1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 715} 716 717static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 718{ 719 return require_rvv(s) && 720 vext_check_isa_ill(s) && 721 vext_check_load(s, a->rd, a->nf, a->vm, eew); 722} 723 724GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 725GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 728 729static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 730{ 731 uint32_t data = 0; 732 gen_helper_ldst_us *fn; 733 static gen_helper_ldst_us * const fns[2][4] = { 734 /* masked unit stride store */ 735 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 736 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 737 /* unmasked unit stride store */ 738 { gen_helper_vse8_v, gen_helper_vse16_v, 739 gen_helper_vse32_v, gen_helper_vse64_v } 740 }; 741 742 fn = fns[a->vm][eew]; 743 if (fn == NULL) { 744 return false; 745 } 746 747 uint8_t emul = vext_get_emul(s, eew); 748 data = FIELD_DP32(data, VDATA, VM, a->vm); 749 data = FIELD_DP32(data, VDATA, LMUL, emul); 750 data = FIELD_DP32(data, VDATA, NF, a->nf); 751 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 752} 753 754static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 755{ 756 return require_rvv(s) && 757 vext_check_isa_ill(s) && 758 vext_check_store(s, a->rd, a->nf, eew); 759} 760 761GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 762GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 765 766/* 767 *** unit stride mask load and store 768 */ 769static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 770{ 771 uint32_t data = 0; 772 gen_helper_ldst_us *fn = gen_helper_vlm_v; 773 774 /* EMUL = 1, NFIELDS = 1 */ 775 data = FIELD_DP32(data, VDATA, LMUL, 0); 776 data = FIELD_DP32(data, VDATA, NF, 1); 777 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 778} 779 780static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 781{ 782 /* EMUL = 1, NFIELDS = 1 */ 783 return require_rvv(s) && vext_check_isa_ill(s); 784} 785 786static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 787{ 788 uint32_t data = 0; 789 gen_helper_ldst_us *fn = gen_helper_vsm_v; 790 791 /* EMUL = 1, NFIELDS = 1 */ 792 data = FIELD_DP32(data, VDATA, LMUL, 0); 793 data = FIELD_DP32(data, VDATA, NF, 1); 794 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 795} 796 797static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 798{ 799 /* EMUL = 1, NFIELDS = 1 */ 800 return require_rvv(s) && vext_check_isa_ill(s); 801} 802 803GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 804GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 805 806/* 807 *** stride load and store 808 */ 809typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 810 TCGv, TCGv_env, TCGv_i32); 811 812static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 813 uint32_t data, gen_helper_ldst_stride *fn, 814 DisasContext *s, bool is_store) 815{ 816 TCGv_ptr dest, mask; 817 TCGv base, stride; 818 TCGv_i32 desc; 819 820 TCGLabel *over = gen_new_label(); 821 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 822 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 823 824 dest = tcg_temp_new_ptr(); 825 mask = tcg_temp_new_ptr(); 826 base = get_gpr(s, rs1, EXT_NONE); 827 stride = get_gpr(s, rs2, EXT_NONE); 828 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 829 s->cfg_ptr->vlen / 8, data)); 830 831 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 832 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 833 834 fn(dest, mask, base, stride, cpu_env, desc); 835 836 tcg_temp_free_ptr(dest); 837 tcg_temp_free_ptr(mask); 838 839 if (!is_store) { 840 mark_vs_dirty(s); 841 } 842 843 gen_set_label(over); 844 return true; 845} 846 847static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 848{ 849 uint32_t data = 0; 850 gen_helper_ldst_stride *fn; 851 static gen_helper_ldst_stride * const fns[4] = { 852 gen_helper_vlse8_v, gen_helper_vlse16_v, 853 gen_helper_vlse32_v, gen_helper_vlse64_v 854 }; 855 856 fn = fns[eew]; 857 if (fn == NULL) { 858 return false; 859 } 860 861 uint8_t emul = vext_get_emul(s, eew); 862 data = FIELD_DP32(data, VDATA, VM, a->vm); 863 data = FIELD_DP32(data, VDATA, LMUL, emul); 864 data = FIELD_DP32(data, VDATA, NF, a->nf); 865 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 866} 867 868static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 869{ 870 return require_rvv(s) && 871 vext_check_isa_ill(s) && 872 vext_check_load(s, a->rd, a->nf, a->vm, eew); 873} 874 875GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 876GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 877GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 878GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 879 880static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 881{ 882 uint32_t data = 0; 883 gen_helper_ldst_stride *fn; 884 static gen_helper_ldst_stride * const fns[4] = { 885 /* masked stride store */ 886 gen_helper_vsse8_v, gen_helper_vsse16_v, 887 gen_helper_vsse32_v, gen_helper_vsse64_v 888 }; 889 890 uint8_t emul = vext_get_emul(s, eew); 891 data = FIELD_DP32(data, VDATA, VM, a->vm); 892 data = FIELD_DP32(data, VDATA, LMUL, emul); 893 data = FIELD_DP32(data, VDATA, NF, a->nf); 894 fn = fns[eew]; 895 if (fn == NULL) { 896 return false; 897 } 898 899 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 900} 901 902static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 903{ 904 return require_rvv(s) && 905 vext_check_isa_ill(s) && 906 vext_check_store(s, a->rd, a->nf, eew); 907} 908 909GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 910GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 911GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 912GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 913 914/* 915 *** index load and store 916 */ 917typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 918 TCGv_ptr, TCGv_env, TCGv_i32); 919 920static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 921 uint32_t data, gen_helper_ldst_index *fn, 922 DisasContext *s, bool is_store) 923{ 924 TCGv_ptr dest, mask, index; 925 TCGv base; 926 TCGv_i32 desc; 927 928 TCGLabel *over = gen_new_label(); 929 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 930 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 931 932 dest = tcg_temp_new_ptr(); 933 mask = tcg_temp_new_ptr(); 934 index = tcg_temp_new_ptr(); 935 base = get_gpr(s, rs1, EXT_NONE); 936 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 937 s->cfg_ptr->vlen / 8, data)); 938 939 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 940 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 941 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 942 943 fn(dest, mask, base, index, cpu_env, desc); 944 945 tcg_temp_free_ptr(dest); 946 tcg_temp_free_ptr(mask); 947 tcg_temp_free_ptr(index); 948 949 if (!is_store) { 950 mark_vs_dirty(s); 951 } 952 953 gen_set_label(over); 954 return true; 955} 956 957static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 958{ 959 uint32_t data = 0; 960 gen_helper_ldst_index *fn; 961 static gen_helper_ldst_index * const fns[4][4] = { 962 /* 963 * offset vector register group EEW = 8, 964 * data vector register group EEW = SEW 965 */ 966 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 967 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 968 /* 969 * offset vector register group EEW = 16, 970 * data vector register group EEW = SEW 971 */ 972 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 973 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 974 /* 975 * offset vector register group EEW = 32, 976 * data vector register group EEW = SEW 977 */ 978 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 979 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 980 /* 981 * offset vector register group EEW = 64, 982 * data vector register group EEW = SEW 983 */ 984 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 985 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 986 }; 987 988 fn = fns[eew][s->sew]; 989 990 uint8_t emul = vext_get_emul(s, s->sew); 991 data = FIELD_DP32(data, VDATA, VM, a->vm); 992 data = FIELD_DP32(data, VDATA, LMUL, emul); 993 data = FIELD_DP32(data, VDATA, NF, a->nf); 994 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 995} 996 997static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 998{ 999 return require_rvv(s) && 1000 vext_check_isa_ill(s) && 1001 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1002} 1003 1004GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1005GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1006GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1007GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1008 1009static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1010{ 1011 uint32_t data = 0; 1012 gen_helper_ldst_index *fn; 1013 static gen_helper_ldst_index * const fns[4][4] = { 1014 /* 1015 * offset vector register group EEW = 8, 1016 * data vector register group EEW = SEW 1017 */ 1018 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1019 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1020 /* 1021 * offset vector register group EEW = 16, 1022 * data vector register group EEW = SEW 1023 */ 1024 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1025 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1026 /* 1027 * offset vector register group EEW = 32, 1028 * data vector register group EEW = SEW 1029 */ 1030 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1031 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1032 /* 1033 * offset vector register group EEW = 64, 1034 * data vector register group EEW = SEW 1035 */ 1036 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1037 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1038 }; 1039 1040 fn = fns[eew][s->sew]; 1041 1042 uint8_t emul = vext_get_emul(s, s->sew); 1043 data = FIELD_DP32(data, VDATA, VM, a->vm); 1044 data = FIELD_DP32(data, VDATA, LMUL, emul); 1045 data = FIELD_DP32(data, VDATA, NF, a->nf); 1046 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1047} 1048 1049static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1050{ 1051 return require_rvv(s) && 1052 vext_check_isa_ill(s) && 1053 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1054} 1055 1056GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1057GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1058GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1059GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1060 1061/* 1062 *** unit stride fault-only-first load 1063 */ 1064static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1065 gen_helper_ldst_us *fn, DisasContext *s) 1066{ 1067 TCGv_ptr dest, mask; 1068 TCGv base; 1069 TCGv_i32 desc; 1070 1071 TCGLabel *over = gen_new_label(); 1072 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1073 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1074 1075 dest = tcg_temp_new_ptr(); 1076 mask = tcg_temp_new_ptr(); 1077 base = get_gpr(s, rs1, EXT_NONE); 1078 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1079 s->cfg_ptr->vlen / 8, data)); 1080 1081 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1082 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1083 1084 fn(dest, mask, base, cpu_env, desc); 1085 1086 tcg_temp_free_ptr(dest); 1087 tcg_temp_free_ptr(mask); 1088 mark_vs_dirty(s); 1089 gen_set_label(over); 1090 return true; 1091} 1092 1093static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1094{ 1095 uint32_t data = 0; 1096 gen_helper_ldst_us *fn; 1097 static gen_helper_ldst_us * const fns[4] = { 1098 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1099 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1100 }; 1101 1102 fn = fns[eew]; 1103 if (fn == NULL) { 1104 return false; 1105 } 1106 1107 uint8_t emul = vext_get_emul(s, eew); 1108 data = FIELD_DP32(data, VDATA, VM, a->vm); 1109 data = FIELD_DP32(data, VDATA, LMUL, emul); 1110 data = FIELD_DP32(data, VDATA, NF, a->nf); 1111 return ldff_trans(a->rd, a->rs1, data, fn, s); 1112} 1113 1114GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1115GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1116GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1117GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1118 1119/* 1120 * load and store whole register instructions 1121 */ 1122typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1123 1124static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1125 uint32_t width, gen_helper_ldst_whole *fn, 1126 DisasContext *s, bool is_store) 1127{ 1128 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1129 TCGLabel *over = gen_new_label(); 1130 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1131 1132 TCGv_ptr dest; 1133 TCGv base; 1134 TCGv_i32 desc; 1135 1136 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1137 dest = tcg_temp_new_ptr(); 1138 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1139 s->cfg_ptr->vlen / 8, data)); 1140 1141 base = get_gpr(s, rs1, EXT_NONE); 1142 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1143 1144 fn(dest, base, cpu_env, desc); 1145 1146 tcg_temp_free_ptr(dest); 1147 1148 if (!is_store) { 1149 mark_vs_dirty(s); 1150 } 1151 gen_set_label(over); 1152 1153 return true; 1154} 1155 1156/* 1157 * load and store whole register instructions ignore vtype and vl setting. 