1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 716} 717 718static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 719{ 720 return require_rvv(s) && 721 vext_check_isa_ill(s) && 722 vext_check_load(s, a->rd, a->nf, a->vm, eew); 723} 724 725GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 729 730static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 731{ 732 uint32_t data = 0; 733 gen_helper_ldst_us *fn; 734 static gen_helper_ldst_us * const fns[2][4] = { 735 /* masked unit stride store */ 736 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 737 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 738 /* unmasked unit stride store */ 739 { gen_helper_vse8_v, gen_helper_vse16_v, 740 gen_helper_vse32_v, gen_helper_vse64_v } 741 }; 742 743 fn = fns[a->vm][eew]; 744 if (fn == NULL) { 745 return false; 746 } 747 748 uint8_t emul = vext_get_emul(s, eew); 749 data = FIELD_DP32(data, VDATA, VM, a->vm); 750 data = FIELD_DP32(data, VDATA, LMUL, emul); 751 data = FIELD_DP32(data, VDATA, NF, a->nf); 752 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 753} 754 755static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 756{ 757 return require_rvv(s) && 758 vext_check_isa_ill(s) && 759 vext_check_store(s, a->rd, a->nf, eew); 760} 761 762GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 766 767/* 768 *** unit stride mask load and store 769 */ 770static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 771{ 772 uint32_t data = 0; 773 gen_helper_ldst_us *fn = gen_helper_vlm_v; 774 775 /* EMUL = 1, NFIELDS = 1 */ 776 data = FIELD_DP32(data, VDATA, LMUL, 0); 777 data = FIELD_DP32(data, VDATA, NF, 1); 778 /* Mask destination register are always tail-agnostic */ 779 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 780 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 781} 782 783static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 784{ 785 /* EMUL = 1, NFIELDS = 1 */ 786 return require_rvv(s) && vext_check_isa_ill(s); 787} 788 789static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 790{ 791 uint32_t data = 0; 792 gen_helper_ldst_us *fn = gen_helper_vsm_v; 793 794 /* EMUL = 1, NFIELDS = 1 */ 795 data = FIELD_DP32(data, VDATA, LMUL, 0); 796 data = FIELD_DP32(data, VDATA, NF, 1); 797 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 798} 799 800static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 801{ 802 /* EMUL = 1, NFIELDS = 1 */ 803 return require_rvv(s) && vext_check_isa_ill(s); 804} 805 806GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 807GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 808 809/* 810 *** stride load and store 811 */ 812typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 813 TCGv, TCGv_env, TCGv_i32); 814 815static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 816 uint32_t data, gen_helper_ldst_stride *fn, 817 DisasContext *s, bool is_store) 818{ 819 TCGv_ptr dest, mask; 820 TCGv base, stride; 821 TCGv_i32 desc; 822 823 TCGLabel *over = gen_new_label(); 824 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 825 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 826 827 dest = tcg_temp_new_ptr(); 828 mask = tcg_temp_new_ptr(); 829 base = get_gpr(s, rs1, EXT_NONE); 830 stride = get_gpr(s, rs2, EXT_NONE); 831 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 832 s->cfg_ptr->vlen / 8, data)); 833 834 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 835 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 836 837 fn(dest, mask, base, stride, cpu_env, desc); 838 839 tcg_temp_free_ptr(dest); 840 tcg_temp_free_ptr(mask); 841 842 if (!is_store) { 843 mark_vs_dirty(s); 844 } 845 846 gen_set_label(over); 847 return true; 848} 849 850static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 851{ 852 uint32_t data = 0; 853 gen_helper_ldst_stride *fn; 854 static gen_helper_ldst_stride * const fns[4] = { 855 gen_helper_vlse8_v, gen_helper_vlse16_v, 856 gen_helper_vlse32_v, gen_helper_vlse64_v 857 }; 858 859 fn = fns[eew]; 860 if (fn == NULL) { 861 return false; 862 } 863 864 uint8_t emul = vext_get_emul(s, eew); 865 data = FIELD_DP32(data, VDATA, VM, a->vm); 866 data = FIELD_DP32(data, VDATA, LMUL, emul); 867 data = FIELD_DP32(data, VDATA, NF, a->nf); 868 data = FIELD_DP32(data, VDATA, VTA, s->vta); 869 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 870} 871 872static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 873{ 874 return require_rvv(s) && 875 vext_check_isa_ill(s) && 876 vext_check_load(s, a->rd, a->nf, a->vm, eew); 877} 878 879GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 880GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 881GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 882GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 883 884static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 885{ 886 uint32_t data = 0; 887 gen_helper_ldst_stride *fn; 888 static gen_helper_ldst_stride * const fns[4] = { 889 /* masked stride store */ 890 gen_helper_vsse8_v, gen_helper_vsse16_v, 891 gen_helper_vsse32_v, gen_helper_vsse64_v 892 }; 893 894 uint8_t emul = vext_get_emul(s, eew); 895 data = FIELD_DP32(data, VDATA, VM, a->vm); 896 data = FIELD_DP32(data, VDATA, LMUL, emul); 897 data = FIELD_DP32(data, VDATA, NF, a->nf); 898 fn = fns[eew]; 899 if (fn == NULL) { 900 return false; 901 } 902 903 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 904} 905 906static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 907{ 908 return require_rvv(s) && 909 vext_check_isa_ill(s) && 910 vext_check_store(s, a->rd, a->nf, eew); 911} 912 913GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 914GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 915GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 916GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 917 918/* 919 *** index load and store 920 */ 921typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 922 TCGv_ptr, TCGv_env, TCGv_i32); 923 924static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 925 uint32_t data, gen_helper_ldst_index *fn, 926 DisasContext *s, bool is_store) 927{ 928 TCGv_ptr dest, mask, index; 929 TCGv base; 930 TCGv_i32 desc; 931 932 TCGLabel *over = gen_new_label(); 933 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 934 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 935 936 dest = tcg_temp_new_ptr(); 937 mask = tcg_temp_new_ptr(); 938 index = tcg_temp_new_ptr(); 939 base = get_gpr(s, rs1, EXT_NONE); 940 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 941 s->cfg_ptr->vlen / 8, data)); 942 943 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 944 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 945 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 946 947 fn(dest, mask, base, index, cpu_env, desc); 948 949 tcg_temp_free_ptr(dest); 950 tcg_temp_free_ptr(mask); 951 tcg_temp_free_ptr(index); 952 953 if (!is_store) { 954 mark_vs_dirty(s); 955 } 956 957 gen_set_label(over); 958 return true; 959} 960 961static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 962{ 963 uint32_t data = 0; 964 gen_helper_ldst_index *fn; 965 static gen_helper_ldst_index * const fns[4][4] = { 966 /* 967 * offset vector register group EEW = 8, 968 * data vector register group EEW = SEW 969 */ 970 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 971 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 972 /* 973 * offset vector register group EEW = 16, 974 * data vector register group EEW = SEW 975 */ 976 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 977 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 978 /* 979 * offset vector register group EEW = 32, 980 * data vector register group EEW = SEW 981 */ 982 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 983 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 984 /* 985 * offset vector register group EEW = 64, 986 * data vector register group EEW = SEW 987 */ 988 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 989 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 990 }; 991 992 fn = fns[eew][s->sew]; 993 994 uint8_t emul = vext_get_emul(s, s->sew); 995 data = FIELD_DP32(data, VDATA, VM, a->vm); 996 data = FIELD_DP32(data, VDATA, LMUL, emul); 997 data = FIELD_DP32(data, VDATA, NF, a->nf); 998 data = FIELD_DP32(data, VDATA, VTA, s->vta); 999 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1000} 1001 1002static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1003{ 1004 return require_rvv(s) && 1005 vext_check_isa_ill(s) && 1006 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1007} 1008 1009GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1010GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1011GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1012GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1013 1014static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1015{ 1016 uint32_t data = 0; 1017 gen_helper_ldst_index *fn; 1018 static gen_helper_ldst_index * const fns[4][4] = { 1019 /* 1020 * offset vector register group EEW = 8, 1021 * data vector register group EEW = SEW 1022 */ 1023 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1024 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1025 /* 1026 * offset vector register group EEW = 16, 1027 * data vector register group EEW = SEW 1028 */ 1029 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1030 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1031 /* 1032 * offset vector register group EEW = 32, 1033 * data vector register group EEW = SEW 1034 */ 1035 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1036 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1037 /* 1038 * offset vector register group EEW = 64, 1039 * data vector register group EEW = SEW 1040 */ 1041 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1042 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1043 }; 1044 1045 fn = fns[eew][s->sew]; 1046 1047 uint8_t emul = vext_get_emul(s, s->sew); 1048 data = FIELD_DP32(data, VDATA, VM, a->vm); 1049 data = FIELD_DP32(data, VDATA, LMUL, emul); 1050 data = FIELD_DP32(data, VDATA, NF, a->nf); 1051 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1052} 1053 1054static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1059} 1060 1061GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1062GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1063GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1064GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1065 1066/* 1067 *** unit stride fault-only-first load 1068 */ 1069static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1070 gen_helper_ldst_us *fn, DisasContext *s) 1071{ 1072 TCGv_ptr dest, mask; 1073 TCGv base; 1074 TCGv_i32 desc; 1075 1076 TCGLabel *over = gen_new_label(); 1077 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1078 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1079 1080 dest = tcg_temp_new_ptr(); 1081 mask = tcg_temp_new_ptr(); 1082 base = get_gpr(s, rs1, EXT_NONE); 1083 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1084 s->cfg_ptr->vlen / 8, data)); 1085 1086 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1087 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1088 1089 fn(dest, mask, base, cpu_env, desc); 1090 1091 tcg_temp_free_ptr(dest); 1092 tcg_temp_free_ptr(mask); 1093 mark_vs_dirty(s); 1094 gen_set_label(over); 1095 return true; 1096} 1097 1098static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1099{ 1100 uint32_t data = 0; 1101 gen_helper_ldst_us *fn; 1102 static gen_helper_ldst_us * const fns[4] = { 1103 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1104 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1105 }; 1106 1107 fn = fns[eew]; 1108 if (fn == NULL) { 1109 return false; 1110 } 1111 1112 uint8_t emul = vext_get_emul(s, eew); 1113 data = FIELD_DP32(data, VDATA, VM, a->vm); 1114 data = FIELD_DP32(data, VDATA, LMUL, emul); 1115 data = FIELD_DP32(data, VDATA, NF, a->nf); 1116 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1117 return ldff_trans(a->rd, a->rs1, data, fn, s); 1118} 1119 1120GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1121GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1122GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1123GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1124 1125/* 1126 * load and store whole register instructions 1127 */ 1128typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1129 1130static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1131 uint32_t width, gen_helper_ldst_whole *fn, 1132 DisasContext *s, bool is_store) 1133{ 1134 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1135 TCGLabel *over = gen_new_label(); 1136 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1137 1138 TCGv_ptr dest; 1139 TCGv base; 1140 TCGv_i32 desc; 1141 1142 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1143 dest = tcg_temp_new_ptr(); 1144 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1145 s->cfg_ptr->vlen / 8, data)); 1146 1147 base = get_gpr(s, rs1, EXT_NONE); 1148 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1149 1150 fn(dest, base, cpu_env, desc); 1151 1152 tcg_temp_free_ptr(dest); 1153 1154 if (!is_store) { 1155 mark_vs_dirty(s); 1156 } 1157 gen_set_label(over); 1158 1159 return true; 1160} 1161 1162/* 1163 * load and store whole register instructions ignore vtype and vl setting. 