(s) && 2980 require_zve64f(s); 2981} 2982 2983static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2984{ 2985 return opfv_narrow_check(s, a) && 2986 require_scale_rvf(s) && 2987 (s->sew != MO_8) && 2988 require_scale_zve32f(s) && 2989 require_scale_zve64f(s); 2990} 2991 2992#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2993static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2994{ \ 2995 if (CHECK(s, a)) { \ 2996 uint32_t data = 0; \ 2997 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2998 gen_helper_##HELPER##_h, \ 2999 gen_helper_##HELPER##_w, \ 3000 }; \ 3001 TCGLabel *over = gen_new_label(); \ 3002 gen_set_rm_chkfrm(s, FRM); \ 3003 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3004 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3005 \ 3006 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3007 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3008 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3009 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3010 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3011 vreg_ofs(s, a->rs2), cpu_env, \ 3012 s->cfg_ptr->vlen / 8, \ 3013 s->cfg_ptr->vlen / 8, data, \ 3014 fns[s->sew - 1]); \ 3015 mark_vs_dirty(s); \ 3016 gen_set_label(over); \ 3017 return true; \ 3018 } \ 3019 return false; \ 3020} 3021 3022GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 3023 RISCV_FRM_DYN) 3024GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 3025 RISCV_FRM_DYN) 3026GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3027 RISCV_FRM_DYN) 3028/* Reuse the helper function from vfncvt.f.f.w */ 3029GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3030 RISCV_FRM_ROD) 3031 3032static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 3033{ 3034 return require_rvv(s) && 3035 require_scale_rvf(s) && 3036 vext_check_isa_ill(s) && 3037 /* OPFV narrowing instructions ignore vs1 check */ 3038 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3039 require_scale_zve32f(s) && 3040 require_scale_zve64f(s); 3041} 3042 3043#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3044static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3045{ \ 3046 if (opxfv_narrow_check(s, a)) { \ 3047 uint32_t data = 0; \ 3048 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3049 gen_helper_##HELPER##_b, \ 3050 gen_helper_##HELPER##_h, \ 3051 gen_helper_##HELPER##_w, \ 3052 }; \ 3053 TCGLabel *over = gen_new_label(); \ 3054 gen_set_rm_chkfrm(s, FRM); \ 3055 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3056 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3057 \ 3058 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3059 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3060 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3061 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3062 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3063 vreg_ofs(s, a->rs2), cpu_env, \ 3064 s->cfg_ptr->vlen / 8, \ 3065 s->cfg_ptr->vlen / 8, data, \ 3066 fns[s->sew]); \ 3067 mark_vs_dirty(s); \ 3068 gen_set_label(over); \ 3069 return true; \ 3070 } \ 3071 return false; \ 3072} 3073 3074GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3075GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3076/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3077GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3078GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3079 3080/* 3081 *** Vector Reduction Operations 3082 */ 3083/* Vector Single-Width Integer Reduction Instructions */ 3084static bool reduction_check(DisasContext *s, arg_rmrr *a) 3085{ 3086 return require_rvv(s) && 3087 vext_check_isa_ill(s) && 3088 vext_check_reduction(s, a->rs2); 3089} 3090 3091GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3092GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3093GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3094GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3095GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3096GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3097GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3098GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3099 3100/* Vector Widening Integer Reduction Instructions */ 3101static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3102{ 3103 return reduction_check(s, a) && (s->sew < MO_64) && 3104 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3105} 3106 3107GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3108GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3109 3110/* Vector Single-Width Floating-Point Reduction Instructions */ 3111static bool freduction_check(DisasContext *s, arg_rmrr *a) 3112{ 3113 return