1158 * Thus, we don't need to check vill bit. (Section 7.9) 1159 */ 1160#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1161static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1162{ \ 1163 if (require_rvv(s) && \ 1164 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1165 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1166 gen_helper_##NAME, s, IS_STORE); \ 1167 } \ 1168 return false; \ 1169} 1170 1171GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1172GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1173GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1174GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1175GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1176GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1177GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1178GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1179GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1180GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1181GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1182GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1183GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1184GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1185GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1186GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1187 1188/* 1189 * The vector whole register store instructions are encoded similar to 1190 * unmasked unit-stride store of elements with EEW=8. 1191 */ 1192GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1193GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1194GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1195GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1196 1197/* 1198 *** Vector Integer Arithmetic Instructions 1199 */ 1200 1201/* 1202 * MAXSZ returns the maximum vector size can be operated in bytes, 1203 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1204 * to accerlate vector operation. 1205 */ 1206static inline uint32_t MAXSZ(DisasContext *s) 1207{ 1208 int scale = s->lmul - 3; 1209 return s->cfg_ptr->vlen >> -scale; 1210} 1211 1212static bool opivv_check(DisasContext *s, arg_rmrr *a) 1213{ 1214 return require_rvv(s) && 1215 vext_check_isa_ill(s) && 1216 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1217} 1218 1219typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1220 uint32_t, uint32_t, uint32_t); 1221 1222static inline bool 1223do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1224 gen_helper_gvec_4_ptr *fn) 1225{ 1226 TCGLabel *over = gen_new_label(); 1227 if (!opivv_check(s, a)) { 1228 return false; 1229 } 1230 1231 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1232 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1233 1234 if (a->vm && s->vl_eq_vlmax) { 1235 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1236 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1237 MAXSZ(s), MAXSZ(s)); 1238 } else { 1239 uint32_t data = 0; 1240 1241 data = FIELD_DP32(data, VDATA, VM, a->vm); 1242 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1243 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1244 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1245 cpu_env, s->cfg_ptr->vlen / 8, 1246 s->cfg_ptr->vlen / 8, data, fn); 1247 } 1248 mark_vs_dirty(s); 1249 gen_set_label(over); 1250 return true; 1251} 1252 1253/* OPIVV with GVEC IR */ 1254#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1255static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1256{ \ 1257 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1258 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1259 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1260 }; \ 1261 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1262} 1263 1264GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1265GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1266 1267typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1268 TCGv_env, TCGv_i32); 1269 1270static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1271 gen_helper_opivx *fn, DisasContext *s) 1272{ 1273 TCGv_ptr dest, src2, mask; 1274 TCGv src1; 1275 TCGv_i32 desc; 1276 uint32_t data = 0; 1277 1278 TCGLabel *over = gen_new_label(); 1279 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1280 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1281 1282 dest = tcg_temp_new_ptr(); 1283 mask = tcg_temp_new_ptr(); 1284 src2 = tcg_temp_new_ptr(); 1285 src1 = get_gpr(s, rs1, EXT_SIGN); 1286 1287 data = FIELD_DP32(data, VDATA, VM, vm); 1288 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1289 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1290 s->cfg_ptr->vlen / 8, data)); 1291 1292 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1293 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1294 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1295 1296 fn(dest, mask, src1, src2, cpu_env, desc); 1297 1298 tcg_temp_free_ptr(dest); 1299 tcg_temp_free_ptr(mask); 1300 tcg_temp_free_ptr(src2); 1301 mark_vs_dirty(s); 1302 gen_set_label(over); 1303 return true; 1304} 1305 1306static bool opivx_check(DisasContext *s, arg_rmrr *a) 1307{ 1308 return require_rvv(s) && 1309 vext_check_isa_ill(s) && 1310 vext_check_ss(s, a->rd, a->rs2, a->vm); 1311} 1312 1313typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1314 uint32_t, uint32_t); 1315 1316static inline bool 1317do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1318 gen_helper_opivx *fn) 1319{ 1320 if (!opivx_check(s, a)) { 1321 return false; 1322 } 1323 1324 if (a->vm && s->vl_eq_vlmax) { 1325 TCGv_i64 src1 = tcg_temp_new_i64(); 1326 1327 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1328 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1329 src1, MAXSZ(s), MAXSZ(s)); 1330 1331 tcg_temp_free_i64(src1); 1332 mark_vs_dirty(s); 1333 return true; 1334 } 1335 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1336} 1337 1338/* OPIVX with GVEC IR */ 1339#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1340static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1341{ \ 1342 static gen_helper_opivx * const fns[4] = { \ 1343 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1344 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1345 }; \ 1346 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1347} 1348 1349GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1350GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1351 1352static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1353{ 1354 tcg_gen_vec_sub8_i64(d, b, a); 1355} 1356 1357static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1358{ 1359 tcg_gen_vec_sub16_i64(d, b, a); 1360} 1361 1362static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1363{ 1364 tcg_gen_sub_i32(ret, arg2, arg1); 1365} 1366 1367static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1368{ 1369 tcg_gen_sub_i64(ret, arg2, arg1); 1370} 1371 1372static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1373{ 1374 tcg_gen_sub_vec(vece, r, b, a); 1375} 1376 1377static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1378 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1379{ 1380 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1381 static const GVecGen2s rsub_op[4] = { 1382 { .fni8 = gen_vec_rsub8_i64, 1383 .fniv = gen_rsub_vec, 1384 .fno = gen_helper_vec_rsubs8, 1385 .opt_opc = vecop_list, 1386 .vece = MO_8 }, 1387 { .fni8 = gen_vec_rsub16_i64, 1388 .fniv = gen_rsub_vec, 1389 .fno = gen_helper_vec_rsubs16, 1390 .opt_opc = vecop_list, 1391 .vece = MO_16 }, 1392 { .fni4 = gen_rsub_i32, 1393 .fniv = gen_rsub_vec, 1394 .fno = gen_helper_vec_rsubs32, 1395 .opt_opc = vecop_list, 1396 .vece = MO_32 }, 1397 { .fni8 = gen_rsub_i64, 1398 .fniv = gen_rsub_vec, 1399 .fno = gen_helper_vec_rsubs64, 1400 .opt_opc = vecop_list, 1401 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1402 .vece = MO_64 }, 1403 }; 1404 1405 tcg_debug_assert(vece <= MO_64); 1406 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1407} 1408 1409GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1410 1411typedef enum { 1412 IMM_ZX, /* Zero-extended */ 1413 IMM_SX, /* Sign-extended */ 1414 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1415 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1416} imm_mode_t; 1417 1418static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1419{ 1420 switch (imm_mode) { 1421 case IMM_ZX: 1422 return extract64(imm, 0, 5); 1423 case IMM_SX: 1424 return sextract64(imm, 0, 5); 1425 case IMM_TRUNC_SEW: 1426 return extract64(imm, 0, s->sew + 3); 1427 case IMM_TRUNC_2SEW: 1428 return extract64(imm, 0, s->sew + 4); 1429 default: 1430 g_assert_not_reached(); 1431 } 1432} 1433 1434static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1435 gen_helper_opivx *fn, DisasContext *s, 1436 imm_mode_t imm_mode) 1437{ 1438 TCGv_ptr dest, src2, mask; 1439 TCGv src1; 1440 TCGv_i32 desc; 1441 uint32_t data = 0; 1442 1443 TCGLabel *over = gen_new_label(); 1444 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1445 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1446 1447 dest = tcg_temp_new_ptr(); 1448 mask = tcg_temp_new_ptr(); 1449 src2 = tcg_temp_new_ptr(); 1450 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1451 1452 data = FIELD_DP32(data, VDATA, VM, vm); 1453 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1454 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1455 s->cfg_ptr->vlen / 8, data)); 1456 1457 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1458 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1459 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1460 1461 fn(dest, mask, src1, src2, cpu_env, desc); 1462 1463 tcg_temp_free_ptr(dest); 1464 tcg_temp_free_ptr(mask); 1465 tcg_temp_free_ptr(src2); 1466 mark_vs_dirty(s); 1467 gen_set_label(over); 1468 return true; 1469} 1470 1471typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1472 uint32_t, uint32_t); 1473 1474static inline bool 1475do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1476 gen_helper_opivx *fn, imm_mode_t imm_mode) 1477{ 1478 if (!opivx_check(s, a)) { 1479 return false; 1480 } 1481 1482 if (a->vm && s->vl_eq_vlmax) { 1483 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1484 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1485 mark_vs_dirty(s); 1486 return true; 1487 } 1488 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1489} 1490 1491/* OPIVI with GVEC IR */ 1492#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1493static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1494{ \ 1495 static gen_helper_opivx * const fns[4] = { \ 1496 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1497 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1498 }; \ 1499 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1500 fns[s->sew], IMM_MODE); \ 1501} 1502 1503GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1504 1505static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1506 int64_t c, uint32_t oprsz, uint32_t maxsz) 1507{ 1508 TCGv_i64 tmp = tcg_constant_i64(c); 1509 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1510} 1511 1512GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1513 1514/* Vector Widening Integer Add/Subtract */ 1515 1516/* OPIVV with WIDEN */ 1517static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1518{ 1519 return require_rvv(s) && 1520 vext_check_isa_ill(s) && 1521 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1522} 1523 1524static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1525 gen_helper_gvec_4_ptr *fn, 1526 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1527{ 1528 if (checkfn(s, a)) { 1529 uint32_t data = 0; 1530 TCGLabel *over = gen_new_label(); 1531 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1532 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1533 1534 data = FIELD_DP32(data, VDATA, VM, a->vm); 1535 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1536 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1537 vreg_ofs(s, a->rs1), 1538 vreg_ofs(s, a->rs2), 1539 cpu_env, s->cfg_ptr->vlen / 8, 1540 s->cfg_ptr->vlen / 8, 1541 data, fn); 1542 mark_vs_dirty(s); 1543 gen_set_label(over); 1544 return true; 1545 } 1546 return false; 1547} 1548 1549#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1550static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1551{ \ 1552 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1553 gen_helper_##NAME##_b, \ 1554 gen_helper_##NAME##_h, \ 1555 gen_helper_##NAME##_w \ 1556 }; \ 1557 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1558} 1559 1560GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1561GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1562GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1563GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1564 1565/* OPIVX with WIDEN */ 1566static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1567{ 1568 return require_rvv(s) && 1569 vext_check_isa_ill(s) && 1570 vext_check_ds(s, a->rd, a->rs2, a->vm); 1571} 1572 1573static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1574 gen_helper_opivx *fn) 1575{ 1576 if (opivx_widen_check(s, a)) { 1577 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1578 } 1579 return false; 1580} 1581 1582#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1583static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1584{ \ 1585 static gen_helper_opivx * const fns[3] = { \ 1586 gen_helper_##NAME##_b, \ 1587 gen_helper_##NAME##_h, \ 1588 gen_helper_##NAME##_w \ 1589 }; \ 1590 return do_opivx_widen(s, a, fns[s->sew]); \ 1591} 1592 1593GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1594GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1595GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1596GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1597 1598/* WIDEN OPIVV with WIDEN */ 1599static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1600{ 1601 return require_rvv(s) && 1602 vext_check_isa_ill(s) && 1603 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1604} 1605 1606static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1607 gen_helper_gvec_4_ptr *fn) 1608{ 1609 if (opiwv_widen_check(s, a)) { 1610 uint32_t data = 0; 1611 TCGLabel *over = gen_new_label(); 1612 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1613 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1614 1615 data = FIELD_DP32(data, VDATA, VM, a->vm); 1616 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1617 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1618 vreg_ofs(s, a->rs1), 1619 vreg_ofs(s, a->rs2), 1620 cpu_env, s->cfg_ptr->vlen / 8, 1621 s->cfg_ptr->vlen / 8, data, fn); 1622 mark_vs_dirty(s); 1623 gen_set_label(over); 1624 return true; 1625 } 1626 return false; 1627} 1628 1629#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1630static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1631{ \ 1632 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1633 gen_helper_##NAME##_b, \ 1634 gen_helper_##NAME##_h, \ 1635 gen_helper_##NAME##_w \ 1636 }; \ 1637 return do_opiwv_widen(s, a, fns[s->sew]); \ 1638} 1639 1640GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1641GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1642GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1643GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1644 1645/* WIDEN OPIVX with WIDEN */ 1646static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1647{ 1648 return require_rvv(s) && 1649 vext_check_isa_ill(s) && 1650 vext_check_dd(s, a->rd, a->rs2, a->vm); 1651} 1652 1653static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1654 gen_helper_opivx *fn) 1655{ 1656 if (opiwx_widen_check(s, a)) { 1657 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1658 } 1659 return false; 1660} 1661 1662#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1663static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1664{ \ 1665 static gen_helper_opivx * const fns[3] = { \ 1666 gen_helper_##NAME##_b, \ 1667 gen_helper_##NAME##_h, \ 1668 gen_helper_##NAME##_w \ 1669 }; \ 1670 return do_opiwx_widen(s, a, fns[s->sew]); \ 1671} 1672 1673GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1674GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1675GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1676GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1677 1678/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1679/* OPIVV without GVEC IR */ 1680#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1681static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1682{ \ 1683 if (CHECK(s, a)) { \ 1684 uint32_t data = 0; \ 1685 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1686 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1687 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1688 }; \ 1689 TCGLabel *over = gen_new_label(); \ 1690 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1691 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1692 \ 1693 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1694 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1695 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1696 vreg_ofs(s, a->rs1), \ 1697 vreg_ofs(s, a->rs2), cpu_env, \ 1698 s->cfg_ptr->vlen / 8, \ 1699 s->cfg_ptr->vlen / 8, data, \ 1700 fns[s->sew]); \ 1701 mark_vs_dirty(s); \ 1702 gen_set_label(over); \ 1703 return true; \ 1704 } \ 1705 return false; \ 1706} 1707 1708/* 1709 * For vadc and vsbc, an illegal instruction exception is raised if the 1710 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1711 */ 1712static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1713{ 1714 return require_rvv(s) && 1715 vext_check_isa_ill(s) && 1716 (a->rd != 0) && 1717 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1718} 1719 1720GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1721GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1722 1723/* 1724 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1725 * destination vector register overlaps a source vector register group. 1726 */ 1727static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1728{ 1729 return require_rvv(s) && 1730 vext_check_isa_ill(s) && 1731 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1732} 1733 1734GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1735GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1736 1737static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1738{ 1739 return require_rvv(s) && 1740 vext_check_isa_ill(s) && 1741 (a->rd != 0) && 1742 vext_check_ss(s, a->rd, a->rs2, a->vm); 1743} 1744 1745/* OPIVX without GVEC IR */ 1746#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1747static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1748{ \ 1749 if (CHECK(s, a)) { \ 1750 static gen_helper_opivx * const fns[4] = { \ 1751 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1752 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1753 }; \ 1754 \ 1755 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1756 } \ 1757 return false; \ 1758} 1759 1760GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1761GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1762 1763static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1764{ 1765 return require_rvv(s) && 1766 vext_check_isa_ill(s) && 1767 vext_check_ms(s, a->rd, a->rs2); 1768} 1769 1770GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1771GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1772 1773/* OPIVI without GVEC IR */ 1774#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1775static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1776{ \ 1777 if (CHECK(s, a)) { \ 1778 static gen_helper_opivx * const fns[4] = { \ 1779 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1780 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1781 }; \ 1782 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1783 fns[s->sew], s, IMM_MODE); \ 1784 } \ 1785 return false; \ 1786} 1787 1788GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1789GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1790 1791/* Vector Bitwise Logical Instructions */ 1792GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1793GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1794GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1795GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1796GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1797GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1798GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1799GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1800GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1801 1802/* Vector Single-Width Bit Shift Instructions */ 1803GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1804GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1805GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1806 1807typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1808 uint32_t, uint32_t); 1809 1810static inline bool 1811do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1812 gen_helper_opivx *fn) 1813{ 1814 if (!opivx_check(s, a)) { 1815 return false; 1816 } 1817 1818 if (a->vm && s->vl_eq_vlmax) { 1819 TCGv_i32 src1 = tcg_temp_new_i32(); 1820 1821 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1822 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1823 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1824 src1, MAXSZ(s), MAXSZ(s)); 1825 1826 tcg_temp_free_i32(src1); 1827 mark_vs_dirty(s); 1828 return true; 1829 } 1830 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1831} 1832 1833#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1834static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1835{ \ 1836 static gen_helper_opivx * const fns[4] = { \ 1837 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1838 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1839 }; \ 1840 \ 1841 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1842} 1843 1844GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1845GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1846GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1847 1848GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1849GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1850GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1851 1852/* Vector Narrowing Integer Right Shift Instructions */ 1853static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1854{ 1855 return require_rvv(s) && 1856 vext_check_isa_ill(s) && 1857 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1858} 1859 1860/* OPIVV with NARROW */ 1861#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1862static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1863{ \ 1864 if (opiwv_narrow_check(s, a)) { \ 1865 uint32_t data = 0; \ 1866 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1867 gen_helper_##NAME##_b, \ 1868 gen_helper_##NAME##_h, \ 1869 gen_helper_##NAME##_w, \ 1870 }; \ 1871 TCGLabel *over = gen_new_label(); \ 1872 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1873 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1874 \ 1875 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1876 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1877 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1878 vreg_ofs(s, a->rs1), \ 1879 vreg_ofs(s, a->rs2), cpu_env, \ 1880 s->cfg_ptr->vlen / 8, \ 1881 s->cfg_ptr->vlen / 8, data, \ 1882 fns[s->sew]); \ 1883 mark_vs_dirty(s); \ 1884 gen_set_label(over); \ 1885 return true; \ 1886 } \ 1887 return false; \ 1888} 1889GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1890GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1891 1892static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1893{ 1894 return require_rvv(s) && 1895 vext_check_isa_ill(s) && 1896 vext_check_sd(s, a->rd, a->rs2, a->vm); 1897} 1898 1899/* OPIVX with NARROW */ 1900#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1901static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1902{ \ 1903 if (opiwx_narrow_check(s, a)) { \ 1904 static gen_helper_opivx * const fns[3] = { \ 1905 gen_helper_##NAME##_b, \ 1906 gen_helper_##NAME##_h, \ 1907 gen_helper_##NAME##_w, \ 1908 }; \ 1909 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1910 } \ 1911 return false; \ 1912} 1913 1914GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1915GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1916 1917/* OPIWI with NARROW */ 1918#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1919static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1920{ \ 1921 if (opiwx_narrow_check(s, a)) { \ 1922 static gen_helper_opivx * const fns[3] = { \ 1923 gen_helper_##OPIVX##_b, \ 1924 gen_helper_##OPIVX##_h, \ 1925 gen_helper_##OPIVX##_w, \ 1926 }; \ 1927 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1928 fns[s->sew], s, IMM_MODE); \ 1929 } \ 1930 return false; \ 1931} 1932 1933GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1934GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1935 1936/* Vector Integer Comparison Instructions */ 1937/* 1938 * For all comparison instructions, an illegal instruction exception is raised 1939 * if the destination vector register overlaps a source vector register group 1940 * and LMUL > 1. 