1164 * Thus, we don't need to check vill bit. (Section 7.9) 1165 */ 1166#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1167static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1168{ \ 1169 if (require_rvv(s) && \ 1170 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1171 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1172 gen_helper_##NAME, s, IS_STORE); \ 1173 } \ 1174 return false; \ 1175} 1176 1177GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1178GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1179GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1180GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1181GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1182GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1183GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1184GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1185GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1186GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1187GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1188GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1189GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1190GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1191GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1192GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1193 1194/* 1195 * The vector whole register store instructions are encoded similar to 1196 * unmasked unit-stride store of elements with EEW=8. 1197 */ 1198GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1199GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1200GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1201GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1202 1203/* 1204 *** Vector Integer Arithmetic Instructions 1205 */ 1206 1207/* 1208 * MAXSZ returns the maximum vector size can be operated in bytes, 1209 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1210 * to accerlate vector operation. 1211 */ 1212static inline uint32_t MAXSZ(DisasContext *s) 1213{ 1214 int scale = s->lmul - 3; 1215 return s->cfg_ptr->vlen >> -scale; 1216} 1217 1218static bool opivv_check(DisasContext *s, arg_rmrr *a) 1219{ 1220 return require_rvv(s) && 1221 vext_check_isa_ill(s) && 1222 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1223} 1224 1225typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1226 uint32_t, uint32_t, uint32_t); 1227 1228static inline bool 1229do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1230 gen_helper_gvec_4_ptr *fn) 1231{ 1232 TCGLabel *over = gen_new_label(); 1233 if (!opivv_check(s, a)) { 1234 return false; 1235 } 1236 1237 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1238 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1239 1240 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1241 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1242 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1243 MAXSZ(s), MAXSZ(s)); 1244 } else { 1245 uint32_t data = 0; 1246 1247 data = FIELD_DP32(data, VDATA, VM, a->vm); 1248 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1249 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1250 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1251 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1252 cpu_env, s->cfg_ptr->vlen / 8, 1253 s->cfg_ptr->vlen / 8, data, fn); 1254 } 1255 mark_vs_dirty(s); 1256 gen_set_label(over); 1257 return true; 1258} 1259 1260/* OPIVV with GVEC IR */ 1261#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1262static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1263{ \ 1264 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1265 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1266 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1267 }; \ 1268 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1269} 1270 1271GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1272GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1273 1274typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1275 TCGv_env, TCGv_i32); 1276 1277static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1278 gen_helper_opivx *fn, DisasContext *s) 1279{ 1280 TCGv_ptr dest, src2, mask; 1281 TCGv src1; 1282 TCGv_i32 desc; 1283 uint32_t data = 0; 1284 1285 TCGLabel *over = gen_new_label(); 1286 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1287 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1288 1289 dest = tcg_temp_new_ptr(); 1290 mask = tcg_temp_new_ptr(); 1291 src2 = tcg_temp_new_ptr(); 1292 src1 = get_gpr(s, rs1, EXT_SIGN); 1293 1294 data = FIELD_DP32(data, VDATA, VM, vm); 1295 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1296 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1297 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1298 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1299 s->cfg_ptr->vlen / 8, data)); 1300 1301 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1302 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1303 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1304 1305 fn(dest, mask, src1, src2, cpu_env, desc); 1306 1307 tcg_temp_free_ptr(dest); 1308 tcg_temp_free_ptr(mask); 1309 tcg_temp_free_ptr(src2); 1310 mark_vs_dirty(s); 1311 gen_set_label(over); 1312 return true; 1313} 1314 1315static bool opivx_check(DisasContext *s, arg_rmrr *a) 1316{ 1317 return require_rvv(s) && 1318 vext_check_isa_ill(s) && 1319 vext_check_ss(s, a->rd, a->rs2, a->vm); 1320} 1321 1322typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1323 uint32_t, uint32_t); 1324 1325static inline bool 1326do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1327 gen_helper_opivx *fn) 1328{ 1329 if (!opivx_check(s, a)) { 1330 return false; 1331 } 1332 1333 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1334 TCGv_i64 src1 = tcg_temp_new_i64(); 1335 1336 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1337 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1338 src1, MAXSZ(s), MAXSZ(s)); 1339 1340 tcg_temp_free_i64(src1); 1341 mark_vs_dirty(s); 1342 return true; 1343 } 1344 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1345} 1346 1347/* OPIVX with GVEC IR */ 1348#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1349static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1350{ \ 1351 static gen_helper_opivx * const fns[4] = { \ 1352 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1353 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1354 }; \ 1355 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1356} 1357 1358GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1359GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1360 1361static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1362{ 1363 tcg_gen_vec_sub8_i64(d, b, a); 1364} 1365 1366static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1367{ 1368 tcg_gen_vec_sub16_i64(d, b, a); 1369} 1370 1371static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1372{ 1373 tcg_gen_sub_i32(ret, arg2, arg1); 1374} 1375 1376static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1377{ 1378 tcg_gen_sub_i64(ret, arg2, arg1); 1379} 1380 1381static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1382{ 1383 tcg_gen_sub_vec(vece, r, b, a); 1384} 1385 1386static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1387 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1388{ 1389 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1390 static const GVecGen2s rsub_op[4] = { 1391 { .fni8 = gen_vec_rsub8_i64, 1392 .fniv = gen_rsub_vec, 1393 .fno = gen_helper_vec_rsubs8, 1394 .opt_opc = vecop_list, 1395 .vece = MO_8 }, 1396 { .fni8 = gen_vec_rsub16_i64, 1397 .fniv = gen_rsub_vec, 1398 .fno = gen_helper_vec_rsubs16, 1399 .opt_opc = vecop_list, 1400 .vece = MO_16 }, 1401 { .fni4 = gen_rsub_i32, 1402 .fniv = gen_rsub_vec, 1403 .fno = gen_helper_vec_rsubs32, 1404 .opt_opc = vecop_list, 1405 .vece = MO_32 }, 1406 { .fni8 = gen_rsub_i64, 1407 .fniv = gen_rsub_vec, 1408 .fno = gen_helper_vec_rsubs64, 1409 .opt_opc = vecop_list, 1410 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1411 .vece = MO_64 }, 1412 }; 1413 1414 tcg_debug_assert(vece <= MO_64); 1415 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1416} 1417 1418GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1419 1420typedef enum { 1421 IMM_ZX, /* Zero-extended */ 1422 IMM_SX, /* Sign-extended */ 1423 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1424 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1425} imm_mode_t; 1426 1427static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1428{ 1429 switch (imm_mode) { 1430 case IMM_ZX: 1431 return extract64(imm, 0, 5); 1432 case IMM_SX: 1433 return sextract64(imm, 0, 5); 1434 case IMM_TRUNC_SEW: 1435 return extract64(imm, 0, s->sew + 3); 1436 case IMM_TRUNC_2SEW: 1437 return extract64(imm, 0, s->sew + 4); 1438 default: 1439 g_assert_not_reached(); 1440 } 1441} 1442 1443static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1444 gen_helper_opivx *fn, DisasContext *s, 1445 imm_mode_t imm_mode) 1446{ 1447 TCGv_ptr dest, src2, mask; 1448 TCGv src1; 1449 TCGv_i32 desc; 1450 uint32_t data = 0; 1451 1452 TCGLabel *over = gen_new_label(); 1453 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1454 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1455 1456 dest = tcg_temp_new_ptr(); 1457 mask = tcg_temp_new_ptr(); 1458 src2 = tcg_temp_new_ptr(); 1459 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1460 1461 data = FIELD_DP32(data, VDATA, VM, vm); 1462 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1463 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1464 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1465 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1466 s->cfg_ptr->vlen / 8, data)); 1467 1468 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1469 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1470 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1471 1472 fn(dest, mask, src1, src2, cpu_env, desc); 1473 1474 tcg_temp_free_ptr(dest); 1475 tcg_temp_free_ptr(mask); 1476 tcg_temp_free_ptr(src2); 1477 mark_vs_dirty(s); 1478 gen_set_label(over); 1479 return true; 1480} 1481 1482typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1483 uint32_t, uint32_t); 1484 1485static inline bool 1486do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1487 gen_helper_opivx *fn, imm_mode_t imm_mode) 1488{ 1489 if (!opivx_check(s, a)) { 1490 return false; 1491 } 1492 1493 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1494 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1495 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1496 mark_vs_dirty(s); 1497 return true; 1498 } 1499 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1500} 1501 1502/* OPIVI with GVEC IR */ 1503#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1504static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1505{ \ 1506 static gen_helper_opivx * const fns[4] = { \ 1507 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1508 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1509 }; \ 1510 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1511 fns[s->sew], IMM_MODE); \ 1512} 1513 1514GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1515 1516static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1517 int64_t c, uint32_t oprsz, uint32_t maxsz) 1518{ 1519 TCGv_i64 tmp = tcg_constant_i64(c); 1520 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1521} 1522 1523GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1524 1525/* Vector Widening Integer Add/Subtract */ 1526 1527/* OPIVV with WIDEN */ 1528static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1529{ 1530 return require_rvv(s) && 1531 vext_check_isa_ill(s) && 1532 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1533} 1534 1535static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1536 gen_helper_gvec_4_ptr *fn, 1537 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1538{ 1539 if (checkfn(s, a)) { 1540 uint32_t data = 0; 1541 TCGLabel *over = gen_new_label(); 1542 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1543 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1544 1545 data = FIELD_DP32(data, VDATA, VM, a->vm); 1546 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1547 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1548 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1549 vreg_ofs(s, a->rs1), 1550 vreg_ofs(s, a->rs2), 1551 cpu_env, s->cfg_ptr->vlen / 8, 1552 s->cfg_ptr->vlen / 8, 1553 data, fn); 1554 mark_vs_dirty(s); 1555 gen_set_label(over); 1556 return true; 1557 } 1558 return false; 1559} 1560 1561#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1562static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1563{ \ 1564 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1565 gen_helper_##NAME##_b, \ 1566 gen_helper_##NAME##_h, \ 1567 gen_helper_##NAME##_w \ 1568 }; \ 1569 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1570} 1571 1572GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1573GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1574GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1575GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1576 1577/* OPIVX with WIDEN */ 1578static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1579{ 1580 return require_rvv(s) && 1581 vext_check_isa_ill(s) && 1582 vext_check_ds(s, a->rd, a->rs2, a->vm); 1583} 1584 1585static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1586 gen_helper_opivx *fn) 1587{ 1588 if (opivx_widen_check(s, a)) { 1589 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1590 } 1591 return false; 1592} 1593 1594#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1595static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1596{ \ 1597 static gen_helper_opivx * const fns[3] = { \ 1598 gen_helper_##NAME##_b, \ 1599 gen_helper_##NAME##_h, \ 1600 gen_helper_##NAME##_w \ 1601 }; \ 1602 return do_opivx_widen(s, a, fns[s->sew]); \ 1603} 1604 1605GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1606GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1607GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1608GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1609 1610/* WIDEN OPIVV with WIDEN */ 1611static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1612{ 1613 return require_rvv(s) && 1614 vext_check_isa_ill(s) && 1615 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1616} 1617 1618static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1619 gen_helper_gvec_4_ptr *fn) 1620{ 1621 if (opiwv_widen_check(s, a)) { 1622 uint32_t data = 0; 1623 TCGLabel *over = gen_new_label(); 1624 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1625 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1626 1627 data = FIELD_DP32(data, VDATA, VM, a->vm); 1628 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1629 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1630 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1631 vreg_ofs(s, a->rs1), 1632 vreg_ofs(s, a->rs2), 1633 cpu_env, s->cfg_ptr->vlen / 8, 1634 s->cfg_ptr->vlen / 8, data, fn); 1635 mark_vs_dirty(s); 1636 gen_set_label(over); 1637 return true; 1638 } 1639 return false; 1640} 1641 1642#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1643static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1644{ \ 1645 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1646 gen_helper_##NAME##_b, \ 1647 gen_helper_##NAME##_h, \ 1648 gen_helper_##NAME##_w \ 1649 }; \ 1650 return do_opiwv_widen(s, a, fns[s->sew]); \ 1651} 1652 1653GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1654GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1655GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1656GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1657 1658/* WIDEN OPIVX with WIDEN */ 1659static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1660{ 1661 return require_rvv(s) && 1662 vext_check_isa_ill(s) && 1663 vext_check_dd(s, a->rd, a->rs2, a->vm); 1664} 1665 1666static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1667 gen_helper_opivx *fn) 1668{ 1669 if (opiwx_widen_check(s, a)) { 1670 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1671 } 1672 return false; 1673} 1674 1675#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1676static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1677{ \ 1678 static gen_helper_opivx * const fns[3] = { \ 1679 gen_helper_##NAME##_b, \ 1680 gen_helper_##NAME##_h, \ 1681 gen_helper_##NAME##_w \ 1682 }; \ 1683 return do_opiwx_widen(s, a, fns[s->sew]); \ 1684} 1685 1686GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1687GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1688GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1689GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1690 1691/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1692/* OPIVV without GVEC IR */ 1693#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1694static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1695{ \ 1696 if (CHECK(s, a)) { \ 1697 uint32_t data = 0; \ 1698 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1699 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1700 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1701 }; \ 1702 TCGLabel *over = gen_new_label(); \ 1703 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1704 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1705 \ 1706 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1707 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1708 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1709 data = \ 1710 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1711 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1712 vreg_ofs(s, a->rs1), \ 1713 vreg_ofs(s, a->rs2), cpu_env, \ 1714 s->cfg_ptr->vlen / 8, \ 1715 s->cfg_ptr->vlen / 8, data, \ 1716 fns[s->sew]); \ 1717 mark_vs_dirty(s); \ 1718 gen_set_label(over); \ 1719 return true; \ 1720 } \ 1721 return false; \ 1722} 1723 1724/* 1725 * For vadc and vsbc, an illegal instruction exception is raised if the 1726 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1727 */ 1728static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1729{ 1730 return require_rvv(s) && 1731 vext_check_isa_ill(s) && 1732 (a->rd != 0) && 1733 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1734} 1735 1736GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1737GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1738 1739/* 1740 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1741 * destination vector register overlaps a source vector register group. 1742 */ 1743static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1744{ 1745 return require_rvv(s) && 1746 vext_check_isa_ill(s) && 1747 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1748} 1749 1750GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1751GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1752 1753static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1754{ 1755 return require_rvv(s) && 1756 vext_check_isa_ill(s) && 1757 (a->rd != 0) && 1758 vext_check_ss(s, a->rd, a->rs2, a->vm); 1759} 1760 1761/* OPIVX without GVEC IR */ 1762#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1763static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1764{ \ 1765 if (CHECK(s, a)) { \ 1766 static gen_helper_opivx * const fns[4] = { \ 1767 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1768 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1769 }; \ 1770 \ 1771 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1772 } \ 1773 return false; \ 1774} 1775 1776GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1777GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1778 1779static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1780{ 1781 return require_rvv(s) && 1782 vext_check_isa_ill(s) && 1783 vext_check_ms(s, a->rd, a->rs2); 1784} 1785 1786GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1787GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1788 1789/* OPIVI without GVEC IR */ 1790#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1791static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1792{ \ 1793 if (CHECK(s, a)) { \ 1794 static gen_helper_opivx * const fns[4] = { \ 1795 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1796 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1797 }; \ 1798 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1799 fns[s->sew], s, IMM_MODE); \ 1800 } \ 1801 return false; \ 1802} 1803 1804GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1805GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1806 1807/* Vector Bitwise Logical Instructions */ 1808GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1809GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1810GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1811GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1812GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1813GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1814GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1815GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1816GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1817 1818/* Vector Single-Width Bit Shift Instructions */ 1819GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1820GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1821GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1822 1823typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1824 uint32_t, uint32_t); 1825 1826static inline bool 1827do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1828 gen_helper_opivx *fn) 1829{ 1830 if (!opivx_check(s, a)) { 1831 return false; 1832 } 1833 1834 if (a->vm && s->vl_eq_vlmax) { 1835 TCGv_i32 src1 = tcg_temp_new_i32(); 1836 1837 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1838 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1839 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1840 src1, MAXSZ(s), MAXSZ(s)); 1841 1842 tcg_temp_free_i32(src1); 1843 mark_vs_dirty(s); 1844 return true; 1845 } 1846 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1847} 1848 1849#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1850static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1851{ \ 1852 static gen_helper_opivx * const fns[4] = { \ 1853 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1854 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1855 }; \ 1856 \ 1857 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1858} 1859 1860GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1861GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1862GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1863 1864GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1865GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1866GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1867 1868/* Vector Narrowing Integer Right Shift Instructions */ 1869static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1870{ 1871 return require_rvv(s) && 1872 vext_check_isa_ill(s) && 1873 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1874} 1875 1876/* OPIVV with NARROW */ 1877#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1878static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1879{ \ 1880 if (opiwv_narrow_check(s, a)) { \ 1881 uint32_t data = 0; \ 1882 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1883 gen_helper_##NAME##_b, \ 1884 gen_helper_##NAME##_h, \ 1885 gen_helper_##NAME##_w, \ 1886 }; \ 1887 TCGLabel *over = gen_new_label(); \ 1888 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1889 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1890 \ 1891 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1892 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1893 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1894 vreg_ofs(s, a->rs1), \ 1895 vreg_ofs(s, a->rs2), cpu_env, \ 1896 s->cfg_ptr->vlen / 8, \ 1897 s->cfg_ptr->vlen / 8, data, \ 1898 fns[s->sew]); \ 1899 mark_vs_dirty(s); \ 1900 gen_set_label(over); \ 1901 return true; \ 1902 } \ 1903 return false; \ 1904} 1905GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1906GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1907 1908static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1909{ 1910 return require_rvv(s) && 1911 vext_check_isa_ill(s) && 1912 vext_check_sd(s, a->rd, a->rs2, a->vm); 1913} 1914 1915/* OPIVX with NARROW */ 1916#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1917static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1918{ \ 1919 if (opiwx_narrow_check(s, a)) { \ 1920 static gen_helper_opivx * const fns[3] = { \ 1921 gen_helper_##NAME##_b, \ 1922 gen_helper_##NAME##_h, \ 1923 gen_helper_##NAME##_w, \ 1924 }; \ 1925 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1926 } \ 1927 return false; \ 1928} 1929 1930GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1931GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1932 1933/* OPIWI with NARROW */ 1934#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1935static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1936{ \ 1937 if (opiwx_narrow_check(s, a)) { \ 1938 static gen_helper_opivx * const fns[3] = { \ 1939 gen_helper_##OPIVX##_b, \ 1940 gen_helper_##OPIVX##_h, \ 1941 gen_helper_##OPIVX##_w, \ 1942 }; \ 1943 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1944 fns[s->sew], s, IMM_MODE); \ 1945 } \ 1946 return false; \ 1947} 1948 1949GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1950GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1951 1952/* Vector Integer Comparison Instructions */ 1953/* 1954 * For all comparison instructions, an illegal instruction exception is raised 1955 * if the destination vector register overlaps a source vector register group 1956 * and LMUL > 1. 