1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 716} 717 718static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 719{ 720 return require_rvv(s) && 721 vext_check_isa_ill(s) && 722 vext_check_load(s, a->rd, a->nf, a->vm, eew); 723} 724 725GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 729 730static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 731{ 732 uint32_t data = 0; 733 gen_helper_ldst_us *fn; 734 static gen_helper_ldst_us * const fns[2][4] = { 735 /* masked unit stride store */ 736 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 737 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 738 /* unmasked unit stride store */ 739 { gen_helper_vse8_v, gen_helper_vse16_v, 740 gen_helper_vse32_v, gen_helper_vse64_v } 741 }; 742 743 fn = fns[a->vm][eew]; 744 if (fn == NULL) { 745 return false; 746 } 747 748 uint8_t emul = vext_get_emul(s, eew); 749 data = FIELD_DP32(data, VDATA, VM, a->vm); 750 data = FIELD_DP32(data, VDATA, LMUL, emul); 751 data = FIELD_DP32(data, VDATA, NF, a->nf); 752 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 753} 754 755static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 756{ 757 return require_rvv(s) && 758 vext_check_isa_ill(s) && 759 vext_check_store(s, a->rd, a->nf, eew); 760} 761 762GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 766 767/* 768 *** unit stride mask load and store 769 */ 770static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 771{ 772 uint32_t data = 0; 773 gen_helper_ldst_us *fn = gen_helper_vlm_v; 774 775 /* EMUL = 1, NFIELDS = 1 */ 776 data = FIELD_DP32(data, VDATA, LMUL, 0); 777 data = FIELD_DP32(data, VDATA, NF, 1); 778 /* Mask destination register are always tail-agnostic */ 779 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 780 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 781} 782 783static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 784{ 785 /* EMUL = 1, NFIELDS = 1 */ 786 return require_rvv(s) && vext_check_isa_ill(s); 787} 788 789static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 790{ 791 uint32_t data = 0; 792 gen_helper_ldst_us *fn = gen_helper_vsm_v; 793 794 /* EMUL = 1, NFIELDS = 1 */ 795 data = FIELD_DP32(data, VDATA, LMUL, 0); 796 data = FIELD_DP32(data, VDATA, NF, 1); 797 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 798} 799 800static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 801{ 802 /* EMUL = 1, NFIELDS = 1 */ 803 return require_rvv(s) && vext_check_isa_ill(s); 804} 805 806GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 807GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 808 809/* 810 *** stride load and store 811 */ 812typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 813 TCGv, TCGv_env, TCGv_i32); 814 815static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 816 uint32_t data, gen_helper_ldst_stride *fn, 817 DisasContext *s, bool is_store) 818{ 819 TCGv_ptr dest, mask; 820 TCGv base, stride; 821 TCGv_i32 desc; 822 823 TCGLabel *over = gen_new_label(); 824 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 825 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 826 827 dest = tcg_temp_new_ptr(); 828 mask = tcg_temp_new_ptr(); 829 base = get_gpr(s, rs1, EXT_NONE); 830 stride = get_gpr(s, rs2, EXT_NONE); 831 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 832 s->cfg_ptr->vlen / 8, data)); 833 834 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 835 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 836 837 fn(dest, mask, base, stride, cpu_env, desc); 838 839 tcg_temp_free_ptr(dest); 840 tcg_temp_free_ptr(mask); 841 842 if (!is_store) { 843 mark_vs_dirty(s); 844 } 845 846 gen_set_label(over); 847 return true; 848} 849 850static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 851{ 852 uint32_t data = 0; 853 gen_helper_ldst_stride *fn; 854 static gen_helper_ldst_stride * const fns[4] = { 855 gen_helper_vlse8_v, gen_helper_vlse16_v, 856 gen_helper_vlse32_v, gen_helper_vlse64_v 857 }; 858 859 fn = fns[eew]; 860 if (fn == NULL) { 861 return false; 862 } 863 864 uint8_t emul = vext_get_emul(s, eew); 865 data = FIELD_DP32(data, VDATA, VM, a->vm); 866 data = FIELD_DP32(data, VDATA, LMUL, emul); 867 data = FIELD_DP32(data, VDATA, NF, a->nf); 868 data = FIELD_DP32(data, VDATA, VTA, s->vta); 869 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 870} 871 872static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 873{ 874 return require_rvv(s) && 875 vext_check_isa_ill(s) && 876 vext_check_load(s, a->rd, a->nf, a->vm, eew); 877} 878 879GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 880GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 881GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 882GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 883 884static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 885{ 886 uint32_t data = 0; 887 gen_helper_ldst_stride *fn; 888 static gen_helper_ldst_stride * const fns[4] = { 889 /* masked stride store */ 890 gen_helper_vsse8_v, gen_helper_vsse16_v, 891 gen_helper_vsse32_v, gen_helper_vsse64_v 892 }; 893 894 uint8_t emul = vext_get_emul(s, eew); 895 data = FIELD_DP32(data, VDATA, VM, a->vm); 896 data = FIELD_DP32(data, VDATA, LMUL, emul); 897 data = FIELD_DP32(data, VDATA, NF, a->nf); 898 fn = fns[eew]; 899 if (fn == NULL) { 900 return false; 901 } 902 903 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 904} 905 906static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 907{ 908 return require_rvv(s) && 909 vext_check_isa_ill(s) && 910 vext_check_store(s, a->rd, a->nf, eew); 911} 912 913GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 914GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 915GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 916GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 917 918/* 919 *** index load and store 920 */ 921typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 922 TCGv_ptr, TCGv_env, TCGv_i32); 923 924static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 925 uint32_t data, gen_helper_ldst_index *fn, 926 DisasContext *s, bool is_store) 927{ 928 TCGv_ptr dest, mask, index; 929 TCGv base; 930 TCGv_i32 desc; 931 932 TCGLabel *over = gen_new_label(); 933 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 934 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 935 936 dest = tcg_temp_new_ptr(); 937 mask = tcg_temp_new_ptr(); 938 index = tcg_temp_new_ptr(); 939 base = get_gpr(s, rs1, EXT_NONE); 940 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 941 s->cfg_ptr->vlen / 8, data)); 942 943 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 944 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 945 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 946 947 fn(dest, mask, base, index, cpu_env, desc); 948 949 tcg_temp_free_ptr(dest); 950 tcg_temp_free_ptr(mask); 951 tcg_temp_free_ptr(index); 952 953 if (!is_store) { 954 mark_vs_dirty(s); 955 } 956 957 gen_set_label(over); 958 return true; 959} 960 961static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 962{ 963 uint32_t data = 0; 964 gen_helper_ldst_index *fn; 965 static gen_helper_ldst_index * const fns[4][4] = { 966 /* 967 * offset vector register group EEW = 8, 968 * data vector register group EEW = SEW 969 */ 970 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 971 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 972 /* 973 * offset vector register group EEW = 16, 974 * data vector register group EEW = SEW 975 */ 976 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 977 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 978 /* 979 * offset vector register group EEW = 32, 980 * data vector register group EEW = SEW 981 */ 982 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 983 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 984 /* 985 * offset vector register group EEW = 64, 986 * data vector register group EEW = SEW 987 */ 988 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 989 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 990 }; 991 992 fn = fns[eew][s->sew]; 993 994 uint8_t emul = vext_get_emul(s, s->sew); 995 data = FIELD_DP32(data, VDATA, VM, a->vm); 996 data = FIELD_DP32(data, VDATA, LMUL, emul); 997 data = FIELD_DP32(data, VDATA, NF, a->nf); 998 data = FIELD_DP32(data, VDATA, VTA, s->vta); 999 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1000} 1001 1002static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1003{ 1004 return require_rvv(s) && 1005 vext_check_isa_ill(s) && 1006 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1007} 1008 1009GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1010GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1011GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1012GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1013 1014static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1015{ 1016 uint32_t data = 0; 1017 gen_helper_ldst_index *fn; 1018 static gen_helper_ldst_index * const fns[4][4] = { 1019 /* 1020 * offset vector register group EEW = 8, 1021 * data vector register group EEW = SEW 1022 */ 1023 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1024 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1025 /* 1026 * offset vector register group EEW = 16, 1027 * data vector register group EEW = SEW 1028 */ 1029 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1030 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1031 /* 1032 * offset vector register group EEW = 32, 1033 * data vector register group EEW = SEW 1034 */ 1035 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1036 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1037 /* 1038 * offset vector register group EEW = 64, 1039 * data vector register group EEW = SEW 1040 */ 1041 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1042 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1043 }; 1044 1045 fn = fns[eew][s->sew]; 1046 1047 uint8_t emul = vext_get_emul(s, s->sew); 1048 data = FIELD_DP32(data, VDATA, VM, a->vm); 1049 data = FIELD_DP32(data, VDATA, LMUL, emul); 1050 data = FIELD_DP32(data, VDATA, NF, a->nf); 1051 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1052} 1053 1054static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1059} 1060 1061GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1062GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1063GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1064GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1065 1066/* 1067 *** unit stride fault-only-first load 1068 */ 1069static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1070 gen_helper_ldst_us *fn, DisasContext *s) 1071{ 1072 TCGv_ptr dest, mask; 1073 TCGv base; 1074 TCGv_i32 desc; 1075 1076 TCGLabel *over = gen_new_label(); 1077 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1078 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1079 1080 dest = tcg_temp_new_ptr(); 1081 mask = tcg_temp_new_ptr(); 1082 base = get_gpr(s, rs1, EXT_NONE); 1083 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1084 s->cfg_ptr->vlen / 8, data)); 1085 1086 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1087 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1088 1089 fn(dest, mask, base, cpu_env, desc); 1090 1091 tcg_temp_free_ptr(dest); 1092 tcg_temp_free_ptr(mask); 1093 mark_vs_dirty(s); 1094 gen_set_label(over); 1095 return true; 1096} 1097 1098static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1099{ 1100 uint32_t data = 0; 1101 gen_helper_ldst_us *fn; 1102 static gen_helper_ldst_us * const fns[4] = { 1103 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1104 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1105 }; 1106 1107 fn = fns[eew]; 1108 if (fn == NULL) { 1109 return false; 1110 } 1111 1112 uint8_t emul = vext_get_emul(s, eew); 1113 data = FIELD_DP32(data, VDATA, VM, a->vm); 1114 data = FIELD_DP32(data, VDATA, LMUL, emul); 1115 data = FIELD_DP32(data, VDATA, NF, a->nf); 1116 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1117 return ldff_trans(a->rd, a->rs1, data, fn, s); 1118} 1119 1120GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1121GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1122GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1123GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1124 1125/* 1126 * load and store whole register instructions 1127 */ 1128typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1129 1130static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1131 uint32_t width, gen_helper_ldst_whole *fn, 1132 DisasContext *s, bool is_store) 1133{ 1134 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1135 TCGLabel *over = gen_new_label(); 1136 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1137 1138 TCGv_ptr dest; 1139 TCGv base; 1140 TCGv_i32 desc; 1141 1142 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1143 dest = tcg_temp_new_ptr(); 1144 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1145 s->cfg_ptr->vlen / 8, data)); 1146 1147 base = get_gpr(s, rs1, EXT_NONE); 1148 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1149 1150 fn(dest, base, cpu_env, desc); 1151 1152 tcg_temp_free_ptr(dest); 1153 1154 if (!is_store) { 1155 mark_vs_dirty(s); 1156 } 1157 gen_set_label(over); 1158 1159 return true; 1160} 1161 1162/* 1163 * load and store whole register instructions ignore vtype and vl setting. 