1/* 2 * RISC-V translation routines for the RVV Standard Extension. 3 * 4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18#include "tcg/tcg-op-gvec.h" 19#include "tcg/tcg-gvec-desc.h" 20#include "internals.h" 21 22static inline bool is_overlapped(const int8_t astart, int8_t asize, 23 const int8_t bstart, int8_t bsize) 24{ 25 const int8_t aend = astart + asize; 26 const int8_t bend = bstart + bsize; 27 28 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 29} 30 31static bool require_rvv(DisasContext *s) 32{ 33 return s->mstatus_vs != 0; 34} 35 36static bool require_rvf(DisasContext *s) 37{ 38 if (s->mstatus_fs == 0) { 39 return false; 40 } 41 42 switch (s->sew) { 43 case MO_16: 44 case MO_32: 45 return has_ext(s, RVF); 46 case MO_64: 47 return has_ext(s, RVD); 48 default: 49 return false; 50 } 51} 52 53static bool require_scale_rvf(DisasContext *s) 54{ 55 if (s->mstatus_fs == 0) { 56 return false; 57 } 58 59 switch (s->sew) { 60 case MO_8: 61 case MO_16: 62 return has_ext(s, RVF); 63 case MO_32: 64 return has_ext(s, RVD); 65 default: 66 return false; 67 } 68} 69 70/* Destination vector register group cannot overlap source mask register. */ 71static bool require_vm(int vm, int vd) 72{ 73 return (vm != 0 || vd != 0); 74} 75 76static bool require_nf(int vd, int nf, int lmul) 77{ 78 int size = nf << MAX(lmul, 0); 79 return size <= 8 && vd + size <= 32; 80} 81 82/* 83 * Vector register should aligned with the passed-in LMUL (EMUL). 84 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 85 */ 86static bool require_align(const int8_t val, const int8_t lmul) 87{ 88 return lmul <= 0 || extract32(val, 0, lmul) == 0; 89} 90 91/* 92 * A destination vector register group can overlap a source vector 93 * register group only if one of the following holds: 94 * 1. The destination EEW equals the source EEW. 95 * 2. The destination EEW is smaller than the source EEW and the overlap 96 * is in the lowest-numbered part of the source register group. 97 * 3. The destination EEW is greater than the source EEW, the source EMUL 98 * is at least 1, and the overlap is in the highest-numbered part of 99 * the destination register group. 100 * (Section 5.2) 101 * 102 * This function returns true if one of the following holds: 103 * * Destination vector register group does not overlap a source vector 104 * register group. 105 * * Rule 3 met. 106 * For rule 1, overlap is allowed so this function doesn't need to be called. 107 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 108 * calling this function. 109 */ 110static bool require_noover(const int8_t dst, const int8_t dst_lmul, 111 const int8_t src, const int8_t src_lmul) 112{ 113 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 114 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 115 116 /* Destination EEW is greater than the source EEW, check rule 3. */ 117 if (dst_size > src_size) { 118 if (dst < src && 119 src_lmul >= 0 && 120 is_overlapped(dst, dst_size, src, src_size) && 121 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 122 return true; 123 } 124 } 125 126 return !is_overlapped(dst, dst_size, src, src_size); 127} 128 129static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 130{ 131 TCGv s1, dst; 132 133 if (!require_rvv(s) || !has_ext(s, RVV)) { 134 return false; 135 } 136 137 dst = dest_gpr(s, rd); 138 139 if (rd == 0 && rs1 == 0) { 140 s1 = tcg_temp_new(); 141 tcg_gen_mov_tl(s1, cpu_vl); 142 } else if (rs1 == 0) { 143 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 144 s1 = tcg_constant_tl(RV_VLEN_MAX); 145 } else { 146 s1 = get_gpr(s, rs1, EXT_ZERO); 147 } 148 149 gen_helper_vsetvl(dst, cpu_env, s1, s2); 150 gen_set_gpr(s, rd, dst); 151 mark_vs_dirty(s); 152 153 tcg_gen_movi_tl(cpu_pc, s->pc_succ_insn); 154 tcg_gen_lookup_and_goto_ptr(); 155 s->base.is_jmp = DISAS_NORETURN; 156 157 if (rd == 0 && rs1 == 0) { 158 tcg_temp_free(s1); 159 } 160 161 return true; 162} 163 164static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 165{ 166 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 167 return do_vsetvl(s, a->rd, a->rs1, s2); 168} 169 170static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 171{ 172 TCGv s2 = tcg_constant_tl(a->zimm); 173 return do_vsetvl(s, a->rd, a->rs1, s2); 174} 175 176/* vector register offset from env */ 177static uint32_t vreg_ofs(DisasContext *s, int reg) 178{ 179 return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8; 180} 181 182/* check functions */ 183 184/* 185 * Vector unit-stride, strided, unit-stride segment, strided segment 186 * store check function. 187 * 188 * Rules to be checked here: 189 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 190 * 2. Destination vector register number is multiples of EMUL. 191 * (Section 3.4.2, 7.3) 192 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 193 * 4. Vector register numbers accessed by the segment load or store 194 * cannot increment past 31. (Section 7.8) 195 */ 196static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 197{ 198 int8_t emul = eew - s->sew + s->lmul; 199 return (emul >= -3 && emul <= 3) && 200 require_align(vd, emul) && 201 require_nf(vd, nf, emul); 202} 203 204/* 205 * Vector unit-stride, strided, unit-stride segment, strided segment 206 * load check function. 207 * 208 * Rules to be checked here: 209 * 1. All rules applies to store instructions are applies 210 * to load instructions. 211 * 2. Destination vector register group for a masked vector 212 * instruction cannot overlap the source mask register (v0). 213 * (Section 5.3) 214 */ 215static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 216 uint8_t eew) 217{ 218 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 219} 220 221/* 222 * Vector indexed, indexed segment store check function. 223 * 224 * Rules to be checked here: 225 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 226 * 2. Index vector register number is multiples of EMUL. 227 * (Section 3.4.2, 7.3) 228 * 3. Destination vector register number is multiples of LMUL. 229 * (Section 3.4.2, 7.3) 230 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 231 * 5. Vector register numbers accessed by the segment load or store 232 * cannot increment past 31. (Section 7.8) 233 */ 234static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 235 uint8_t eew) 236{ 237 int8_t emul = eew - s->sew + s->lmul; 238 return (emul >= -3 && emul <= 3) && 239 require_align(vs2, emul) && 240 require_align(vd, s->lmul) && 241 require_nf(vd, nf, s->lmul); 242} 243 244/* 245 * Vector indexed, indexed segment load check function. 246 * 247 * Rules to be checked here: 248 * 1. All rules applies to store instructions are applies 249 * to load instructions. 250 * 2. Destination vector register group for a masked vector 251 * instruction cannot overlap the source mask register (v0). 252 * (Section 5.3) 253 * 3. Destination vector register cannot overlap a source vector 254 * register (vs2) group. 255 * (Section 5.2) 256 * 4. Destination vector register groups cannot overlap 257 * the source vector register (vs2) group for 258 * indexed segment load instructions. (Section 7.8.3) 259 */ 260static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 261 int nf, int vm, uint8_t eew) 262{ 263 int8_t seg_vd; 264 int8_t emul = eew - s->sew + s->lmul; 265 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 266 require_vm(vm, vd); 267 268 /* Each segment register group has to follow overlap rules. */ 269 for (int i = 0; i < nf; ++i) { 270 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 271 272 if (eew > s->sew) { 273 if (seg_vd != vs2) { 274 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 275 } 276 } else if (eew < s->sew) { 277 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 278 } 279 280 /* 281 * Destination vector register groups cannot overlap 282 * the source vector register (vs2) group for 283 * indexed segment load instructions. 284 */ 285 if (nf > 1) { 286 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 287 vs2, 1 << MAX(emul, 0)); 288 } 289 } 290 return ret; 291} 292 293static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 294{ 295 return require_vm(vm, vd) && 296 require_align(vd, s->lmul) && 297 require_align(vs, s->lmul); 298} 299 300/* 301 * Check function for vector instruction with format: 302 * single-width result and single-width sources (SEW = SEW op SEW) 303 * 304 * Rules to be checked here: 305 * 1. Destination vector register group for a masked vector 306 * instruction cannot overlap the source mask register (v0). 307 * (Section 5.3) 308 * 2. Destination vector register number is multiples of LMUL. 309 * (Section 3.4.2) 310 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 311 * (Section 3.4.2) 312 */ 313static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 314{ 315 return vext_check_ss(s, vd, vs2, vm) && 316 require_align(vs1, s->lmul); 317} 318 319static bool vext_check_ms(DisasContext *s, int vd, int vs) 320{ 321 bool ret = require_align(vs, s->lmul); 322 if (vd != vs) { 323 ret &= require_noover(vd, 0, vs, s->lmul); 324 } 325 return ret; 326} 327 328/* 329 * Check function for maskable vector instruction with format: 330 * single-width result and single-width sources (SEW = SEW op SEW) 331 * 332 * Rules to be checked here: 333 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 334 * (Section 3.4.2) 335 * 2. Destination vector register cannot overlap a source vector 336 * register (vs2, vs1) group. 337 * (Section 5.2) 338 * 3. The destination vector register group for a masked vector 339 * instruction cannot overlap the source mask register (v0), 340 * unless the destination vector register is being written 341 * with a mask value (e.g., comparisons) or the scalar result 342 * of a reduction. (Section 5.3) 343 */ 344static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 345{ 346 bool ret = vext_check_ms(s, vd, vs2) && 347 require_align(vs1, s->lmul); 348 if (vd != vs1) { 349 ret &= require_noover(vd, 0, vs1, s->lmul); 350 } 351 return ret; 352} 353 354/* 355 * Common check function for vector widening instructions 356 * of double-width result (2*SEW). 357 * 358 * Rules to be checked here: 359 * 1. The largest vector register group used by an instruction 360 * can not be greater than 8 vector registers (Section 5.2): 361 * => LMUL < 8. 362 * => SEW < 64. 363 * 2. Destination vector register number is multiples of 2 * LMUL. 364 * (Section 3.4.2) 365 * 3. Destination vector register group for a masked vector 366 * instruction cannot overlap the source mask register (v0). 367 * (Section 5.3) 368 */ 369static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 370{ 371 return (s->lmul <= 2) && 372 (s->sew < MO_64) && 373 require_align(vd, s->lmul + 1) && 374 require_vm(vm, vd); 375} 376 377/* 378 * Common check function for vector narrowing instructions 379 * of single-width result (SEW) and double-width source (2*SEW). 380 * 381 * Rules to be checked here: 382 * 1. The largest vector register group used by an instruction 383 * can not be greater than 8 vector registers (Section 5.2): 384 * => LMUL < 8. 385 * => SEW < 64. 386 * 2. Source vector register number is multiples of 2 * LMUL. 387 * (Section 3.4.2) 388 * 3. Destination vector register number is multiples of LMUL. 389 * (Section 3.4.2) 390 * 4. Destination vector register group for a masked vector 391 * instruction cannot overlap the source mask register (v0). 392 * (Section 5.3) 393 */ 394static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 395 int vm) 396{ 397 return (s->lmul <= 2) && 398 (s->sew < MO_64) && 399 require_align(vs2, s->lmul + 1) && 400 require_align(vd, s->lmul) && 401 require_vm(vm, vd); 402} 403 404static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 405{ 406 return vext_wide_check_common(s, vd, vm) && 407 require_align(vs, s->lmul) && 408 require_noover(vd, s->lmul + 1, vs, s->lmul); 409} 410 411static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 412{ 413 return vext_wide_check_common(s, vd, vm) && 414 require_align(vs, s->lmul + 1); 415} 416 417/* 418 * Check function for vector instruction with format: 419 * double-width result and single-width sources (2*SEW = SEW op SEW) 420 * 421 * Rules to be checked here: 422 * 1. All rules in defined in widen common rules are applied. 423 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 424 * (Section 3.4.2) 425 * 3. Destination vector register cannot overlap a source vector 426 * register (vs2, vs1) group. 