1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 716} 717 718static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 719{ 720 return require_rvv(s) && 721 vext_check_isa_ill(s) && 722 vext_check_load(s, a->rd, a->nf, a->vm, eew); 723} 724 725GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 729 730static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 731{ 732 uint32_t data = 0; 733 gen_helper_ldst_us *fn; 734 static gen_helper_ldst_us * const fns[2][4] = { 735 /* masked unit stride store */ 736 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 737 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 738 /* unmasked unit stride store */ 739 { gen_helper_vse8_v, gen_helper_vse16_v, 740 gen_helper_vse32_v, gen_helper_vse64_v } 741 }; 742 743 fn = fns[a->vm][eew]; 744 if (fn == NULL) { 745 return false; 746 } 747 748 uint8_t emul = vext_get_emul(s, eew); 749 data = FIELD_DP32(data, VDATA, VM, a->vm); 750 data = FIELD_DP32(data, VDATA, LMUL, emul); 751 data = FIELD_DP32(data, VDATA, NF, a->nf); 752 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 753} 754 755static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 756{ 757 return require_rvv(s) && 758 vext_check_isa_ill(s) && 759 vext_check_store(s, a->rd, a->nf, eew); 760} 761 762GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 766 767/* 768 *** unit stride mask load and store 769 */ 770static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 771{ 772 uint32_t data = 0; 773 gen_helper_ldst_us *fn = gen_helper_vlm_v; 774 775 /* EMUL = 1, NFIELDS = 1 */ 776 data = FIELD_DP32(data, VDATA, LMUL, 0); 777 data = FIELD_DP32(data, VDATA, NF, 1); 778 /* Mask destination register are always tail-agnostic */ 779 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 780 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 781} 782 783static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 784{ 785 /* EMUL = 1, NFIELDS = 1 */ 786 return require_rvv(s) && vext_check_isa_ill(s); 787} 788 789static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 790{ 791 uint32_t data = 0; 792 gen_helper_ldst_us *fn = gen_helper_vsm_v; 793 794 /* EMUL = 1, NFIELDS = 1 */ 795 data = FIELD_DP32(data, VDATA, LMUL, 0); 796 data = FIELD_DP32(data, VDATA, NF, 1); 797 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 798} 799 800static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 801{ 802 /* EMUL = 1, NFIELDS = 1 */ 803 return require_rvv(s) && vext_check_isa_ill(s); 804} 805 806GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 807GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 808 809/* 810 *** stride load and store 811 */ 812typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 813 TCGv, TCGv_env, TCGv_i32); 814 815static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 816 uint32_t data, gen_helper_ldst_stride *fn, 817 DisasContext *s, bool is_store) 818{ 819 TCGv_ptr dest, mask; 820 TCGv base, stride; 821 TCGv_i32 desc; 822 823 TCGLabel *over = gen_new_label(); 824 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 825 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 826 827 dest = tcg_temp_new_ptr(); 828 mask = tcg_temp_new_ptr(); 829 base = get_gpr(s, rs1, EXT_NONE); 830 stride = get_gpr(s, rs2, EXT_NONE); 831 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 832 s->cfg_ptr->vlen / 8, data)); 833 834 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 835 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 836 837 fn(dest, mask, base, stride, cpu_env, desc); 838 839 tcg_temp_free_ptr(dest); 840 tcg_temp_free_ptr(mask); 841 842 if (!is_store) { 843 mark_vs_dirty(s); 844 } 845 846 gen_set_label(over); 847 return true; 848} 849 850static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 851{ 852 uint32_t data = 0; 853 gen_helper_ldst_stride *fn; 854 static gen_helper_ldst_stride * const fns[4] = { 855 gen_helper_vlse8_v, gen_helper_vlse16_v, 856 gen_helper_vlse32_v, gen_helper_vlse64_v 857 }; 858 859 fn = fns[eew]; 860 if (fn == NULL) { 861 return false; 862 } 863 864 uint8_t emul = vext_get_emul(s, eew); 865 data = FIELD_DP32(data, VDATA, VM, a->vm); 866 data = FIELD_DP32(data, VDATA, LMUL, emul); 867 data = FIELD_DP32(data, VDATA, NF, a->nf); 868 data = FIELD_DP32(data, VDATA, VTA, s->vta); 869 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 870} 871 872static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 873{ 874 return require_rvv(s) && 875 vext_check_isa_ill(s) && 876 vext_check_load(s, a->rd, a->nf, a->vm, eew); 877} 878 879GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 880GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 881GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 882GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 883 884static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 885{ 886 uint32_t data = 0; 887 gen_helper_ldst_stride *fn; 888 static gen_helper_ldst_stride * const fns[4] = { 889 /* masked stride store */ 890 gen_helper_vsse8_v, gen_helper_vsse16_v, 891 gen_helper_vsse32_v, gen_helper_vsse64_v 892 }; 893 894 uint8_t emul = vext_get_emul(s, eew); 895 data = FIELD_DP32(data, VDATA, VM, a->vm); 896 data = FIELD_DP32(data, VDATA, LMUL, emul); 897 data = FIELD_DP32(data, VDATA, NF, a->nf); 898 fn = fns[eew]; 899 if (fn == NULL) { 900 return false; 901 } 902 903 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 904} 905 906static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 907{ 908 return require_rvv(s) && 909 vext_check_isa_ill(s) && 