1957 */ 1958static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1959{ 1960 return require_rvv(s) && 1961 vext_check_isa_ill(s) && 1962 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1963} 1964 1965GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1966GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1967GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1968GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1969GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1970GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1971 1972static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1973{ 1974 return require_rvv(s) && 1975 vext_check_isa_ill(s) && 1976 vext_check_ms(s, a->rd, a->rs2); 1977} 1978 1979GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1980GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1981GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1982GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1983GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1984GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1985GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1986GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1987 1988GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1989GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1990GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1991GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1992GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1993GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1994 1995/* Vector Integer Min/Max Instructions */ 1996GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1997GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1998GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1999GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2000GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2001GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2002GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2003GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2004 2005/* Vector Single-Width Integer Multiply Instructions */ 2006 2007static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2008{ 2009 /* 2010 * All Zve* extensions support all vector integer instructions, 2011 * except that the vmulh integer multiply variants 2012 * that return the high word of the product 2013 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2014 * are not included for EEW=64 in Zve64*. (Section 18.2) 2015 */ 2016 return opivv_check(s, a) && 2017 (!has_ext(s, RVV) && 2018 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2019} 2020 2021static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2022{ 2023 /* 2024 * All Zve* extensions support all vector integer instructions, 2025 * except that the vmulh integer multiply variants 2026 * that return the high word of the product 2027 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2028 * are not included for EEW=64 in Zve64*. (Section 18.2) 2029 */ 2030 return opivx_check(s, a) && 2031 (!has_ext(s, RVV) && 2032 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2033} 2034 2035GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2036GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2037GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2038GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2039GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2040GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2041GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2042GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2043 2044/* Vector Integer Divide Instructions */ 2045GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2046GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2047GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2048GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2049GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2050GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2051GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2052GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2053 2054/* Vector Widening Integer Multiply Instructions */ 2055GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2056GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2057GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2058GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2059GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2060GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2061 2062/* Vector Single-Width Integer Multiply-Add Instructions */ 2063GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2064GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2065GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2066GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2067GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2068GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2069GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2070GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2071 2072/* Vector Widening Integer Multiply-Add Instructions */ 2073GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2074GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2075GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2076GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2077GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2078GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2079GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2080 2081/* Vector Integer Merge and Move Instructions */ 2082static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2083{ 2084 if (require_rvv(s) && 2085 vext_check_isa_ill(s) && 2086 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2087 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2088 if (s->vl_eq_vlmax) { 2089 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2090 vreg_ofs(s, a->rs1), 2091 MAXSZ(s), MAXSZ(s)); 2092 } else { 2093 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2094 static gen_helper_gvec_2_ptr * const fns[4] = { 2095 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2096 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2097 }; 2098 TCGLabel *over = gen_new_label(); 2099 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2100 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2101 2102 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2103 cpu_env, s->cfg_ptr->vlen / 8, 2104 s->cfg_ptr->vlen / 8, data, 2105 fns[s->sew]); 2106 gen_set_label(over); 2107 } 2108 mark_vs_dirty(s); 2109 return true; 2110 } 2111 return false; 2112} 2113 2114typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2115static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2116{ 2117 if (require_rvv(s) && 2118 vext_check_isa_ill(s) && 2119 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2120 vext_check_ss(s, a->rd, 0, 1)) { 2121 TCGv s1; 2122 TCGLabel *over = gen_new_label(); 2123 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2124 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2125 2126 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2127 2128 if (s->vl_eq_vlmax) { 2129 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2130 MAXSZ(s), MAXSZ(s), s1); 2131 } else { 2132 TCGv_i32 desc; 2133 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2134 TCGv_ptr dest = tcg_temp_new_ptr(); 2135 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2136 static gen_helper_vmv_vx * const fns[4] = { 2137 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2138 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2139 }; 2140 2141 tcg_gen_ext_tl_i64(s1_i64, s1); 2142 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2143 s->cfg_ptr->vlen / 8, data)); 2144 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2145 fns[s->sew](dest, s1_i64, cpu_env, desc); 2146 2147 tcg_temp_free_ptr(dest); 2148 tcg_temp_free_i64(s1_i64); 2149 } 2150 2151 mark_vs_dirty(s); 2152 gen_set_label(over); 2153 return true; 2154 } 2155 return false; 2156} 2157 2158static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2159{ 2160 if (require_rvv(s) && 2161 vext_check_isa_ill(s) && 2162 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2163 vext_check_ss(s, a->rd, 0, 1)) { 2164 int64_t simm = sextract64(a->rs1, 0, 5); 2165 if (s->vl_eq_vlmax) { 2166 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2167 MAXSZ(s), MAXSZ(s), simm); 2168 mark_vs_dirty(s); 2169 } else { 2170 TCGv_i32 desc; 2171 TCGv_i64 s1; 2172 TCGv_ptr dest; 2173 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2174 static gen_helper_vmv_vx * const fns[4] = { 2175 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2176 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2177 }; 2178 TCGLabel *over = gen_new_label(); 2179 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2180 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2181 2182 s1 = tcg_constant_i64(simm); 2183 dest = tcg_temp_new_ptr(); 2184 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2185 s->cfg_ptr->vlen / 8, data)); 2186 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2187 fns[s->sew](dest, s1, cpu_env, desc); 2188 2189 tcg_temp_free_ptr(dest); 2190 mark_vs_dirty(s); 2191 gen_set_label(over); 2192 } 2193 return true; 2194 } 2195 return false; 2196} 2197 2198GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2199GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2200GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2201 2202/* 2203 *** Vector Fixed-Point Arithmetic Instructions 2204 */ 2205 2206/* Vector Single-Width Saturating Add and Subtract */ 2207GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2208GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2209GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2210GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2211GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2212GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2213GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2214GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2215GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2216GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2217 2218/* Vector Single-Width Averaging Add and Subtract */ 2219GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2220GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2221GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2222GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2223GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2224GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2225GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2226GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2227 2228/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2229 2230static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2231{ 2232 /* 2233 * All Zve* extensions support all vector fixed-point arithmetic 2234 * instructions, except that vsmul.vv and vsmul.vx are not supported 2235 * for EEW=64 in Zve64*. (Section 18.2) 2236 */ 2237 return opivv_check(s, a) && 2238 (!has_ext(s, RVV) && 2239 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2240} 2241 2242static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2243{ 2244 /* 2245 * All Zve* extensions support all vector fixed-point arithmetic 2246 * instructions, except that vsmul.vv and vsmul.vx are not supported 2247 * for EEW=64 in Zve64*. (Section 18.2) 2248 */ 2249 return opivx_check(s, a) && 2250 (!has_ext(s, RVV) && 2251 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2252} 2253 2254GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2255GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2256 2257/* Vector Single-Width Scaling Shift Instructions */ 2258GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2259GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2260GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2261GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2262GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2263GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2264 2265/* Vector Narrowing Fixed-Point Clip Instructions */ 2266GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2267GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2268GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2269GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2270GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2271GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2272 2273/* 2274 *** Vector Float Point Arithmetic Instructions 2275 */ 2276 2277/* 2278 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2279 * RVF and RVD can be treated equally. 