reduction_check(s, a) && 3114 require_rvf(s) && 3115 require_zve32f(s) && 3116 require_zve64f(s); 3117} 3118 3119GEN_OPFVV_TRANS(vfredusum_vs, freduction_check) 3120GEN_OPFVV_TRANS(vfredosum_vs, freduction_check) 3121GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3122GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3123 3124/* Vector Widening Floating-Point Reduction Instructions */ 3125static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3126{ 3127 return reduction_widen_check(s, a) && 3128 require_scale_rvf(s) && 3129 (s->sew != MO_8); 3130} 3131 3132GEN_OPFVV_WIDEN_TRANS(vfwredusum_vs, freduction_widen_check) 3133GEN_OPFVV_WIDEN_TRANS(vfwredosum_vs, freduction_widen_check) 3134 3135/* 3136 *** Vector Mask Operations 3137 */ 3138 3139/* Vector Mask-Register Logical Instructions */ 3140#define GEN_MM_TRANS(NAME) \ 3141static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3142{ \ 3143 if (require_rvv(s) && \ 3144 vext_check_isa_ill(s)) { \ 3145 uint32_t data = 0; \ 3146 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3147 TCGLabel *over = gen_new_label(); \ 3148 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3149 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3150 \ 3151 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3152 data = \ 3153 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3154 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3155 vreg_ofs(s, a->rs1), \ 3156 vreg_ofs(s, a->rs2), cpu_env, \ 3157 s->cfg_ptr->vlen / 8, \ 3158 s->cfg_ptr->vlen / 8, data, fn); \ 3159 mark_vs_dirty(s); \ 3160 gen_set_label(over); \ 3161 return true; \ 3162 } \ 3163 return false; \ 3164} 3165 3166GEN_MM_TRANS(vmand_mm) 3167GEN_MM_TRANS(vmnand_mm) 3168GEN_MM_TRANS(vmandn_mm) 3169GEN_MM_TRANS(vmxor_mm) 3170GEN_MM_TRANS(vmor_mm) 3171GEN_MM_TRANS(vmnor_mm) 3172GEN_MM_TRANS(vmorn_mm) 3173GEN_MM_TRANS(vmxnor_mm) 3174 3175/* Vector count population in mask vcpop */ 3176static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3177{ 3178 if (require_rvv(s) && 3179 vext_check_isa_ill(s) && 3180 s->vstart == 0) { 3181 TCGv_ptr src2, mask; 3182 TCGv dst; 3183 TCGv_i32 desc; 3184 uint32_t data = 0; 3185 data = FIELD_DP32(data, VDATA, VM, a->vm); 3186 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3187 3188 mask = tcg_temp_new_ptr(); 3189 src2 = tcg_temp_new_ptr(); 3190 dst = dest_gpr(s, a->rd); 3191 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3192 s->cfg_ptr->vlen / 8, data)); 3193 3194 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3195 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3196 3197 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3198 gen_set_gpr(s, a->rd, dst); 3199 3200 tcg_temp_free_ptr(mask); 3201 tcg_temp_free_ptr(src2); 3202 3203 return true; 3204 } 3205 return false; 3206} 3207 3208/* vmfirst find-first-set mask bit */ 3209static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3210{ 3211 if (require_rvv(s) && 3212 vext_check_isa_ill(s) && 3213 s->vstart == 0) { 3214 TCGv_ptr src2, mask; 3215 TCGv dst; 3216 TCGv_i32 desc; 3217 uint32_t data = 0; 3218 data = FIELD_DP32(data, VDATA, VM, a->vm); 3219 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3220 3221 mask = tcg_temp_new_ptr(); 3222 src2 = tcg_temp_new_ptr(); 3223 dst = dest_gpr(s, a->rd); 3224 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3225 s->cfg_ptr->vlen / 8, data)); 3226 3227 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3228 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3229 3230 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3231 gen_set_gpr(s, a->rd, dst); 3232 3233 tcg_temp_free_ptr(mask); 3234 tcg_temp_free_ptr(src2); 3235 return true; 3236 } 3237 return false; 3238} 3239 3240/* vmsbf.m set-before-first mask bit */ 3241/* vmsif.m set-includ-first mask bit */ 3242/* vmsof.m set-only-first mask bit */ 3243#define GEN_M_TRANS(NAME) \ 3244static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3245{ \ 3246 if (require_rvv(s) && \ 3247 vext_check_isa_ill(s) && \ 3248 require_vm(a->vm, a->rd) && \ 3249 (a->rd != a->rs2) && \ 3250 (s->vstart == 0)) { \ 3251 uint32_t data = 0; \ 3252 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3253 TCGLabel *over = gen_new_label(); \ 3254 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3255 \ 3256 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3257 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3258 data = \ 3259 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3260 data = FIELD_DP32(data, VDATA, VMA, s->vma); \ 3261 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3262 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3263 cpu_env, s->cfg_ptr->vlen / 8, \ 3264 s->cfg_ptr->vlen / 8, \ 3265 data, fn); \ 3266 mark_vs_dirty(s); \ 3267 gen_set_label(over); \ 3268 return true; \ 3269 } \ 3270 return false; \ 3271} 3272 3273GEN_M_TRANS(vmsbf_m) 3274GEN_M_TRANS(vmsif_m) 3275GEN_M_TRANS(vmsof_m) 3276 3277/* 3278 * Vector Iota Instruction 3279 * 3280 * 1. The destination register cannot overlap the source register. 