1164 * Thus, we don't need to check vill bit. (Section 7.9) 1165 */ 1166#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1167static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1168{ \ 1169 if (require_rvv(s) && \ 1170 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1171 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1172 gen_helper_##NAME, s, IS_STORE); \ 1173 } \ 1174 return false; \ 1175} 1176 1177GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1178GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1179GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1180GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1181GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1182GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1183GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1184GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1185GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1186GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1187GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1188GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1189GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1190GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1191GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1192GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1193 1194/* 1195 * The vector whole register store instructions are encoded similar to 1196 * unmasked unit-stride store of elements with EEW=8. 1197 */ 1198GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1199GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1200GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1201GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1202 1203/* 1204 *** Vector Integer Arithmetic Instructions 1205 */ 1206 1207/* 1208 * MAXSZ returns the maximum vector size can be operated in bytes, 1209 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1210 * to accerlate vector operation. 1211 */ 1212static inline uint32_t MAXSZ(DisasContext *s) 1213{ 1214 int scale = s->lmul - 3; 1215 return s->cfg_ptr->vlen >> -scale; 1216} 1217 1218static bool opivv_check(DisasContext *s, arg_rmrr *a) 1219{ 1220 return require_rvv(s) && 1221 vext_check_isa_ill(s) && 1222 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1223} 1224 1225typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1226 uint32_t, uint32_t, uint32_t); 1227 1228static inline bool 1229do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1230 gen_helper_gvec_4_ptr *fn) 1231{ 1232 TCGLabel *over = gen_new_label(); 1233 if (!opivv_check(s, a)) { 1234 return false; 1235 } 1236 1237 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1238 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1239 1240 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1241 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1242 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1243 MAXSZ(s), MAXSZ(s)); 1244 } else { 1245 uint32_t data = 0; 1246 1247 data = FIELD_DP32(data, VDATA, VM, a->vm); 1248 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1249 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1250 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1251 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1252 cpu_env, s->cfg_ptr->vlen / 8, 1253 s->cfg_ptr->vlen / 8, data, fn); 1254 } 1255 mark_vs_dirty(s); 1256 gen_set_label(over); 1257 return true; 1258} 1259 1260/* OPIVV with GVEC IR */ 1261#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1262static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1263{ \ 1264 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1265 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1266 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1267 }; \ 1268 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1269} 1270 1271GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1272GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1273 1274typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1275 TCGv_env, TCGv_i32); 1276 1277static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1278 gen_helper_opivx *fn, DisasContext *s) 1279{ 1280 TCGv_ptr dest, src2, mask; 1281 TCGv src1; 1282 TCGv_i32 desc; 1283 uint32_t data = 0; 1284 1285 TCGLabel *over = gen_new_label(); 1286 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1287 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1288 1289 dest = tcg_temp_new_ptr(); 1290 mask = tcg_temp_new_ptr(); 1291 src2 = tcg_temp_new_ptr(); 1292 src1 = get_gpr(s, rs1, EXT_SIGN); 1293 1294 data = FIELD_DP32(data, VDATA, VM, vm); 1295 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1296 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1297 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1298 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1299 s->cfg_ptr->vlen / 8, data)); 1300 1301 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1302 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1303 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1304 1305 fn(dest, mask, src1, src2, cpu_env, desc); 1306 1307 tcg_temp_free_ptr(dest); 1308 tcg_temp_free_ptr(mask); 1309 tcg_temp_free_ptr(src2); 1310 mark_vs_dirty(s); 1311 gen_set_label(over); 1312 return true; 1313} 1314 1315static bool opivx_check(DisasContext *s, arg_rmrr *a) 1316{ 1317 return require_rvv(s) && 1318 vext_check_isa_ill(s) && 1319 vext_check_ss(s, a->rd, a->rs2, a->vm); 1320} 1321 1322typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1323 uint32_t, uint32_t); 1324 1325static inline bool 1326do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1327 gen_helper_opivx *fn) 1328{ 1329 if (!opivx_check(s, a)) { 1330 return false; 1331 } 1332 1333 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1334 TCGv_i64 src1 = tcg_temp_new_i64(); 1335 1336 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1337 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1338 src1, MAXSZ(s), MAXSZ(s)); 1339 1340 tcg_temp_free_i64(src1); 1341 mark_vs_dirty(s); 1342 return true; 1343 } 1344 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1345} 1346 1347/* OPIVX with GVEC IR */ 1348#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1349static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1350{ \ 1351 static gen_helper_opivx * const fns[4] = { \ 1352 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1353 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1354 }; \ 1355 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1356} 1357 1358GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1359GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1360 1361static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1362{ 1363 tcg_gen_vec_sub8_i64(d, b, a); 1364} 1365 1366static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1367{ 1368 tcg_gen_vec_sub16_i64(d, b, a); 1369} 1370 1371static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1372{ 1373 tcg_gen_sub_i32(ret, arg2, arg1); 1374} 1375 1376static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1377{ 1378 tcg_gen_sub_i64(ret, arg2, arg1); 1379} 1380 1381static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1382{ 1383 tcg_gen_sub_vec(vece, r, b, a); 1384} 1385 1386static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1387 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1388{ 1389 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1390 static const GVecGen2s rsub_op[4] = { 1391 { .fni8 = gen_vec_rsub8_i64, 1392 .fniv = gen_rsub_vec, 1393 .fno = gen_helper_vec_rsubs8, 1394 .opt_opc = vecop_list, 1395 .vece = MO_8 }, 1396 { .fni8 = gen_vec_rsub16_i64, 1397 .fniv = gen_rsub_vec, 1398 .fno = gen_helper_vec_rsubs16, 1399 .opt_opc = vecop_list, 1400 .vece = MO_16 }, 1401 { .fni4 = gen_rsub_i32, 1402 .fniv = gen_rsub_vec, 1403 .fno = gen_helper_vec_rsubs32, 1404 .opt_opc = vecop_list, 1405 .vece = MO_32 }, 1406 { .fni8 = gen_rsub_i64, 1407 .fniv = gen_rsub_vec, 1408 .fno = gen_helper_vec_rsubs64, 1409 .opt_opc = vecop_list, 1410 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1411 .vece = MO_64 }, 1412 }; 1413 1414 tcg_debug_assert(vece <= MO_64); 1415 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1416} 1417 1418GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1419 1420typedef enum { 1421 IMM_ZX, /* Zero-extended */ 1422 IMM_SX, /* Sign-extended */ 1423 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1424 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1425} imm_mode_t; 1426 1427static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1428{ 1429 switch (imm_mode) { 1430 case IMM_ZX: 1431 return extract64(imm, 0, 5); 1432 case IMM_SX: 1433 return sextract64(imm, 0, 5); 1434 case IMM_TRUNC_SEW: 1435 return extract64(imm, 0, s->sew + 3); 1436 case IMM_TRUNC_2SEW: 1437 return extract64(imm, 0, s->sew + 4); 1438 default: 1439 g_assert_not_reached(); 1440 } 1441} 1442 1443static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1444 gen_helper_opivx *fn, DisasContext *s, 1445 imm_mode_t imm_mode) 1446{ 1447 TCGv_ptr dest, src2, mask; 1448 TCGv src1; 1449 TCGv_i32 desc; 1450 uint32_t data = 0; 1451 1452 TCGLabel *over = gen_new_label(); 1453 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1454 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1455 1456 dest = tcg_temp_new_ptr(); 1457 mask = tcg_temp_new_ptr(); 1458 src2 = tcg_temp_new_ptr(); 1459 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1460 1461 data = FIELD_DP32(data, VDATA, VM, vm); 1462 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1463 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1464 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1465 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1466 s->cfg_ptr->vlen / 8, data)); 1467 1468 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1469 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1470 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1471 1472 fn(dest, mask, src1, src2, cpu_env, desc); 1473 1474 tcg_temp_free_ptr(dest); 1475 tcg_temp_free_ptr(mask); 1476 tcg_temp_free_ptr(src2); 1477 mark_vs_dirty(s); 1478 gen_set_label(over); 1479 return true; 1480} 1481 1482typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1483 uint32_t, uint32_t); 1484 1485static inline bool 1486do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1487 gen_helper_opivx *fn, imm_mode_t imm_mode) 1488{ 1489 if (!opivx_check(s, a)) { 1490 return false; 1491 } 1492 1493 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1494 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1495 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1496 mark_vs_dirty(s); 1497 return true; 1498 } 1499 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1500} 1501 1502/* OPIVI with GVEC IR */ 1503#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1504static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1505{ \ 1506 static gen_helper_opivx * const fns[4] = { \ 1507 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1508 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1509 }; \ 1510 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1511 fns[s->sew], IMM_MODE); \ 1512} 1513 1514GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1515 1516static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1517 int64_t c, uint32_t oprsz, uint32_t maxsz) 1518{ 1519 TCGv_i64 tmp = tcg_constant_i64(c); 1520 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1521} 1522 1523GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1524 1525/* Vector Widening Integer Add/Subtract */ 1526 1527/* OPIVV with WIDEN */ 1528static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1529{ 1530 return require_rvv(s) && 1531 vext_check_isa_ill(s) && 1532 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1533} 1534 1535static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1536 gen_helper_gvec_4_ptr *fn, 1537 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1538{ 1539 if (checkfn(s, a)) { 1540 uint32_t data = 0; 1541 TCGLabel *over = gen_new_label(); 1542 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1543 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1544 1545 data = FIELD_DP32(data, VDATA, VM, a->vm); 1546 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1547 