2280 * We don't have to deal with the cases of: SEW > FLEN. 2281 * 2282 * If SEW < FLEN, check whether input fp register is a valid 2283 * NaN-boxed value, in which case the least-significant SEW bits 2284 * of the f regsiter are used, else the canonical NaN value is used. 2285 */ 2286static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2287{ 2288 switch (s->sew) { 2289 case 1: 2290 gen_check_nanbox_h(out, in); 2291 break; 2292 case 2: 2293 gen_check_nanbox_s(out, in); 2294 break; 2295 case 3: 2296 tcg_gen_mov_i64(out, in); 2297 break; 2298 default: 2299 g_assert_not_reached(); 2300 } 2301} 2302 2303/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2304 2305/* 2306 * If the current SEW does not correspond to a supported IEEE floating-point 2307 * type, an illegal instruction exception is raised. 2308 */ 2309static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2310{ 2311 return require_rvv(s) && 2312 require_rvf(s) && 2313 vext_check_isa_ill(s) && 2314 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2315 require_zve32f(s) && 2316 require_zve64f(s); 2317} 2318 2319/* OPFVV without GVEC IR */ 2320#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2321static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2322{ \ 2323 if (CHECK(s, a)) { \ 2324 uint32_t data = 0; \ 2325 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2326 gen_helper_##NAME##_h, \ 2327 gen_helper_##NAME##_w, \ 2328 gen_helper_##NAME##_d, \ 2329 }; \ 2330 TCGLabel *over = gen_new_label(); \ 2331 gen_set_rm(s, RISCV_FRM_DYN); \ 2332 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2333 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2334 \ 2335 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2336 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2337 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2338 vreg_ofs(s, a->rs1), \ 2339 vreg_ofs(s, a->rs2), cpu_env, \ 2340 s->cfg_ptr->vlen / 8, \ 2341 s->cfg_ptr->vlen / 8, data, \ 2342 fns[s->sew - 1]); \ 2343 mark_vs_dirty(s); \ 2344 gen_set_label(over); \ 2345 return true; \ 2346 } \ 2347 return false; \ 2348} 2349GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2350GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2351 2352typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2353 TCGv_env, TCGv_i32); 2354 2355static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2356 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2357{ 2358 TCGv_ptr dest, src2, mask; 2359 TCGv_i32 desc; 2360 TCGv_i64 t1; 2361 2362 TCGLabel *over = gen_new_label(); 2363 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2364 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2365 2366 dest = tcg_temp_new_ptr(); 2367 mask = tcg_temp_new_ptr(); 2368 src2 = tcg_temp_new_ptr(); 2369 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2370 s->cfg_ptr->vlen / 8, data)); 2371 2372 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2373 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2374 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2375 2376 /* NaN-box f[rs1] */ 2377 t1 = tcg_temp_new_i64(); 2378 do_nanbox(s, t1, cpu_fpr[rs1]); 2379 2380 fn(dest, mask, t1, src2, cpu_env, desc); 2381 2382 tcg_temp_free_ptr(dest); 2383 tcg_temp_free_ptr(mask); 2384 tcg_temp_free_ptr(src2); 2385 tcg_temp_free_i64(t1); 2386 mark_vs_dirty(s); 2387 gen_set_label(over); 2388 return true; 2389} 2390 2391/* 2392 * If the current SEW does not correspond to a supported IEEE floating-point 2393 * type, an illegal instruction exception is raised 2394 */ 2395static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2396{ 2397 return require_rvv(s) && 2398 require_rvf(s) && 2399 vext_check_isa_ill(s) && 2400 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2401 require_zve32f(s) && 2402 require_zve64f(s); 2403} 2404 2405/* OPFVF without GVEC IR */ 2406#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2407static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2408{ \ 2409 if (CHECK(s, a)) { \ 2410 uint32_t data = 0; \ 2411 static gen_helper_opfvf *const fns[3] = { \ 2412 gen_helper_##NAME##_h, \ 2413 gen_helper_##NAME##_w, \ 2414 gen_helper_##NAME##_d, \ 2415 }; \ 2416 gen_set_rm(s, RISCV_FRM_DYN); \ 2417 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2418 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2419 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2420 fns[s->sew - 1], s); \ 2421 } \ 2422 return false; \ 2423} 2424 2425GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2426GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2427GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2428 2429/* Vector Widening Floating-Point Add/Subtract Instructions */ 2430static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2431{ 2432 return require_rvv(s) && 2433 require_scale_rvf(s) && 2434 (s->sew != MO_8) && 2435 vext_check_isa_ill(s) && 2436 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2437 require_scale_zve32f(s) && 2438 require_scale_zve64f(s); 2439} 2440 2441/* OPFVV with WIDEN */ 2442#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2443static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2444{ \ 2445 if (CHECK(s, a)) { \ 2446 uint32_t data = 0; \ 2447 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2448 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2449 }; \ 2450 TCGLabel *over = gen_new_label(); \ 2451 gen_set_rm(s, RISCV_FRM_DYN); \ 2452 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2453 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2454 \ 2455 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2456 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2457 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2458 vreg_ofs(s, a->rs1), \ 2459 vreg_ofs(s, a->rs2), cpu_env, \ 2460 s->cfg_ptr->vlen / 8, \ 2461 s->cfg_ptr->vlen / 8, data, \ 2462 fns[s->sew - 1]); \ 2463 mark_vs_dirty(s); \ 2464 gen_set_label(over); \ 2465 return true; \ 2466 } \ 2467 return false; \ 2468} 2469 2470GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2471GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2472 2473static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2474{ 2475 return require_rvv(s) && 2476 require_scale_rvf(s) && 2477 (s->sew != MO_8) && 2478 vext_check_isa_ill(s) && 2479 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2480 require_scale_zve32f(s) && 2481 require_scale_zve64f(s); 2482} 2483 2484/* OPFVF with WIDEN */ 2485#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2486static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2487{ \ 2488 if (opfvf_widen_check(s, a)) { \ 2489 uint32_t data = 0; \ 2490 static gen_helper_opfvf *const fns[2] = { \ 2491 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2492 }; \ 2493 gen_set_rm(s, RISCV_FRM_DYN); \ 2494 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2495 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2496 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2497 fns[s->sew - 1], s); \ 2498 } \ 2499 return false; \ 2500} 2501 2502GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2503GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2504 2505static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2506{ 2507 return require_rvv(s) && 2508 require_scale_rvf(s) && 2509 (s->sew != MO_8) && 2510 vext_check_isa_ill(s) && 2511 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2512 require_scale_zve32f(s) && 2513 require_scale_zve64f(s); 2514} 2515 2516/* WIDEN OPFVV with WIDEN */ 2517#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2518static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2519{ \ 2520 if (opfwv_widen_check(s, a)) { \ 2521 uint32_t data = 0; \ 2522 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2523 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2524 }; \ 2525 TCGLabel *over = gen_new_label(); \ 2526 gen_set_rm(s, RISCV_FRM_DYN); \ 2527 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2528 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2529 \ 2530 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2531 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2532 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2533 vreg_ofs(s, a->rs1), \ 2534 vreg_ofs(s, a->rs2), cpu_env, \ 2535 s->cfg_ptr->vlen / 8, \ 2536 s->cfg_ptr->vlen / 8, data, \ 2537 fns[s->sew - 1]); \ 2538 mark_vs_dirty(s); \ 2539 gen_set_label(over); \ 2540 return true; \ 2541 } \ 2542 return false; \ 2543} 2544 2545GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2546GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2547 2548static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2549{ 2550 return require_rvv(s) && 2551 require_scale_rvf(s) && 2552 (s->sew != MO_8) && 2553 vext_check_isa_ill(s) && 2554 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2555 require_scale_zve32f(s) && 2556 require_scale_zve64f(s); 2557} 2558 2559/* WIDEN OPFVF with WIDEN */ 2560#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2561static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2562{ \ 2563 if (opfwf_widen_check(s, a)) { \ 2564 uint32_t data = 0; \ 2565 static gen_helper_opfvf *const fns[2] = { \ 2566 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2567 }; \ 2568 gen_set_rm(s, RISCV_FRM_DYN); \ 2569 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2570 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2571 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2572 fns[s->sew - 1], s); \ 2573 } \ 2574 return false; \ 2575} 2576 2577GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2578GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2579 2580/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2581GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2582GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2583GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2584GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2585GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2586 2587/* Vector Widening Floating-Point Multiply */ 2588GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2589GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2590 2591/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2592GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2593GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2594GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2595GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2596GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2597GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2598GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2599GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2600GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2601GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2602GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2603GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2604GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2605GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2606GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2607GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2608 