427 * (Section 5.2) 428 */ 429static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 430{ 431 return vext_check_ds(s, vd, vs2, vm) && 432 require_align(vs1, s->lmul) && 433 require_noover(vd, s->lmul + 1, vs1, s->lmul); 434} 435 436/* 437 * Check function for vector instruction with format: 438 * double-width result and double-width source1 and single-width 439 * source2 (2*SEW = 2*SEW op SEW) 440 * 441 * Rules to be checked here: 442 * 1. All rules in defined in widen common rules are applied. 443 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 444 * (Section 3.4.2) 445 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 446 * (Section 3.4.2) 447 * 4. Destination vector register cannot overlap a source vector 448 * register (vs1) group. 449 * (Section 5.2) 450 */ 451static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 452{ 453 return vext_check_ds(s, vd, vs1, vm) && 454 require_align(vs2, s->lmul + 1); 455} 456 457static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 458{ 459 bool ret = vext_narrow_check_common(s, vd, vs, vm); 460 if (vd != vs) { 461 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 462 } 463 return ret; 464} 465 466/* 467 * Check function for vector instruction with format: 468 * single-width result and double-width source 1 and single-width 469 * source 2 (SEW = 2*SEW op SEW) 470 * 471 * Rules to be checked here: 472 * 1. All rules in defined in narrow common rules are applied. 473 * 2. Destination vector register cannot overlap a source vector 474 * register (vs2) group. 475 * (Section 5.2) 476 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 477 * (Section 3.4.2) 478 */ 479static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 480{ 481 return vext_check_sd(s, vd, vs2, vm) && 482 require_align(vs1, s->lmul); 483} 484 485/* 486 * Check function for vector reduction instructions. 487 * 488 * Rules to be checked here: 489 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 490 * (Section 3.4.2) 491 */ 492static bool vext_check_reduction(DisasContext *s, int vs2) 493{ 494 return require_align(vs2, s->lmul); 495} 496 497/* 498 * Check function for vector slide instructions. 499 * 500 * Rules to be checked here: 501 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 502 * (Section 3.4.2) 503 * 2. Destination vector register number is multiples of LMUL. 504 * (Section 3.4.2) 505 * 3. Destination vector register group for a masked vector 506 * instruction cannot overlap the source mask register (v0). 507 * (Section 5.3) 508 * 4. The destination vector register group for vslideup, vslide1up, 509 * vfslide1up, cannot overlap the source vector register (vs2) group. 510 * (Section 5.2, 16.3.1, 16.3.3) 511 */ 512static bool vext_check_slide(DisasContext *s, int vd, int vs2, 513 int vm, bool is_over) 514{ 515 bool ret = require_align(vs2, s->lmul) && 516 require_align(vd, s->lmul) && 517 require_vm(vm, vd); 518 if (is_over) { 519 ret &= (vd != vs2); 520 } 521 return ret; 522} 523 524/* 525 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 526 * So RVV is also be checked in this function. 527 */ 528static bool vext_check_isa_ill(DisasContext *s) 529{ 530 return !s->vill; 531} 532 533/* common translation macro */ 534#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 535static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 536{ \ 537 if (CHECK(s, a, EEW)) { \ 538 return OP(s, a, EEW); \ 539 } \ 540 return false; \ 541} 542 543static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 544{ 545 int8_t emul = eew - s->sew + s->lmul; 546 return emul < 0 ? 0 : emul; 547} 548 549/* 550 *** unit stride load and store 551 */ 552typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 553 TCGv_env, TCGv_i32); 554 555static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 556 gen_helper_ldst_us *fn, DisasContext *s, 557 bool is_store) 558{ 559 TCGv_ptr dest, mask; 560 TCGv base; 561 TCGv_i32 desc; 562 563 TCGLabel *over = gen_new_label(); 564 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 565 566 dest = tcg_temp_new_ptr(); 567 mask = tcg_temp_new_ptr(); 568 base = get_gpr(s, rs1, EXT_NONE); 569 570 /* 571 * As simd_desc supports at most 256 bytes, and in this implementation, 572 * the max vector group length is 2048 bytes. So split it into two parts. 573 * 574 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 575 * The second part is lmul, encoded in data of simd_desc. 576 */ 577 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 578 579 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 580 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 581 582 fn(dest, mask, base, cpu_env, desc); 583 584 tcg_temp_free_ptr(dest); 585 tcg_temp_free_ptr(mask); 586 587 if (!is_store) { 588 mark_vs_dirty(s); 589 } 590 591 gen_set_label(over); 592 return true; 593} 594 595static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 596{ 597 uint32_t data = 0; 598 gen_helper_ldst_us *fn; 599 static gen_helper_ldst_us * const fns[2][4] = { 600 /* masked unit stride load */ 601 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 602 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 603 /* unmasked unit stride load */ 604 { gen_helper_vle8_v, gen_helper_vle16_v, 605 gen_helper_vle32_v, gen_helper_vle64_v } 606 }; 607 608 fn = fns[a->vm][eew]; 609 if (fn == NULL) { 610 return false; 611 } 612 613 /* 614 * Vector load/store instructions have the EEW encoded 615 * directly in the instructions. The maximum vector size is 616 * calculated with EMUL rather than LMUL. 617 */ 618 uint8_t emul = vext_get_emul(s, eew); 619 data = FIELD_DP32(data, VDATA, VM, a->vm); 620 data = FIELD_DP32(data, VDATA, LMUL, emul); 621 data = FIELD_DP32(data, VDATA, NF, a->nf); 622 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 623} 624 625static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 626{ 627 return require_rvv(s) && 628 vext_check_isa_ill(s) && 629 vext_check_load(s, a->rd, a->nf, a->vm, eew); 630} 631 632GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 633GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 634GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 635GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 636 637static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 638{ 639 uint32_t data = 0; 640 gen_helper_ldst_us *fn; 641 static gen_helper_ldst_us * const fns[2][4] = { 642 /* masked unit stride store */ 643 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 644 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 645 /* unmasked unit stride store */ 646 { gen_helper_vse8_v, gen_helper_vse16_v, 647 gen_helper_vse32_v, gen_helper_vse64_v } 648 }; 649 650 fn = fns[a->vm][eew]; 651 if (fn == NULL) { 652 return false; 653 } 654 655 uint8_t emul = vext_get_emul(s, eew); 656 data = FIELD_DP32(data, VDATA, VM, a->vm); 657 data = FIELD_DP32(data, VDATA, LMUL, emul); 658 data = FIELD_DP32(data, VDATA, NF, a->nf); 659 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 660} 661 662static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 663{ 664 return require_rvv(s) && 665 vext_check_isa_ill(s) && 666 vext_check_store(s, a->rd, a->nf, eew); 667} 668 669GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 670GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 671GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 672GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 673 674/* 675 *** stride load and store 676 */ 677typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 678 TCGv, TCGv_env, TCGv_i32); 679 680static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 681 uint32_t data, gen_helper_ldst_stride *fn, 682 DisasContext *s, bool is_store) 683{ 684 TCGv_ptr dest, mask; 685 TCGv base, stride; 686 TCGv_i32 desc; 687 688 TCGLabel *over = gen_new_label(); 689 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 690 691 dest = tcg_temp_new_ptr(); 692 mask = tcg_temp_new_ptr(); 693 base = get_gpr(s, rs1, EXT_NONE); 694 stride = get_gpr(s, rs2, EXT_NONE); 695 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 696 697 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 698 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 699 700 fn(dest, mask, base, stride, cpu_env, desc); 701 702 tcg_temp_free_ptr(dest); 703 tcg_temp_free_ptr(mask); 704 705 if (!is_store) { 706 mark_vs_dirty(s); 707 } 708 709 gen_set_label(over); 710 return true; 711} 712 713static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 714{ 715 uint32_t data = 0; 716 gen_helper_ldst_stride *fn; 717 static gen_helper_ldst_stride * const fns[4] = { 718 gen_helper_vlse8_v, gen_helper_vlse16_v, 719 gen_helper_vlse32_v, gen_helper_vlse64_v 720 }; 721 722 fn = fns[eew]; 723 if (fn == NULL) { 724 return false; 725 } 726 727 uint8_t emul = vext_get_emul(s, eew); 728 data = FIELD_DP32(data, VDATA, VM, a->vm); 729 data = FIELD_DP32(data, VDATA, LMUL, emul); 730 data = FIELD_DP32(data, VDATA, NF, a->nf); 731 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 732} 733 734static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 735{ 736 return require_rvv(s) && 737 vext_check_isa_ill(s) && 738 vext_check_load(s, a->rd, a->nf, a->vm, eew); 739} 740 741GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 742GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 743GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 744GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 745 746static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 747{ 748 uint32_t data = 0; 749 gen_helper_ldst_stride *fn; 750 static gen_helper_ldst_stride * const fns[4] = { 751 /* masked stride store */ 752 gen_helper_vsse8_v, gen_helper_vsse16_v, 753 gen_helper_vsse32_v, gen_helper_vsse64_v 754 }; 755 756 uint8_t emul = vext_get_emul(s, eew); 757 data = FIELD_DP32(data, VDATA, VM, a->vm); 758 data = FIELD_DP32(data, VDATA, LMUL, emul); 759 data = FIELD_DP32(data, VDATA, NF, a->nf); 760 fn = fns[eew]; 761 if (fn == NULL) { 762 return false; 763 } 764 765 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 766} 767 768static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 769{ 770 return require_rvv(s) && 771 vext_check_isa_ill(s) && 772 vext_check_store(s, a->rd, a->nf, eew); 773} 774 775GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 776GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 777GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 778GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 779 780/* 781 *** index load and store 782 */ 783typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 784 TCGv_ptr, TCGv_env, TCGv_i32); 785 786static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 787 uint32_t data, gen_helper_ldst_index *fn, 788 DisasContext *s, bool is_store) 789{ 790 TCGv_ptr dest, mask, index; 791 TCGv base; 792 TCGv_i32 desc; 793 794 TCGLabel *over = gen_new_label(); 795 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 796 797 dest = tcg_temp_new_ptr(); 798 mask = tcg_temp_new_ptr(); 799 index = tcg_temp_new_ptr(); 800 base = get_gpr(s, rs1, EXT_NONE); 801 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 802 803 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 804 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 805 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 806 807 fn(dest, mask, base, index, cpu_env, desc); 808 809 tcg_temp_free_ptr(dest); 810 tcg_temp_free_ptr(mask); 811 tcg_temp_free_ptr(index); 812 813 if (!is_store) { 814 mark_vs_dirty(s); 815 } 816 817 gen_set_label(over); 818 return true; 819} 820 821static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 822{ 823 uint32_t data = 0; 824 gen_helper_ldst_index *fn; 825 static gen_helper_ldst_index * const fns[4][4] = { 826 /* 827 * offset vector register group EEW = 8, 828 * data vector register group EEW = SEW 829 */ 830 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 831 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 832 /* 833 * offset vector register group EEW = 16, 834 * data vector register group EEW = SEW 835 */ 836 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 837 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 838 /* 839 * offset vector register group EEW = 32, 840 * data vector register group EEW = SEW 841 */ 842 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 843 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 844 /* 845 * offset vector register group EEW = 64, 846 * data vector register group EEW = SEW 847 */ 848 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 849 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 850 }; 851 852 fn = fns[eew][s->sew]; 853 854 uint8_t emul = vext_get_emul(s, s->sew); 855 data = FIELD_DP32(data, VDATA, VM, a->vm); 856 data = FIELD_DP32(data, VDATA, LMUL, emul); 