3281 * 2. If masked, cannot overlap the mask register ('v0'). 3282 * 3. An illegal instruction exception is raised if vstart is non-zero. 3283 */ 3284static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3285{ 3286 if (require_rvv(s) && 3287 vext_check_isa_ill(s) && 3288 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3289 require_vm(a->vm, a->rd) && 3290 require_align(a->rd, s->lmul) && 3291 (s->vstart == 0)) { 3292 uint32_t data = 0; 3293 TCGLabel *over = gen_new_label(); 3294 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3295 3296 data = FIELD_DP32(data, VDATA, VM, a->vm); 3297 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3298 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3299 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3300 static gen_helper_gvec_3_ptr * const fns[4] = { 3301 gen_helper_viota_m_b, gen_helper_viota_m_h, 3302 gen_helper_viota_m_w, gen_helper_viota_m_d, 3303 }; 3304 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3305 vreg_ofs(s, a->rs2), cpu_env, 3306 s->cfg_ptr->vlen / 8, 3307 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3308 mark_vs_dirty(s); 3309 gen_set_label(over); 3310 return true; 3311 } 3312 return false; 3313} 3314 3315/* Vector Element Index Instruction */ 3316static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3317{ 3318 if (require_rvv(s) && 3319 vext_check_isa_ill(s) && 3320 require_align(a->rd, s->lmul) && 3321 require_vm(a->vm, a->rd)) { 3322 uint32_t data = 0; 3323 TCGLabel *over = gen_new_label(); 3324 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3325 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3326 3327 data = FIELD_DP32(data, VDATA, VM, a->vm); 3328 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3329 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3330 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3331 static gen_helper_gvec_2_ptr * const fns[4] = { 3332 gen_helper_vid_v_b, gen_helper_vid_v_h, 3333 gen_helper_vid_v_w, gen_helper_vid_v_d, 3334 }; 3335 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3336 cpu_env, s->cfg_ptr->vlen / 8, 3337 s->cfg_ptr->vlen / 8, 3338 data, fns[s->sew]); 3339 mark_vs_dirty(s); 3340 gen_set_label(over); 3341 return true; 3342 } 3343 return false; 3344} 3345 3346/* 3347 *** Vector Permutation Instructions 3348 */ 3349 3350static void load_element(TCGv_i64 dest, TCGv_ptr base, 3351 int ofs, int sew, bool sign) 3352{ 3353 switch (sew) { 3354 case MO_8: 3355 if (!sign) { 3356 tcg_gen_ld8u_i64(dest, base, ofs); 3357 } else { 3358 tcg_gen_ld8s_i64(dest, base, ofs); 3359 } 3360 break; 3361 case MO_16: 3362 if (!sign) { 3363 tcg_gen_ld16u_i64(dest, base, ofs); 3364 } else { 3365 tcg_gen_ld16s_i64(dest, base, ofs); 3366 } 3367 break; 3368 case MO_32: 3369 if (!sign) { 3370 tcg_gen_ld32u_i64(dest, base, ofs); 3371 } else { 3372 tcg_gen_ld32s_i64(dest, base, ofs); 3373 } 3374 break; 3375 case MO_64: 3376 tcg_gen_ld_i64(dest, base, ofs); 3377 break; 3378 default: 3379 g_assert_not_reached(); 3380 break; 3381 } 3382} 3383 3384/* offset of the idx element with base regsiter r */ 3385static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3386{ 3387#if HOST_BIG_ENDIAN 3388 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3389#else 3390 return vreg_ofs(s, r) + (idx << s->sew); 3391#endif 3392} 3393 3394/* adjust the index according to the endian */ 3395static void endian_adjust(TCGv_i32 ofs, int sew) 3396{ 3397#if HOST_BIG_ENDIAN 3398 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3399#endif 3400} 3401 3402/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3403static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3404 int vreg, TCGv idx, int vlmax) 3405{ 3406 TCGv_i32 ofs = tcg_temp_new_i32(); 3407 TCGv_ptr base = tcg_temp_new_ptr(); 3408 TCGv_i64 t_idx = tcg_temp_new_i64(); 3409 TCGv_i64 t_vlmax, t_zero; 3410 3411 /* 3412 * Mask the index to the length so that we do 3413 * not produce an out-of-range load. 3414 */ 3415 tcg_gen_trunc_tl_i32(ofs, idx); 3416 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3417 3418 /* Convert the index to an offset. */ 3419 endian_adjust(ofs, s->sew); 3420 tcg_gen_shli_i32(ofs, ofs, s->sew); 3421 3422 /* Convert the index to a pointer. */ 3423 tcg_gen_ext_i32_ptr(base, ofs); 3424 tcg_gen_add_ptr(base, base, cpu_env); 3425 3426 /* Perform the load. */ 3427 