2609/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2610GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2611GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2612GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2613GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2614GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2615GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2616GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2617GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2618 2619/* Vector Floating-Point Square-Root Instruction */ 2620 2621/* 2622 * If the current SEW does not correspond to a supported IEEE floating-point 2623 * type, an illegal instruction exception is raised 2624 */ 2625static bool opfv_check(DisasContext *s, arg_rmr *a) 2626{ 2627 return require_rvv(s) && 2628 require_rvf(s) && 2629 vext_check_isa_ill(s) && 2630 /* OPFV instructions ignore vs1 check */ 2631 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2632 require_zve32f(s) && 2633 require_zve64f(s); 2634} 2635 2636static bool do_opfv(DisasContext *s, arg_rmr *a, 2637 gen_helper_gvec_3_ptr *fn, 2638 bool (*checkfn)(DisasContext *, arg_rmr *), 2639 int rm) 2640{ 2641 if (checkfn(s, a)) { 2642 if (rm != RISCV_FRM_DYN) { 2643 gen_set_rm(s, RISCV_FRM_DYN); 2644 } 2645 2646 uint32_t data = 0; 2647 TCGLabel *over = gen_new_label(); 2648 gen_set_rm(s, rm); 2649 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2650 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2651 2652 data = FIELD_DP32(data, VDATA, VM, a->vm); 2653 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2654 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2655 vreg_ofs(s, a->rs2), cpu_env, 2656 s->cfg_ptr->vlen / 8, 2657 s->cfg_ptr->vlen / 8, data, fn); 2658 mark_vs_dirty(s); 2659 gen_set_label(over); 2660 return true; 2661 } 2662 return false; 2663} 2664 2665#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2666static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2667{ \ 2668 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2669 gen_helper_##NAME##_h, \ 2670 gen_helper_##NAME##_w, \ 2671 gen_helper_##NAME##_d \ 2672 }; \ 2673 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2674} 2675 2676GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2677GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2678GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2679 2680/* Vector Floating-Point MIN/MAX Instructions */ 2681GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2682GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2683GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2684GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2685 2686/* Vector Floating-Point Sign-Injection Instructions */ 2687GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2688GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2689GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2690GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2691GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2692GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2693 2694/* Vector Floating-Point Compare Instructions */ 2695static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2696{ 2697 return require_rvv(s) && 2698 require_rvf(s) && 2699 vext_check_isa_ill(s) && 2700 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2701 require_zve32f(s) && 2702 require_zve64f(s); 2703} 2704 2705GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2706GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2707GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2708GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2709 2710static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2711{ 2712 return require_rvv(s) && 2713 require_rvf(s) && 2714 vext_check_isa_ill(s) && 2715 vext_check_ms(s, a->rd, a->rs2) && 2716 require_zve32f(s) && 2717 require_zve64f(s); 2718} 2719 2720GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2721GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2722GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2723GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2724GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2725GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2726 2727/* Vector Floating-Point Classify Instruction */ 2728GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2729 2730/* Vector Floating-Point Merge Instruction */ 2731GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2732 2733static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2734{ 2735 if (require_rvv(s) && 2736 require_rvf(s) && 2737 vext_check_isa_ill(s) && 2738 require_align(a->rd, s->lmul) && 2739 require_zve32f(s) && 2740 require_zve64f(s)) { 2741 gen_set_rm(s, RISCV_FRM_DYN); 2742 2743 TCGv_i64 t1; 2744 2745 if (s->vl_eq_vlmax) { 2746 t1 = tcg_temp_new_i64(); 2747 /* NaN-box f[rs1] */ 2748 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2749 2750 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2751 MAXSZ(s), MAXSZ(s), t1); 2752 mark_vs_dirty(s); 2753 } else { 2754 TCGv_ptr dest; 2755 TCGv_i32 desc; 2756 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2757 static gen_helper_vmv_vx * const fns[3] = { 2758 gen_helper_vmv_v_x_h, 2759 gen_helper_vmv_v_x_w, 2760 gen_helper_vmv_v_x_d, 2761 }; 2762 TCGLabel *over = gen_new_label(); 2763 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2764 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2765 2766 t1 = tcg_temp_new_i64(); 2767 /* NaN-box f[rs1] */ 2768 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2769 2770 dest = tcg_temp_new_ptr(); 2771 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2772 s->cfg_ptr->vlen / 8, data)); 2773 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2774 2775 fns[s->sew - 1](dest, t1, cpu_env, desc); 2776 2777 tcg_temp_free_ptr(dest); 2778 mark_vs_dirty(s); 2779 gen_set_label(over); 2780 } 2781 tcg_temp_free_i64(t1); 2782 return true; 2783 } 2784 return false; 2785} 2786 2787/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2788#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2789static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2790{ \ 2791 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2792 gen_helper_##HELPER##_h, \ 2793 gen_helper_##HELPER##_w, \ 2794 gen_helper_##HELPER##_d \ 2795 }; \ 2796 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2797} 2798 2799GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2800GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2801GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2802GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2803/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2804GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2805GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2806 2807/* Widening Floating-Point/Integer Type-Convert Instructions */ 2808 2809/* 2810 * If the current SEW does not correspond to a supported IEEE floating-point 2811 * type, an illegal instruction exception is raised 2812 */ 2813static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2814{ 2815 return require_rvv(s) && 2816 vext_check_isa_ill(s) && 2817 vext_check_ds(s, a->rd, a->rs2, a->vm); 2818} 2819 2820static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2821{ 2822 return opfv_widen_check(s, a) && 2823 require_rvf(s) && 2824 require_zve32f(s) && 2825 require_zve64f(s); 2826} 2827 2828static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2829{ 2830 return opfv_widen_check(s, a) && 2831 require_scale_rvf(s) && 2832 (s->sew != MO_8) && 2833 require_scale_zve32f(s) && 2834 require_scale_zve64f(s); 2835} 2836 2837#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2838static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2839{ \ 2840 if (CHECK(s, a)) { \ 2841 if (FRM != RISCV_FRM_DYN) { \ 2842 gen_set_rm(s, RISCV_FRM_DYN); \ 2843 } \ 2844 \ 2845 uint32_t data = 0; \ 2846 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2847 gen_helper_##HELPER##_h, \ 2848 gen_helper_##HELPER##_w, \ 2849 }; \ 2850 TCGLabel *over = gen_new_label(); \ 2851 gen_set_rm(s, FRM); \ 2852 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2853 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2854 \ 2855 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2856 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2857 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2858 vreg_ofs(s, a->rs2), cpu_env, \ 2859 s->cfg_ptr->vlen / 8, \ 2860 s->cfg_ptr->vlen / 8, data, \ 2861 fns[s->sew - 1]); \ 2862 mark_vs_dirty(s); \ 2863 gen_set_label(over); \ 2864 return true; \ 2865 } \ 2866 return false; \ 2867} 2868 2869GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2870 RISCV_FRM_DYN) 2871GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2872 RISCV_FRM_DYN) 2873GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2874 RISCV_FRM_DYN) 2875/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2876GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2877 RISCV_FRM_RTZ) 2878GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2879 RISCV_FRM_RTZ) 2880 2881static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2882{ 2883 return require_rvv(s) && 2884 require_scale_rvf(s) && 2885 vext_check_isa_ill(s) && 2886 /* OPFV widening instructions ignore vs1 check */ 2887 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2888 require_scale_zve32f(s) && 2889 require_scale_zve64f(s); 2890} 2891 2892#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2893static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2894{ \ 2895 if (opfxv_widen_check(s, a)) { \ 2896 uint32_t data = 0; \ 2897 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2898 gen_helper_##NAME##_b, \ 2899 gen_helper_##NAME##_h, \ 2900 gen_helper_##NAME##_w, \ 2901 }; \ 2902 TCGLabel *over = gen_new_label(); \ 2903 gen_set_rm(s, RISCV_FRM_DYN); \ 2904 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2905 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2906 \ 2907 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2908 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2909 vreg_ofs(s, a->rs2), cpu_env, \ 2910 s->cfg_ptr->vlen / 8, \ 2911 s->cfg_ptr->vlen / 8, data, \ 2912 fns[s->sew]); \ 2913 mark_vs_dirty(s); \ 2914 gen_set_label(over); \ 2915 return true; \ 2916 } \ 2917 return false; \ 2918} 2919 2920GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2921GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2922 2923/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2924 2925/* 2926 * If the current SEW does not correspond to a supported IEEE floating-point 2927 * type, an illegal instruction exception is raised 2928 */ 2929static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2930{ 2931 return require_rvv(s) && 2932 vext_check_isa_ill(s) && 2933 /* OPFV narrowing instructions ignore vs1 check */ 2934 vext_check_sd(s, a->rd, a->rs2, a->vm); 2935} 2936 2937static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2938{ 2939 return opfv_narrow_check(s, a) && 2940 require_rvf(s) && 2941 (s->sew != MO_64) && 2942 require_zve32f(s) && 2943 require_zve64f(s); 2944} 2945 2946static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2947{ 2948 return opfv_narrow_check(s, a) && 2949 require_scale_rvf(s) && 2950 (s->sew != MO_8) && 2951 require_scale_zve32f(s) && 2952 require_scale_zve64f(s); 2953} 2954 2955#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2956static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2957{ \ 2958 if (CHECK(s, a)) { \ 2959 if (FRM != RISCV_FRM_DYN) { \ 2960 gen_set_rm(s, RISCV_FRM_DYN); \ 2961 } \ 2962 \ 2963 uint32_t data = 0; \ 2964 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2965 gen_helper_##HELPER##_h, \ 2966 gen_helper_##HELPER##_w, \ 2967 }; \ 2968 TCGLabel *over = gen_new_label(); \ 2969 gen_set_rm(s, FRM); \ 2970 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2971 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2972 \ 2973 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2974 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2975 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2976 vreg_ofs(s, a->rs2), cpu_env, \ 2977 s->cfg_ptr->vlen / 8, \ 2978 s->cfg_ptr->vlen / 8, data, \ 2979 fns[s->sew - 1]); \ 2980 mark_vs_dirty(s); \ 2981 gen_set_label(over); \ 2982 return true; \ 2983 } \ 2984 return false; \ 2985} 2986 2987GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2988 RISCV_FRM_DYN) 2989GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2990 RISCV_FRM_DYN) 2991GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2992 RISCV_FRM_DYN) 2993/* Reuse the helper function from vfncvt.f.f.w */ 2994GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2995 RISCV_FRM_ROD) 2996 2997static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2998{ 2999 return require_rvv(s) && 3000 require_scale_rvf(s) && 3001 vext_check_isa_ill(s) && 3002 /* OPFV