910 vext_check_store(s, a->rd, a->nf, eew); 911} 912 913GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 914GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 915GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 916GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 917 918/* 919 *** index load and store 920 */ 921typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 922 TCGv_ptr, TCGv_env, TCGv_i32); 923 924static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 925 uint32_t data, gen_helper_ldst_index *fn, 926 DisasContext *s, bool is_store) 927{ 928 TCGv_ptr dest, mask, index; 929 TCGv base; 930 TCGv_i32 desc; 931 932 TCGLabel *over = gen_new_label(); 933 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 934 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 935 936 dest = tcg_temp_new_ptr(); 937 mask = tcg_temp_new_ptr(); 938 index = tcg_temp_new_ptr(); 939 base = get_gpr(s, rs1, EXT_NONE); 940 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 941 s->cfg_ptr->vlen / 8, data)); 942 943 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 944 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 945 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 946 947 fn(dest, mask, base, index, cpu_env, desc); 948 949 tcg_temp_free_ptr(dest); 950 tcg_temp_free_ptr(mask); 951 tcg_temp_free_ptr(index); 952 953 if (!is_store) { 954 mark_vs_dirty(s); 955 } 956 957 gen_set_label(over); 958 return true; 959} 960 961static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 962{ 963 uint32_t data = 0; 964 gen_helper_ldst_index *fn; 965 static gen_helper_ldst_index * const fns[4][4] = { 966 /* 967 * offset vector register group EEW = 8, 968 * data vector register group EEW = SEW 969 */ 970 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 971 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 972 /* 973 * offset vector register group EEW = 16, 974 * data vector register group EEW = SEW 975 */ 976 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 977 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 978 /* 979 * offset vector register group EEW = 32, 980 * data vector register group EEW = SEW 981 */ 982 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 983 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 984 /* 985 * offset vector register group EEW = 64, 986 * data vector register group EEW = SEW 987 */ 988 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 989 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 990 }; 991 992 fn = fns[eew][s->sew]; 993 994 uint8_t emul = vext_get_emul(s, s->sew); 995 data = FIELD_DP32(data, VDATA, VM, a->vm); 996 data = FIELD_DP32(data, VDATA, LMUL, emul); 997 data = FIELD_DP32(data, VDATA, NF, a->nf); 998 data = FIELD_DP32(data, VDATA, VTA, s->vta); 999 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1000} 1001 1002static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1003{ 1004 return require_rvv(s) && 1005 vext_check_isa_ill(s) && 1006 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1007} 1008 1009GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1010GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1011GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1012GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1013 1014static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1015{ 1016 uint32_t data = 0; 1017 gen_helper_ldst_index *fn; 1018 static gen_helper_ldst_index * const fns[4][4] = { 1019 /* 1020 * offset vector register group EEW = 8, 1021 * data vector register group EEW = SEW 1022 */ 1023 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1024 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1025 /* 1026 * offset vector register group EEW = 16, 1027 * data vector register group EEW = SEW 1028 */ 1029 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1030 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1031 /* 1032 * offset vector register group EEW = 32, 1033 * data vector register group EEW = SEW 1034 */ 1035 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1036 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1037 /* 1038 * offset vector register group EEW = 64, 1039 * data vector register group EEW = SEW 1040 */ 1041 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1042 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1043 }; 1044 1045 fn = fns[eew][s->sew]; 1046 1047 uint8_t emul = vext_get_emul(s, s->sew); 1048 data = FIELD_DP32(data, VDATA, VM, a->vm); 1049 data = FIELD_DP32(data, VDATA, LMUL, emul); 1050 data = FIELD_DP32(data, VDATA, NF, a->nf); 1051 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1052} 1053 1054static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1055{ 1056 return require_rvv(s) && 1057 vext_check_isa_ill(s) && 1058 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1059} 1060 1061GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1062GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1063GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1064GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1065 1066/* 1067 *** unit stride fault-only-first load 1068 */ 1069static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1070 gen_helper_ldst_us *fn, DisasContext *s) 1071{ 1072 TCGv_ptr dest, mask; 1073 TCGv base; 1074 TCGv_i32 desc; 1075 1076 TCGLabel *over = gen_new_label(); 1077 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1078 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1079 1080 dest = tcg_temp_new_ptr(); 