load_element(dest, base, 3428 vreg_ofs(s, vreg), s->sew, false); 3429 tcg_temp_free_ptr(base); 3430 tcg_temp_free_i32(ofs); 3431 3432 /* Flush out-of-range indexing to zero. */ 3433 t_vlmax = tcg_constant_i64(vlmax); 3434 t_zero = tcg_constant_i64(0); 3435 tcg_gen_extu_tl_i64(t_idx, idx); 3436 3437 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3438 t_vlmax, dest, t_zero); 3439 3440 tcg_temp_free_i64(t_idx); 3441} 3442 3443static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3444 int vreg, int idx, bool sign) 3445{ 3446 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3447} 3448 3449/* Integer Scalar Move Instruction */ 3450 3451static void store_element(TCGv_i64 val, TCGv_ptr base, 3452 int ofs, int sew) 3453{ 3454 switch (sew) { 3455 case MO_8: 3456 tcg_gen_st8_i64(val, base, ofs); 3457 break; 3458 case MO_16: 3459 tcg_gen_st16_i64(val, base, ofs); 3460 break; 3461 case MO_32: 3462 tcg_gen_st32_i64(val, base, ofs); 3463 break; 3464 case MO_64: 3465 tcg_gen_st_i64(val, base, ofs); 3466 break; 3467 default: 3468 g_assert_not_reached(); 3469 break; 3470 } 3471} 3472 3473/* 3474 * Store vreg[idx] = val. 3475 * The index must be in range of VLMAX. 3476 */ 3477static void vec_element_storei(DisasContext *s, int vreg, 3478 int idx, TCGv_i64 val) 3479{ 3480 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3481} 3482 3483/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3484static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3485{ 3486 if (require_rvv(s) && 3487 vext_check_isa_ill(s)) { 3488 TCGv_i64 t1; 3489 TCGv dest; 3490 3491 t1 = tcg_temp_new_i64(); 3492 dest = tcg_temp_new(); 3493 /* 3494 * load vreg and sign-extend to 64 bits, 3495 * then truncate to XLEN bits before storing to gpr. 3496 */ 3497 vec_element_loadi(s, t1, a->rs2, 0, true); 3498 tcg_gen_trunc_i64_tl(dest, t1); 3499 gen_set_gpr(s, a->rd, dest); 3500 tcg_temp_free_i64(t1); 3501 tcg_temp_free(dest); 3502 3503 return true; 3504 } 3505 return false; 3506} 3507 3508/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3509static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3510{ 3511 if (require_rvv(s) && 3512 vext_check_isa_ill(s)) { 3513 /* This instruction ignores LMUL and vector register groups */ 3514 TCGv_i64 t1; 3515 TCGv s1; 3516 TCGLabel *over = gen_new_label(); 3517 3518 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3519 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3520 3521 t1 = tcg_temp_new_i64(); 3522 3523 /* 3524 * load gpr and sign-extend to 64 bits, 3525 * then truncate to SEW bits when storing to vreg. 3526 */ 3527 s1 = get_gpr(s, a->rs1, EXT_NONE); 3528 tcg_gen_ext_tl_i64(t1, s1); 3529 vec_element_storei(s, a->rd, 0, t1); 3530 tcg_temp_free_i64(t1); 3531 mark_vs_dirty(s); 3532 gen_set_label(over); 3533 return true; 3534 } 3535 return false; 3536} 3537 3538/* Floating-Point Scalar Move Instructions */ 3539static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3540{ 3541 if (require_rvv(s) && 3542 require_rvf(s) && 3543 vext_check_isa_ill(s) && 3544 require_zve32f(s) && 3545 require_zve64f(s)) { 3546 gen_set_rm(s, RISCV_FRM_DYN); 3547 3548 unsigned int ofs = (8 << s->sew); 3549 unsigned int len = 64 - ofs; 3550 TCGv_i64 t_nan; 3551 3552 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3553 /* NaN-box f[rd] as necessary for SEW */ 3554 if (len) { 3555 t_nan = tcg_constant_i64(UINT64_MAX); 3556 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3557 t_nan, ofs, len); 3558 } 3559 3560 mark_fs_dirty(s); 3561 return true; 3562 } 3563 return false; 3564} 3565 3566/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3567static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3568{ 3569 if (require_rvv(s) && 3570 require_rvf(s) && 3571 vext_check_isa_ill(s) && 3572 require_zve32f(s) && 3573 require_zve64f(s)) { 3574 gen_set_rm(s, RISCV_FRM_DYN); 3575 3576 /* The instructions ignore LMUL and vector register group. */ 3577 TCGv_i64 t1; 3578 TCGLabel *over = gen_new_label(); 3579 3580 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3581 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3582 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3583 3584 /* NaN-box f[rs1] */ 3585 t1 = tcg_temp_new_i64(); 3586 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3587 3588 vec_element_storei(s, a->rd, 0, t1); 3589 tcg_temp_free_i64(t1); 3590 mark_vs_dirty(s); 3591 gen_set_label(over); 3592 return true; 3593 } 3594 return false; 3595} 3596 3597/* Vector Slide Instructions */ 3598static bool slideup_check(DisasContext *s, arg_rmrr *a) 3599{ 3600 return require_rvv(s) && 3601 vext_check_isa_ill(s) && 3602 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3603} 3604 