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1548 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1549 vreg_ofs(s, a->rs1), 1550 vreg_ofs(s, a->rs2), 1551 cpu_env, s->cfg_ptr->vlen / 8, 1552 s->cfg_ptr->vlen / 8, 1553 data, fn); 1554 mark_vs_dirty(s); 1555 gen_set_label(over); 1556 return true; 1557 } 1558 return false; 1559} 1560 1561#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1562static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1563{ \ 1564 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1565 gen_helper_##NAME##_b, \ 1566 gen_helper_##NAME##_h, \ 1567 gen_helper_##NAME##_w \ 1568 }; \ 1569 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1570} 1571 1572GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1573GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1574GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1575GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1576 1577/* OPIVX with WIDEN */ 1578static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1579{ 1580 return require_rvv(s) && 1581 vext_check_isa_ill(s) && 1582 vext_check_ds(s, a->rd, a->rs2, a->vm); 1583} 1584 1585static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1586 gen_helper_opivx *fn) 1587{ 1588 if (opivx_widen_check(s, a)) { 1589 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1590 } 1591 return false; 1592} 1593 1594#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1595static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1596{ \ 1597 static gen_helper_opivx * const fns[3] = { \ 1598 gen_helper_##NAME##_b, \ 1599 gen_helper_##NAME##_h, \ 1600 gen_helper_##NAME##_w \ 1601 }; \ 1602 return do_opivx_widen(s, a, fns[s->sew]); \ 1603} 1604 1605GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1606GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1607GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1608GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1609 1610/* WIDEN OPIVV with WIDEN */ 1611static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1612{ 1613 return require_rvv(s) && 1614 vext_check_isa_ill(s) && 1615 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1616} 1617 1618static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1619 gen_helper_gvec_4_ptr *fn) 1620{ 1621 if (opiwv_widen_check(s, a)) { 1622 uint32_t data = 0; 1623 TCGLabel *over = gen_new_label(); 1624 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1625 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1626 1627 data = FIELD_DP32(data, VDATA, VM, a->vm); 1628 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1629 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1630 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1631 vreg_ofs(s, a->rs1), 1632 vreg_ofs(s, a->rs2), 1633 cpu_env, s->cfg_ptr->vlen / 8, 1634 s->cfg_ptr->vlen / 8, data, fn); 1635 mark_vs_dirty(s); 1636 gen_set_label(over); 1637 return true; 1638 } 1639 return false; 1640} 1641 1642#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1643static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1644{ \ 1645 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1646 gen_helper_##NAME##_b, \ 1647 gen_helper_##NAME##_h, \ 1648 gen_helper_##NAME##_w \ 1649 }; \ 1650 return do_opiwv_widen(s, a, fns[s->sew]); \ 1651} 1652 1653GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1654GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1655GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1656GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1657 1658/* WIDEN OPIVX with WIDEN */ 1659static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1660{ 1661 return require_rvv(s) && 1662 vext_check_isa_ill(s) && 1663 vext_check_dd(s, a->rd, a->rs2, a->vm); 1664} 1665 1666static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1667 gen_helper_opivx *fn) 1668{ 1669 if (opiwx_widen_check(s, a)) { 1670 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1671 } 1672 return false; 1673} 1674 1675#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1676static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1677{ \ 1678 static gen_helper_opivx * const fns[3] = { \ 1679 gen_helper_##NAME##_b, \ 1680 gen_helper_##NAME##_h, \ 1681 gen_helper_##NAME##_w \ 1682 }; \ 1683 return do_opiwx_widen(s, a, fns[s->sew]); \ 1684} 1685 1686GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1687GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1688GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1689GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1690 1691/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1692/* OPIVV without GVEC IR */ 1693#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1694static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1695{ \ 1696 if (CHECK(s, a)) { \ 1697 uint32_t data = 0; \ 1698 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1699 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1700 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1701 }; \ 1702 TCGLabel *over = gen_new_label(); \ 1703 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1704 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1705 \ 1706 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1707 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1708 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1709 data = \ 1710 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1711 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1712 vreg_ofs(s, a->rs1), \ 1713 vreg_ofs(s, a->rs2), cpu_env, \ 1714 s->cfg_ptr->vlen / 8, \ 1715 s->cfg_ptr->vlen / 8, data, \ 1716 fns[s->sew]); \ 1717 mark_vs_dirty(s); \ 1718 gen_set_label(over); \ 1719 return true; \ 1720 } \ 1721 return false; \ 1722} 1723 1724/* 1725 * For vadc and vsbc, an illegal instruction exception is raised if the 1726 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1727 */ 1728static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1729{ 1730 return require_rvv(s) && 1731 vext_check_isa_ill(s) && 1732 (a->rd != 0) && 1733 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1734} 1735 1736GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1737GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1738 1739/* 1740 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1741 * destination vector register overlaps a source vector register group. 1742 */ 1743static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1744{ 1745 return require_rvv(s) && 1746 vext_check_isa_ill(s) && 1747 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1748} 1749 1750GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1751GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1752 1753static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1754{ 1755 return require_rvv(s) && 1756 vext_check_isa_ill(s) && 1757 (a->rd != 0) && 1758 vext_check_ss(s, a->rd, a->rs2, a->vm); 1759} 1760 1761/* OPIVX without GVEC IR */ 1762#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1763static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1764{ \ 1765 if (CHECK(s, a)) { \ 1766 static gen_helper_opivx * const fns[4] = { \ 1767 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1768 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1769 }; \ 1770 \ 1771 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1772 } \ 1773 return false; \ 1774} 1775 1776GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1777GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1778 1779static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1780{ 1781 return require_rvv(s) && 1782 vext_check_isa_ill(s) && 1783 vext_check_ms(s, a->rd, a->rs2); 1784} 1785 1786GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1787GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1788 1789/* OPIVI without GVEC IR */ 1790#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1791static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1792{ \ 1793 if (CHECK(s, a)) { \ 1794 static gen_helper_opivx * const fns[4] = { \ 1795 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1796 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1797 }; \ 1798 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1799 fns[s->sew], s, IMM_MODE); \ 1800 } \ 1801 return false; \ 1802} 1803 1804GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1805GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1806 1807/* Vector Bitwise Logical Instructions */ 1808GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1809GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1810GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1811GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1812GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1813GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1814GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1815GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1816GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1817 1818/* Vector Single-Width Bit Shift Instructions */ 1819GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1820GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1821GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1822 1823typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1824 uint32_t, uint32_t); 1825 1826static inline bool 1827do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1828 gen_helper_opivx *fn) 1829{ 1830 if (!opivx_check(s, a)) { 1831 return false; 1832 } 1833 1834 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1835 TCGv_i32 src1 = tcg_temp_new_i32(); 1836 1837 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1838 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1839 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1840 src1, MAXSZ(s), MAXSZ(s)); 1841 1842 tcg_temp_free_i32(src1); 1843 mark_vs_dirty(s); 1844 return true; 1845 } 1846 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1847} 1848 1849#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1850static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1851{ \ 1852 static gen_helper_opivx * const fns[4] = { \ 1853 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1854 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1855 }; \ 1856 \ 1857 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1858} 1859 1860GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1861GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1862GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1863 1864GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1865GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1866GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1867 1868/* Vector Narrowing Integer Right Shift Instructions */ 1869static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1870{ 1871 return require_rvv(s) && 1872 vext_check_isa_ill(s) && 1873 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1874} 1875 1876/* OPIVV with NARROW */ 1877#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1878static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1879{ \ 1880 if (opiwv_narrow_check(s, a)) { \ 1881 uint32_t data = 0; \ 1882 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1883 gen_helper_##NAME##_b, \ 1884 gen_helper_##NAME##_h, \ 1885 gen_helper_##NAME##_w, \ 1886 }; \ 1887 TCGLabel *over = gen_new_label(); \ 1888 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1889 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1890 \ 1891 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1892 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1893 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1894 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1895 vreg_ofs(s, a->rs1), \ 1896 vreg_ofs(s, a->rs2), cpu_env, \ 1897 s->cfg_ptr->vlen / 8, \ 1898 s->cfg_ptr->vlen / 8, data, \ 1899 fns[s->sew]); \ 1900 mark_vs_dirty(s); \ 1901 gen_set_label(over); \ 1902 return true; \ 1903 } \ 1904 return false; \ 1905} 1906GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1907GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1908 1909static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1910{ 1911 return require_rvv(s) && 1912 vext_check_isa_ill(s) && 1913 vext_check_sd(s, a->rd, a->rs2, a->vm); 1914} 1915 1916/* OPIVX with NARROW */ 1917#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1918static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1919{ \ 1920 if (opiwx_narrow_check(s, a)) { \ 1921 static gen_helper_opivx * const fns[3] = { \ 1922 gen_helper_##NAME##_b, \ 1923 gen_helper_##NAME##_h, \ 1924 gen_helper_##NAME##_w, \ 1925 }; \ 1926 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1927 } \ 1928 return false; \ 1929} 1930 1931GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1932GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1933 1934/* OPIWI with NARROW */ 1935#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1936static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1937{ \ 1938 if (opiwx_narrow_check(s, a)) { \ 1939 static gen_helper_opivx * const fns[3] = { \ 1940 gen_helper_##OPIVX##_b, \ 1941 gen_helper_##OPIVX##_h, \ 1942 gen_helper_##OPIVX##_w, \ 1943 }; \ 1944 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1945 fns[s->sew], s, IMM_MODE); \ 1946 } \ 1947 return false; \ 1948} 1949 1950GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1951GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1952 1953/* Vector Integer Comparison Instructions */ 1954/* 1955 * For all comparison instructions, an illegal instruction exception is raised 1956 * if the destination vector register overlaps a source vector register group 1957 * and LMUL > 1. 