1081 mask = tcg_temp_new_ptr(); 1082 base = get_gpr(s, rs1, EXT_NONE); 1083 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1084 s->cfg_ptr->vlen / 8, data)); 1085 1086 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1087 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1088 1089 fn(dest, mask, base, cpu_env, desc); 1090 1091 tcg_temp_free_ptr(dest); 1092 tcg_temp_free_ptr(mask); 1093 mark_vs_dirty(s); 1094 gen_set_label(over); 1095 return true; 1096} 1097 1098static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1099{ 1100 uint32_t data = 0; 1101 gen_helper_ldst_us *fn; 1102 static gen_helper_ldst_us * const fns[4] = { 1103 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1104 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1105 }; 1106 1107 fn = fns[eew]; 1108 if (fn == NULL) { 1109 return false; 1110 } 1111 1112 uint8_t emul = vext_get_emul(s, eew); 1113 data = FIELD_DP32(data, VDATA, VM, a->vm); 1114 data = FIELD_DP32(data, VDATA, LMUL, emul); 1115 data = FIELD_DP32(data, VDATA, NF, a->nf); 1116 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1117 return ldff_trans(a->rd, a->rs1, data, fn, s); 1118} 1119 1120GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1121GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1122GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1123GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1124 1125/* 1126 * load and store whole register instructions 1127 */ 1128typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1129 1130static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1131 uint32_t width, gen_helper_ldst_whole *fn, 1132 DisasContext *s, bool is_store) 1133{ 1134 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1135 TCGLabel *over = gen_new_label(); 1136 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1137 1138 TCGv_ptr dest; 1139 TCGv base; 1140 TCGv_i32 desc; 1141 1142 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1143 dest = tcg_temp_new_ptr(); 1144 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1145 s->cfg_ptr->vlen / 8, data)); 1146 1147 base = get_gpr(s, rs1, EXT_NONE); 1148 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1149 1150 fn(dest, base, cpu_env, desc); 1151 1152 tcg_temp_free_ptr(dest); 1153 1154 if (!is_store) { 1155 mark_vs_dirty(s); 1156 } 1157 gen_set_label(over); 1158 1159 return true; 1160} 1161 1162/* 1163 * load and store whole register instructions ignore vtype and vl setting. 1164 * Thus, we don't need to check vill bit. (Section 7.9) 1165 */ 1166#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1167static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1168{ \ 1169 if (require_rvv(s) && \ 1170 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1171 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1172 gen_helper_##NAME, s, IS_STORE); \ 1173 } \ 1174 return false; \ 1175} 1176 1177GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1178GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1179GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1180GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1181GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1182GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1183GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1184GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1185GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1186GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1187GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1188GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1189GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1190GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1191GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1192GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1193 1194/* 1195 * The vector whole register store instructions are encoded similar to 1196 * unmasked unit-stride store of elements with EEW=8. 1197 */ 1198GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1199GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1200GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1201GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1202 1203/* 1204 *** Vector Integer Arithmetic Instructions 1205 */ 1206 1207/* 1208 * MAXSZ returns the maximum vector size can be operated in bytes, 1209 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1210 * to accerlate vector operation. 1211 */ 1212static inline uint32_t MAXSZ(DisasContext *s) 1213{ 1214 int scale = s->lmul - 3; 1215 return s->cfg_ptr->vlen >> -scale; 1216} 1217 1218static bool opivv_check(DisasContext *s, arg_rmrr *a) 1219{ 1220 return require_rvv(s) && 1221 vext_check_isa_ill(s) && 1222 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1223} 1224 1225typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1226 uint32_t, uint32_t, uint32_t); 1227 1228static inline bool 1229do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1230 gen_helper_gvec_4_ptr *fn) 1231{ 1232 TCGLabel *over = gen_new_label(); 1233 if (!opivv_check(s, a)) { 1234 return false; 1235 } 1236 1237 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1238 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1239 1240 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1241 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1242 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1243 MAXSZ(s), MAXSZ(s)); 1244 } else { 1245 uint32_t data = 0; 1246 1247 data = FIELD_DP32(data, VDATA, VM, a->vm); 