3605GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3606GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3607GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3608 3609static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3610{ 3611 return require_rvv(s) && 3612 vext_check_isa_ill(s) && 3613 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3614} 3615 3616GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3617GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3618GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3619 3620/* Vector Floating-Point Slide Instructions */ 3621static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3622{ 3623 return slideup_check(s, a) && 3624 require_rvf(s) && 3625 require_zve32f(s) && 3626 require_zve64f(s); 3627} 3628 3629static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3630{ 3631 return slidedown_check(s, a) && 3632 require_rvf(s) && 3633 require_zve32f(s) && 3634 require_zve64f(s); 3635} 3636 3637GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3638GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3639 3640/* Vector Register Gather Instruction */ 3641static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3642{ 3643 return require_rvv(s) && 3644 vext_check_isa_ill(s) && 3645 require_align(a->rd, s->lmul) && 3646 require_align(a->rs1, s->lmul) && 3647 require_align(a->rs2, s->lmul) && 3648 (a->rd != a->rs2 && a->rd != a->rs1) && 3649 require_vm(a->vm, a->rd); 3650} 3651 3652static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3653{ 3654 int8_t emul = MO_16 - s->sew + s->lmul; 3655 return require_rvv(s) && 3656 vext_check_isa_ill(s) && 3657 (emul >= -3 && emul <= 3) && 3658 require_align(a->rd, s->lmul) && 3659 require_align(a->rs1, emul) && 3660 require_align(a->rs2, s->lmul) && 3661 (a->rd != a->rs2 && a->rd != a->rs1) && 3662 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3663 a->rs1, 1 << MAX(emul, 0)) && 3664 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3665 a->rs2, 1 << MAX(s->lmul, 0)) && 3666 require_vm(a->vm, a->rd); 3667} 3668 3669GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3670GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3671 3672static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3673{ 3674 return require_rvv(s) && 3675 vext_check_isa_ill(s) && 3676 require_align(a->rd, s->lmul) && 3677 require_align(a->rs2, s->lmul) && 3678 (a->rd != a->rs2) && 3679 require_vm(a->vm, a->rd); 3680} 3681 3682/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3683static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3684{ 3685 if (!vrgather_vx_check(s, a)) { 3686 return false; 3687 } 3688 3689 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3690 int scale = s->lmul - (s->sew + 3); 3691 int vlmax = s->cfg_ptr->vlen >> -scale; 3692 TCGv_i64 dest = tcg_temp_new_i64(); 3693 3694 if (a->rs1 == 0) { 3695 vec_element_loadi(s, dest, a->rs2, 0, false); 3696 } else { 3697 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3698 } 3699 3700 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3701 MAXSZ(s), MAXSZ(s), dest); 3702 tcg_temp_free_i64(dest); 3703 mark_vs_dirty(s); 3704 } else { 3705 static gen_helper_opivx * const fns[4] = { 3706 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3707 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3708 }; 3709 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3710 } 3711 return true; 3712} 3713 3714/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3715static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3716{ 3717 if (!vrgather_vx_check(s, a)) { 3718 return false; 3719 } 3720 3721 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3722 int scale = s->lmul - (s->sew + 3); 3723 int vlmax = s->cfg_ptr->vlen >> -scale; 3724 if (a->rs1 >= vlmax) { 3725 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3726 MAXSZ(s), MAXSZ(s), 0); 3727 } else { 3728 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3729 endian_ofs(s, a->rs2, a->rs1), 3730 MAXSZ(s), MAXSZ(s)); 3731 } 3732 mark_vs_dirty(s); 3733 } else { 3734 static gen_helper_opivx * const fns[4] = { 3735 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3736 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3737 }; 3738 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3739 s, IMM_ZX); 3740 } 3741 return true; 3742} 3743 3744/* 3745 * Vector Compress Instruction 3746 * 3747 * The destination vector register group cannot overlap the 3748 * source vector register group or the source mask register. 