1958 */ 1959static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1960{ 1961 return require_rvv(s) && 1962 vext_check_isa_ill(s) && 1963 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1964} 1965 1966GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1967GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1968GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1969GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1970GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1971GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1972 1973static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1974{ 1975 return require_rvv(s) && 1976 vext_check_isa_ill(s) && 1977 vext_check_ms(s, a->rd, a->rs2); 1978} 1979 1980GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1981GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1982GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1983GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1984GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1985GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1986GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1987GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1988 1989GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1990GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1991GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1992GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1993GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1994GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1995 1996/* Vector Integer Min/Max Instructions */ 1997GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1998GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1999GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2000GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2001GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2002GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2003GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2004GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2005 2006/* Vector Single-Width Integer Multiply Instructions */ 2007 2008static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2009{ 2010 /* 2011 * All Zve* extensions support all vector integer instructions, 2012 * except that the vmulh integer multiply variants 2013 * that return the high word of the product 2014 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2015 * are not included for EEW=64 in Zve64*. (Section 18.2) 2016 */ 2017 return opivv_check(s, a) && 2018 (!has_ext(s, RVV) && 2019 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2020} 2021 2022static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2023{ 2024 /* 2025 * All Zve* extensions support all vector integer instructions, 2026 * except that the vmulh integer multiply variants 2027 * that return the high word of the product 2028 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2029 * are not included for EEW=64 in Zve64*. (Section 18.2) 2030 */ 2031 return opivx_check(s, a) && 2032 (!has_ext(s, RVV) && 2033 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2034} 2035 2036GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2037GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2038GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2039GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2040GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2041GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2042GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2043GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2044 2045/* Vector Integer Divide Instructions */ 2046GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2047GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2048GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2049GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2050GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2051GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2052GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2053GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2054 2055/* Vector Widening Integer Multiply Instructions */ 2056GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2057GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2058GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2059GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2060GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2061GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2062 2063/* Vector Single-Width Integer Multiply-Add Instructions */ 2064GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2065GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2066GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2067GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2068GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2069GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2070GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2071GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2072 2073/* Vector Widening Integer Multiply-Add Instructions */ 2074GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2075GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2076GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2077GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2078GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2079GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2080GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2081 2082/* Vector Integer Merge and Move Instructions */ 2083static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2084{ 2085 if (require_rvv(s) && 2086 vext_check_isa_ill(s) && 2087 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2088 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2089 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2090 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2091 vreg_ofs(s, a->rs1), 2092 MAXSZ(s), MAXSZ(s)); 2093 } else { 2094 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2095 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2096 static gen_helper_gvec_2_ptr * const fns[4] = { 2097 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2098 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2099 }; 2100 TCGLabel *over = gen_new_label(); 2101 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2102 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2103 2104 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2105 cpu_env, s->cfg_ptr->vlen / 8, 2106 s->cfg_ptr->vlen / 8, data, 2107 fns[s->sew]); 2108 gen_set_label(over); 2109 } 2110 mark_vs_dirty(s); 2111 return true; 2112 } 2113 return false; 2114} 2115 2116typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2117static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2118{ 2119 if (require_rvv(s) && 2120 vext_check_isa_ill(s) && 2121 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2122 vext_check_ss(s, a->rd, 0, 1)) { 2123 TCGv s1; 2124 TCGLabel *over = gen_new_label(); 2125 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2126 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2127 2128 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2129 2130 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2131 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2132 MAXSZ(s), MAXSZ(s), s1); 2133 } else { 2134 TCGv_i32 desc; 2135 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2136 TCGv_ptr dest = tcg_temp_new_ptr(); 2137 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2138 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2139 static gen_helper_vmv_vx * const fns[4] = { 2140 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2141 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2142 }; 2143 2144 tcg_gen_ext_tl_i64(s1_i64, s1); 2145 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2146 s->cfg_ptr->vlen / 8, data)); 2147 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2148 fns[s->sew](dest, s1_i64, cpu_env, desc); 2149 2150 tcg_temp_free_ptr(dest); 2151 tcg_temp_free_i64(s1_i64); 2152 } 2153 2154 mark_vs_dirty(s); 2155 gen_set_label(over); 2156 return true; 2157 } 2158 return false; 2159} 2160 2161static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2162{ 2163 if (require_rvv(s) && 2164 vext_check_isa_ill(s) && 2165 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2166 vext_check_ss(s, a->rd, 0, 1)) { 2167 int64_t simm = sextract64(a->rs1, 0, 5); 2168 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2169 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2170 MAXSZ(s), MAXSZ(s), simm); 2171 mark_vs_dirty(s); 2172 } else { 2173 TCGv_i32 desc; 2174 TCGv_i64 s1; 2175 TCGv_ptr dest; 2176 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2177 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2178 static gen_helper_vmv_vx * const fns[4] = { 2179 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2180 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2181 }; 2182 TCGLabel *over = gen_new_label(); 2183 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2184 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2185 2186 s1 = tcg_constant_i64(simm); 2187 dest = tcg_temp_new_ptr(); 2188 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2189 s->cfg_ptr->vlen / 8, data)); 2190 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2191 fns[s->sew](dest, s1, cpu_env, desc); 2192 2193 tcg_temp_free_ptr(dest); 2194 mark_vs_dirty(s); 2195 gen_set_label(over); 2196 } 2197 return true; 2198 } 2199 return false; 2200} 2201 2202GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2203GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2204GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2205 2206/* 2207 *** Vector Fixed-Point Arithmetic Instructions 2208 */ 2209 2210/* Vector Single-Width Saturating Add and Subtract */ 2211GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2212GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2213GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2214GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2215GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2216GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2217GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2218GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2219GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2220GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2221 2222/* Vector Single-Width Averaging Add and Subtract */ 2223GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2224GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2225GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2226GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2227GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2228GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2229GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2230GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2231 2232/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2233 2234static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2235{ 2236 /* 2237 * All Zve* extensions support all vector fixed-point arithmetic 2238 * instructions, except that vsmul.vv and vsmul.vx are not supported 2239 * for EEW=64 in Zve64*. (Section 18.2) 2240 */ 2241 return opivv_check(s, a) && 2242 (!has_ext(s, RVV) && 2243 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2244} 2245 2246static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2247{ 2248 /* 2249 * All Zve* extensions support all vector fixed-point arithmetic 2250 * instructions, except that vsmul.vv and vsmul.vx are not supported 2251 * for EEW=64 in Zve64*. (Section 18.2) 2252 */ 2253 return opivx_check(s, a) && 2254 (!has_ext(s, RVV) && 2255 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2256} 2257 2258GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2259GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2260 2261/* Vector Single-Width Scaling Shift Instructions */ 2262GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2263GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2264GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2265GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2266GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2267GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2268 2269/* Vector Narrowing Fixed-Point Clip Instructions */ 2270GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2271GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2272GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2273GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2274GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2275GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2276 2277/* 2278 *** Vector Float Point Arithmetic Instructions 2279 */ 2280 2281/* 2282 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2283 * RVF and RVD can be treated equally. 