857 data = FIELD_DP32(data, VDATA, NF, a->nf); 858 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 859} 860 861static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 862{ 863 return require_rvv(s) && 864 vext_check_isa_ill(s) && 865 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 866} 867 868GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 869GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 870GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 871GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 872 873static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 874{ 875 uint32_t data = 0; 876 gen_helper_ldst_index *fn; 877 static gen_helper_ldst_index * const fns[4][4] = { 878 /* 879 * offset vector register group EEW = 8, 880 * data vector register group EEW = SEW 881 */ 882 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 883 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 884 /* 885 * offset vector register group EEW = 16, 886 * data vector register group EEW = SEW 887 */ 888 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 889 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 890 /* 891 * offset vector register group EEW = 32, 892 * data vector register group EEW = SEW 893 */ 894 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 895 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 896 /* 897 * offset vector register group EEW = 64, 898 * data vector register group EEW = SEW 899 */ 900 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 901 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 902 }; 903 904 fn = fns[eew][s->sew]; 905 906 uint8_t emul = vext_get_emul(s, s->sew); 907 data = FIELD_DP32(data, VDATA, VM, a->vm); 908 data = FIELD_DP32(data, VDATA, LMUL, emul); 909 data = FIELD_DP32(data, VDATA, NF, a->nf); 910 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 911} 912 913static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 914{ 915 return require_rvv(s) && 916 vext_check_isa_ill(s) && 917 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 918} 919 920GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 921GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 922GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 923GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 924 925/* 926 *** unit stride fault-only-first load 927 */ 928static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 929 gen_helper_ldst_us *fn, DisasContext *s) 930{ 931 TCGv_ptr dest, mask; 932 TCGv base; 933 TCGv_i32 desc; 934 935 TCGLabel *over = gen_new_label(); 936 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 937 938 dest = tcg_temp_new_ptr(); 939 mask = tcg_temp_new_ptr(); 940 base = get_gpr(s, rs1, EXT_NONE); 941 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 942 943 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 944 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 945 946 fn(dest, mask, base, cpu_env, desc); 947 948 tcg_temp_free_ptr(dest); 949 tcg_temp_free_ptr(mask); 950 mark_vs_dirty(s); 951 gen_set_label(over); 952 return true; 953} 954 955static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 956{ 957 uint32_t data = 0; 958 gen_helper_ldst_us *fn; 959 static gen_helper_ldst_us * const fns[4] = { 960 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 961 gen_helper_vle32ff_v, gen_helper_vle64ff_v 962 }; 963 964 fn = fns[eew]; 965 if (fn == NULL) { 966 return false; 967 } 968 969 uint8_t emul = vext_get_emul(s, eew); 970 data = FIELD_DP32(data, VDATA, VM, a->vm); 971 data = FIELD_DP32(data, VDATA, LMUL, emul); 972 data = FIELD_DP32(data, VDATA, NF, a->nf); 973 return ldff_trans(a->rd, a->rs1, data, fn, s); 974} 975 976GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 977GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 978GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 979GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 980 981/* 982 * load and store whole register instructions 983 */ 984typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 985 986static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 987 gen_helper_ldst_whole *fn, DisasContext *s, 988 bool is_store) 989{ 990 TCGv_ptr dest; 991 TCGv base; 992 TCGv_i32 desc; 993 994 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 995 dest = tcg_temp_new_ptr(); 996 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 997 998 base = get_gpr(s, rs1, EXT_NONE); 999 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1000 1001 fn(dest, base, cpu_env, desc); 1002 1003 tcg_temp_free_ptr(dest); 1004 1005 if (!is_store) { 1006 mark_vs_dirty(s); 1007 } 1008 1009 return true; 1010} 1011 1012/* 1013 * load and store whole register instructions ignore vtype and vl setting. 1014 * Thus, we don't need to check vill bit. (Section 7.9) 1015 */ 1016#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, IS_STORE) \ 1017static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1018{ \ 1019 if (require_rvv(s) && \ 1020 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1021 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, gen_helper_##NAME, \ 1022 s, IS_STORE); \ 1023 } \ 1024 return false; \ 1025} 1026 1027GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, false) 1028GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, false) 1029GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, false) 1030GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, false) 1031GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, false) 1032GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, false) 1033GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, false) 1034GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, false) 1035GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, false) 1036GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, false) 1037GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, false) 1038GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, false) 1039GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, false) 1040GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, false) 1041GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, false) 1042GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, false) 1043 1044GEN_LDST_WHOLE_TRANS(vs1r_v, 1, true) 1045GEN_LDST_WHOLE_TRANS(vs2r_v, 2, true) 1046GEN_LDST_WHOLE_TRANS(vs4r_v, 4, true) 1047GEN_LDST_WHOLE_TRANS(vs8r_v, 8, true) 1048 1049/* 1050 *** Vector Integer Arithmetic Instructions 1051 */ 1052#define MAXSZ(s) (s->vlen >> (3 - s->lmul)) 1053 1054static bool opivv_check(DisasContext *s, arg_rmrr *a) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1059} 1060 1061typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1062 uint32_t, uint32_t, uint32_t); 1063 1064static inline bool 1065do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1066 gen_helper_gvec_4_ptr *fn) 1067{ 1068 TCGLabel *over = gen_new_label(); 1069 if (!opivv_check(s, a)) { 1070 return false; 1071 } 1072 1073 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1074 1075 if (a->vm && s->vl_eq_vlmax) { 1076 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1077 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1078 MAXSZ(s), MAXSZ(s)); 1079 } else { 1080 uint32_t data = 0; 1081 1082 data = FIELD_DP32(data, VDATA, VM, a->vm); 1083 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1084 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1085 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1086 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1087 } 1088 mark_vs_dirty(s); 1089 gen_set_label(over); 1090 return true; 1091} 1092 1093/* OPIVV with GVEC IR */ 1094#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1095static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1096{ \ 1097 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1098 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1099 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1100 }; \ 1101 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1102} 1103 1104GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1105GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1106 1107typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1108 TCGv_env, TCGv_i32); 1109 1110static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1111 gen_helper_opivx *fn, DisasContext *s) 1112{ 1113 TCGv_ptr dest, src2, mask; 1114 TCGv src1; 1115 TCGv_i32 desc; 1116 uint32_t data = 0; 1117 1118 TCGLabel *over = gen_new_label(); 1119 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1120 1121 dest = tcg_temp_new_ptr(); 1122 mask = tcg_temp_new_ptr(); 1123 src2 = tcg_temp_new_ptr(); 1124 src1 = get_gpr(s, rs1, EXT_NONE); 1125 1126 data = FIELD_DP32(data, VDATA, VM, vm); 1127 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1128 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1129 1130 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1131 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1132 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1133 1134 fn(dest, mask, src1, src2, cpu_env, desc); 1135 1136 tcg_temp_free_ptr(dest); 1137 tcg_temp_free_ptr(mask); 1138 tcg_temp_free_ptr(src2); 1139 mark_vs_dirty(s); 1140 gen_set_label(over); 1141 return true; 1142} 1143 1144static bool opivx_check(DisasContext *s, arg_rmrr *a) 1145{ 1146 return require_rvv(s) && 1147 vext_check_isa_ill(s) && 1148 vext_check_ss(s, a->rd, a->rs2, a->vm); 1149} 1150 1151typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1152 uint32_t, uint32_t); 1153 1154static inline bool 1155do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1156 gen_helper_opivx *fn) 1157{ 1158 if (!opivx_check(s, a)) { 1159 return false; 1160 } 1161 1162 if (a->vm && s->vl_eq_vlmax) { 1163 TCGv_i64 src1 = tcg_temp_new_i64(); 1164 1165 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1166 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1167 src1, MAXSZ(s), MAXSZ(s)); 1168 1169 tcg_temp_free_i64(src1); 1170 mark_vs_dirty(s); 1171 return true; 1172 } 1173 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1174} 1175 1176/* OPIVX with GVEC IR */ 1177#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1178static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1179{ \ 1180 static gen_helper_opivx * const fns[4] = { \ 1181 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1182 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1183 }; \ 1184 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1185} 1186 1187GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1188GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1189 1190static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1191{ 1192 tcg_gen_vec_sub8_i64(d, b, a); 1193} 1194 1195static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1196{ 1197 tcg_gen_vec_sub16_i64(d, b, a); 1198} 1199 1200static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1201{ 1202 tcg_gen_sub_i32(ret, arg2, arg1); 1203} 1204 1205static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1206{ 1207 tcg_gen_sub_i64(ret, arg2, arg1); 1208} 1209 1210static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1211{ 1212 tcg_gen_sub_vec(vece, r, b, a); 1213} 1214 1215static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1216 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1217{ 1218 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1219 static const GVecGen2s rsub_op[4] = { 1220 { .fni8 = gen_vec_rsub8_i64, 1221 .fniv = gen_rsub_vec, 1222 .fno = gen_helper_vec_rsubs8, 1223 .opt_opc = vecop_list, 1224 .vece = MO_8 }, 1225 { .fni8 = gen_vec_rsub16_i64, 1226 .fniv = gen_rsub_vec, 1227 .fno = gen_helper_vec_rsubs16, 1228 .opt_opc = vecop_list, 1229 .vece = MO_16 }, 1230 { .fni4 = gen_rsub_i32, 1231 .fniv = gen_rsub_vec, 1232 .fno = gen_helper_vec_rsubs32, 1233 .opt_opc = vecop_list, 1234 .vece = MO_32 }, 1235 { .fni8 = gen_rsub_i64, 1236 .fniv = gen_rsub_vec, 1237 .fno = gen_helper_vec_rsubs64, 1238 .opt_opc = vecop_list, 1239 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1240 .vece = MO_64 }, 1241 }; 1242 1243 tcg_debug_assert(vece <= MO_64); 1244 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1245} 1246 1247GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1248 1249typedef enum { 1250 IMM_ZX, /* Zero-extended */ 1251 IMM_SX, /* Sign-extended */ 1252 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1253 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1254} imm_mode_t; 1255 1256static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1257{ 1258 switch (imm_mode) { 1259 case