1941 */ 1942static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1943{ 1944 return require_rvv(s) && 1945 vext_check_isa_ill(s) && 1946 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1947} 1948 1949GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1950GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1951GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1952GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1953GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1954GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1955 1956static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1957{ 1958 return require_rvv(s) && 1959 vext_check_isa_ill(s) && 1960 vext_check_ms(s, a->rd, a->rs2); 1961} 1962 1963GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1964GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1965GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1966GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1967GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1968GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1969GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1970GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1971 1972GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1973GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1974GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1975GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1976GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1977GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1978 1979/* Vector Integer Min/Max Instructions */ 1980GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1981GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1982GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1983GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1984GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1985GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1986GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1987GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1988 1989/* Vector Single-Width Integer Multiply Instructions */ 1990 1991static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 1992{ 1993 /* 1994 * All Zve* extensions support all vector integer instructions, 1995 * except that the vmulh integer multiply variants 1996 * that return the high word of the product 1997 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1998 * are not included for EEW=64 in Zve64*. (Section 18.2) 1999 */ 2000 return opivv_check(s, a) && 2001 (!has_ext(s, RVV) && 2002 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2003} 2004 2005static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2006{ 2007 /* 2008 * All Zve* extensions support all vector integer instructions, 2009 * except that the vmulh integer multiply variants 2010 * that return the high word of the product 2011 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2012 * are not included for EEW=64 in Zve64*. (Section 18.2) 2013 */ 2014 return opivx_check(s, a) && 2015 (!has_ext(s, RVV) && 2016 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2017} 2018 2019GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2020GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2021GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2022GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2023GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2024GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2025GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2026GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2027 2028/* Vector Integer Divide Instructions */ 2029GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2030GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2031GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2032GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2033GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2034GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2035GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2036GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2037 2038/* Vector Widening Integer Multiply Instructions */ 2039GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2040GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2041GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2042GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2043GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2044GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2045 2046/* Vector Single-Width Integer Multiply-Add Instructions */ 2047GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2048GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2049GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2050GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2051GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2052GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2053GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2054GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2055 2056/* Vector Widening Integer Multiply-Add Instructions */ 2057GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2058GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2059GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2060GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2061GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2062GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2063GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2064 2065/* Vector Integer Merge and Move Instructions */ 2066static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2067{ 2068 if (require_rvv(s) && 2069 vext_check_isa_ill(s) && 2070 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2071 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2072 if (s->vl_eq_vlmax) { 2073 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2074 vreg_ofs(s, a->rs1), 2075 MAXSZ(s), MAXSZ(s)); 2076 } else { 2077 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2078 static gen_helper_gvec_2_ptr * const fns[4] = { 2079 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2080 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2081 }; 2082 TCGLabel *over = gen_new_label(); 2083 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2084 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2085 2086 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2087 cpu_env, s->cfg_ptr->vlen / 8, 2088 s->cfg_ptr->vlen / 8, data, 2089 fns[s->sew]); 2090 gen_set_label(over); 2091 } 2092 mark_vs_dirty(s); 2093 return true; 2094 } 2095 return false; 2096} 2097 2098typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2099static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2100{ 2101 if (require_rvv(s) && 2102 vext_check_isa_ill(s) && 2103 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2104 vext_check_ss(s, a->rd, 0, 1)) { 2105 TCGv s1; 2106 TCGLabel *over = gen_new_label(); 2107 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2108 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2109 2110 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2111 2112 if (s->vl_eq_vlmax) { 2113 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2114 MAXSZ(s), MAXSZ(s), s1); 2115 } else { 2116 TCGv_i32 desc; 2117 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2118 TCGv_ptr dest = tcg_temp_new_ptr(); 2119 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2120 static gen_helper_vmv_vx * const fns[4] = { 2121 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2122 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2123 }; 2124 2125 tcg_gen_ext_tl_i64(s1_i64, s1); 2126 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2127 s->cfg_ptr->vlen / 8, data)); 2128 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2129 fns[s->sew](dest, s1_i64, cpu_env, desc); 2130 2131 tcg_temp_free_ptr(dest); 2132 tcg_temp_free_i64(s1_i64); 2133 } 2134 2135 mark_vs_dirty(s); 2136 gen_set_label(over); 2137 return true; 2138 } 2139 return false; 2140} 2141 2142static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2143{ 2144 if (require_rvv(s) && 2145 vext_check_isa_ill(s) && 2146 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2147 vext_check_ss(s, a->rd, 0, 1)) { 2148 int64_t simm = sextract64(a->rs1, 0, 5); 2149 if (s->vl_eq_vlmax) { 2150 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2151 MAXSZ(s), MAXSZ(s), simm); 2152 mark_vs_dirty(s); 2153 } else { 2154 TCGv_i32 desc; 2155 TCGv_i64 s1; 2156 TCGv_ptr dest; 2157 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2158 static gen_helper_vmv_vx * const fns[4] = { 2159 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2160 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2161 }; 2162 TCGLabel *over = gen_new_label(); 2163 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2164 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2165 2166 s1 = tcg_constant_i64(simm); 2167 dest = tcg_temp_new_ptr(); 2168 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2169 s->cfg_ptr->vlen / 8, data)); 2170 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2171 fns[s->sew](dest, s1, cpu_env, desc); 2172 2173 tcg_temp_free_ptr(dest); 2174 mark_vs_dirty(s); 2175 gen_set_label(over); 2176 } 2177 return true; 2178 } 2179 return false; 2180} 2181 2182GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2183GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2184GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2185 2186/* 2187 *** Vector Fixed-Point Arithmetic Instructions 2188 */ 2189 2190/* Vector Single-Width Saturating Add and Subtract */ 2191GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2192GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2193GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2194GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2195GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2196GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2197GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2198GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2199GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2200GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2201 2202/* Vector Single-Width Averaging Add and Subtract */ 2203GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2204GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2205GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2206GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2207GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2208GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2209GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2210GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2211 2212/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2213 2214static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2215{ 2216 /* 2217 * All Zve* extensions support all vector fixed-point arithmetic 2218 * instructions, except that vsmul.vv and vsmul.vx are not supported 2219 * for EEW=64 in Zve64*. (Section 18.2) 2220 */ 2221 return opivv_check(s, a) && 2222 (!has_ext(s, RVV) && 2223 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2224} 2225 2226static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2227{ 2228 /* 2229 * All Zve* extensions support all vector fixed-point arithmetic 2230 * instructions, except that vsmul.vv and vsmul.vx are not supported 2231 * for EEW=64 in Zve64*. (Section 18.2) 2232 */ 2233 return opivx_check(s, a) && 2234 (!has_ext(s, RVV) && 2235 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2236} 2237 2238GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2239GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2240 2241/* Vector Single-Width Scaling Shift Instructions */ 2242GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2243GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2244GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2245GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2246GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2247GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2248 2249/* Vector Narrowing Fixed-Point Clip Instructions */ 2250GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2251GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2252GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2253GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2254GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2255GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2256 2257/* 2258 *** Vector Float Point Arithmetic Instructions 2259 */ 2260 2261/* 2262 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2263 * RVF and RVD can be treated equally. 