narrowing instructions ignore vs1 check */ 3003 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3004 require_scale_zve32f(s) && 3005 require_scale_zve64f(s); 3006} 3007 3008#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3009static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3010{ \ 3011 if (opxfv_narrow_check(s, a)) { \ 3012 if (FRM != RISCV_FRM_DYN) { \ 3013 gen_set_rm(s, RISCV_FRM_DYN); \ 3014 } \ 3015 \ 3016 uint32_t data = 0; \ 3017 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3018 gen_helper_##HELPER##_b, \ 3019 gen_helper_##HELPER##_h, \ 3020 gen_helper_##HELPER##_w, \ 3021 }; \ 3022 TCGLabel *over = gen_new_label(); \ 3023 gen_set_rm(s, FRM); \ 3024 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3025 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3026 \ 3027 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3028 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3029 vreg_ofs(s, a->rs2), cpu_env, \ 3030 s->cfg_ptr->vlen / 8, \ 3031 s->cfg_ptr->vlen / 8, data, \ 3032 fns[s->sew]); \ 3033 mark_vs_dirty(s); \ 3034 gen_set_label(over); \ 3035 return true; \ 3036 } \ 3037 return false; \ 3038} 3039 3040GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3041GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3042/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3043GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3044GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3045 3046/* 3047 *** Vector Reduction Operations 3048 */ 3049/* Vector Single-Width Integer Reduction Instructions */ 3050static bool reduction_check(DisasContext *s, arg_rmrr *a) 3051{ 3052 return require_rvv(s) && 3053 vext_check_isa_ill(s) && 3054 vext_check_reduction(s, a->rs2); 3055} 3056 3057GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3058GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3059GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3060GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3061GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3062GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3063GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3064GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3065 3066/* Vector Widening Integer Reduction Instructions */ 3067static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3068{ 3069 return reduction_check(s, a) && (s->sew < MO_64) && 3070 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3071} 3072 3073GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3074GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3075 3076/* Vector Single-Width Floating-Point Reduction Instructions */ 3077static bool freduction_check(DisasContext *s, arg_rmrr *a) 3078{ 3079 return reduction_check(s, a) && 3080 require_rvf(s) && 3081 require_zve32f(s) && 3082 require_zve64f(s); 3083} 3084 3085GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3086GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3087GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3088 3089/* Vector Widening Floating-Point Reduction Instructions */ 3090static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3091{ 3092 return reduction_widen_check(s, a) && 3093 require_scale_rvf(s) && 3094 (s->sew != MO_8); 3095} 3096 3097GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3098 3099/* 3100 *** Vector Mask Operations 3101 */ 3102 3103/* Vector Mask-Register Logical Instructions */ 3104#define GEN_MM_TRANS(NAME) \ 3105static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3106{ \ 3107 if (require_rvv(s) && \ 3108 vext_check_isa_ill(s)) { \ 3109 uint32_t data = 0; \ 3110 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3111 TCGLabel *over = gen_new_label(); \ 3112 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3113 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3114 \ 3115 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3116 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3117 vreg_ofs(s, a->rs1), \ 3118 vreg_ofs(s, a->rs2), cpu_env, \ 3119 s->cfg_ptr->vlen / 8, \ 3120 s->cfg_ptr->vlen / 8, data, fn); \ 3121 mark_vs_dirty(s); \ 3122 gen_set_label(over); \ 3123 return true; \ 3124 } \ 3125 return false; \ 3126} 3127 3128GEN_MM_TRANS(vmand_mm) 3129GEN_MM_TRANS(vmnand_mm) 3130GEN_MM_TRANS(vmandn_mm) 3131GEN_MM_TRANS(vmxor_mm) 3132GEN_MM_TRANS(vmor_mm) 3133GEN_MM_TRANS(vmnor_mm) 3134GEN_MM_TRANS(vmorn_mm) 3135GEN_MM_TRANS(vmxnor_mm) 3136 3137/* Vector count population in mask vcpop */ 3138static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3139{ 3140 if (require_rvv(s) && 3141 vext_check_isa_ill(s) && 3142 s->vstart == 0) { 3143 TCGv_ptr src2, mask; 3144 TCGv dst; 3145 TCGv_i32 desc; 3146 uint32_t data = 0; 3147 data = FIELD_DP32(data, VDATA, VM, a->vm); 3148 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3149 3150 mask = tcg_temp_new_ptr(); 3151 src2 = tcg_temp_new_ptr(); 3152 dst = dest_gpr(s, a->rd); 3153 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3154 s->cfg_ptr->vlen / 8, data)); 3155 3156 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3157 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3158 3159 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3160 gen_set_gpr(s, a->rd, dst); 3161 3162 tcg_temp_free_ptr(mask); 3163 tcg_temp_free_ptr(src2); 3164 3165 return true; 3166 } 3167 return false; 3168} 3169 3170/* vmfirst find-first-set mask bit */ 3171static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3172{ 3173 if (require_rvv(s) && 3174 vext_check_isa_ill(s) && 3175 s->vstart == 0) { 3176 TCGv_ptr src2, mask; 3177 TCGv dst; 3178 TCGv_i32 desc; 3179 uint32_t data = 0; 3180 data = FIELD_DP32(data, VDATA, VM, a->vm); 3181 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3182 3183 mask = tcg_temp_new_ptr(); 3184 src2 = tcg_temp_new_ptr(); 3185 dst = dest_gpr(s, a->rd); 3186 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3187 s->cfg_ptr->vlen / 8, data)); 3188 3189 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3190 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3191 3192 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3193 gen_set_gpr(s, a->rd, dst); 3194 3195 tcg_temp_free_ptr(mask); 3196 tcg_temp_free_ptr(src2); 3197 return true; 3198 } 3199 return false; 3200} 3201 3202/* vmsbf.m set-before-first mask bit */ 3203/* vmsif.m set-includ-first mask bit */ 3204/* vmsof.m set-only-first mask bit */ 3205#define GEN_M_TRANS(NAME) \ 3206static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3207{ \ 3208 if (require_rvv(s) && \ 3209 vext_check_isa_ill(s) && \ 3210 require_vm(a->vm, a->rd) && \ 3211 (a->rd != a->rs2) && \ 3212 (s->vstart == 0)) { \ 3213 uint32_t data = 0; \ 3214 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3215 TCGLabel *over = gen_new_label(); \ 3216 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3217 \ 3218 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3219 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3220 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3221 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3222 cpu_env, s->cfg_ptr->vlen / 8, \ 3223 s->cfg_ptr->vlen / 8, \ 3224 data, fn); \ 3225 mark_vs_dirty(s); \ 3226 gen_set_label(over); \ 3227 return true; \ 3228 } \ 3229 return false; \ 3230} 3231 3232GEN_M_TRANS(vmsbf_m) 3233GEN_M_TRANS(vmsif_m) 3234GEN_M_TRANS(vmsof_m) 3235 3236/* 3237 * Vector Iota Instruction 3238 * 3239 * 1. The destination register cannot overlap the source register. 3240 * 2. If masked, cannot overlap the mask register ('v0'). 3241 * 3. An illegal instruction exception is raised if vstart is non-zero. 3242 */ 3243static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3244{ 3245 if (require_rvv(s) && 3246 vext_check_isa_ill(s) && 3247 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3248 require_vm(a->vm, a->rd) && 3249 require_align(a->rd, s->lmul) && 3250 (s->vstart == 0)) { 3251 uint32_t data = 0; 3252 TCGLabel *over = gen_new_label(); 3253 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3254 3255 data = FIELD_DP32(data, VDATA, VM, a->vm); 3256 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3257 static gen_helper_gvec_3_ptr * const fns[4] = { 3258 gen_helper_viota_m_b, gen_helper_viota_m_h, 3259 gen_helper_viota_m_w, gen_helper_viota_m_d, 3260 }; 3261 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3262 vreg_ofs(s, a->rs2), cpu_env, 3263 s->cfg_ptr->vlen / 8, 3264 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3265 mark_vs_dirty(s); 3266 gen_set_label(over); 3267 return true; 3268 } 3269 return false; 3270} 3271 3272/* Vector Element Index Instruction */ 3273static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3274{ 3275 if (require_rvv(s) && 3276 vext_check_isa_ill(s) && 3277 require_align(a->rd, s->lmul) && 3278 require_vm(a->vm, a->rd)) { 3279 uint32_t data = 0; 3280 TCGLabel *over = gen_new_label(); 3281 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3282 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3283 3284 data = FIELD_DP32(data, VDATA, VM, a->vm); 3285 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3286 static gen_helper_gvec_2_ptr * const fns[4] = { 3287 gen_helper_vid_v_b, gen_helper_vid_v_h, 3288 gen_helper_vid_v_w, gen_helper_vid_v_d, 3289 }; 3290 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3291 cpu_env, s->cfg_ptr->vlen / 8, 3292 s->cfg_ptr->vlen / 8, 3293 data, fns[s->sew]); 3294 mark_vs_dirty(s); 3295 gen_set_label(over); 3296 return true; 3297 } 3298 return false; 3299} 3300 3301/* 3302 *** Vector Permutation Instructions 3303 */ 3304 3305static void load_element(TCGv_i64 dest, TCGv_ptr base, 3306 int ofs, int sew, bool sign) 3307{ 3308 switch (sew) { 3309 case MO_8: 3310 if (!sign) { 3311 tcg_gen_ld8u_i64(dest, base, ofs); 3312 } else { 3313 tcg_gen_ld8s_i64(dest, base, ofs); 3314 } 3315 break; 3316 case MO_16: 3317 if (!sign) { 3318 tcg_gen_ld16u_i64(dest, base, ofs); 3319 } else { 3320 tcg_gen_ld16s_i64(dest, base, ofs); 3321 } 3322 break; 3323 case MO_32: 3324 if (!sign) { 3325 tcg_gen_ld32u_i64(dest, base, ofs); 3326 } else { 3327 tcg_gen_ld32s_i64(dest, base, ofs); 3328 } 3329 break; 3330 case MO_64: 3331 tcg_gen_ld_i64(dest, base, ofs); 3332 break; 3333 default: 3334 g_assert_not_reached(); 3335 break; 3336 } 3337} 3338 3339/* offset of the idx element with base regsiter r */ 3340static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3341{ 3342#if HOST_BIG_ENDIAN 3343 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3344#else 3345 return vreg_ofs(s, r) + (idx << s->sew); 3346#endif 3347} 3348 3349/* adjust the index according to the endian */ 3350static void endian_adjust(TCGv_i32 ofs, int sew) 3351{ 3352#if HOST_BIG_ENDIAN 3353 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3354#endif 3355} 3356 3357/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3358static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3359 int vreg, TCGv idx, int vlmax) 3360{ 3361 TCGv_i32 ofs = tcg_temp_new_i32(); 3362 TCGv_ptr base = tcg_temp_new_ptr(); 3363 TCGv_i64 t_idx = tcg_temp_new_i64(); 3364 TCGv_i64 t_vlmax, t_zero; 3365 3366 /* 3367 * Mask the index to the length so that we do 3368 * not produce an out-of-range load. 3369 */ 3370 tcg_gen_trunc_tl_i32(ofs, idx); 3371 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3372 3373 /* Convert the index to an offset. */ 3374 endian_adjust(ofs, s->sew); 3375 tcg_gen_shli_i32(ofs, ofs, s->sew); 3376 3377 /* Convert the index to a pointer. */ 3378 tcg_gen_ext_i32_ptr(base, ofs); 3379 tcg_gen_add_ptr(base, base, cpu_env); 3380 3381 /* Perform the load. */ 3382 load_element(dest, base, 3383 vreg_ofs(s, vreg), s->sew, false); 3384 tcg_temp_free_ptr(base); 3385 tcg_temp_free_i32(ofs); 3386 3387 /* Flush out-of-range indexing to zero. */ 3388 t_vlmax = tcg_constant_i64(vlmax); 3389 t_zero = tcg_constant_i64(0); 3390 tcg_gen_extu_tl_i64(t_idx, idx); 3391 3392 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3393 t_vlmax, dest, t_zero); 3394 3395 tcg_temp_free_i64(t_idx); 3396} 3397 3398static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3399 int vreg, int idx, bool sign) 3400{ 3401 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3402} 3403 3404/* Integer Scalar Move Instruction */ 3405 3406static void store_element(TCGv_i64 val, TCGv_ptr base, 3407 int ofs, int sew) 3408{ 3409 switch (sew) { 3410 case MO_8: 3411 tcg_gen_st8_i64(val, base, ofs); 3412 break; 3413 case MO_16: 3414 tcg_gen_st16_i64(val, base, ofs); 3415 break; 3416 case MO_32: 3417 tcg_gen_st32_i64(val, base, ofs); 3418 break; 3419 case MO_64: 3420 tcg_gen_st_i64(val, base, ofs); 3421 break; 3422 default: 3423 g_assert_not_reached(); 3424 break; 3425 } 3426} 3427 3428/* 3429 * Store vreg[idx] = val. 3430 * The index must be in range of VLMAX. 