IMM_ZX: 1260 return extract64(imm, 0, 5); 1261 case IMM_SX: 1262 return sextract64(imm, 0, 5); 1263 case IMM_TRUNC_SEW: 1264 return extract64(imm, 0, s->sew + 3); 1265 case IMM_TRUNC_2SEW: 1266 return extract64(imm, 0, s->sew + 4); 1267 default: 1268 g_assert_not_reached(); 1269 } 1270} 1271 1272static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1273 gen_helper_opivx *fn, DisasContext *s, 1274 imm_mode_t imm_mode) 1275{ 1276 TCGv_ptr dest, src2, mask; 1277 TCGv src1; 1278 TCGv_i32 desc; 1279 uint32_t data = 0; 1280 1281 TCGLabel *over = gen_new_label(); 1282 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1283 1284 dest = tcg_temp_new_ptr(); 1285 mask = tcg_temp_new_ptr(); 1286 src2 = tcg_temp_new_ptr(); 1287 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1288 1289 data = FIELD_DP32(data, VDATA, VM, vm); 1290 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1291 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1292 1293 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1294 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1295 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1296 1297 fn(dest, mask, src1, src2, cpu_env, desc); 1298 1299 tcg_temp_free_ptr(dest); 1300 tcg_temp_free_ptr(mask); 1301 tcg_temp_free_ptr(src2); 1302 mark_vs_dirty(s); 1303 gen_set_label(over); 1304 return true; 1305} 1306 1307typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1308 uint32_t, uint32_t); 1309 1310static inline bool 1311do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1312 gen_helper_opivx *fn, imm_mode_t imm_mode) 1313{ 1314 if (!opivx_check(s, a)) { 1315 return false; 1316 } 1317 1318 if (a->vm && s->vl_eq_vlmax) { 1319 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1320 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1321 mark_vs_dirty(s); 1322 return true; 1323 } 1324 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1325} 1326 1327/* OPIVI with GVEC IR */ 1328#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1329static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1330{ \ 1331 static gen_helper_opivx * const fns[4] = { \ 1332 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1333 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1334 }; \ 1335 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1336 fns[s->sew], IMM_MODE); \ 1337} 1338 1339GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1340 1341static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1342 int64_t c, uint32_t oprsz, uint32_t maxsz) 1343{ 1344 TCGv_i64 tmp = tcg_constant_i64(c); 1345 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1346} 1347 1348GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1349 1350/* Vector Widening Integer Add/Subtract */ 1351 1352/* OPIVV with WIDEN */ 1353static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1354{ 1355 return require_rvv(s) && 1356 vext_check_isa_ill(s) && 1357 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1358} 1359 1360static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1361 gen_helper_gvec_4_ptr *fn, 1362 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1363{ 1364 if (checkfn(s, a)) { 1365 uint32_t data = 0; 1366 TCGLabel *over = gen_new_label(); 1367 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1368 1369 data = FIELD_DP32(data, VDATA, VM, a->vm); 1370 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1371 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1372 vreg_ofs(s, a->rs1), 1373 vreg_ofs(s, a->rs2), 1374 cpu_env, s->vlen / 8, s->vlen / 8, 1375 data, fn); 1376 mark_vs_dirty(s); 1377 gen_set_label(over); 1378 return true; 1379 } 1380 return false; 1381} 1382 1383#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1384static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1385{ \ 1386 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1387 gen_helper_##NAME##_b, \ 1388 gen_helper_##NAME##_h, \ 1389 gen_helper_##NAME##_w \ 1390 }; \ 1391 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1392} 1393 1394GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1395GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1396GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1397GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1398 1399/* OPIVX with WIDEN */ 1400static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1401{ 1402 return require_rvv(s) && 1403 vext_check_isa_ill(s) && 1404 vext_check_ds(s, a->rd, a->rs2, a->vm); 1405} 1406 1407static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1408 gen_helper_opivx *fn) 1409{ 1410 if (opivx_widen_check(s, a)) { 1411 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1412 } 1413 return false; 1414} 1415 1416#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1417static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1418{ \ 1419 static gen_helper_opivx * const fns[3] = { \ 1420 gen_helper_##NAME##_b, \ 1421 gen_helper_##NAME##_h, \ 1422 gen_helper_##NAME##_w \ 1423 }; \ 1424 return do_opivx_widen(s, a, fns[s->sew]); \ 1425} 1426 1427GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1428GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1429GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1430GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1431 1432/* WIDEN OPIVV with WIDEN */ 1433static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1434{ 1435 return require_rvv(s) && 1436 vext_check_isa_ill(s) && 1437 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1438} 1439 1440static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1441 gen_helper_gvec_4_ptr *fn) 1442{ 1443 if (opiwv_widen_check(s, a)) { 1444 uint32_t data = 0; 1445 TCGLabel *over = gen_new_label(); 1446 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1447 1448 data = FIELD_DP32(data, VDATA, VM, a->vm); 1449 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1450 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1451 vreg_ofs(s, a->rs1), 1452 vreg_ofs(s, a->rs2), 1453 cpu_env, s->vlen / 8, s->vlen / 8, data, fn); 1454 mark_vs_dirty(s); 1455 gen_set_label(over); 1456 return true; 1457 } 1458 return false; 1459} 1460 1461#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1462static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1463{ \ 1464 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1465 gen_helper_##NAME##_b, \ 1466 gen_helper_##NAME##_h, \ 1467 gen_helper_##NAME##_w \ 1468 }; \ 1469 return do_opiwv_widen(s, a, fns[s->sew]); \ 1470} 1471 1472GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1473GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1474GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1475GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1476 1477/* WIDEN OPIVX with WIDEN */ 1478static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1479{ 1480 return require_rvv(s) && 1481 vext_check_isa_ill(s) && 1482 vext_check_dd(s, a->rd, a->rs2, a->vm); 1483} 1484 1485static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1486 gen_helper_opivx *fn) 1487{ 1488 if (opiwx_widen_check(s, a)) { 1489 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1490 } 1491 return false; 1492} 1493 1494#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1495static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1496{ \ 1497 static gen_helper_opivx * const fns[3] = { \ 1498 gen_helper_##NAME##_b, \ 1499 gen_helper_##NAME##_h, \ 1500 gen_helper_##NAME##_w \ 1501 }; \ 1502 return do_opiwx_widen(s, a, fns[s->sew]); \ 1503} 1504 1505GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1506GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1507GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1508GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1509 1510/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1511/* OPIVV without GVEC IR */ 1512#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1513static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1514{ \ 1515 if (CHECK(s, a)) { \ 1516 uint32_t data = 0; \ 1517 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1518 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1519 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1520 }; \ 1521 TCGLabel *over = gen_new_label(); \ 1522 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1523 \ 1524 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1525 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1526 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1527 vreg_ofs(s, a->rs1), \ 1528 vreg_ofs(s, a->rs2), cpu_env, \ 1529 s->vlen / 8, s->vlen / 8, data, \ 1530 fns[s->sew]); \ 1531 mark_vs_dirty(s); \ 1532 gen_set_label(over); \ 1533 return true; \ 1534 } \ 1535 return false; \ 1536} 1537 1538/* 1539 * For vadc and vsbc, an illegal instruction exception is raised if the 1540 * destination vector register is v0 and LMUL > 1. (Section 12.3) 1541 */ 1542static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1543{ 1544 return require_rvv(s) && 1545 vext_check_isa_ill(s) && 1546 (a->rd != 0) && 1547 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1548} 1549 1550GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1551GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1552 1553/* 1554 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1555 * destination vector register overlaps a source vector register group. 1556 */ 1557static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1558{ 1559 return require_rvv(s) && 1560 vext_check_isa_ill(s) && 1561 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1562} 1563 1564GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1565GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1566 1567static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1568{ 1569 return require_rvv(s) && 1570 vext_check_isa_ill(s) && 1571 (a->rd != 0) && 1572 vext_check_ss(s, a->rd, a->rs2, a->vm); 1573} 1574 1575/* OPIVX without GVEC IR */ 1576#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1577static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1578{ \ 1579 if (CHECK(s, a)) { \ 1580 static gen_helper_opivx * const fns[4] = { \ 1581 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1582 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1583 }; \ 1584 \ 1585 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1586 } \ 1587 return false; \ 1588} 1589 1590GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1591GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1592 1593static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1594{ 1595 return require_rvv(s) && 1596 vext_check_isa_ill(s) && 1597 vext_check_ms(s, a->rd, a->rs2); 1598} 1599 1600GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1601GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1602 1603/* OPIVI without GVEC IR */ 1604#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1605static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1606{ \ 1607 if (CHECK(s, a)) { \ 1608 static gen_helper_opivx * const fns[4] = { \ 1609 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1610 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1611 }; \ 1612 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1613 fns[s->sew], s, IMM_MODE); \ 1614 } \ 1615 return false; \ 1616} 1617 1618GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1619GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1620 1621/* Vector Bitwise Logical Instructions */ 1622GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1623GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1624GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1625GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1626GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1627GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1628GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1629GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1630GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1631 1632/* Vector Single-Width Bit Shift Instructions */ 1633GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1634GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1635GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1636 1637typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1638 uint32_t, uint32_t); 1639 1640static inline bool 1641do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1642 gen_helper_opivx *fn) 1643{ 1644 if (!opivx_check(s, a)) { 1645 return false; 1646 } 1647 1648 if (a->vm && s->vl_eq_vlmax) { 1649 TCGv_i32 src1 = tcg_temp_new_i32(); 1650 1651 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1652 