2264 * We don't have to deal with the cases of: SEW > FLEN. 2265 * 2266 * If SEW < FLEN, check whether input fp register is a valid 2267 * NaN-boxed value, in which case the least-significant SEW bits 2268 * of the f regsiter are used, else the canonical NaN value is used. 2269 */ 2270static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2271{ 2272 switch (s->sew) { 2273 case 1: 2274 gen_check_nanbox_h(out, in); 2275 break; 2276 case 2: 2277 gen_check_nanbox_s(out, in); 2278 break; 2279 case 3: 2280 tcg_gen_mov_i64(out, in); 2281 break; 2282 default: 2283 g_assert_not_reached(); 2284 } 2285} 2286 2287/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2288 2289/* 2290 * If the current SEW does not correspond to a supported IEEE floating-point 2291 * type, an illegal instruction exception is raised. 2292 */ 2293static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2294{ 2295 return require_rvv(s) && 2296 require_rvf(s) && 2297 vext_check_isa_ill(s) && 2298 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2299 require_zve32f(s) && 2300 require_zve64f(s); 2301} 2302 2303/* OPFVV without GVEC IR */ 2304#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2305static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2306{ \ 2307 if (CHECK(s, a)) { \ 2308 uint32_t data = 0; \ 2309 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2310 gen_helper_##NAME##_h, \ 2311 gen_helper_##NAME##_w, \ 2312 gen_helper_##NAME##_d, \ 2313 }; \ 2314 TCGLabel *over = gen_new_label(); \ 2315 gen_set_rm(s, RISCV_FRM_DYN); \ 2316 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2317 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2318 \ 2319 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2320 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2321 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2322 vreg_ofs(s, a->rs1), \ 2323 vreg_ofs(s, a->rs2), cpu_env, \ 2324 s->cfg_ptr->vlen / 8, \ 2325 s->cfg_ptr->vlen / 8, data, \ 2326 fns[s->sew - 1]); \ 2327 mark_vs_dirty(s); \ 2328 gen_set_label(over); \ 2329 return true; \ 2330 } \ 2331 return false; \ 2332} 2333GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2334GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2335 2336typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2337 TCGv_env, TCGv_i32); 2338 2339static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2340 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2341{ 2342 TCGv_ptr dest, src2, mask; 2343 TCGv_i32 desc; 2344 TCGv_i64 t1; 2345 2346 TCGLabel *over = gen_new_label(); 2347 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2348 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2349 2350 dest = tcg_temp_new_ptr(); 2351 mask = tcg_temp_new_ptr(); 2352 src2 = tcg_temp_new_ptr(); 2353 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2354 s->cfg_ptr->vlen / 8, data)); 2355 2356 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2357 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2358 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2359 2360 /* NaN-box f[rs1] */ 2361 t1 = tcg_temp_new_i64(); 2362 do_nanbox(s, t1, cpu_fpr[rs1]); 2363 2364 fn(dest, mask, t1, src2, cpu_env, desc); 2365 2366 tcg_temp_free_ptr(dest); 2367 tcg_temp_free_ptr(mask); 2368 tcg_temp_free_ptr(src2); 2369 tcg_temp_free_i64(t1); 2370 mark_vs_dirty(s); 2371 gen_set_label(over); 2372 return true; 2373} 2374 2375/* 2376 * If the current SEW does not correspond to a supported IEEE floating-point 2377 * type, an illegal instruction exception is raised 2378 */ 2379static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2380{ 2381 return require_rvv(s) && 2382 require_rvf(s) && 2383 vext_check_isa_ill(s) && 2384 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2385 require_zve32f(s) && 2386 require_zve64f(s); 2387} 2388 2389/* OPFVF without GVEC IR */ 2390#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2391static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2392{ \ 2393 if (CHECK(s, a)) { \ 2394 uint32_t data = 0; \ 2395 static gen_helper_opfvf *const fns[3] = { \ 2396 gen_helper_##NAME##_h, \ 2397 gen_helper_##NAME##_w, \ 2398 gen_helper_##NAME##_d, \ 2399 }; \ 2400 gen_set_rm(s, RISCV_FRM_DYN); \ 2401 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2402 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2403 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2404 fns[s->sew - 1], s); \ 2405 } \ 2406 return false; \ 2407} 2408 2409GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2410GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2411GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2412 2413/* Vector Widening Floating-Point Add/Subtract Instructions */ 2414static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2415{ 2416 return require_rvv(s) && 2417 require_scale_rvf(s) && 2418 (s->sew != MO_8) && 2419 vext_check_isa_ill(s) && 2420 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2421 require_scale_zve32f(s) && 2422 require_scale_zve64f(s); 2423} 2424 2425/* OPFVV with WIDEN */ 2426#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2427static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2428{ \ 2429 if (CHECK(s, a)) { \ 2430 uint32_t data = 0; \ 2431 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2432 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2433 }; \ 2434 TCGLabel *over = gen_new_label(); \ 2435 gen_set_rm(s, RISCV_FRM_DYN); \ 2436 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2437 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2438 \ 2439 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2440 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2441 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2442 vreg_ofs(s, a->rs1), \ 2443 vreg_ofs(s, a->rs2), cpu_env, \ 2444 s->cfg_ptr->vlen / 8, \ 2445 s->cfg_ptr->vlen / 8, data, \ 2446 fns[s->sew - 1]); \ 2447 mark_vs_dirty(s); \ 2448 gen_set_label(over); \ 2449 return true; \ 2450 } \ 2451 return false; \ 2452} 2453 2454GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2455GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2456 2457static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2458{ 2459 return require_rvv(s) && 2460 require_scale_rvf(s) && 2461 (s->sew != MO_8) && 2462 vext_check_isa_ill(s) && 2463 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2464 require_scale_zve32f(s) && 2465 require_scale_zve64f(s); 2466} 2467 2468/* OPFVF with WIDEN */ 2469#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2470static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2471{ \ 2472 if (opfvf_widen_check(s, a)) { \ 2473 uint32_t data = 0; \ 2474 static gen_helper_opfvf *const fns[2] = { \ 2475 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2476 }; \ 2477 gen_set_rm(s, RISCV_FRM_DYN); \ 2478 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2479 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2480 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2481 fns[s->sew - 1], s); \ 2482 } \ 2483 return false; \ 2484} 2485 2486GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2487GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2488 2489static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2490{ 2491 return require_rvv(s) && 2492 require_scale_rvf(s) && 2493 (s->sew != MO_8) && 2494 vext_check_isa_ill(s) && 2495 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2496 require_scale_zve32f(s) && 2497 require_scale_zve64f(s); 2498} 2499 2500/* WIDEN OPFVV with WIDEN */ 2501#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2502static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2503{ \ 2504 if (opfwv_widen_check(s, a)) { \ 2505 uint32_t data = 0; \ 2506 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2507 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2508 }; \ 2509 TCGLabel *over = gen_new_label(); \ 2510 gen_set_rm(s, RISCV_FRM_DYN); \ 2511 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2512 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2513 \ 2514 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2515 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2516 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2517 vreg_ofs(s, a->rs1), \ 2518 vreg_ofs(s, a->rs2), cpu_env, \ 2519 s->cfg_ptr->vlen / 8, \ 2520 s->cfg_ptr->vlen / 8, data, \ 2521 fns[s->sew - 1]); \ 2522 mark_vs_dirty(s); \ 2523 gen_set_label(over); \ 2524 return true; \ 2525 } \ 2526 return false; \ 2527} 2528 2529GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2530GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2531 2532static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2533{ 2534 return require_rvv(s) && 2535 require_scale_rvf(s) && 2536 (s->sew != MO_8) && 2537 vext_check_isa_ill(s) && 2538 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2539 require_scale_zve32f(s) && 2540 require_scale_zve64f(s); 2541} 2542 2543/* WIDEN OPFVF with WIDEN */ 2544#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2545static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2546{ \ 2547 if (opfwf_widen_check(s, a)) { \ 2548 uint32_t data = 0; \ 2549 static gen_helper_opfvf *const fns[2] = { \ 2550 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2551 }; \ 2552 gen_set_rm(s, RISCV_FRM_DYN); \ 2553 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2554 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2555 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2556 fns[s->sew - 1], s); \ 2557 } \ 2558 return false; \ 2559} 2560 2561GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2562GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2563 2564/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2565GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2566GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2567GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2568GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2569GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2570 2571/* Vector Widening Floating-Point Multiply */ 2572GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2573GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2574 2575/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2576GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2577GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2578GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2579GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2580GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2581GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2582GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2583GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2584GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2585GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2586GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2587GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2588GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2589GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2590GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2591GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2592 2593/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2594GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2595GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2596GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2597GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2598GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2599GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2600GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2601GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2602 