3431 */ 3432static void vec_element_storei(DisasContext *s, int vreg, 3433 int idx, TCGv_i64 val) 3434{ 3435 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3436} 3437 3438/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3439static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3440{ 3441 if (require_rvv(s) && 3442 vext_check_isa_ill(s)) { 3443 TCGv_i64 t1; 3444 TCGv dest; 3445 3446 t1 = tcg_temp_new_i64(); 3447 dest = tcg_temp_new(); 3448 /* 3449 * load vreg and sign-extend to 64 bits, 3450 * then truncate to XLEN bits before storing to gpr. 3451 */ 3452 vec_element_loadi(s, t1, a->rs2, 0, true); 3453 tcg_gen_trunc_i64_tl(dest, t1); 3454 gen_set_gpr(s, a->rd, dest); 3455 tcg_temp_free_i64(t1); 3456 tcg_temp_free(dest); 3457 3458 return true; 3459 } 3460 return false; 3461} 3462 3463/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3464static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3465{ 3466 if (require_rvv(s) && 3467 vext_check_isa_ill(s)) { 3468 /* This instruction ignores LMUL and vector register groups */ 3469 TCGv_i64 t1; 3470 TCGv s1; 3471 TCGLabel *over = gen_new_label(); 3472 3473 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3474 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3475 3476 t1 = tcg_temp_new_i64(); 3477 3478 /* 3479 * load gpr and sign-extend to 64 bits, 3480 * then truncate to SEW bits when storing to vreg. 3481 */ 3482 s1 = get_gpr(s, a->rs1, EXT_NONE); 3483 tcg_gen_ext_tl_i64(t1, s1); 3484 vec_element_storei(s, a->rd, 0, t1); 3485 tcg_temp_free_i64(t1); 3486 mark_vs_dirty(s); 3487 gen_set_label(over); 3488 return true; 3489 } 3490 return false; 3491} 3492 3493/* Floating-Point Scalar Move Instructions */ 3494static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3495{ 3496 if (require_rvv(s) && 3497 require_rvf(s) && 3498 vext_check_isa_ill(s) && 3499 require_zve32f(s) && 3500 require_zve64f(s)) { 3501 gen_set_rm(s, RISCV_FRM_DYN); 3502 3503 unsigned int ofs = (8 << s->sew); 3504 unsigned int len = 64 - ofs; 3505 TCGv_i64 t_nan; 3506 3507 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3508 /* NaN-box f[rd] as necessary for SEW */ 3509 if (len) { 3510 t_nan = tcg_constant_i64(UINT64_MAX); 3511 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3512 t_nan, ofs, len); 3513 } 3514 3515 mark_fs_dirty(s); 3516 return true; 3517 } 3518 return false; 3519} 3520 3521/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3522static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3523{ 3524 if (require_rvv(s) && 3525 require_rvf(s) && 3526 vext_check_isa_ill(s) && 3527 require_zve32f(s) && 3528 require_zve64f(s)) { 3529 gen_set_rm(s, RISCV_FRM_DYN); 3530 3531 /* The instructions ignore LMUL and vector register group. */ 3532 TCGv_i64 t1; 3533 TCGLabel *over = gen_new_label(); 3534 3535 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3536 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3537 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3538 3539 /* NaN-box f[rs1] */ 3540 t1 = tcg_temp_new_i64(); 3541 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3542 3543 vec_element_storei(s, a->rd, 0, t1); 3544 tcg_temp_free_i64(t1); 3545 mark_vs_dirty(s); 3546 gen_set_label(over); 3547 return true; 3548 } 3549 return false; 3550} 3551 3552/* Vector Slide Instructions */ 3553static bool slideup_check(DisasContext *s, arg_rmrr *a) 3554{ 3555 return require_rvv(s) && 3556 vext_check_isa_ill(s) && 3557 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3558} 3559 3560GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3561GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3562GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3563 3564static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3565{ 3566 return require_rvv(s) && 3567 vext_check_isa_ill(s) && 3568 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3569} 3570 3571GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3572GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3573GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3574 3575/* Vector Floating-Point Slide Instructions */ 3576static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3577{ 3578 return slideup_check(s, a) && 3579 require_rvf(s) && 3580 require_zve32f(s) && 3581 require_zve64f(s); 3582} 3583 3584static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3585{ 3586 return slidedown_check(s, a) && 3587 require_rvf(s) && 3588 require_zve32f(s) && 3589 require_zve64f(s); 3590} 3591 3592GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3593GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3594 3595/* Vector Register Gather Instruction */ 3596static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3597{ 3598 return require_rvv(s) && 3599 vext_check_isa_ill(s) && 3600 require_align(a->rd, s->lmul) && 3601 require_align(a->rs1, s->lmul) && 3602 require_align(a->rs2, s->lmul) && 3603 (a->rd != a->rs2 && a->rd != a->rs1) && 3604 require_vm(a->vm, a->rd); 3605} 3606 3607static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3608{ 3609 int8_t emul = MO_16 - s->sew + s->lmul; 3610 return require_rvv(s) && 3611 vext_check_isa_ill(s) && 3612 (emul >= -3 && emul <= 3) && 3613 require_align(a->rd, s->lmul) && 3614 require_align(a->rs1, emul) && 3615 require_align(a->rs2, s->lmul) && 3616 (a->rd != a->rs2 && a->rd != a->rs1) && 3617 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3618 a->rs1, 1 << MAX(emul, 0)) && 3619 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3620 a->rs2, 1 << MAX(s->lmul, 0)) && 3621 require_vm(a->vm, a->rd); 3622} 3623 3624GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3625GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3626 3627static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3628{ 3629 return require_rvv(s) && 3630 vext_check_isa_ill(s) && 3631 require_align(a->rd, s->lmul) && 3632 require_align(a->rs2, s->lmul) && 3633 (a->rd != a->rs2) && 3634 require_vm(a->vm, a->rd); 3635} 3636 3637/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3638static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3639{ 3640 if (!vrgather_vx_check(s, a)) { 3641 return false; 3642 } 3643 3644 if (a->vm && s->vl_eq_vlmax) { 3645 int scale = s->lmul - (s->sew + 3); 3646 int vlmax = s->cfg_ptr->vlen >> -scale; 3647 TCGv_i64 dest = tcg_temp_new_i64(); 3648 3649 if (a->rs1 == 0) { 3650 vec_element_loadi(s, dest, a->rs2, 0, false); 3651 } else { 3652 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3653 } 3654 3655 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3656 MAXSZ(s), MAXSZ(s), dest); 3657 tcg_temp_free_i64(dest); 3658 mark_vs_dirty(s); 3659 } else { 3660 static gen_helper_opivx * const fns[4] = { 3661 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3662 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3663 }; 3664 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3665 } 3666 return true; 3667} 3668 3669/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3670static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3671{ 3672 if (!vrgather_vx_check(s, a)) { 3673 return false; 3674 } 3675 3676 if (a->vm && s->vl_eq_vlmax) { 3677 int scale = s->lmul - (s->sew + 3); 3678 int vlmax = s->cfg_ptr->vlen >> -scale; 3679 if (a->rs1 >= vlmax) { 3680 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3681 MAXSZ(s), MAXSZ(s), 0); 3682 } else { 3683 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3684 endian_ofs(s, a->rs2, a->rs1), 3685 MAXSZ(s), MAXSZ(s)); 3686 } 3687 mark_vs_dirty(s); 3688 } else { 3689 static gen_helper_opivx * const fns[4] = { 3690 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3691 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3692 }; 3693 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3694 s, IMM_ZX); 3695 } 3696 return true; 3697} 3698 3699/* 3700 * Vector Compress Instruction 3701 * 3702 * The destination vector register group cannot overlap the 3703 * source vector register group or the source mask register. 3704 */ 3705static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3706{ 3707 return require_rvv(s) && 3708 vext_check_isa_ill(s) && 3709 require_align(a->rd, s->lmul) && 3710 require_align(a->rs2, s->lmul) && 3711 (a->rd != a->rs2) && 3712 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3713 (s->vstart == 0); 3714} 3715 3716static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3717{ 3718 if (vcompress_vm_check(s, a)) { 3719 uint32_t data = 0; 3720 static gen_helper_gvec_4_ptr * const fns[4] = { 3721 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3722 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3723 }; 3724 TCGLabel *over = gen_new_label(); 3725 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3726 3727 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3728 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3729 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3730 cpu_env, s->cfg_ptr->vlen / 8, 3731 s->cfg_ptr->vlen / 8, data, 3732 fns[s->sew]); 3733 mark_vs_dirty(s); 3734 gen_set_label(over); 3735 return true; 3736 } 3737 return false; 3738} 3739 3740/* 3741 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3742 * Thus, we don't need to check vill bit. (Section 16.6) 3743 */ 3744#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3745static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3746{ \ 3747 if (require_rvv(s) && \ 3748 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3749 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3750 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3751 if (s->vstart == 0) { \ 3752 /* EEW = 8 */ \ 3753 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3754 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3755 mark_vs_dirty(s); \ 3756 } else { \ 3757 TCGLabel *over = gen_new_label(); \ 3758 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3759 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3760 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3761 mark_vs_dirty(s); \ 3762 gen_set_label(over); \ 3763 } \ 3764 return true; \ 3765 } \ 3766 return false; \ 3767} 3768 3769GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3770GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3771GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3772GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3773 3774static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3775{ 3776 uint8_t from = (s->sew + 3) - div; 3777 bool ret = require_rvv(s) && 3778 (from >= 3 && from <= 8) && 3779 (a->rd != a->rs2) && 3780 require_align(a->rd, s->lmul) && 3781 require_align(a->rs2, s->lmul - div) && 3782 require_vm(a->vm, a->rd) && 3783 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3784 return ret; 3785} 3786 3787static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3788{ 3789 uint32_t data = 0; 3790 gen_helper_gvec_3_ptr *fn; 3791 TCGLabel *over = gen_new_label(); 3792 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3793 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3794 3795 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3796 { 3797 NULL, gen_helper_vzext_vf2_h, 3798 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3799 }, 3800 { 3801 NULL, NULL, 3802 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3803 }, 3804 { 3805 NULL, NULL, 3806 NULL, gen_helper_vzext_vf8_d 3807 }, 3808 { 3809 NULL, gen_helper_vsext_vf2_h, 3810 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3811 }, 3812 { 3813 NULL, NULL, 3814 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3815 }, 3816 { 3817 NULL, NULL, 3818 NULL, gen_helper_vsext_vf8_d 3819 } 3820 }; 3821 3822 fn = fns[seq][s->sew]; 3823 if (fn == NULL) { 3824 return false; 3825 } 3826 3827 data = FIELD_DP32(data, VDATA, VM, a->vm); 3828 3829 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3830 vreg_ofs(s, a->rs2), cpu_env, 3831 s->cfg_ptr->vlen / 8, 3832 s->cfg_ptr->vlen / 8, data, fn); 3833 3834 mark_vs_dirty(s); 3835 gen_set_label(over); 3836 return true; 3837} 3838 3839/* Vector Integer Extension */ 3840#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3841static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3842{ \ 3843 if (int_ext_check(s, a, DIV)) { \ 3844 return int_ext_op(s, a, SEQ); \ 3845 } \ 3846 return false; \ 3847} 3848 3849GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3850GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3851GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3852GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3853GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3854GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3855