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1653 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1654 src1, MAXSZ(s), MAXSZ(s)); 1655 1656 tcg_temp_free_i32(src1); 1657 mark_vs_dirty(s); 1658 return true; 1659 } 1660 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1661} 1662 1663#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1664static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1665{ \ 1666 static gen_helper_opivx * const fns[4] = { \ 1667 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1668 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1669 }; \ 1670 \ 1671 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1672} 1673 1674GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1675GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1676GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1677 1678GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_ZX, vsll_vx, shli) 1679GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_ZX, vsrl_vx, shri) 1680GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_ZX, vsra_vx, sari) 1681 1682/* Vector Narrowing Integer Right Shift Instructions */ 1683static bool opivv_narrow_check(DisasContext *s, arg_rmrr *a) 1684{ 1685 return require_rvv(s) && 1686 vext_check_isa_ill(s) && 1687 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1688} 1689 1690/* OPIVV with NARROW */ 1691#define GEN_OPIVV_NARROW_TRANS(NAME) \ 1692static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1693{ \ 1694 if (opivv_narrow_check(s, a)) { \ 1695 uint32_t data = 0; \ 1696 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1697 gen_helper_##NAME##_b, \ 1698 gen_helper_##NAME##_h, \ 1699 gen_helper_##NAME##_w, \ 1700 }; \ 1701 TCGLabel *over = gen_new_label(); \ 1702 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1703 \ 1704 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1705 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1706 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1707 vreg_ofs(s, a->rs1), \ 1708 vreg_ofs(s, a->rs2), cpu_env, \ 1709 s->vlen / 8, s->vlen / 8, data, \ 1710 fns[s->sew]); \ 1711 mark_vs_dirty(s); \ 1712 gen_set_label(over); \ 1713 return true; \ 1714 } \ 1715 return false; \ 1716} 1717GEN_OPIVV_NARROW_TRANS(vnsra_vv) 1718GEN_OPIVV_NARROW_TRANS(vnsrl_vv) 1719 1720static bool opivx_narrow_check(DisasContext *s, arg_rmrr *a) 1721{ 1722 return require_rvv(s) && 1723 vext_check_isa_ill(s) && 1724 vext_check_sd(s, a->rd, a->rs2, a->vm); 1725} 1726 1727/* OPIVX with NARROW */ 1728#define GEN_OPIVX_NARROW_TRANS(NAME) \ 1729static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1730{ \ 1731 if (opivx_narrow_check(s, a)) { \ 1732 static gen_helper_opivx * const fns[3] = { \ 1733 gen_helper_##NAME##_b, \ 1734 gen_helper_##NAME##_h, \ 1735 gen_helper_##NAME##_w, \ 1736 }; \ 1737 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1738 } \ 1739 return false; \ 1740} 1741 1742GEN_OPIVX_NARROW_TRANS(vnsra_vx) 1743GEN_OPIVX_NARROW_TRANS(vnsrl_vx) 1744 1745/* OPIVI with NARROW */ 1746#define GEN_OPIVI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1747static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1748{ \ 1749 if (opivx_narrow_check(s, a)) { \ 1750 static gen_helper_opivx * const fns[3] = { \ 1751 gen_helper_##OPIVX##_b, \ 1752 gen_helper_##OPIVX##_h, \ 1753 gen_helper_##OPIVX##_w, \ 1754 }; \ 1755 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1756 fns[s->sew], s, IMM_MODE); \ 1757 } \ 1758 return false; \ 1759} 1760 1761GEN_OPIVI_NARROW_TRANS(vnsra_vi, IMM_ZX, vnsra_vx) 1762GEN_OPIVI_NARROW_TRANS(vnsrl_vi, IMM_ZX, vnsrl_vx) 1763 1764/* Vector Integer Comparison Instructions */ 1765/* 1766 * For all comparison instructions, an illegal instruction exception is raised 1767 * if the destination vector register overlaps a source vector register group 1768 * and LMUL > 1. 1769 */ 1770static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1771{ 1772 return require_rvv(s) && 1773 vext_check_isa_ill(s) && 1774 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1775} 1776 1777GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1778GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1779GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1780GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1781GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1782GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1783 1784static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1785{ 1786 return require_rvv(s) && 1787 vext_check_isa_ill(s) && 1788 vext_check_ms(s, a->rd, a->rs2); 1789} 1790 1791GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1792GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1793GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1794GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1795GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1796GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1797GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1798GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1799 1800GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1801GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1802GEN_OPIVI_TRANS(vmsleu_vi, IMM_ZX, vmsleu_vx, opivx_cmp_check) 1803GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1804GEN_OPIVI_TRANS(vmsgtu_vi, IMM_ZX, vmsgtu_vx, opivx_cmp_check) 1805GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1806 1807/* Vector Integer Min/Max Instructions */ 1808GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1809GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1810GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1811GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1812GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1813GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1814GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1815GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1816 1817/* Vector Single-Width Integer Multiply Instructions */ 1818GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 1819GEN_OPIVV_TRANS(vmulh_vv, opivv_check) 1820GEN_OPIVV_TRANS(vmulhu_vv, opivv_check) 1821GEN_OPIVV_TRANS(vmulhsu_vv, opivv_check) 1822GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 1823GEN_OPIVX_TRANS(vmulh_vx, opivx_check) 1824GEN_OPIVX_TRANS(vmulhu_vx, opivx_check) 1825GEN_OPIVX_TRANS(vmulhsu_vx, opivx_check) 1826 1827/* Vector Integer Divide Instructions */ 1828GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 1829GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 1830GEN_OPIVV_TRANS(vremu_vv, opivv_check) 1831GEN_OPIVV_TRANS(vrem_vv, opivv_check) 1832GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 1833GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 1834GEN_OPIVX_TRANS(vremu_vx, opivx_check) 1835GEN_OPIVX_TRANS(vrem_vx, opivx_check) 1836 1837/* Vector Widening Integer Multiply Instructions */ 1838GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 1839GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 1840GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 1841GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 1842GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 1843GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 1844 1845/* Vector Single-Width Integer Multiply-Add Instructions */ 1846GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 1847GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 1848GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 1849GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 1850GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 1851GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 1852GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 1853GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 1854 1855/* Vector Widening Integer Multiply-Add Instructions */ 1856GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 1857GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 1858GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 1859GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 1860GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 1861GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 1862GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 1863 1864/* Vector Integer Merge and Move Instructions */ 1865static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 1866{ 1867 if (require_rvv(s) && 1868 vext_check_isa_ill(s) && 1869 /* vmv.v.v has rs2 = 0 and vm = 1 */ 1870 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 1871 if (s->vl_eq_vlmax) { 1872 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 1873 vreg_ofs(s, a->rs1), 1874 MAXSZ(s), MAXSZ(s)); 1875 } else { 1876 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1877 static gen_helper_gvec_2_ptr * const fns[4] = { 1878 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 1879 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 1880 }; 1881 TCGLabel *over = gen_new_label(); 1882 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1883 1884 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 1885 cpu_env, s->vlen / 8, s->vlen / 8, data, 1886 fns[s->sew]); 1887 gen_set_label(over); 1888 } 1889 mark_vs_dirty(s); 1890 return true; 1891 } 1892 return false; 1893} 1894 1895typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 1896static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 1897{ 1898 if (require_rvv(s) && 1899 vext_check_isa_ill(s) && 1900 /* vmv.v.x has rs2 = 0 and vm = 1 */ 1901 vext_check_ss(s, a->rd, 0, 1)) { 1902 TCGv s1; 1903 TCGLabel *over = gen_new_label(); 1904 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1905 1906 s1 = get_gpr(s, a->rs1, EXT_SIGN); 1907 1908 if (s->vl_eq_vlmax) { 1909 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 1910 MAXSZ(s), MAXSZ(s), s1); 1911 } else { 1912 TCGv_i32 desc; 1913 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 1914 TCGv_ptr dest = tcg_temp_new_ptr(); 1915 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1916 static gen_helper_vmv_vx * const fns[4] = { 1917 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 1918 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 1919 }; 1920 1921 tcg_gen_ext_tl_i64(s1_i64, s1); 1922 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1923 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 1924 fns[s->sew](dest, s1_i64, cpu_env, desc); 1925 1926 tcg_temp_free_ptr(dest); 1927 tcg_temp_free_i64(s1_i64); 1928 } 1929 1930 mark_vs_dirty(s); 1931 gen_set_label(over); 1932 return true; 1933 } 1934 return false; 1935} 1936 1937static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 1938{ 1939 if (require_rvv(s) && 1940 vext_check_isa_ill(s) && 1941 /* vmv.v.i has rs2 = 0 and vm = 1 */ 1942 vext_check_ss(s, a->rd, 0, 1)) { 1943 int64_t simm = sextract64(a->rs1, 0, 5); 1944 if (s->vl_eq_vlmax) { 1945 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 1946 MAXSZ(s), MAXSZ(s), simm); 1947 mark_vs_dirty(s); 1948 } else { 1949 TCGv_i32 desc; 1950 TCGv_i64 s1; 1951 TCGv_ptr dest; 1952 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 1953 static gen_helper_vmv_vx * const fns[4] = { 1954 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 1955 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 1956 }; 1957 TCGLabel *over = gen_new_label(); 1958 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1959 1960 s1 = tcg_constant_i64(simm); 1961 dest = tcg_temp_new_ptr(); 1962 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 1963 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 1964 fns[s->sew](dest, s1, cpu_env, desc); 1965 1966 tcg_temp_free_ptr(dest); 1967 mark_vs_dirty(s); 1968 gen_set_label(over); 1969 } 1970 return true; 1971 } 1972 return false; 1973} 1974 1975GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 1976GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 1977GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 1978 1979/* 1980 *** Vector Fixed-Point Arithmetic Instructions 1981 */ 1982 1983/* Vector Single-Width Saturating Add and Subtract */ 1984GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 1985GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 1986GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 1987GEN_OPIVV_TRANS(vssub_vv, opivv_check) 1988GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 1989GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 1990GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 1991GEN_OPIVX_TRANS(vssub_vx, opivx_check) 1992GEN_OPIVI_TRANS(vsaddu_vi, IMM_ZX, vsaddu_vx, opivx_check) 1993GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 1994 1995/* Vector Single-Width Averaging Add and Subtract */ 1996GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 1997GEN_OPIVV_TRANS(vasub_vv, opivv_check) 1998GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 1999GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2000GEN_OPIVI_TRANS(vaadd_vi, 0, vaadd_vx, opivx_check) 2001 2002/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2003GEN_OPIVV_TRANS(vsmul_vv, opivv_check) 2004GEN_OPIVX_TRANS(vsmul_vx, opivx_check) 2005 2006/* Vector Widening Saturating Scaled Multiply-Add */ 2007GEN_OPIVV_WIDEN_TRANS(vwsmaccu_vv, opivv_widen_check) 2008GEN_OPIVV_WIDEN_TRANS(vwsmacc_vv, opivv_widen_check) 2009GEN_OPIVV_WIDEN_TRANS(vwsmaccsu_vv, opivv_widen_check) 2010GEN_OPIVX_WIDEN_TRANS(vwsmaccu_vx) 2011GEN_OPIVX_WIDEN_TRANS(vwsmacc_vx) 2012GEN_OPIVX_WIDEN_TRANS(vwsmaccsu_vx) 2013GEN_OPIVX_WIDEN_TRANS(vwsmaccus_vx) 2014 2015/* Vector Single-Width Scaling Shift Instructions */ 2016GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2017GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2018GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2019GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2020GEN_OPIVI_TRANS(vssrl_vi, IMM_ZX, vssrl_vx, opivx_check) 2021GEN_OPIVI_TRANS(vssra_vi, IMM_SX, vssra_vx, opivx_check) 2022 2023/* Vector Narrowing Fixed-Point Clip Instructions */ 2024GEN_OPIVV_NARROW_TRANS(vnclipu_vv) 2025GEN_OPIVV_NARROW_TRANS(vnclip_vv) 2026GEN_OPIVX_NARROW_TRANS(vnclipu_vx) 2027GEN_OPIVX_NARROW_TRANS(vnclip_vx) 2028GEN_OPIVI_NARROW_TRANS(vnclipu_vi, IMM_ZX, vnclipu_vx) 2029GEN_OPIVI_NARROW_TRANS(vnclip_vi, IMM_ZX, vnclip_vx) 2030 2031/* 2032 *** Vector Float Point Arithmetic Instructions 2033 */ 2034 2035/* 2036 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2037 * RVF and RVD can be treated equally. 