2284 * We don't have to deal with the cases of: SEW > FLEN. 2285 * 2286 * If SEW < FLEN, check whether input fp register is a valid 2287 * NaN-boxed value, in which case the least-significant SEW bits 2288 * of the f regsiter are used, else the canonical NaN value is used. 2289 */ 2290static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2291{ 2292 switch (s->sew) { 2293 case 1: 2294 gen_check_nanbox_h(out, in); 2295 break; 2296 case 2: 2297 gen_check_nanbox_s(out, in); 2298 break; 2299 case 3: 2300 tcg_gen_mov_i64(out, in); 2301 break; 2302 default: 2303 g_assert_not_reached(); 2304 } 2305} 2306 2307/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2308 2309/* 2310 * If the current SEW does not correspond to a supported IEEE floating-point 2311 * type, an illegal instruction exception is raised. 2312 */ 2313static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2314{ 2315 return require_rvv(s) && 2316 require_rvf(s) && 2317 vext_check_isa_ill(s) && 2318 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2319 require_zve32f(s) && 2320 require_zve64f(s); 2321} 2322 2323/* OPFVV without GVEC IR */ 2324#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2325static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2326{ \ 2327 if (CHECK(s, a)) { \ 2328 uint32_t data = 0; \ 2329 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2330 gen_helper_##NAME##_h, \ 2331 gen_helper_##NAME##_w, \ 2332 gen_helper_##NAME##_d, \ 2333 }; \ 2334 TCGLabel *over = gen_new_label(); \ 2335 gen_set_rm(s, RISCV_FRM_DYN); \ 2336 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2337 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2338 \ 2339 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2340 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2341 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2342 data = \ 2343 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2344 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2345 vreg_ofs(s, a->rs1), \ 2346 vreg_ofs(s, a->rs2), cpu_env, \ 2347 s->cfg_ptr->vlen / 8, \ 2348 s->cfg_ptr->vlen / 8, data, \ 2349 fns[s->sew - 1]); \ 2350 mark_vs_dirty(s); \ 2351 gen_set_label(over); \ 2352 return true; \ 2353 } \ 2354 return false; \ 2355} 2356GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2357GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2358 2359typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2360 TCGv_env, TCGv_i32); 2361 2362static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2363 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2364{ 2365 TCGv_ptr dest, src2, mask; 2366 TCGv_i32 desc; 2367 TCGv_i64 t1; 2368 2369 TCGLabel *over = gen_new_label(); 2370 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2371 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2372 2373 dest = tcg_temp_new_ptr(); 2374 mask = tcg_temp_new_ptr(); 2375 src2 = tcg_temp_new_ptr(); 2376 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2377 s->cfg_ptr->vlen / 8, data)); 2378 2379 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2380 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2381 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2382 2383 /* NaN-box f[rs1] */ 2384 t1 = tcg_temp_new_i64(); 2385 do_nanbox(s, t1, cpu_fpr[rs1]); 2386 2387 fn(dest, mask, t1, src2, cpu_env, desc); 2388 2389 tcg_temp_free_ptr(dest); 2390 tcg_temp_free_ptr(mask); 2391 tcg_temp_free_ptr(src2); 2392 tcg_temp_free_i64(t1); 2393 mark_vs_dirty(s); 2394 gen_set_label(over); 2395 return true; 2396} 2397 2398/* 2399 * If the current SEW does not correspond to a supported IEEE floating-point 2400 * type, an illegal instruction exception is raised 2401 */ 2402static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2403{ 2404 return require_rvv(s) && 2405 require_rvf(s) && 2406 vext_check_isa_ill(s) && 2407 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2408 require_zve32f(s) && 2409 require_zve64f(s); 2410} 2411 2412/* OPFVF without GVEC IR */ 2413#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2414static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2415{ \ 2416 if (CHECK(s, a)) { \ 2417 uint32_t data = 0; \ 2418 static gen_helper_opfvf *const fns[3] = { \ 2419 gen_helper_##NAME##_h, \ 2420 gen_helper_##NAME##_w, \ 2421 gen_helper_##NAME##_d, \ 2422 }; \ 2423 gen_set_rm(s, RISCV_FRM_DYN); \ 2424 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2425 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2426 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2427 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2428 s->cfg_vta_all_1s); \ 2429 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2430 fns[s->sew - 1], s); \ 2431 } \ 2432 return false; \ 2433} 2434 2435GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2436GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2437GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2438 2439/* Vector Widening Floating-Point Add/Subtract Instructions */ 2440static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2441{ 2442 return require_rvv(s) && 2443 require_scale_rvf(s) && 2444 (s->sew != MO_8) && 2445 vext_check_isa_ill(s) && 2446 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2447 require_scale_zve32f(s) && 2448 require_scale_zve64f(s); 2449} 2450 2451/* OPFVV with WIDEN */ 2452#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2453static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2454{ \ 2455 if (CHECK(s, a)) { \ 2456 uint32_t data = 0; \ 2457 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2458 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2459 }; \ 2460 TCGLabel *over = gen_new_label(); \ 2461 gen_set_rm(s, RISCV_FRM_DYN); \ 2462 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2463 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2464 \ 2465 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2466 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2467 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2468 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2469 vreg_ofs(s, a->rs1), \ 2470 vreg_ofs(s, a->rs2), cpu_env, \ 2471 s->cfg_ptr->vlen / 8, \ 2472 s->cfg_ptr->vlen / 8, data, \ 2473 fns[s->sew - 1]); \ 2474 mark_vs_dirty(s); \ 2475 gen_set_label(over); \ 2476 return true; \ 2477 } \ 2478 return false; \ 2479} 2480 2481GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2482GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2483 2484static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2485{ 2486 return require_rvv(s) && 2487 require_scale_rvf(s) && 2488 (s->sew != MO_8) && 2489 vext_check_isa_ill(s) && 2490 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2491 require_scale_zve32f(s) && 2492 require_scale_zve64f(s); 2493} 2494 2495/* OPFVF with WIDEN */ 2496#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2497static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2498{ \ 2499 if (opfvf_widen_check(s, a)) { \ 2500 uint32_t data = 0; \ 2501 static gen_helper_opfvf *const fns[2] = { \ 2502 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2503 }; \ 2504 gen_set_rm(s, RISCV_FRM_DYN); \ 2505 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2506 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2507 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2508 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2509 fns[s->sew - 1], s); \ 2510 } \ 2511 return false; \ 2512} 2513 2514GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2515GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2516 2517static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2518{ 2519 return require_rvv(s) && 2520 require_scale_rvf(s) && 2521 (s->sew != MO_8) && 2522 vext_check_isa_ill(s) && 2523 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2524 require_scale_zve32f(s) && 2525 require_scale_zve64f(s); 2526} 2527 2528/* WIDEN OPFVV with WIDEN */ 2529#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2530static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2531{ \ 2532 if (opfwv_widen_check(s, a)) { \ 2533 uint32_t data = 0; \ 2534 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2535 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2536 }; \ 2537 TCGLabel *over = gen_new_label(); \ 2538 gen_set_rm(s, RISCV_FRM_DYN); \ 2539 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2540 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2541 \ 2542 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2543 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2544 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2545 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2546 vreg_ofs(s, a->rs1), \ 2547 vreg_ofs(s, a->rs2), cpu_env, \ 2548 s->cfg_ptr->vlen / 8, \ 2549 s->cfg_ptr->vlen / 8, data, \ 2550 fns[s->sew - 1]); \ 2551 mark_vs_dirty(s); \ 2552 gen_set_label(over); \ 2553 return true; \ 2554 } \ 2555 return false; \ 2556} 2557 2558GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2559GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2560 2561static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2562{ 2563 return require_rvv(s) && 2564 require_scale_rvf(s) && 2565 (s->sew != MO_8) && 2566 vext_check_isa_ill(s) && 2567 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2568 require_scale_zve32f(s) && 2569 require_scale_zve64f(s); 2570} 2571 2572/* WIDEN OPFVF with WIDEN */ 2573#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2574static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2575{ \ 2576 if (opfwf_widen_check(s, a)) { \ 2577 uint32_t data = 0; \ 2578 static gen_helper_opfvf *const fns[2] = { \ 2579 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2580 }; \ 2581 gen_set_rm(s, RISCV_FRM_DYN); \ 2582 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2583 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2584 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2585 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2586 fns[s->sew - 1], s); \ 2587 } \ 2588 return false; \ 2589} 2590 2591GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2592GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2593 2594/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2595GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2596GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2597GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2598GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2599GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2600 2601/* Vector Widening Floating-Point Multiply */ 2602GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2603GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2604 2605/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2606GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2607GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2608GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2609GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2610GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2611GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2612GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2613GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2614GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2615GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2616GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2617GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2618GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2619GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2620GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2621GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2622 