2603/* Vector Floating-Point Square-Root Instruction */ 2604 2605/* 2606 * If the current SEW does not correspond to a supported IEEE floating-point 2607 * type, an illegal instruction exception is raised 2608 */ 2609static bool opfv_check(DisasContext *s, arg_rmr *a) 2610{ 2611 return require_rvv(s) && 2612 require_rvf(s) && 2613 vext_check_isa_ill(s) && 2614 /* OPFV instructions ignore vs1 check */ 2615 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2616 require_zve32f(s) && 2617 require_zve64f(s); 2618} 2619 2620static bool do_opfv(DisasContext *s, arg_rmr *a, 2621 gen_helper_gvec_3_ptr *fn, 2622 bool (*checkfn)(DisasContext *, arg_rmr *), 2623 int rm) 2624{ 2625 if (checkfn(s, a)) { 2626 if (rm != RISCV_FRM_DYN) { 2627 gen_set_rm(s, RISCV_FRM_DYN); 2628 } 2629 2630 uint32_t data = 0; 2631 TCGLabel *over = gen_new_label(); 2632 gen_set_rm(s, rm); 2633 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2634 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2635 2636 data = FIELD_DP32(data, VDATA, VM, a->vm); 2637 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2638 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2639 vreg_ofs(s, a->rs2), cpu_env, 2640 s->cfg_ptr->vlen / 8, 2641 s->cfg_ptr->vlen / 8, data, fn); 2642 mark_vs_dirty(s); 2643 gen_set_label(over); 2644 return true; 2645 } 2646 return false; 2647} 2648 2649#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2650static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2651{ \ 2652 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2653 gen_helper_##NAME##_h, \ 2654 gen_helper_##NAME##_w, \ 2655 gen_helper_##NAME##_d \ 2656 }; \ 2657 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2658} 2659 2660GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2661GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2662GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2663 2664/* Vector Floating-Point MIN/MAX Instructions */ 2665GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2666GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2667GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2668GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2669 2670/* Vector Floating-Point Sign-Injection Instructions */ 2671GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2672GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2673GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2674GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2675GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2676GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2677 2678/* Vector Floating-Point Compare Instructions */ 2679static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2680{ 2681 return require_rvv(s) && 2682 require_rvf(s) && 2683 vext_check_isa_ill(s) && 2684 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2685 require_zve32f(s) && 2686 require_zve64f(s); 2687} 2688 2689GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2690GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2691GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2692GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2693 2694static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2695{ 2696 return require_rvv(s) && 2697 require_rvf(s) && 2698 vext_check_isa_ill(s) && 2699 vext_check_ms(s, a->rd, a->rs2) && 2700 require_zve32f(s) && 2701 require_zve64f(s); 2702} 2703 2704GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2705GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2706GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2707GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2708GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2709GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2710 2711/* Vector Floating-Point Classify Instruction */ 2712GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2713 2714/* Vector Floating-Point Merge Instruction */ 2715GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2716 2717static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2718{ 2719 if (require_rvv(s) && 2720 require_rvf(s) && 2721 vext_check_isa_ill(s) && 2722 require_align(a->rd, s->lmul) && 2723 require_zve32f(s) && 2724 require_zve64f(s)) { 2725 gen_set_rm(s, RISCV_FRM_DYN); 2726 2727 TCGv_i64 t1; 2728 2729 if (s->vl_eq_vlmax) { 2730 t1 = tcg_temp_new_i64(); 2731 /* NaN-box f[rs1] */ 2732 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2733 2734 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2735 MAXSZ(s), MAXSZ(s), t1); 2736 mark_vs_dirty(s); 2737 } else { 2738 TCGv_ptr dest; 2739 TCGv_i32 desc; 2740 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2741 static gen_helper_vmv_vx * const fns[3] = { 2742 gen_helper_vmv_v_x_h, 2743 gen_helper_vmv_v_x_w, 2744 gen_helper_vmv_v_x_d, 2745 }; 2746 TCGLabel *over = gen_new_label(); 2747 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2748 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2749 2750 t1 = tcg_temp_new_i64(); 2751 /* NaN-box f[rs1] */ 2752 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2753 2754 dest = tcg_temp_new_ptr(); 2755 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2756 s->cfg_ptr->vlen / 8, data)); 2757 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2758 2759 fns[s->sew - 1](dest, t1, cpu_env, desc); 2760 2761 tcg_temp_free_ptr(dest); 2762 mark_vs_dirty(s); 2763 gen_set_label(over); 2764 } 2765 tcg_temp_free_i64(t1); 2766 return true; 2767 } 2768 return false; 2769} 2770 2771/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2772#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2773static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2774{ \ 2775 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2776 gen_helper_##HELPER##_h, \ 2777 gen_helper_##HELPER##_w, \ 2778 gen_helper_##HELPER##_d \ 2779 }; \ 2780 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2781} 2782 2783GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2784GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2785GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2786GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2787/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2788GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2789GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2790 2791/* Widening Floating-Point/Integer Type-Convert Instructions */ 2792 2793/* 2794 * If the current SEW does not correspond to a supported IEEE floating-point 2795 * type, an illegal instruction exception is raised 2796 */ 2797static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2798{ 2799 return require_rvv(s) && 2800 vext_check_isa_ill(s) && 2801 vext_check_ds(s, a->rd, a->rs2, a->vm); 2802} 2803 2804static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2805{ 2806 return opfv_widen_check(s, a) && 2807 require_rvf(s) && 2808 require_zve32f(s) && 2809 require_zve64f(s); 2810} 2811 2812static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2813{ 2814 return opfv_widen_check(s, a) && 2815 require_scale_rvf(s) && 2816 (s->sew != MO_8) && 2817 require_scale_zve32f(s) && 2818 require_scale_zve64f(s); 2819} 2820 2821#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2822static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2823{ \ 2824 if (CHECK(s, a)) { \ 2825 if (FRM != RISCV_FRM_DYN) { \ 2826 gen_set_rm(s, RISCV_FRM_DYN); \ 2827 } \ 2828 \ 2829 uint32_t data = 0; \ 2830 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2831 gen_helper_##HELPER##_h, \ 2832 gen_helper_##HELPER##_w, \ 2833 }; \ 2834 TCGLabel *over = gen_new_label(); \ 2835 gen_set_rm(s, FRM); \ 2836 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2837 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2838 \ 2839 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2840 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2841 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2842 vreg_ofs(s, a->rs2), cpu_env, \ 2843 s->cfg_ptr->vlen / 8, \ 2844 s->cfg_ptr->vlen / 8, data, \ 2845 fns[s->sew - 1]); \ 2846 mark_vs_dirty(s); \ 2847 gen_set_label(over); \ 2848 return true; \ 2849 } \ 2850 return false; \ 2851} 2852 2853GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2854 RISCV_FRM_DYN) 2855GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2856 RISCV_FRM_DYN) 2857GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2858 RISCV_FRM_DYN) 2859/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2860GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2861 RISCV_FRM_RTZ) 2862GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2863 RISCV_FRM_RTZ) 2864 2865static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2866{ 2867 return require_rvv(s) && 2868 require_scale_rvf(s) && 2869 vext_check_isa_ill(s) && 2870 /* OPFV widening instructions ignore vs1 check */ 2871 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2872 require_scale_zve32f(s) && 2873 require_scale_zve64f(s); 2874} 2875 2876#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2877static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2878{ \ 2879 if (opfxv_widen_check(s, a)) { \ 2880 uint32_t data = 0; \ 2881 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2882 gen_helper_##NAME##_b, \ 2883 gen_helper_##NAME##_h, \ 2884 gen_helper_##NAME##_w, \ 2885 }; \ 2886 TCGLabel *over = gen_new_label(); \ 2887 gen_set_rm(s, RISCV_FRM_DYN); \ 2888 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2889 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2890 \ 2891 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2892 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2893 vreg_ofs(s, a->rs2), cpu_env, \ 2894 s->cfg_ptr->vlen / 8, \ 2895 s->cfg_ptr->vlen / 8, data, \ 2896 fns[s->sew]); \ 2897 mark_vs_dirty(s); \ 2898 gen_set_label(over); \ 2899 return true; \ 2900 } \ 2901 return false; \ 2902} 2903 2904GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2905GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2906 2907/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2908 2909/* 2910 * If the current SEW does not correspond to a supported IEEE floating-point 2911 * type, an illegal instruction exception is raised 2912 */ 2913static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2914{ 2915 return require_rvv(s) && 2916 vext_check_isa_ill(s) && 2917 /* OPFV narrowing instructions ignore vs1 check */ 2918 vext_check_sd(s, a->rd, a->rs2, a->vm); 2919} 2920 2921static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2922{ 2923 return opfv_narrow_check(s, a) && 2924 require_rvf(s) && 2925 (s->sew != MO_64) && 2926 require_zve32f(s) && 2927 require_zve64f(s); 2928} 2929 2930static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2931{ 2932 return opfv_narrow_check(s, a) && 2933 require_scale_rvf(s) && 2934 (s->sew != MO_8) && 2935 require_scale_zve32f(s) && 2936 require_scale_zve64f(s); 2937} 2938 2939#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2940static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2941{ \ 2942 if (CHECK(s, a)) { \ 2943 if (FRM != RISCV_FRM_DYN) { \ 2944 gen_set_rm(s, RISCV_FRM_DYN); \ 2945 } \ 2946 \ 2947 uint32_t data = 0; \ 2948 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2949 gen_helper_##HELPER##_h, \ 2950 gen_helper_##HELPER##_w, \ 2951 }; \ 2952 TCGLabel *over = gen_new_label(); \ 2953 gen_set_rm(s, FRM); \ 2954 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2955 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2956 \ 2957 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2958 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2959 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2960 vreg_ofs(s, a->rs2), cpu_env, \ 2961 s->cfg_ptr->vlen / 8, \ 2962 s->cfg_ptr->vlen / 8, data, \ 2963 fns[s->sew - 1]); \ 2964 mark_vs_dirty(s); \ 2965 gen_set_label(over); \ 2966 return true; \ 2967 } \ 2968 return false; \ 2969} 2970 2971GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2972 RISCV_FRM_DYN) 2973GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2974 RISCV_FRM_DYN) 2975GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2976 RISCV_FRM_DYN) 2977/* Reuse the helper function from vfncvt.f.f.w */ 2978GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2979 RISCV_FRM_ROD) 2980 2981static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2982{ 2983 return require_rvv(s) && 2984 require_scale_rvf(s) && 2985 vext_check_isa_ill(s) && 2986 /* OPFV narrowing instructions ignore vs1 check */ 2987 vext_check_sd(s, a->rd, a->rs2, a->vm) && 2988 require_scale_zve32f(s) && 2989 require_scale_zve64f(s); 