2038 * We don't have to deal with the cases of: SEW > FLEN. 2039 * 2040 * If SEW < FLEN, check whether input fp register is a valid 2041 * NaN-boxed value, in which case the least-significant SEW bits 2042 * of the f regsiter are used, else the canonical NaN value is used. 2043 */ 2044static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2045{ 2046 switch (s->sew) { 2047 case 1: 2048 gen_check_nanbox_h(out, in); 2049 break; 2050 case 2: 2051 gen_check_nanbox_s(out, in); 2052 break; 2053 case 3: 2054 tcg_gen_mov_i64(out, in); 2055 break; 2056 default: 2057 g_assert_not_reached(); 2058 } 2059} 2060 2061/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2062 2063/* 2064 * If the current SEW does not correspond to a supported IEEE floating-point 2065 * type, an illegal instruction exception is raised. 2066 */ 2067static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2068{ 2069 return require_rvv(s) && 2070 require_rvf(s) && 2071 vext_check_isa_ill(s) && 2072 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 2073} 2074 2075/* OPFVV without GVEC IR */ 2076#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2077static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2078{ \ 2079 if (CHECK(s, a)) { \ 2080 uint32_t data = 0; \ 2081 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2082 gen_helper_##NAME##_h, \ 2083 gen_helper_##NAME##_w, \ 2084 gen_helper_##NAME##_d, \ 2085 }; \ 2086 TCGLabel *over = gen_new_label(); \ 2087 gen_set_rm(s, 7); \ 2088 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2089 \ 2090 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2091 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2092 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2093 vreg_ofs(s, a->rs1), \ 2094 vreg_ofs(s, a->rs2), cpu_env, \ 2095 s->vlen / 8, s->vlen / 8, data, \ 2096 fns[s->sew - 1]); \ 2097 mark_vs_dirty(s); \ 2098 gen_set_label(over); \ 2099 return true; \ 2100 } \ 2101 return false; \ 2102} 2103GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2104GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2105 2106typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2107 TCGv_env, TCGv_i32); 2108 2109static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2110 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2111{ 2112 TCGv_ptr dest, src2, mask; 2113 TCGv_i32 desc; 2114 TCGv_i64 t1; 2115 2116 TCGLabel *over = gen_new_label(); 2117 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2118 2119 dest = tcg_temp_new_ptr(); 2120 mask = tcg_temp_new_ptr(); 2121 src2 = tcg_temp_new_ptr(); 2122 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2123 2124 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2125 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2126 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2127 2128 /* NaN-box f[rs1] */ 2129 t1 = tcg_temp_new_i64(); 2130 do_nanbox(s, t1, cpu_fpr[rs1]); 2131 2132 fn(dest, mask, t1, src2, cpu_env, desc); 2133 2134 tcg_temp_free_ptr(dest); 2135 tcg_temp_free_ptr(mask); 2136 tcg_temp_free_ptr(src2); 2137 tcg_temp_free_i64(t1); 2138 mark_vs_dirty(s); 2139 gen_set_label(over); 2140 return true; 2141} 2142 2143/* 2144 * If the current SEW does not correspond to a supported IEEE floating-point 2145 * type, an illegal instruction exception is raised 2146 */ 2147static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2148{ 2149 return require_rvv(s) && 2150 require_rvf(s) && 2151 vext_check_isa_ill(s) && 2152 vext_check_ss(s, a->rd, a->rs2, a->vm); 2153} 2154 2155/* OPFVF without GVEC IR */ 2156#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2157static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2158{ \ 2159 if (CHECK(s, a)) { \ 2160 uint32_t data = 0; \ 2161 static gen_helper_opfvf *const fns[3] = { \ 2162 gen_helper_##NAME##_h, \ 2163 gen_helper_##NAME##_w, \ 2164 gen_helper_##NAME##_d, \ 2165 }; \ 2166 gen_set_rm(s, 7); \ 2167 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2168 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2169 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2170 fns[s->sew - 1], s); \ 2171 } \ 2172 return false; \ 2173} 2174 2175GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2176GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2177GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2178 2179/* Vector Widening Floating-Point Add/Subtract Instructions */ 2180static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2181{ 2182 return require_rvv(s) && 2183 require_rvf(s) && 2184 vext_check_isa_ill(s) && 2185 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 2186} 2187 2188/* OPFVV with WIDEN */ 2189#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2190static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2191{ \ 2192 if (CHECK(s, a)) { \ 2193 uint32_t data = 0; \ 2194 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2195 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2196 }; \ 2197 TCGLabel *over = gen_new_label(); \ 2198 gen_set_rm(s, 7); \ 2199 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2200 \ 2201 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2202 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2203 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2204 vreg_ofs(s, a->rs1), \ 2205 vreg_ofs(s, a->rs2), cpu_env, \ 2206 s->vlen / 8, s->vlen / 8, data, \ 2207 fns[s->sew - 1]); \ 2208 mark_vs_dirty(s); \ 2209 gen_set_label(over); \ 2210 return true; \ 2211 } \ 2212 return false; \ 2213} 2214 2215GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2216GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2217 2218static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2219{ 2220 return require_rvv(s) && 2221 require_rvf(s) && 2222 vext_check_isa_ill(s) && 2223 vext_check_ds(s, a->rd, a->rs2, a->vm); 2224} 2225 2226/* OPFVF with WIDEN */ 2227#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2228static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2229{ \ 2230 if (opfvf_widen_check(s, a)) { \ 2231 uint32_t data = 0; \ 2232 static gen_helper_opfvf *const fns[2] = { \ 2233 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2234 }; \ 2235 gen_set_rm(s, 7); \ 2236 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2237 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2238 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2239 fns[s->sew - 1], s); \ 2240 } \ 2241 return false; \ 2242} 2243 2244GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2245GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2246 2247static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2248{ 2249 return require_rvv(s) && 2250 require_rvf(s) && 2251 vext_check_isa_ill(s) && 2252 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 2253} 2254 2255/* WIDEN OPFVV with WIDEN */ 2256#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2257static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2258{ \ 2259 if (opfwv_widen_check(s, a)) { \ 2260 uint32_t data = 0; \ 2261 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2262 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2263 }; \ 2264 TCGLabel *over = gen_new_label(); \ 2265 gen_set_rm(s, 7); \ 2266 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2267 \ 2268 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2269 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2270 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2271 vreg_ofs(s, a->rs1), \ 2272 vreg_ofs(s, a->rs2), cpu_env, \ 2273 s->vlen / 8, s->vlen / 8, data, \ 2274 fns[s->sew - 1]); \ 2275 mark_vs_dirty(s); \ 2276 gen_set_label(over); \ 2277 return true; \ 2278 } \ 2279 return false; \ 2280} 2281 2282GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2283GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2284 2285static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2286{ 2287 return require_rvv(s) && 2288 require_rvf(s) && 2289 vext_check_isa_ill(s) && 2290 vext_check_dd(s, a->rd, a->rs2, a->vm); 2291} 2292 2293/* WIDEN OPFVF with WIDEN */ 2294#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2295static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2296{ \ 2297 if (opfwf_widen_check(s, a)) { \ 2298 uint32_t data = 0; \ 2299 static gen_helper_opfvf *const fns[2] = { \ 2300 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2301 }; \ 2302 gen_set_rm(s, 7); \ 2303 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2304 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2305 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2306 fns[s->sew - 1], s); \ 2307 } \ 2308 return false; \ 2309} 2310 2311GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2312GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2313 2314/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2315GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2316GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2317GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2318GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2319GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2320 2321/* Vector Widening Floating-Point Multiply */ 2322GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2323GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2324 2325/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2326GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2327GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2328GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2329GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2330GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2331GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2332GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2333GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2334GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2335GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2336GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2337GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2338GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2339GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2340GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2341GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2342 2343/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2344GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2345GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2346GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2347GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2348GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2349GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2350GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2351GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2352 