3749 */ 3750static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3751{ 3752 return require_rvv(s) && 3753 vext_check_isa_ill(s) && 3754 require_align(a->rd, s->lmul) && 3755 require_align(a->rs2, s->lmul) && 3756 (a->rd != a->rs2) && 3757 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3758 (s->vstart == 0); 3759} 3760 3761static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3762{ 3763 if (vcompress_vm_check(s, a)) { 3764 uint32_t data = 0; 3765 static gen_helper_gvec_4_ptr * const fns[4] = { 3766 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3767 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3768 }; 3769 TCGLabel *over = gen_new_label(); 3770 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3771 3772 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3773 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3774 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3775 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3776 cpu_env, s->cfg_ptr->vlen / 8, 3777 s->cfg_ptr->vlen / 8, data, 3778 fns[s->sew]); 3779 mark_vs_dirty(s); 3780 gen_set_label(over); 3781 return true; 3782 } 3783 return false; 3784} 3785 3786/* 3787 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3788 * Thus, we don't need to check vill bit. (Section 16.6) 3789 */ 3790#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3791static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3792{ \ 3793 if (require_rvv(s) && \ 3794 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3795 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3796 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3797 if (s->vstart == 0) { \ 3798 /* EEW = 8 */ \ 3799 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3800 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3801 mark_vs_dirty(s); \ 3802 } else { \ 3803 TCGLabel *over = gen_new_label(); \ 3804 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3805 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3806 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3807 mark_vs_dirty(s); \ 3808 gen_set_label(over); \ 3809 } \ 3810 return true; \ 3811 } \ 3812 return false; \ 3813} 3814 3815GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3816GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3817GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3818GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3819 3820static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3821{ 3822 uint8_t from = (s->sew + 3) - div; 3823 bool ret = require_rvv(s) && 3824 (from >= 3 && from <= 8) && 3825 (a->rd != a->rs2) && 3826 require_align(a->rd, s->lmul) && 3827 require_align(a->rs2, s->lmul - div) && 3828 require_vm(a->vm, a->rd) && 3829 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3830 return ret; 3831} 3832 3833static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3834{ 3835 uint32_t data = 0; 3836 gen_helper_gvec_3_ptr *fn; 3837 TCGLabel *over = gen_new_label(); 3838 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3839 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3840 3841 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3842 { 3843 NULL, gen_helper_vzext_vf2_h, 3844 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3845 }, 3846 { 3847 NULL, NULL, 3848 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3849 }, 3850 { 3851 NULL, NULL, 3852 NULL, gen_helper_vzext_vf8_d 3853 }, 3854 { 3855 NULL, gen_helper_vsext_vf2_h, 3856 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3857 }, 3858 { 3859 NULL, NULL, 3860 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3861 }, 3862 { 3863 NULL, NULL, 3864 NULL, gen_helper_vsext_vf8_d 3865 } 3866 }; 3867 3868 fn = fns[seq][s->sew]; 3869 if (fn == NULL) { 3870 return false; 3871 } 3872 3873 data = FIELD_DP32(data, VDATA, VM, a->vm); 3874 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3875 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3876 data = FIELD_DP32(data, VDATA, VMA, s->vma); 3877 3878 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3879 vreg_ofs(s, a->rs2), cpu_env, 3880 s->cfg_ptr->vlen / 8, 3881 s->cfg_ptr->vlen / 8, data, fn); 3882 3883 mark_vs_dirty(s); 3884 gen_set_label(over); 3885 return true; 3886} 3887 3888/* Vector Integer Extension */ 3889#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3890static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3891{ \ 3892 if (int_ext_check(s, a, DIV)) { \ 3893 return int_ext_op(s, a, SEQ); \ 3894 } \ 3895 return false; \ 3896} 3897 3898GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3899GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3900GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3901GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3902GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3903GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3904