2623/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2624GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2625GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2626GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2627GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2628GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2629GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2630GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2631GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2632 2633/* Vector Floating-Point Square-Root Instruction */ 2634 2635/* 2636 * If the current SEW does not correspond to a supported IEEE floating-point 2637 * type, an illegal instruction exception is raised 2638 */ 2639static bool opfv_check(DisasContext *s, arg_rmr *a) 2640{ 2641 return require_rvv(s) && 2642 require_rvf(s) && 2643 vext_check_isa_ill(s) && 2644 /* OPFV instructions ignore vs1 check */ 2645 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2646 require_zve32f(s) && 2647 require_zve64f(s); 2648} 2649 2650static bool do_opfv(DisasContext *s, arg_rmr *a, 2651 gen_helper_gvec_3_ptr *fn, 2652 bool (*checkfn)(DisasContext *, arg_rmr *), 2653 int rm) 2654{ 2655 if (checkfn(s, a)) { 2656 if (rm != RISCV_FRM_DYN) { 2657 gen_set_rm(s, RISCV_FRM_DYN); 2658 } 2659 2660 uint32_t data = 0; 2661 TCGLabel *over = gen_new_label(); 2662 gen_set_rm(s, rm); 2663 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2664 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2665 2666 data = FIELD_DP32(data, VDATA, VM, a->vm); 2667 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2668 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2669 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2670 vreg_ofs(s, a->rs2), cpu_env, 2671 s->cfg_ptr->vlen / 8, 2672 s->cfg_ptr->vlen / 8, data, fn); 2673 mark_vs_dirty(s); 2674 gen_set_label(over); 2675 return true; 2676 } 2677 return false; 2678} 2679 2680#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2681static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2682{ \ 2683 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2684 gen_helper_##NAME##_h, \ 2685 gen_helper_##NAME##_w, \ 2686 gen_helper_##NAME##_d \ 2687 }; \ 2688 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2689} 2690 2691GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2692GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2693GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2694 2695/* Vector Floating-Point MIN/MAX Instructions */ 2696GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2697GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2698GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2699GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2700 2701/* Vector Floating-Point Sign-Injection Instructions */ 2702GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2703GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2704GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2705GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2706GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2707GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2708 2709/* Vector Floating-Point Compare Instructions */ 2710static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2711{ 2712 return require_rvv(s) && 2713 require_rvf(s) && 2714 vext_check_isa_ill(s) && 2715 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2716 require_zve32f(s) && 2717 require_zve64f(s); 2718} 2719 2720GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2721GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2722GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2723GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2724 2725static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2726{ 2727 return require_rvv(s) && 2728 require_rvf(s) && 2729 vext_check_isa_ill(s) && 2730 vext_check_ms(s, a->rd, a->rs2) && 2731 require_zve32f(s) && 2732 require_zve64f(s); 2733} 2734 2735GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2736GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2737GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2738GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2739GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2740GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2741 2742/* Vector Floating-Point Classify Instruction */ 2743GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2744 2745/* Vector Floating-Point Merge Instruction */ 2746GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2747 2748static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2749{ 2750 if (require_rvv(s) && 2751 require_rvf(s) && 2752 vext_check_isa_ill(s) && 2753 require_align(a->rd, s->lmul) && 2754 require_zve32f(s) && 2755 require_zve64f(s)) { 2756 gen_set_rm(s, RISCV_FRM_DYN); 2757 2758 TCGv_i64 t1; 2759 2760 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2761 t1 = tcg_temp_new_i64(); 2762 /* NaN-box f[rs1] */ 2763 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2764 2765 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2766 MAXSZ(s), MAXSZ(s), t1); 2767 mark_vs_dirty(s); 2768 } else { 2769 TCGv_ptr dest; 2770 TCGv_i32 desc; 2771 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2772 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2773 static gen_helper_vmv_vx * const fns[3] = { 2774 gen_helper_vmv_v_x_h, 2775 gen_helper_vmv_v_x_w, 2776 gen_helper_vmv_v_x_d, 2777 }; 2778 TCGLabel *over = gen_new_label(); 2779 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2780 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2781 2782 t1 = tcg_temp_new_i64(); 2783 /* NaN-box f[rs1] */ 2784 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2785 2786 dest = tcg_temp_new_ptr(); 2787 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2788 s->cfg_ptr->vlen / 8, data)); 2789 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2790 2791 fns[s->sew - 1](dest, t1, cpu_env, desc); 2792 2793 tcg_temp_free_ptr(dest); 2794 mark_vs_dirty(s); 2795 gen_set_label(over); 2796 } 2797 tcg_temp_free_i64(t1); 2798 return true; 2799 } 2800 return false; 2801} 2802 2803/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2804#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2805static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2806{ \ 2807 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2808 gen_helper_##HELPER##_h, \ 2809 gen_helper_##HELPER##_w, \ 2810 gen_helper_##HELPER##_d \ 2811 }; \ 2812 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2813} 2814 2815GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2816GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2817GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2818GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2819/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2820GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2821GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2822 2823/* Widening Floating-Point/Integer Type-Convert Instructions */ 2824 2825/* 2826 * If the current SEW does not correspond to a supported IEEE floating-point 2827 * type, an illegal instruction exception is raised 2828 */ 2829static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2830{ 2831 return require_rvv(s) && 2832 vext_check_isa_ill(s) && 2833 vext_check_ds(s, a->rd, a->rs2, a->vm); 2834} 2835 2836static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2837{ 2838 return opfv_widen_check(s, a) && 2839 require_rvf(s) && 2840 require_zve32f(s) && 2841 require_zve64f(s); 2842} 2843 2844static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2845{ 2846 return opfv_widen_check(s, a) && 2847 require_scale_rvf(s) && 2848 (s->sew != MO_8) && 2849 require_scale_zve32f(s) && 2850 require_scale_zve64f(s); 2851} 2852 2853#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2854static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2855{ \ 2856 if (CHECK(s, a)) { \ 2857 if (FRM != RISCV_FRM_DYN) { \ 2858 gen_set_rm(s, RISCV_FRM_DYN); \ 2859 } \ 2860 \ 2861 uint32_t data = 0; \ 2862 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2863 gen_helper_##HELPER##_h, \ 2864 gen_helper_##HELPER##_w, \ 2865 }; \ 2866 TCGLabel *over = gen_new_label(); \ 2867 gen_set_rm(s, FRM); \ 2868 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2869 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2870 \ 2871 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2872 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2873 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2874 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2875 vreg_ofs(s, a->rs2), cpu_env, \ 2876 s->cfg_ptr->vlen / 8, \ 2877 s->cfg_ptr->vlen / 8, data, \ 2878 fns[s->sew - 1]); \ 2879 mark_vs_dirty(s); \ 2880 gen_set_label(over); \ 2881 return true; \ 2882 } \ 2883 return false; \ 2884} 2885 2886GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2887 RISCV_FRM_DYN) 2888GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2889 RISCV_FRM_DYN) 2890GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2891 RISCV_FRM_DYN) 2892/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2893GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2894 RISCV_FRM_RTZ) 2895GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2896 RISCV_FRM_RTZ) 2897 2898static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2899{ 2900 return require_rvv(s) && 2901 require_scale_rvf(s) && 2902 vext_check_isa_ill(s) && 2903 /* OPFV widening instructions ignore vs1 check */ 2904 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2905 require_scale_zve32f(s) && 2906 require_scale_zve64f(s); 2907} 2908 2909#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2910static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2911{ \ 2912 if (opfxv_widen_check(s, a)) { \ 2913 uint32_t data = 0; \ 2914 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2915 gen_helper_##NAME##_b, \ 2916 gen_helper_##NAME##_h, \ 2917 gen_helper_##NAME##_w, \ 2918 }; \ 2919 TCGLabel *over = gen_new_label(); \ 2920 gen_set_rm(s, RISCV_FRM_DYN); \ 2921 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2922 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2923 \ 2924 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2925 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2926 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2927 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2928 vreg_ofs(s, a->rs2), cpu_env, \ 2929 s->cfg_ptr->vlen / 8, \ 2930 s->cfg_ptr->vlen / 8, data, \ 2931 fns[s->sew]); \ 2932 mark_vs_dirty(s); \ 2933 gen_set_label(over); \ 2934 return true; \ 2935 } \ 2936 return false; \ 2937} 2938 2939GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2940GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2941 2942/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2943 2944/* 2945 * If the current SEW does not correspond to a supported IEEE floating-point 2946 * type, an illegal instruction exception is raised 2947 */ 2948static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2949{ 2950 return require_rvv(s) && 2951 vext_check_isa_ill(s) && 2952 /* OPFV narrowing instructions ignore vs1 check */ 2953 vext_check_sd(s, a->rd, a->rs2, a->vm); 2954} 2955 2956static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2957{ 2958 return opfv_narrow_check(s, a) && 2959 require_rvf(s) && 2960 (s->sew != MO_64) && 2961 require_zve32f(s) && 2962 require_zve64f(s); 2963} 2964 2965static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2966{ 2967 return opfv_narrow_check(s, a) && 2968 require_scale_rvf(s) && 2969 (s->sew != MO_8) && 2970 require_scale_zve32f(s) && 2971 require_scale_zve64f(s); 2972} 2973 2974#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2975static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2976{ \ 2977 if (CHECK(s, a)) { \ 2978 if (FRM != RISCV_FRM_DYN) { \ 2979 gen_set_rm(s, RISCV_FRM_DYN); \ 2980 } \ 2981 \ 2982 uint32_t data = 0; \ 2983 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2984 gen_helper_##HELPER##_h, \ 2985 gen_helper_##HELPER##_w, \ 2986 }; \ 2987 TCGLabel *over = gen_new_label(); \ 2988 gen_set_rm(s, FRM); \ 2989 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2990 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2991 \ 2992 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2993 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2994 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2995 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2996 vreg_ofs(s, a->rs2), cpu_env, \ 2997 s->cfg_ptr->vlen / 8, \ 2998 s->cfg_ptr->vlen / 8, data, \ 2999 fns[s->sew - 1]); \ 3000 mark_vs_dirty(s); \ 3001 gen_set_label(over); \ 3002 return true; \ 3003 } \ 3004 return false; \ 3005} 3006 3007GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 3008 RISCV_FRM_DYN) 3009GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 3010 RISCV_FRM_DYN) 3011GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3012 RISCV_FRM_DYN) 3013/* Reuse the helper function from vfncvt.f.f.w */ 3014GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3015 