2353/* Vector Floating-Point Square-Root Instruction */ 2354 2355/* 2356 * If the current SEW does not correspond to a supported IEEE floating-point 2357 * type, an illegal instruction exception is raised 2358 */ 2359static bool opfv_check(DisasContext *s, arg_rmr *a) 2360{ 2361 return require_rvv(s) && 2362 require_rvf(s) && 2363 vext_check_isa_ill(s) && 2364 /* OPFV instructions ignore vs1 check */ 2365 vext_check_ss(s, a->rd, a->rs2, a->vm); 2366} 2367 2368#define GEN_OPFV_TRANS(NAME, CHECK) \ 2369static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2370{ \ 2371 if (CHECK(s, a)) { \ 2372 uint32_t data = 0; \ 2373 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2374 gen_helper_##NAME##_h, \ 2375 gen_helper_##NAME##_w, \ 2376 gen_helper_##NAME##_d, \ 2377 }; \ 2378 TCGLabel *over = gen_new_label(); \ 2379 gen_set_rm(s, 7); \ 2380 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2381 \ 2382 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2383 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2384 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2385 vreg_ofs(s, a->rs2), cpu_env, \ 2386 s->vlen / 8, s->vlen / 8, data, \ 2387 fns[s->sew - 1]); \ 2388 mark_vs_dirty(s); \ 2389 gen_set_label(over); \ 2390 return true; \ 2391 } \ 2392 return false; \ 2393} 2394 2395GEN_OPFV_TRANS(vfsqrt_v, opfv_check) 2396 2397/* Vector Floating-Point MIN/MAX Instructions */ 2398GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2399GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2400GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2401GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2402 2403/* Vector Floating-Point Sign-Injection Instructions */ 2404GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2405GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2406GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2407GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2408GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2409GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2410 2411/* Vector Floating-Point Compare Instructions */ 2412static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2413{ 2414 return require_rvv(s) && 2415 require_rvf(s) && 2416 vext_check_isa_ill(s) && 2417 vext_check_mss(s, a->rd, a->rs1, a->rs2); 2418} 2419 2420GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2421GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2422GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2423GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2424GEN_OPFVV_TRANS(vmford_vv, opfvv_cmp_check) 2425 2426static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2427{ 2428 return require_rvv(s) && 2429 require_rvf(s) && 2430 vext_check_isa_ill(s) && 2431 vext_check_ms(s, a->rd, a->rs2); 2432} 2433 2434GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2435GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2436GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2437GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2438GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2439GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2440GEN_OPFVF_TRANS(vmford_vf, opfvf_cmp_check) 2441 2442/* Vector Floating-Point Classify Instruction */ 2443GEN_OPFV_TRANS(vfclass_v, opfv_check) 2444 2445/* Vector Floating-Point Merge Instruction */ 2446GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2447 2448static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2449{ 2450 if (require_rvv(s) && 2451 require_rvf(s) && 2452 vext_check_isa_ill(s) && 2453 require_align(a->rd, s->lmul)) { 2454 if (s->vl_eq_vlmax) { 2455 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2456 MAXSZ(s), MAXSZ(s), cpu_fpr[a->rs1]); 2457 mark_vs_dirty(s); 2458 } else { 2459 TCGv_ptr dest; 2460 TCGv_i32 desc; 2461 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2462 static gen_helper_vmv_vx * const fns[3] = { 2463 gen_helper_vmv_v_x_h, 2464 gen_helper_vmv_v_x_w, 2465 gen_helper_vmv_v_x_d, 2466 }; 2467 TCGLabel *over = gen_new_label(); 2468 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2469 2470 dest = tcg_temp_new_ptr(); 2471 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2472 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2473 fns[s->sew - 1](dest, cpu_fpr[a->rs1], cpu_env, desc); 2474 2475 tcg_temp_free_ptr(dest); 2476 mark_vs_dirty(s); 2477 gen_set_label(over); 2478 } 2479 return true; 2480 } 2481 return false; 2482} 2483 2484/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2485GEN_OPFV_TRANS(vfcvt_xu_f_v, opfv_check) 2486GEN_OPFV_TRANS(vfcvt_x_f_v, opfv_check) 2487GEN_OPFV_TRANS(vfcvt_f_xu_v, opfv_check) 2488GEN_OPFV_TRANS(vfcvt_f_x_v, opfv_check) 2489 2490/* Widening Floating-Point/Integer Type-Convert Instructions */ 2491 2492/* 2493 * If the current SEW does not correspond to a supported IEEE floating-point 2494 * type, an illegal instruction exception is raised 2495 */ 2496static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2497{ 2498 return require_rvv(s) && 2499 require_scale_rvf(s) && 2500 (s->sew != MO_8) && 2501 vext_check_isa_ill(s) && 2502 vext_check_ds(s, a->rd, a->rs2, a->vm); 2503} 2504 2505#define GEN_OPFV_WIDEN_TRANS(NAME) \ 2506static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2507{ \ 2508 if (opfv_widen_check(s, a)) { \ 2509 uint32_t data = 0; \ 2510 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2511 gen_helper_##NAME##_h, \ 2512 gen_helper_##NAME##_w, \ 2513 }; \ 2514 TCGLabel *over = gen_new_label(); \ 2515 gen_set_rm(s, 7); \ 2516 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2517 \ 2518 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2519 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2520 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2521 vreg_ofs(s, a->rs2), cpu_env, \ 2522 s->vlen / 8, s->vlen / 8, data, \ 2523 fns[s->sew - 1]); \ 2524 mark_vs_dirty(s); \ 2525 gen_set_label(over); \ 2526 return true; \ 2527 } \ 2528 return false; \ 2529} 2530 2531GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v) 2532GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v) 2533GEN_OPFV_WIDEN_TRANS(vfwcvt_f_xu_v) 2534GEN_OPFV_WIDEN_TRANS(vfwcvt_f_x_v) 2535GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v) 2536 2537/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2538 2539/* 2540 * If the current SEW does not correspond to a supported IEEE floating-point 2541 * type, an illegal instruction exception is raised 2542 */ 2543static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2544{ 2545 return require_rvv(s) && 2546 require_rvf(s) && 2547 (s->sew != MO_64) && 2548 vext_check_isa_ill(s) && 2549 /* OPFV narrowing instructions ignore vs1 check */ 2550 vext_check_sd(s, a->rd, a->rs2, a->vm); 2551} 2552 2553#define GEN_OPFV_NARROW_TRANS(NAME) \ 2554static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2555{ \ 2556 if (opfv_narrow_check(s, a)) { \ 2557 uint32_t data = 0; \ 2558 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2559 gen_helper_##NAME##_h, \ 2560 gen_helper_##NAME##_w, \ 2561 }; \ 2562 TCGLabel *over = gen_new_label(); \ 2563 gen_set_rm(s, 7); \ 2564 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2565 \ 2566 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2567 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2568 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2569 vreg_ofs(s, a->rs2), cpu_env, \ 2570 s->vlen / 8, s->vlen / 8, data, \ 2571 fns[s->sew - 1]); \ 2572 mark_vs_dirty(s); \ 2573 gen_set_label(over); \ 2574 return true; \ 2575 } \ 2576 return false; \ 2577} 2578 2579GEN_OPFV_NARROW_TRANS(vfncvt_xu_f_v) 2580GEN_OPFV_NARROW_TRANS(vfncvt_x_f_v) 2581GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_v) 2582GEN_OPFV_NARROW_TRANS(vfncvt_f_x_v) 2583GEN_OPFV_NARROW_TRANS(vfncvt_f_f_v) 2584 2585/* 2586 *** Vector Reduction Operations 2587 */ 2588/* Vector Single-Width Integer Reduction Instructions */ 2589static bool reduction_check(DisasContext *s, arg_rmrr *a) 2590{ 2591 return require_rvv(s) && 2592 vext_check_isa_ill(s) && 2593 vext_check_reduction(s, a->rs2); 2594} 2595 2596GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 2597GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 2598GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 2599GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 2600GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 2601GEN_OPIVV_TRANS(vredand_vs, reduction_check) 2602GEN_OPIVV_TRANS(vredor_vs, reduction_check) 2603GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 2604 2605/* Vector Widening Integer Reduction Instructions */ 2606static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 2607{ 2608 return reduction_check(s, a) && (s->sew < MO_64); 2609} 2610 2611GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 2612GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 2613 2614/* Vector Single-Width Floating-Point Reduction Instructions */ 2615GEN_OPFVV_TRANS(vfredsum_vs, reduction_check) 2616GEN_OPFVV_TRANS(vfredmax_vs, reduction_check) 2617GEN_OPFVV_TRANS(vfredmin_vs, reduction_check) 2618 2619/* Vector Widening Floating-Point Reduction Instructions */ 2620GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, reduction_check) 2621 2622/* 2623 *** Vector Mask Operations 2624 */ 2625 2626/* Vector Mask-Register Logical Instructions */ 2627#define GEN_MM_TRANS(NAME) \ 2628static bool trans_##NAME(DisasContext *s, arg_r *a) \ 2629{ \ 2630 if (vext_check_isa_ill(s)) { \ 2631 uint32_t data = 0; \ 2632 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 2633 TCGLabel *over = gen_new_label(); \ 2634 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2635 \ 2636 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2637 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2638 vreg_ofs(s, a->rs1), \ 2639 vreg_ofs(s, a->rs2), cpu_env, \ 2640 s->vlen / 8, s->vlen / 8, data, fn); \ 2641 mark_vs_dirty(s); \ 2642 gen_set_label(over); \ 2643 return true; \ 2644 } \ 2645 return false; \ 2646} 2647 2648GEN_MM_TRANS(vmand_mm) 2649GEN_MM_TRANS(vmnand_mm) 2650GEN_MM_TRANS(vmandnot_mm) 2651GEN_MM_TRANS(vmxor_mm) 2652GEN_MM_TRANS(vmor_mm) 2653GEN_MM_TRANS(vmnor_mm) 2654GEN_MM_TRANS(vmornot_mm) 2655GEN_MM_TRANS(vmxnor_mm) 2656 2657/* Vector mask population count vmpopc */ 2658static bool trans_vmpopc_m(DisasContext *s, arg_rmr *a) 2659{ 2660 if (require_rvv(s) && 2661 vext_check_isa_ill(s)) { 2662 TCGv_ptr src2, mask; 2663 TCGv dst; 2664 TCGv_i32 desc; 2665 uint32_t data = 0; 2666 data = FIELD_DP32(data, VDATA, VM, a->vm); 2667 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2668 2669 mask = tcg_temp_new_ptr(); 2670 src2 = tcg_temp_new_ptr(); 2671 dst = dest_gpr(s, a->rd); 2672 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2673 2674 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 2675 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2676 2677 gen_helper_vmpopc_m(dst, mask, src2, cpu_env, desc); 2678 gen_set_gpr(s, a->rd, dst); 2679 2680 tcg_temp_free_ptr(mask); 2681 tcg_temp_free_ptr(src2); 2682 return true; 2683 } 2684 return false; 2685} 2686 2687/* vmfirst find-first-set mask bit */ 2688static bool trans_vmfirst_m(DisasContext *s, arg_rmr *a) 2689{ 2690 if (require_rvv(s) && 2691 vext_check_isa_ill(s)) { 2692 TCGv_ptr src2, mask; 2693 TCGv dst; 2694 TCGv_i32 desc; 2695 uint32_t data = 0; 2696 data = FIELD_DP32(data, VDATA, VM, a->vm); 2697 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2698 2699 mask = tcg_temp_new_ptr(); 2700 src2 = tcg_temp_new_ptr(); 2701 dst = dest_gpr(s, a->rd); 2702 desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); 2703 2704 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 2705 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2706 2707 gen_helper_vmfirst_m(dst, mask, src2, cpu_env, desc); 2708 gen_set_gpr(s, a->rd, dst); 2709 2710 tcg_temp_free_ptr(mask); 2711 tcg_temp_free_ptr(src2); 2712 return true; 2713 } 2714 return false; 2715} 2716 2717/* vmsbf.m set-before-first mask bit */ 2718/* vmsif.m set-includ-first mask bit */ 2719/* vmsof.m set-only-first mask bit */ 2720#define GEN_M_TRANS(NAME) \ 2721static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2722{ \ 2723 if (vext_check_isa_ill(s)) { \ 2724 uint32_t data = 0; \ 2725 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 2726 TCGLabel *over = gen_new_label(); \ 2727 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2728 \ 2729 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2730 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2731 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 2732 