2990} 2991 2992#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2993static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2994{ \ 2995 if (opxfv_narrow_check(s, a)) { \ 2996 if (FRM != RISCV_FRM_DYN) { \ 2997 gen_set_rm(s, RISCV_FRM_DYN); \ 2998 } \ 2999 \ 3000 uint32_t data = 0; \ 3001 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3002 gen_helper_##HELPER##_b, \ 3003 gen_helper_##HELPER##_h, \ 3004 gen_helper_##HELPER##_w, \ 3005 }; \ 3006 TCGLabel *over = gen_new_label(); \ 3007 gen_set_rm(s, FRM); \ 3008 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3009 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3010 \ 3011 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3012 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3013 vreg_ofs(s, a->rs2), cpu_env, \ 3014 s->cfg_ptr->vlen / 8, \ 3015 s->cfg_ptr->vlen / 8, data, \ 3016 fns[s->sew]); \ 3017 mark_vs_dirty(s); \ 3018 gen_set_label(over); \ 3019 return true; \ 3020 } \ 3021 return false; \ 3022} 3023 3024GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3025GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3026/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3027GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3028GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3029 3030/* 3031 *** Vector Reduction Operations 3032 */ 3033/* Vector Single-Width Integer Reduction Instructions */ 3034static bool reduction_check(DisasContext *s, arg_rmrr *a) 3035{ 3036 return require_rvv(s) && 3037 vext_check_isa_ill(s) && 3038 vext_check_reduction(s, a->rs2); 3039} 3040 3041GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3042GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3043GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3044GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3045GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3046GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3047GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3048GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3049 3050/* Vector Widening Integer Reduction Instructions */ 3051static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3052{ 3053 return reduction_check(s, a) && (s->sew < MO_64) && 3054 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3055} 3056 3057GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3058GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3059 3060/* Vector Single-Width Floating-Point Reduction Instructions */ 3061static bool freduction_check(DisasContext *s, arg_rmrr *a) 3062{ 3063 return reduction_check(s, a) && 3064 require_rvf(s) && 3065 require_zve32f(s) && 3066 require_zve64f(s); 3067} 3068 3069GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3070GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3071GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3072 3073/* Vector Widening Floating-Point Reduction Instructions */ 3074static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3075{ 3076 return reduction_widen_check(s, a) && 3077 require_scale_rvf(s) && 3078 (s->sew != MO_8); 3079} 3080 3081GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3082 3083/* 3084 *** Vector Mask Operations 3085 */ 3086 3087/* Vector Mask-Register Logical Instructions */ 3088#define GEN_MM_TRANS(NAME) \ 3089static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3090{ \ 3091 if (require_rvv(s) && \ 3092 vext_check_isa_ill(s)) { \ 3093 uint32_t data = 0; \ 3094 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3095 TCGLabel *over = gen_new_label(); \ 3096 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3097 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3098 \ 3099 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3100 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3101 vreg_ofs(s, a->rs1), \ 3102 vreg_ofs(s, a->rs2), cpu_env, \ 3103 s->cfg_ptr->vlen / 8, \ 3104 s->cfg_ptr->vlen / 8, data, fn); \ 3105 mark_vs_dirty(s); \ 3106 gen_set_label(over); \ 3107 return true; \ 3108 } \ 3109 return false; \ 3110} 3111 3112GEN_MM_TRANS(vmand_mm) 3113GEN_MM_TRANS(vmnand_mm) 3114GEN_MM_TRANS(vmandn_mm) 3115GEN_MM_TRANS(vmxor_mm) 3116GEN_MM_TRANS(vmor_mm) 3117GEN_MM_TRANS(vmnor_mm) 3118GEN_MM_TRANS(vmorn_mm) 3119GEN_MM_TRANS(vmxnor_mm) 3120 3121/* Vector count population in mask vcpop */ 3122static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3123{ 3124 if (require_rvv(s) && 3125 vext_check_isa_ill(s) && 3126 s->vstart == 0) { 3127 TCGv_ptr src2, mask; 3128 TCGv dst; 3129 TCGv_i32 desc; 3130 uint32_t data = 0; 3131 data = FIELD_DP32(data, VDATA, VM, a->vm); 3132 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3133 3134 mask = tcg_temp_new_ptr(); 3135 src2 = tcg_temp_new_ptr(); 3136 dst = dest_gpr(s, a->rd); 3137 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3138 s->cfg_ptr->vlen / 8, data)); 3139 3140 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3141 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3142 3143 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3144 gen_set_gpr(s, a->rd, dst); 3145 3146 tcg_temp_free_ptr(mask); 3147 tcg_temp_free_ptr(src2); 3148 3149 return true; 3150 } 3151 return false; 3152} 3153 3154/* vmfirst find-first-set mask bit */ 3155static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3156{ 3157 if (require_rvv(s) && 3158 vext_check_isa_ill(s) && 3159 s->vstart == 0) { 3160 TCGv_ptr src2, mask; 3161 TCGv dst; 3162 TCGv_i32 desc; 3163 uint32_t data = 0; 3164 data = FIELD_DP32(data, VDATA, VM, a->vm); 3165 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3166 3167 mask = tcg_temp_new_ptr(); 3168 src2 = tcg_temp_new_ptr(); 3169 dst = dest_gpr(s, a->rd); 3170 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3171 s->cfg_ptr->vlen / 8, data)); 3172 3173 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3174 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3175 3176 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3177 gen_set_gpr(s, a->rd, dst); 3178 3179 tcg_temp_free_ptr(mask); 3180 tcg_temp_free_ptr(src2); 3181 return true; 3182 } 3183 return false; 3184} 3185 3186/* vmsbf.m set-before-first mask bit */ 3187/* vmsif.m set-includ-first mask bit */ 3188/* vmsof.m set-only-first mask bit */ 3189#define GEN_M_TRANS(NAME) \ 3190static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3191{ \ 3192 if (require_rvv(s) && \ 3193 vext_check_isa_ill(s) && \ 3194 require_vm(a->vm, a->rd) && \ 3195 (a->rd != a->rs2) && \ 3196 (s->vstart == 0)) { \ 3197 uint32_t data = 0; \ 3198 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3199 TCGLabel *over = gen_new_label(); \ 3200 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3201 \ 3202 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3203 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3204 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3205 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3206 cpu_env, s->cfg_ptr->vlen / 8, \ 3207 s->cfg_ptr->vlen / 8, \ 3208 data, fn); \ 3209 mark_vs_dirty(s); \ 3210 gen_set_label(over); \ 3211 return true; \ 3212 } \ 3213 return false; \ 3214} 3215 3216GEN_M_TRANS(vmsbf_m) 3217GEN_M_TRANS(vmsif_m) 3218GEN_M_TRANS(vmsof_m) 3219 3220/* 3221 * Vector Iota Instruction 3222 * 3223 * 1. The destination register cannot overlap the source register. 3224 * 2. If masked, cannot overlap the mask register ('v0'). 3225 * 3. An illegal instruction exception is raised if vstart is non-zero. 3226 */ 3227static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3228{ 3229 if (require_rvv(s) && 3230 vext_check_isa_ill(s) && 3231 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3232 require_vm(a->vm, a->rd) && 3233 require_align(a->rd, s->lmul) && 3234 (s->vstart == 0)) { 3235 uint32_t data = 0; 3236 TCGLabel *over = gen_new_label(); 3237 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3238 3239 data = FIELD_DP32(data, VDATA, VM, a->vm); 3240 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3241 static gen_helper_gvec_3_ptr * const fns[4] = { 3242 gen_helper_viota_m_b, gen_helper_viota_m_h, 3243 gen_helper_viota_m_w, gen_helper_viota_m_d, 3244 }; 3245 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3246 vreg_ofs(s, a->rs2), cpu_env, 3247 s->cfg_ptr->vlen / 8, 3248 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3249 mark_vs_dirty(s); 3250 gen_set_label(over); 3251 return true; 3252 } 3253 return false; 3254} 3255 3256/* Vector Element Index Instruction */ 3257static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3258{ 3259 if (require_rvv(s) && 3260 vext_check_isa_ill(s) && 3261 require_align(a->rd, s->lmul) && 3262 require_vm(a->vm, a->rd)) { 3263 uint32_t data = 0; 3264 TCGLabel *over = gen_new_label(); 3265 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3266 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3267 3268 data = FIELD_DP32(data, VDATA, VM, a->vm); 3269 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3270 static gen_helper_gvec_2_ptr * const fns[4] = { 3271 gen_helper_vid_v_b, gen_helper_vid_v_h, 3272 gen_helper_vid_v_w, gen_helper_vid_v_d, 3273 }; 3274 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3275 cpu_env, s->cfg_ptr->vlen / 8, 3276 s->cfg_ptr->vlen / 8, 3277 data, fns[s->sew]); 3278 mark_vs_dirty(s); 3279 gen_set_label(over); 3280 return true; 3281 } 3282 return false; 3283} 3284 3285/* 3286 *** Vector Permutation Instructions 3287 */ 3288 3289static void load_element(TCGv_i64 dest, TCGv_ptr base, 3290 int ofs, int sew, bool sign) 3291{ 3292 switch (sew) { 3293 case MO_8: 3294 if (!sign) { 3295 tcg_gen_ld8u_i64(dest, base, ofs); 3296 } else { 3297 tcg_gen_ld8s_i64(dest, base, ofs); 3298 } 3299 break; 3300 case MO_16: 3301 if (!sign) { 3302 tcg_gen_ld16u_i64(dest, base, ofs); 3303 } else { 3304 tcg_gen_ld16s_i64(dest, base, ofs); 3305 } 3306 break; 3307 case MO_32: 3308 if (!sign) { 3309 tcg_gen_ld32u_i64(dest, base, ofs); 3310 } else { 3311 tcg_gen_ld32s_i64(dest, base, ofs); 3312 } 3313 break; 3314 case MO_64: 3315 tcg_gen_ld_i64(dest, base, ofs); 3316 break; 3317 default: 3318 g_assert_not_reached(); 3319 break; 3320 } 3321} 3322 3323/* offset of the idx element with base regsiter r */ 3324static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3325{ 3326#if HOST_BIG_ENDIAN 3327 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3328#else 3329 return vreg_ofs(s, r) + (idx << s->sew); 3330#endif 3331} 3332 3333/* adjust the index according to the endian */ 3334static void endian_adjust(TCGv_i32 ofs, int sew) 3335{ 3336#if HOST_BIG_ENDIAN 3337 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3338#endif 3339} 3340 3341/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3342static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3343 int vreg, TCGv idx, int vlmax) 3344{ 3345 TCGv_i32 ofs = tcg_temp_new_i32(); 3346 TCGv_ptr base = tcg_temp_new_ptr(); 3347 TCGv_i64 t_idx = tcg_temp_new_i64(); 3348 TCGv_i64 t_vlmax, t_zero; 3349 3350 /* 3351 * Mask the index to the length so that we do 3352 * not produce an out-of-range load. 3353 */ 3354 tcg_gen_trunc_tl_i32(ofs, idx); 3355 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3356 3357 /* Convert the index to an offset. */ 3358 endian_adjust(ofs, s->sew); 3359 tcg_gen_shli_i32(ofs, ofs, s->sew); 3360 3361 /* Convert the index to a pointer. */ 3362 tcg_gen_ext_i32_ptr(base, ofs); 3363 tcg_gen_add_ptr(base, base, cpu_env); 3364 3365 /* Perform the load. */ 3366 load_element(dest, base, 3367 vreg_ofs(s, vreg), s->sew, false); 3368 tcg_temp_free_ptr(base); 3369 tcg_temp_free_i32(ofs); 3370 3371 /* Flush out-of-range indexing to zero. */ 3372 t_vlmax = tcg_constant_i64(vlmax); 3373 t_zero = tcg_constant_i64(0); 3374 tcg_gen_extu_tl_i64(t_idx, idx); 3375 3376 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3377 t_vlmax, dest, t_zero); 3378 3379 tcg_temp_free_i64(t_idx); 3380} 3381 3382static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3383 int vreg, int idx, bool sign) 3384{ 3385 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3386} 3387 3388/* Integer Scalar Move Instruction */ 3389 3390static void store_element(TCGv_i64 val, TCGv_ptr base, 3391 int ofs, int sew) 3392{ 3393 switch (sew) { 3394 case MO_8: 3395 tcg_gen_st8_i64(val, base, ofs); 3396 break; 3397 case MO_16: 3398 tcg_gen_st16_i64(val, base, ofs); 3399 break; 3400 case MO_32: 3401 tcg_gen_st32_i64(val, base, ofs); 3402 break; 3403 case MO_64: 3404 tcg_gen_st_i64(val, base, ofs); 3405 break; 3406 default: 3407 g_assert_not_reached(); 3408 break; 3409 } 3410} 3411 3412/* 3413 * Store vreg[idx] = val. 3414 * The index must be in range of VLMAX. 