RISCV_FRM_ROD) 3016 3017static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 3018{ 3019 return require_rvv(s) && 3020 require_scale_rvf(s) && 3021 vext_check_isa_ill(s) && 3022 /* OPFV narrowing instructions ignore vs1 check */ 3023 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3024 require_scale_zve32f(s) && 3025 require_scale_zve64f(s); 3026} 3027 3028#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3029static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3030{ \ 3031 if (opxfv_narrow_check(s, a)) { \ 3032 if (FRM != RISCV_FRM_DYN) { \ 3033 gen_set_rm(s, RISCV_FRM_DYN); \ 3034 } \ 3035 \ 3036 uint32_t data = 0; \ 3037 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3038 gen_helper_##HELPER##_b, \ 3039 gen_helper_##HELPER##_h, \ 3040 gen_helper_##HELPER##_w, \ 3041 }; \ 3042 TCGLabel *over = gen_new_label(); \ 3043 gen_set_rm(s, FRM); \ 3044 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3045 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3046 \ 3047 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3048 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3049 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3050 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3051 vreg_ofs(s, a->rs2), cpu_env, \ 3052 s->cfg_ptr->vlen / 8, \ 3053 s->cfg_ptr->vlen / 8, data, \ 3054 fns[s->sew]); \ 3055 mark_vs_dirty(s); \ 3056 gen_set_label(over); \ 3057 return true; \ 3058 } \ 3059 return false; \ 3060} 3061 3062GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3063GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3064/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3065GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3066GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3067 3068/* 3069 *** Vector Reduction Operations 3070 */ 3071/* Vector Single-Width Integer Reduction Instructions */ 3072static bool reduction_check(DisasContext *s, arg_rmrr *a) 3073{ 3074 return require_rvv(s) && 3075 vext_check_isa_ill(s) && 3076 vext_check_reduction(s, a->rs2); 3077} 3078 3079GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3080GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3081GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3082GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3083GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3084GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3085GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3086GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3087 3088/* Vector Widening Integer Reduction Instructions */ 3089static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3090{ 3091 return reduction_check(s, a) && (s->sew < MO_64) && 3092 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3093} 3094 3095GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3096GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3097 3098/* Vector Single-Width Floating-Point Reduction Instructions */ 3099static bool freduction_check(DisasContext *s, arg_rmrr *a) 3100{ 3101 return reduction_check(s, a) && 3102 require_rvf(s) && 3103 require_zve32f(s) && 3104 require_zve64f(s); 3105} 3106 3107GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3108GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3109GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3110 3111/* Vector Widening Floating-Point Reduction Instructions */ 3112static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3113{ 3114 return reduction_widen_check(s, a) && 3115 require_scale_rvf(s) && 3116 (s->sew != MO_8); 3117} 3118 3119GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3120 3121/* 3122 *** Vector Mask Operations 3123 */ 3124 3125/* Vector Mask-Register Logical Instructions */ 3126#define GEN_MM_TRANS(NAME) \ 3127static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3128{ \ 3129 if (require_rvv(s) && \ 3130 vext_check_isa_ill(s)) { \ 3131 uint32_t data = 0; \ 3132 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3133 TCGLabel *over = gen_new_label(); \ 3134 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3135 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3136 \ 3137 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3138 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3139 vreg_ofs(s, a->rs1), \ 3140 vreg_ofs(s, a->rs2), cpu_env, \ 3141 s->cfg_ptr->vlen / 8, \ 3142 s->cfg_ptr->vlen / 8, data, fn); \ 3143 mark_vs_dirty(s); \ 3144 gen_set_label(over); \ 3145 return true; \ 3146 } \ 3147 return false; \ 3148} 3149 3150GEN_MM_TRANS(vmand_mm) 3151GEN_MM_TRANS(vmnand_mm) 3152GEN_MM_TRANS(vmandn_mm) 3153GEN_MM_TRANS(vmxor_mm) 3154GEN_MM_TRANS(vmor_mm) 3155GEN_MM_TRANS(vmnor_mm) 3156GEN_MM_TRANS(vmorn_mm) 3157GEN_MM_TRANS(vmxnor_mm) 3158 3159/* Vector count population in mask vcpop */ 3160static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3161{ 3162 if (require_rvv(s) && 3163 vext_check_isa_ill(s) && 3164 s->vstart == 0) { 3165 TCGv_ptr src2, mask; 3166 TCGv dst; 3167 TCGv_i32 desc; 3168 uint32_t data = 0; 3169 data = FIELD_DP32(data, VDATA, VM, a->vm); 3170 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3171 3172 mask = tcg_temp_new_ptr(); 3173 src2 = tcg_temp_new_ptr(); 3174 dst = dest_gpr(s, a->rd); 3175 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3176 s->cfg_ptr->vlen / 8, data)); 3177 3178 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3179 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3180 3181 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3182 gen_set_gpr(s, a->rd, dst); 3183 3184 tcg_temp_free_ptr(mask); 3185 tcg_temp_free_ptr(src2); 3186 3187 return true; 3188 } 3189 return false; 3190} 3191 3192/* vmfirst find-first-set mask bit */ 3193static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3194{ 3195 if (require_rvv(s) && 3196 vext_check_isa_ill(s) && 3197 s->vstart == 0) { 3198 TCGv_ptr src2, mask; 3199 TCGv dst; 3200 TCGv_i32 desc; 3201 uint32_t data = 0; 3202 data = FIELD_DP32(data, VDATA, VM, a->vm); 3203 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3204 3205 mask = tcg_temp_new_ptr(); 3206 src2 = tcg_temp_new_ptr(); 3207 dst = dest_gpr(s, a->rd); 3208 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3209 s->cfg_ptr->vlen / 8, data)); 3210 3211 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3212 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3213 3214 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3215 gen_set_gpr(s, a->rd, dst); 3216 3217 tcg_temp_free_ptr(mask); 3218 tcg_temp_free_ptr(src2); 3219 return true; 3220 } 3221 return false; 3222} 3223 3224/* vmsbf.m set-before-first mask bit */ 3225/* vmsif.m set-includ-first mask bit */ 3226/* vmsof.m set-only-first mask bit */ 3227#define GEN_M_TRANS(NAME) \ 3228static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3229{ \ 3230 if (require_rvv(s) && \ 3231 vext_check_isa_ill(s) && \ 3232 require_vm(a->vm, a->rd) && \ 3233 (a->rd != a->rs2) && \ 3234 (s->vstart == 0)) { \ 3235 uint32_t data = 0; \ 3236 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3237 TCGLabel *over = gen_new_label(); \ 3238 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3239 \ 3240 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3241 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3242 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3243 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3244 cpu_env, s->cfg_ptr->vlen / 8, \ 3245 s->cfg_ptr->vlen / 8, \ 3246 data, fn); \ 3247 mark_vs_dirty(s); \ 3248 gen_set_label(over); \ 3249 return true; \ 3250 } \ 3251 return false; \ 3252} 3253 3254GEN_M_TRANS(vmsbf_m) 3255GEN_M_TRANS(vmsif_m) 3256GEN_M_TRANS(vmsof_m) 3257 3258/* 3259 * Vector Iota Instruction 3260 * 3261 * 1. The destination register cannot overlap the source register. 3262 * 2. If masked, cannot overlap the mask register ('v0'). 3263 * 3. An illegal instruction exception is raised if vstart is non-zero. 3264 */ 3265static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3266{ 3267 if (require_rvv(s) && 3268 vext_check_isa_ill(s) && 3269 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3270 require_vm(a->vm, a->rd) && 3271 require_align(a->rd, s->lmul) && 3272 (s->vstart == 0)) { 3273 uint32_t data = 0; 3274 TCGLabel *over = gen_new_label(); 3275 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3276 3277 data = FIELD_DP32(data, VDATA, VM, a->vm); 3278 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3279 static gen_helper_gvec_3_ptr * const fns[4] = { 3280 gen_helper_viota_m_b, gen_helper_viota_m_h, 3281 gen_helper_viota_m_w, gen_helper_viota_m_d, 3282 }; 3283 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3284 vreg_ofs(s, a->rs2), cpu_env, 3285 s->cfg_ptr->vlen / 8, 3286 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3287 mark_vs_dirty(s); 3288 gen_set_label(over); 3289 return true; 3290 } 3291 return false; 3292} 3293 3294/* Vector Element Index Instruction */ 3295static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3296{ 3297 if (require_rvv(s) && 3298 vext_check_isa_ill(s) && 3299 require_align(a->rd, s->lmul) && 3300 require_vm(a->vm, a->rd)) { 3301 uint32_t data = 0; 3302 TCGLabel *over = gen_new_label(); 3303 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3304 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3305 3306 data = FIELD_DP32(data, VDATA, VM, a->vm); 3307 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3308 static gen_helper_gvec_2_ptr * const fns[4] = { 3309 gen_helper_vid_v_b, gen_helper_vid_v_h, 3310 gen_helper_vid_v_w, gen_helper_vid_v_d, 3311 }; 3312 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3313 cpu_env, s->cfg_ptr->vlen / 8, 3314 s->cfg_ptr->vlen / 8, 3315 data, fns[s->sew]); 3316 mark_vs_dirty(s); 3317 gen_set_label(over); 3318 return true; 3319 } 3320 return false; 3321} 3322 3323/* 3324 *** Vector Permutation Instructions 3325 */ 3326 3327static void load_element(TCGv_i64 dest, TCGv_ptr base, 3328 int ofs, int sew, bool sign) 3329{ 3330 switch (sew) { 3331 case MO_8: 3332 if (!sign) { 3333 tcg_gen_ld8u_i64(dest, base, ofs); 3334 } else { 3335 tcg_gen_ld8s_i64(dest, base, ofs); 3336 } 3337 break; 3338 case MO_16: 3339 if (!sign) { 3340 tcg_gen_ld16u_i64(dest, base, ofs); 3341 } else { 3342 tcg_gen_ld16s_i64(dest, base, ofs); 3343 } 3344 break; 3345 case MO_32: 3346 if (!sign) { 3347 tcg_gen_ld32u_i64(dest, base, ofs); 3348 } else { 3349 tcg_gen_ld32s_i64(dest, base, ofs); 3350 } 3351 break; 3352 case MO_64: 3353 tcg_gen_ld_i64(dest, base, ofs); 3354 break; 3355 default: 3356 g_assert_not_reached(); 3357 break; 3358 } 3359} 3360 3361/* offset of the idx element with base regsiter r */ 3362static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3363{ 3364#if HOST_BIG_ENDIAN 3365 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3366#else 3367 return vreg_ofs(s, r) + (idx << s->sew); 3368#endif 3369} 3370 3371/* adjust the index according to the endian */ 3372static void endian_adjust(TCGv_i32 ofs, int sew) 3373{ 3374#if HOST_BIG_ENDIAN 3375 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3376#endif 3377} 3378 3379/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3380static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3381 int vreg, TCGv idx, int vlmax) 3382{ 3383 TCGv_i32 ofs = tcg_temp_new_i32(); 3384 TCGv_ptr base = tcg_temp_new_ptr(); 3385 TCGv_i64 t_idx = tcg_temp_new_i64(); 3386 TCGv_i64 t_vlmax, t_zero; 3387 3388 /* 3389 * Mask the index to the length so that we do 3390 * not produce an out-of-range load. 3391 */ 3392 tcg_gen_trunc_tl_i32(ofs, idx); 3393 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3394 3395 /* Convert the index to an offset. */ 3396 endian_adjust(ofs, s->sew); 3397 tcg_gen_shli_i32(ofs, ofs, s->sew); 3398 3399 /* Convert the index to a pointer. */ 3400 tcg_gen_ext_i32_ptr(base, ofs); 3401 tcg_gen_add_ptr(base, base, cpu_env); 3402 3403 /* Perform the load. */ 3404 load_element(dest, base, 3405 vreg_ofs(s, vreg), s->sew, false); 3406 tcg_temp_free_ptr(base); 3407 tcg_temp_free_i32(ofs); 3408 3409 /* Flush out-of-range indexing to zero. */ 3410 t_vlmax = tcg_constant_i64(vlmax); 3411 t_zero = tcg_constant_i64(0); 3412 tcg_gen_extu_tl_i64(t_idx, idx); 3413 3414 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3415 t_vlmax, dest, t_zero); 3416 3417 tcg_temp_free_i64(t_idx); 3418} 3419 3420static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3421 int vreg, int idx, bool sign) 3422{ 3423 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3424} 3425 3426/* Integer Scalar Move Instruction */ 3427 3428static void store_element(TCGv_i64 val, TCGv_ptr base, 3429 int ofs, int sew) 3430{ 3431 switch (sew) { 3432 case MO_8: 3433 tcg_gen_st8_i64(val, base, ofs); 3434 break; 3435 case MO_16: 3436 tcg_gen_st16_i64(val, base, ofs); 3437 break; 3438 case MO_32: 3439 tcg_gen_st32_i64(val, base, ofs); 3440 break; 3441 case MO_64: 3442 tcg_gen_st_i64(val, base, ofs); 3443 break; 3444 default: 3445 g_assert_not_reached(); 3446 break; 3447 } 3448} 3449 3450/* 3451 * Store vreg[idx] = val. 3452 * The index must be in range of VLMAX. 