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 2733 cpu_env, s->vlen / 8, s->vlen / 8, \ 2734 data, fn); \ 2735 mark_vs_dirty(s); \ 2736 gen_set_label(over); \ 2737 return true; \ 2738 } \ 2739 return false; \ 2740} 2741 2742GEN_M_TRANS(vmsbf_m) 2743GEN_M_TRANS(vmsif_m) 2744GEN_M_TRANS(vmsof_m) 2745 2746/* Vector Iota Instruction */ 2747static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 2748{ 2749 if (require_rvv(s) && 2750 vext_check_isa_ill(s) && 2751 require_noover(a->rd, s->lmul, a->rs2, 0) && 2752 require_vm(a->vm, a->rd) && 2753 require_align(a->rd, s->lmul)) { 2754 uint32_t data = 0; 2755 TCGLabel *over = gen_new_label(); 2756 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2757 2758 data = FIELD_DP32(data, VDATA, VM, a->vm); 2759 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2760 static gen_helper_gvec_3_ptr * const fns[4] = { 2761 gen_helper_viota_m_b, gen_helper_viota_m_h, 2762 gen_helper_viota_m_w, gen_helper_viota_m_d, 2763 }; 2764 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2765 vreg_ofs(s, a->rs2), cpu_env, 2766 s->vlen / 8, s->vlen / 8, data, fns[s->sew]); 2767 mark_vs_dirty(s); 2768 gen_set_label(over); 2769 return true; 2770 } 2771 return false; 2772} 2773 2774/* Vector Element Index Instruction */ 2775static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 2776{ 2777 if (require_rvv(s) && 2778 vext_check_isa_ill(s) && 2779 require_align(a->rd, s->lmul) && 2780 require_vm(a->vm, a->rd)) { 2781 uint32_t data = 0; 2782 TCGLabel *over = gen_new_label(); 2783 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2784 2785 data = FIELD_DP32(data, VDATA, VM, a->vm); 2786 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2787 static gen_helper_gvec_2_ptr * const fns[4] = { 2788 gen_helper_vid_v_b, gen_helper_vid_v_h, 2789 gen_helper_vid_v_w, gen_helper_vid_v_d, 2790 }; 2791 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2792 cpu_env, s->vlen / 8, s->vlen / 8, 2793 data, fns[s->sew]); 2794 mark_vs_dirty(s); 2795 gen_set_label(over); 2796 return true; 2797 } 2798 return false; 2799} 2800 2801/* 2802 *** Vector Permutation Instructions 2803 */ 2804 2805/* Integer Extract Instruction */ 2806 2807static void load_element(TCGv_i64 dest, TCGv_ptr base, 2808 int ofs, int sew) 2809{ 2810 switch (sew) { 2811 case MO_8: 2812 tcg_gen_ld8u_i64(dest, base, ofs); 2813 break; 2814 case MO_16: 2815 tcg_gen_ld16u_i64(dest, base, ofs); 2816 break; 2817 case MO_32: 2818 tcg_gen_ld32u_i64(dest, base, ofs); 2819 break; 2820 case MO_64: 2821 tcg_gen_ld_i64(dest, base, ofs); 2822 break; 2823 default: 2824 g_assert_not_reached(); 2825 break; 2826 } 2827} 2828 2829/* offset of the idx element with base regsiter r */ 2830static uint32_t endian_ofs(DisasContext *s, int r, int idx) 2831{ 2832#ifdef HOST_WORDS_BIGENDIAN 2833 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 2834#else 2835 return vreg_ofs(s, r) + (idx << s->sew); 2836#endif 2837} 2838 2839/* adjust the index according to the endian */ 2840static void endian_adjust(TCGv_i32 ofs, int sew) 2841{ 2842#ifdef HOST_WORDS_BIGENDIAN 2843 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 2844#endif 2845} 2846 2847/* Load idx >= VLMAX ? 0 : vreg[idx] */ 2848static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 2849 int vreg, TCGv idx, int vlmax) 2850{ 2851 TCGv_i32 ofs = tcg_temp_new_i32(); 2852 TCGv_ptr base = tcg_temp_new_ptr(); 2853 TCGv_i64 t_idx = tcg_temp_new_i64(); 2854 TCGv_i64 t_vlmax, t_zero; 2855 2856 /* 2857 * Mask the index to the length so that we do 2858 * not produce an out-of-range load. 2859 */ 2860 tcg_gen_trunc_tl_i32(ofs, idx); 2861 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 2862 2863 /* Convert the index to an offset. */ 2864 endian_adjust(ofs, s->sew); 2865 tcg_gen_shli_i32(ofs, ofs, s->sew); 2866 2867 /* Convert the index to a pointer. */ 2868 tcg_gen_ext_i32_ptr(base, ofs); 2869 tcg_gen_add_ptr(base, base, cpu_env); 2870 2871 /* Perform the load. */ 2872 load_element(dest, base, 2873 vreg_ofs(s, vreg), s->sew); 2874 tcg_temp_free_ptr(base); 2875 tcg_temp_free_i32(ofs); 2876 2877 /* Flush out-of-range indexing to zero. */ 2878 t_vlmax = tcg_constant_i64(vlmax); 2879 t_zero = tcg_constant_i64(0); 2880 tcg_gen_extu_tl_i64(t_idx, idx); 2881 2882 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 2883 t_vlmax, dest, t_zero); 2884 2885 tcg_temp_free_i64(t_idx); 2886} 2887 2888static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 2889 int vreg, int idx) 2890{ 2891 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew); 2892} 2893 2894static bool trans_vext_x_v(DisasContext *s, arg_r *a) 2895{ 2896 TCGv_i64 tmp = tcg_temp_new_i64(); 2897 TCGv dest = dest_gpr(s, a->rd); 2898 2899 if (a->rs1 == 0) { 2900 /* Special case vmv.x.s rd, vs2. */ 2901 vec_element_loadi(s, tmp, a->rs2, 0); 2902 } else { 2903 /* This instruction ignores LMUL and vector register groups */ 2904 int vlmax = s->vlen >> (3 + s->sew); 2905 vec_element_loadx(s, tmp, a->rs2, cpu_gpr[a->rs1], vlmax); 2906 } 2907 2908 tcg_gen_trunc_i64_tl(dest, tmp); 2909 gen_set_gpr(s, a->rd, dest); 2910 2911 tcg_temp_free_i64(tmp); 2912 return true; 2913} 2914 2915/* Integer Scalar Move Instruction */ 2916 2917static void store_element(TCGv_i64 val, TCGv_ptr base, 2918 int ofs, int sew) 2919{ 2920 switch (sew) { 2921 case MO_8: 2922 tcg_gen_st8_i64(val, base, ofs); 2923 break; 2924 case MO_16: 2925 tcg_gen_st16_i64(val, base, ofs); 2926 break; 2927 case MO_32: 2928 tcg_gen_st32_i64(val, base, ofs); 2929 break; 2930 case MO_64: 2931 tcg_gen_st_i64(val, base, ofs); 2932 break; 2933 default: 2934 g_assert_not_reached(); 2935 break; 2936 } 2937} 2938 2939/* 2940 * Store vreg[idx] = val. 2941 * The index must be in range of VLMAX. 2942 */ 2943static void vec_element_storei(DisasContext *s, int vreg, 2944 int idx, TCGv_i64 val) 2945{ 2946 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 2947} 2948 2949/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 2950static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 2951{ 2952 if (vext_check_isa_ill(s)) { 2953 /* This instruction ignores LMUL and vector register groups */ 2954 int maxsz = s->vlen >> 3; 2955 TCGv_i64 t1; 2956 TCGLabel *over = gen_new_label(); 2957 2958 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2959 tcg_gen_gvec_dup_imm(SEW64, vreg_ofs(s, a->rd), maxsz, maxsz, 0); 2960 if (a->rs1 == 0) { 2961 goto done; 2962 } 2963 2964 t1 = tcg_temp_new_i64(); 2965 tcg_gen_extu_tl_i64(t1, cpu_gpr[a->rs1]); 2966 vec_element_storei(s, a->rd, 0, t1); 2967 tcg_temp_free_i64(t1); 2968 mark_vs_dirty(s); 2969 done: 2970 gen_set_label(over); 2971 return true; 2972 } 2973 return false; 2974} 2975 2976/* Floating-Point Scalar Move Instructions */ 2977static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 2978{ 2979 if (!s->vill && has_ext(s, RVF) && 2980 (s->mstatus_fs != 0) && (s->sew != 0)) { 2981 unsigned int len = 8 << s->sew; 2982 2983 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0); 2984 if (len < 64) { 2985 tcg_gen_ori_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 2986 MAKE_64BIT_MASK(len, 64 - len)); 2987 } 2988 2989 mark_fs_dirty(s); 2990 return true; 2991 } 2992 return false; 2993} 2994 2995/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 2996static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 2997{ 2998 if (!s->vill && has_ext(s, RVF) && (s->sew != 0)) { 2999 TCGv_i64 t1; 3000 /* The instructions ignore LMUL and vector register group. */ 3001 uint32_t vlmax = s->vlen >> 3; 3002 3003 /* if vl == 0, skip vector register write back */ 3004 TCGLabel *over = gen_new_label(); 3005 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3006 3007 /* zeroed all elements */ 3008 tcg_gen_gvec_dup_imm(SEW64, vreg_ofs(s, a->rd), vlmax, vlmax, 0); 3009 3010 /* NaN-box f[rs1] as necessary for SEW */ 3011 t1 = tcg_temp_new_i64(); 3012 if (s->sew == MO_64 && !has_ext(s, RVD)) { 3013 tcg_gen_ori_i64(t1, cpu_fpr[a->rs1], MAKE_64BIT_MASK(32, 32)); 3014 } else { 3015 tcg_gen_mov_i64(t1, cpu_fpr[a->rs1]); 3016 } 3017 vec_element_storei(s, a->rd, 0, t1); 3018 tcg_temp_free_i64(t1); 3019 mark_vs_dirty(s); 3020 gen_set_label(over); 3021 return true; 3022 } 3023 return false; 3024} 3025 3026/* Vector Slide Instructions */ 3027static bool slideup_check(DisasContext *s, arg_rmrr *a) 3028{ 3029 return require_rvv(s) && 3030 vext_check_isa_ill(s) && 3031 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3032} 3033 3034GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3035GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3036GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3037 3038static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3039{ 3040 return require_rvv(s) && 3041 vext_check_isa_ill(s) && 3042 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3043} 3044 3045GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3046GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3047GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3048 3049/* Vector Register Gather Instruction */ 3050static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3051{ 3052 return require_rvv(s) && 3053 vext_check_isa_ill(s) && 3054 require_align(a->rd, s->lmul) && 3055 require_align(a->rs1, s->lmul) && 3056 require_align(a->rs2, s->lmul) && 3057 (a->rd != a->rs2 && a->rd != a->rs1) && 3058 require_vm(a->vm, a->rd); 3059} 3060 3061GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3062 3063static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3064{ 3065 return require_rvv(s) && 3066 vext_check_isa_ill(s) && 3067 require_align(a->rd, s->lmul) && 3068 require_align(a->rs2, s->lmul) && 3069 (a->rd != a->rs2) && 3070 require_vm(a->vm, a->rd); 3071} 3072 3073/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3074static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3075{ 3076 if (!vrgather_vx_check(s, a)) { 3077 return false; 3078 } 3079 3080 if (a->vm && s->vl_eq_vlmax) { 3081 int vlmax = s->vlen; 3082 TCGv_i64 dest = tcg_temp_new_i64(); 3083 3084 if (a->rs1 == 0) { 3085 vec_element_loadi(s, dest, a->rs2, 0); 3086 } else { 3087 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3088 } 3089 3090 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3091 MAXSZ(s), MAXSZ(s), dest); 3092 tcg_temp_free_i64(dest); 3093 mark_vs_dirty(s); 3094 } else { 3095 static gen_helper_opivx * const fns[4] = { 3096 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3097 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3098 }; 3099 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3100 } 3101 return true; 3102} 3103 3104/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3105static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3106{ 3107 if (!vrgather_vx_check(s, a)) { 3108 return false; 3109 } 3110 3111 if (a->vm && s->vl_eq_vlmax) { 3112 if (a->rs1 >= s->vlen) { 3113 tcg_gen_gvec_dup_imm(SEW64, vreg_ofs(s, a->rd), 3114 MAXSZ(s), MAXSZ(s), 0); 3115 } else { 3116 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3117 endian_ofs(s, a->rs2, a->rs1), 3118 MAXSZ(s), MAXSZ(s)); 3119 } 3120 mark_vs_dirty(s); 3121 } else { 3122 static gen_helper_opivx * const fns[4] = { 3123 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3124 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3125 }; 3126 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3127 s, IMM_ZX); 3128 } 3129 return true; 3130} 3131 3132/* 3133 * Vector Compress Instruction 3134 * 3135 * The destination vector register group cannot overlap the 3136 * source vector register group or the source mask register. 3137 */ 3138static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3139{ 3140 return require_rvv(s) && 3141 vext_check_isa_ill(s) && 3142 require_align(a->rd, s->lmul) && 3143 require_align(a->rs2, s->lmul) && 3144 (a->rd != a->rs2) && 3145 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1); 3146} 3147 3148static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3149{ 3150 if (vcompress_vm_check(s, a)) { 3151 uint32_t data = 0; 3152 static gen_helper_gvec_4_ptr * const fns[4] = { 3153 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3154 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3155 }; 3156 TCGLabel *over = gen_new_label(); 3157 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3158 3159 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3160 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3161 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3162 cpu_env, s->vlen / 8, s->vlen / 8, data, 3163 fns[s->sew]); 3164 mark_vs_dirty(s); 3165 gen_set_label(over); 3166 return true; 3167 } 3168 return false; 3169} 3170