3415 */ 3416static void vec_element_storei(DisasContext *s, int vreg, 3417 int idx, TCGv_i64 val) 3418{ 3419 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3420} 3421 3422/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3423static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3424{ 3425 if (require_rvv(s) && 3426 vext_check_isa_ill(s)) { 3427 TCGv_i64 t1; 3428 TCGv dest; 3429 3430 t1 = tcg_temp_new_i64(); 3431 dest = tcg_temp_new(); 3432 /* 3433 * load vreg and sign-extend to 64 bits, 3434 * then truncate to XLEN bits before storing to gpr. 3435 */ 3436 vec_element_loadi(s, t1, a->rs2, 0, true); 3437 tcg_gen_trunc_i64_tl(dest, t1); 3438 gen_set_gpr(s, a->rd, dest); 3439 tcg_temp_free_i64(t1); 3440 tcg_temp_free(dest); 3441 3442 return true; 3443 } 3444 return false; 3445} 3446 3447/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3448static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3449{ 3450 if (require_rvv(s) && 3451 vext_check_isa_ill(s)) { 3452 /* This instruction ignores LMUL and vector register groups */ 3453 TCGv_i64 t1; 3454 TCGv s1; 3455 TCGLabel *over = gen_new_label(); 3456 3457 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3458 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3459 3460 t1 = tcg_temp_new_i64(); 3461 3462 /* 3463 * load gpr and sign-extend to 64 bits, 3464 * then truncate to SEW bits when storing to vreg. 3465 */ 3466 s1 = get_gpr(s, a->rs1, EXT_NONE); 3467 tcg_gen_ext_tl_i64(t1, s1); 3468 vec_element_storei(s, a->rd, 0, t1); 3469 tcg_temp_free_i64(t1); 3470 mark_vs_dirty(s); 3471 gen_set_label(over); 3472 return true; 3473 } 3474 return false; 3475} 3476 3477/* Floating-Point Scalar Move Instructions */ 3478static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3479{ 3480 if (require_rvv(s) && 3481 require_rvf(s) && 3482 vext_check_isa_ill(s) && 3483 require_zve32f(s) && 3484 require_zve64f(s)) { 3485 gen_set_rm(s, RISCV_FRM_DYN); 3486 3487 unsigned int ofs = (8 << s->sew); 3488 unsigned int len = 64 - ofs; 3489 TCGv_i64 t_nan; 3490 3491 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3492 /* NaN-box f[rd] as necessary for SEW */ 3493 if (len) { 3494 t_nan = tcg_constant_i64(UINT64_MAX); 3495 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3496 t_nan, ofs, len); 3497 } 3498 3499 mark_fs_dirty(s); 3500 return true; 3501 } 3502 return false; 3503} 3504 3505/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3506static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3507{ 3508 if (require_rvv(s) && 3509 require_rvf(s) && 3510 vext_check_isa_ill(s) && 3511 require_zve32f(s) && 3512 require_zve64f(s)) { 3513 gen_set_rm(s, RISCV_FRM_DYN); 3514 3515 /* The instructions ignore LMUL and vector register group. */ 3516 TCGv_i64 t1; 3517 TCGLabel *over = gen_new_label(); 3518 3519 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3520 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3521 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3522 3523 /* NaN-box f[rs1] */ 3524 t1 = tcg_temp_new_i64(); 3525 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3526 3527 vec_element_storei(s, a->rd, 0, t1); 3528 tcg_temp_free_i64(t1); 3529 mark_vs_dirty(s); 3530 gen_set_label(over); 3531 return true; 3532 } 3533 return false; 3534} 3535 3536/* Vector Slide Instructions */ 3537static bool slideup_check(DisasContext *s, arg_rmrr *a) 3538{ 3539 return require_rvv(s) && 3540 vext_check_isa_ill(s) && 3541 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3542} 3543 3544GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3545GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3546GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3547 3548static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3549{ 3550 return require_rvv(s) && 3551 vext_check_isa_ill(s) && 3552 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3553} 3554 3555GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3556GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3557GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3558 3559/* Vector Floating-Point Slide Instructions */ 3560static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3561{ 3562 return slideup_check(s, a) && 3563 require_rvf(s) && 3564 require_zve32f(s) && 3565 require_zve64f(s); 3566} 3567 3568static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3569{ 3570 return slidedown_check(s, a) && 3571 require_rvf(s) && 3572 require_zve32f(s) && 3573 require_zve64f(s); 3574} 3575 3576GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3577GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3578 3579/* Vector Register Gather Instruction */ 3580static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3581{ 3582 return require_rvv(s) && 3583 vext_check_isa_ill(s) && 3584 require_align(a->rd, s->lmul) && 3585 require_align(a->rs1, s->lmul) && 3586 require_align(a->rs2, s->lmul) && 3587 (a->rd != a->rs2 && a->rd != a->rs1) && 3588 require_vm(a->vm, a->rd); 3589} 3590 3591static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3592{ 3593 int8_t emul = MO_16 - s->sew + s->lmul; 3594 return require_rvv(s) && 3595 vext_check_isa_ill(s) && 3596 (emul >= -3 && emul <= 3) && 3597 require_align(a->rd, s->lmul) && 3598 require_align(a->rs1, emul) && 3599 require_align(a->rs2, s->lmul) && 3600 (a->rd != a->rs2 && a->rd != a->rs1) && 3601 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3602 a->rs1, 1 << MAX(emul, 0)) && 3603 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3604 a->rs2, 1 << MAX(s->lmul, 0)) && 3605 require_vm(a->vm, a->rd); 3606} 3607 3608GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3609GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3610 3611static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3612{ 3613 return require_rvv(s) && 3614 vext_check_isa_ill(s) && 3615 require_align(a->rd, s->lmul) && 3616 require_align(a->rs2, s->lmul) && 3617 (a->rd != a->rs2) && 3618 require_vm(a->vm, a->rd); 3619} 3620 3621/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3622static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3623{ 3624 if (!vrgather_vx_check(s, a)) { 3625 return false; 3626 } 3627 3628 if (a->vm && s->vl_eq_vlmax) { 3629 int scale = s->lmul - (s->sew + 3); 3630 int vlmax = s->cfg_ptr->vlen >> -scale; 3631 TCGv_i64 dest = tcg_temp_new_i64(); 3632 3633 if (a->rs1 == 0) { 3634 vec_element_loadi(s, dest, a->rs2, 0, false); 3635 } else { 3636 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3637 } 3638 3639 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3640 MAXSZ(s), MAXSZ(s), dest); 3641 tcg_temp_free_i64(dest); 3642 mark_vs_dirty(s); 3643 } else { 3644 static gen_helper_opivx * const fns[4] = { 3645 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3646 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3647 }; 3648 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3649 } 3650 return true; 3651} 3652 3653/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3654static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3655{ 3656 if (!vrgather_vx_check(s, a)) { 3657 return false; 3658 } 3659 3660 if (a->vm && s->vl_eq_vlmax) { 3661 int scale = s->lmul - (s->sew + 3); 3662 int vlmax = s->cfg_ptr->vlen >> -scale; 3663 if (a->rs1 >= vlmax) { 3664 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3665 MAXSZ(s), MAXSZ(s), 0); 3666 } else { 3667 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3668 endian_ofs(s, a->rs2, a->rs1), 3669 MAXSZ(s), MAXSZ(s)); 3670 } 3671 mark_vs_dirty(s); 3672 } else { 3673 static gen_helper_opivx * const fns[4] = { 3674 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3675 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3676 }; 3677 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3678 s, IMM_ZX); 3679 } 3680 return true; 3681} 3682 3683/* 3684 * Vector Compress Instruction 3685 * 3686 * The destination vector register group cannot overlap the 3687 * source vector register group or the source mask register. 3688 */ 3689static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3690{ 3691 return require_rvv(s) && 3692 vext_check_isa_ill(s) && 3693 require_align(a->rd, s->lmul) && 3694 require_align(a->rs2, s->lmul) && 3695 (a->rd != a->rs2) && 3696 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3697 (s->vstart == 0); 3698} 3699 3700static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3701{ 3702 if (vcompress_vm_check(s, a)) { 3703 uint32_t data = 0; 3704 static gen_helper_gvec_4_ptr * const fns[4] = { 3705 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3706 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3707 }; 3708 TCGLabel *over = gen_new_label(); 3709 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3710 3711 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3712 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3713 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3714 cpu_env, s->cfg_ptr->vlen / 8, 3715 s->cfg_ptr->vlen / 8, data, 3716 fns[s->sew]); 3717 mark_vs_dirty(s); 3718 gen_set_label(over); 3719 return true; 3720 } 3721 return false; 3722} 3723 3724/* 3725 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3726 * Thus, we don't need to check vill bit. (Section 16.6) 3727 */ 3728#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3729static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3730{ \ 3731 if (require_rvv(s) && \ 3732 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3733 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3734 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3735 if (s->vstart == 0) { \ 3736 /* EEW = 8 */ \ 3737 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3738 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3739 mark_vs_dirty(s); \ 3740 } else { \ 3741 TCGLabel *over = gen_new_label(); \ 3742 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3743 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3744 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3745 mark_vs_dirty(s); \ 3746 gen_set_label(over); \ 3747 } \ 3748 return true; \ 3749 } \ 3750 return false; \ 3751} 3752 3753GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3754GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3755GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3756GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3757 3758static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3759{ 3760 uint8_t from = (s->sew + 3) - div; 3761 bool ret = require_rvv(s) && 3762 (from >= 3 && from <= 8) && 3763 (a->rd != a->rs2) && 3764 require_align(a->rd, s->lmul) && 3765 require_align(a->rs2, s->lmul - div) && 3766 require_vm(a->vm, a->rd) && 3767 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3768 return ret; 3769} 3770 3771static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3772{ 3773 uint32_t data = 0; 3774 gen_helper_gvec_3_ptr *fn; 3775 TCGLabel *over = gen_new_label(); 3776 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3777 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3778 3779 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3780 { 3781 NULL, gen_helper_vzext_vf2_h, 3782 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3783 }, 3784 { 3785 NULL, NULL, 3786 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3787 }, 3788 { 3789 NULL, NULL, 3790 NULL, gen_helper_vzext_vf8_d 3791 }, 3792 { 3793 NULL, gen_helper_vsext_vf2_h, 3794 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3795 }, 3796 { 3797 NULL, NULL, 3798 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3799 }, 3800 { 3801 NULL, NULL, 3802 NULL, gen_helper_vsext_vf8_d 3803 } 3804 }; 3805 3806 fn = fns[seq][s->sew]; 3807 if (fn == NULL) { 3808 return false; 3809 } 3810 3811 data = FIELD_DP32(data, VDATA, VM, a->vm); 3812 3813 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3814 vreg_ofs(s, a->rs2), cpu_env, 3815 s->cfg_ptr->vlen / 8, 3816 s->cfg_ptr->vlen / 8, data, fn); 3817 3818 mark_vs_dirty(s); 3819 gen_set_label(over); 3820 return true; 3821} 3822 3823/* Vector Integer Extension */ 3824#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3825static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3826{ \ 3827 if (int_ext_check(s, a, DIV)) { \ 3828 return int_ext_op(s, a, SEQ); \ 3829 } \ 3830 return false; \ 3831} 3832 3833GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3834GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3835GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3836GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3837GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3838GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3839