3453 */ 3454static void vec_element_storei(DisasContext *s, int vreg, 3455 int idx, TCGv_i64 val) 3456{ 3457 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3458} 3459 3460/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3461static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3462{ 3463 if (require_rvv(s) && 3464 vext_check_isa_ill(s)) { 3465 TCGv_i64 t1; 3466 TCGv dest; 3467 3468 t1 = tcg_temp_new_i64(); 3469 dest = tcg_temp_new(); 3470 /* 3471 * load vreg and sign-extend to 64 bits, 3472 * then truncate to XLEN bits before storing to gpr. 3473 */ 3474 vec_element_loadi(s, t1, a->rs2, 0, true); 3475 tcg_gen_trunc_i64_tl(dest, t1); 3476 gen_set_gpr(s, a->rd, dest); 3477 tcg_temp_free_i64(t1); 3478 tcg_temp_free(dest); 3479 3480 return true; 3481 } 3482 return false; 3483} 3484 3485/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3486static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3487{ 3488 if (require_rvv(s) && 3489 vext_check_isa_ill(s)) { 3490 /* This instruction ignores LMUL and vector register groups */ 3491 TCGv_i64 t1; 3492 TCGv s1; 3493 TCGLabel *over = gen_new_label(); 3494 3495 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3496 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3497 3498 t1 = tcg_temp_new_i64(); 3499 3500 /* 3501 * load gpr and sign-extend to 64 bits, 3502 * then truncate to SEW bits when storing to vreg. 3503 */ 3504 s1 = get_gpr(s, a->rs1, EXT_NONE); 3505 tcg_gen_ext_tl_i64(t1, s1); 3506 vec_element_storei(s, a->rd, 0, t1); 3507 tcg_temp_free_i64(t1); 3508 mark_vs_dirty(s); 3509 gen_set_label(over); 3510 return true; 3511 } 3512 return false; 3513} 3514 3515/* Floating-Point Scalar Move Instructions */ 3516static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3517{ 3518 if (require_rvv(s) && 3519 require_rvf(s) && 3520 vext_check_isa_ill(s) && 3521 require_zve32f(s) && 3522 require_zve64f(s)) { 3523 gen_set_rm(s, RISCV_FRM_DYN); 3524 3525 unsigned int ofs = (8 << s->sew); 3526 unsigned int len = 64 - ofs; 3527 TCGv_i64 t_nan; 3528 3529 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3530 /* NaN-box f[rd] as necessary for SEW */ 3531 if (len) { 3532 t_nan = tcg_constant_i64(UINT64_MAX); 3533 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3534 t_nan, ofs, len); 3535 } 3536 3537 mark_fs_dirty(s); 3538 return true; 3539 } 3540 return false; 3541} 3542 3543/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3544static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3545{ 3546 if (require_rvv(s) && 3547 require_rvf(s) && 3548 vext_check_isa_ill(s) && 3549 require_zve32f(s) && 3550 require_zve64f(s)) { 3551 gen_set_rm(s, RISCV_FRM_DYN); 3552 3553 /* The instructions ignore LMUL and vector register group. */ 3554 TCGv_i64 t1; 3555 TCGLabel *over = gen_new_label(); 3556 3557 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3558 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3559 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3560 3561 /* NaN-box f[rs1] */ 3562 t1 = tcg_temp_new_i64(); 3563 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3564 3565 vec_element_storei(s, a->rd, 0, t1); 3566 tcg_temp_free_i64(t1); 3567 mark_vs_dirty(s); 3568 gen_set_label(over); 3569 return true; 3570 } 3571 return false; 3572} 3573 3574/* Vector Slide Instructions */ 3575static bool slideup_check(DisasContext *s, arg_rmrr *a) 3576{ 3577 return require_rvv(s) && 3578 vext_check_isa_ill(s) && 3579 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3580} 3581 3582GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3583GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3584GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3585 3586static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3587{ 3588 return require_rvv(s) && 3589 vext_check_isa_ill(s) && 3590 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3591} 3592 3593GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3594GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3595GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3596 3597/* Vector Floating-Point Slide Instructions */ 3598static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3599{ 3600 return slideup_check(s, a) && 3601 require_rvf(s) && 3602 require_zve32f(s) && 3603 require_zve64f(s); 3604} 3605 3606static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3607{ 3608 return slidedown_check(s, a) && 3609 require_rvf(s) && 3610 require_zve32f(s) && 3611 require_zve64f(s); 3612} 3613 3614GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3615GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3616 3617/* Vector Register Gather Instruction */ 3618static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3619{ 3620 return require_rvv(s) && 3621 vext_check_isa_ill(s) && 3622 require_align(a->rd, s->lmul) && 3623 require_align(a->rs1, s->lmul) && 3624 require_align(a->rs2, s->lmul) && 3625 (a->rd != a->rs2 && a->rd != a->rs1) && 3626 require_vm(a->vm, a->rd); 3627} 3628 3629static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3630{ 3631 int8_t emul = MO_16 - s->sew + s->lmul; 3632 return require_rvv(s) && 3633 vext_check_isa_ill(s) && 3634 (emul >= -3 && emul <= 3) && 3635 require_align(a->rd, s->lmul) && 3636 require_align(a->rs1, emul) && 3637 require_align(a->rs2, s->lmul) && 3638 (a->rd != a->rs2 && a->rd != a->rs1) && 3639 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3640 a->rs1, 1 << MAX(emul, 0)) && 3641 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3642 a->rs2, 1 << MAX(s->lmul, 0)) && 3643 require_vm(a->vm, a->rd); 3644} 3645 3646GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3647GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3648 3649static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3650{ 3651 return require_rvv(s) && 3652 vext_check_isa_ill(s) && 3653 require_align(a->rd, s->lmul) && 3654 require_align(a->rs2, s->lmul) && 3655 (a->rd != a->rs2) && 3656 require_vm(a->vm, a->rd); 3657} 3658 3659/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3660static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3661{ 3662 if (!vrgather_vx_check(s, a)) { 3663 return false; 3664 } 3665 3666 if (a->vm && s->vl_eq_vlmax) { 3667 int scale = s->lmul - (s->sew + 3); 3668 int vlmax = s->cfg_ptr->vlen >> -scale; 3669 TCGv_i64 dest = tcg_temp_new_i64(); 3670 3671 if (a->rs1 == 0) { 3672 vec_element_loadi(s, dest, a->rs2, 0, false); 3673 } else { 3674 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3675 } 3676 3677 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3678 MAXSZ(s), MAXSZ(s), dest); 3679 tcg_temp_free_i64(dest); 3680 mark_vs_dirty(s); 3681 } else { 3682 static gen_helper_opivx * const fns[4] = { 3683 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3684 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3685 }; 3686 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3687 } 3688 return true; 3689} 3690 3691/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3692static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3693{ 3694 if (!vrgather_vx_check(s, a)) { 3695 return false; 3696 } 3697 3698 if (a->vm && s->vl_eq_vlmax) { 3699 int scale = s->lmul - (s->sew + 3); 3700 int vlmax = s->cfg_ptr->vlen >> -scale; 3701 if (a->rs1 >= vlmax) { 3702 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3703 MAXSZ(s), MAXSZ(s), 0); 3704 } else { 3705 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3706 endian_ofs(s, a->rs2, a->rs1), 3707 MAXSZ(s), MAXSZ(s)); 3708 } 3709 mark_vs_dirty(s); 3710 } else { 3711 static gen_helper_opivx * const fns[4] = { 3712 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3713 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3714 }; 3715 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3716 s, IMM_ZX); 3717 } 3718 return true; 3719} 3720 3721/* 3722 * Vector Compress Instruction 3723 * 3724 * The destination vector register group cannot overlap the 3725 * source vector register group or the source mask register. 3726 */ 3727static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3728{ 3729 return require_rvv(s) && 3730 vext_check_isa_ill(s) && 3731 require_align(a->rd, s->lmul) && 3732 require_align(a->rs2, s->lmul) && 3733 (a->rd != a->rs2) && 3734 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3735 (s->vstart == 0); 3736} 3737 3738static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3739{ 3740 if (vcompress_vm_check(s, a)) { 3741 uint32_t data = 0; 3742 static gen_helper_gvec_4_ptr * const fns[4] = { 3743 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3744 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3745 }; 3746 TCGLabel *over = gen_new_label(); 3747 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3748 3749 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3750 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3751 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3752 cpu_env, s->cfg_ptr->vlen / 8, 3753 s->cfg_ptr->vlen / 8, data, 3754 fns[s->sew]); 3755 mark_vs_dirty(s); 3756 gen_set_label(over); 3757 return true; 3758 } 3759 return false; 3760} 3761 3762/* 3763 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3764 * Thus, we don't need to check vill bit. (Section 16.6) 3765 */ 3766#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3767static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3768{ \ 3769 if (require_rvv(s) && \ 3770 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3771 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3772 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3773 if (s->vstart == 0) { \ 3774 /* EEW = 8 */ \ 3775 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3776 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3777 mark_vs_dirty(s); \ 3778 } else { \ 3779 TCGLabel *over = gen_new_label(); \ 3780 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3781 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3782 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3783 mark_vs_dirty(s); \ 3784 gen_set_label(over); \ 3785 } \ 3786 return true; \ 3787 } \ 3788 return false; \ 3789} 3790 3791GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3792GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3793GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3794GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3795 3796static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3797{ 3798 uint8_t from = (s->sew + 3) - div; 3799 bool ret = require_rvv(s) && 3800 (from >= 3 && from <= 8) && 3801 (a->rd != a->rs2) && 3802 require_align(a->rd, s->lmul) && 3803 require_align(a->rs2, s->lmul - div) && 3804 require_vm(a->vm, a->rd) && 3805 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3806 return ret; 3807} 3808 3809static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3810{ 3811 uint32_t data = 0; 3812 gen_helper_gvec_3_ptr *fn; 3813 TCGLabel *over = gen_new_label(); 3814 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3815 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3816 3817 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3818 { 3819 NULL, gen_helper_vzext_vf2_h, 3820 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3821 }, 3822 { 3823 NULL, NULL, 3824 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3825 }, 3826 { 3827 NULL, NULL, 3828 NULL, gen_helper_vzext_vf8_d 3829 }, 3830 { 3831 NULL, gen_helper_vsext_vf2_h, 3832 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3833 }, 3834 { 3835 NULL, NULL, 3836 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3837 }, 3838 { 3839 NULL, NULL, 3840 NULL, gen_helper_vsext_vf8_d 3841 } 3842 }; 3843 3844 fn = fns[seq][s->sew]; 3845 if (fn == NULL) { 3846 return false; 3847 } 3848 3849 data = FIELD_DP32(data, VDATA, VM, a->vm); 3850 3851 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3852 vreg_ofs(s, a->rs2), cpu_env, 3853 s->cfg_ptr->vlen / 8, 3854 s->cfg_ptr->vlen / 8, data, fn); 3855 3856 mark_vs_dirty(s); 3857 gen_set_label(over); 3858 return true; 3859} 3860 3861/* Vector Integer Extension */ 3862#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3863static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3864{ \ 3865 if (int_ext_check(s, a, DIV)) { \ 3866 return int_ext_op(s, a, SEQ); \ 3867 } \ 3868 return false; \ 3869} 3870 3871GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3872GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3873GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3874GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3875GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3876GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3877