1248 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1249 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1250 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1251 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1252 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1253 cpu_env, s->cfg_ptr->vlen / 8, 1254 s->cfg_ptr->vlen / 8, data, fn); 1255 } 1256 mark_vs_dirty(s); 1257 gen_set_label(over); 1258 return true; 1259} 1260 1261/* OPIVV with GVEC IR */ 1262#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1263static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1264{ \ 1265 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1266 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1267 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1268 }; \ 1269 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1270} 1271 1272GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1273GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1274 1275typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1276 TCGv_env, TCGv_i32); 1277 1278static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1279 gen_helper_opivx *fn, DisasContext *s) 1280{ 1281 TCGv_ptr dest, src2, mask; 1282 TCGv src1; 1283 TCGv_i32 desc; 1284 uint32_t data = 0; 1285 1286 TCGLabel *over = gen_new_label(); 1287 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1288 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1289 1290 dest = tcg_temp_new_ptr(); 1291 mask = tcg_temp_new_ptr(); 1292 src2 = tcg_temp_new_ptr(); 1293 src1 = get_gpr(s, rs1, EXT_SIGN); 1294 1295 data = FIELD_DP32(data, VDATA, VM, vm); 1296 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1297 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1298 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1299 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1300 s->cfg_ptr->vlen / 8, data)); 1301 1302 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1303 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1304 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1305 1306 fn(dest, mask, src1, src2, cpu_env, desc); 1307 1308 tcg_temp_free_ptr(dest); 1309 tcg_temp_free_ptr(mask); 1310 tcg_temp_free_ptr(src2); 1311 mark_vs_dirty(s); 1312 gen_set_label(over); 1313 return true; 1314} 1315 1316static bool opivx_check(DisasContext *s, arg_rmrr *a) 1317{ 1318 return require_rvv(s) && 1319 vext_check_isa_ill(s) && 1320 vext_check_ss(s, a->rd, a->rs2, a->vm); 1321} 1322 1323typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1324 uint32_t, uint32_t); 1325 1326static inline bool 1327do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1328 gen_helper_opivx *fn) 1329{ 1330 if (!opivx_check(s, a)) { 1331 return false; 1332 } 1333 1334 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1335 TCGv_i64 src1 = tcg_temp_new_i64(); 1336 1337 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1338 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1339 src1, MAXSZ(s), MAXSZ(s)); 1340 1341 tcg_temp_free_i64(src1); 1342 mark_vs_dirty(s); 1343 return true; 1344 } 1345 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1346} 1347 1348/* OPIVX with GVEC IR */ 1349#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1350static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1351{ \ 1352 static gen_helper_opivx * const fns[4] = { \ 1353 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1354 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1355 }; \ 1356 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1357} 1358 1359GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1360GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1361 1362static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1363{ 1364 tcg_gen_vec_sub8_i64(d, b, a); 1365} 1366 1367static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1368{ 1369 tcg_gen_vec_sub16_i64(d, b, a); 1370} 1371 1372static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1373{ 1374 tcg_gen_sub_i32(ret, arg2, arg1); 1375} 1376 1377static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1378{ 1379 tcg_gen_sub_i64(ret, arg2, arg1); 1380} 1381 1382static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1383{ 1384 tcg_gen_sub_vec(vece, r, b, a); 1385} 1386 1387static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1388 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1389{ 1390 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1391 static const GVecGen2s rsub_op[4] = { 1392 { .fni8 = gen_vec_rsub8_i64, 1393 .fniv = gen_rsub_vec, 1394 .fno = gen_helper_vec_rsubs8, 1395 .opt_opc = vecop_list, 1396 .vece = MO_8 }, 1397 { .fni8 = gen_vec_rsub16_i64, 1398 .fniv = gen_rsub_vec, 1399 .fno = gen_helper_vec_rsubs16, 1400 .opt_opc = vecop_list, 1401 .vece = MO_16 }, 1402 { .fni4 = gen_rsub_i32, 1403 .fniv = gen_rsub_vec, 1404 .fno = gen_helper_vec_rsubs32, 1405 .opt_opc = vecop_list, 1406 .vece = MO_32 }, 1407 { .fni8 = gen_rsub_i64, 1408 .fniv = gen_rsub_vec, 1409 .fno = gen_helper_vec_rsubs64, 1410 .opt_opc = vecop_list, 1411 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1412 .vece = MO_64 }, 1413 }; 1414 1415 tcg_debug_assert(vece <= MO_64); 1416 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1417} 1418 1419GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1420 1421typedef enum { 1422 IMM_ZX, /* Zero-extended */ 1423 IMM_SX, /* Sign-extended */ 1424 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1425 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1426} imm_mode_t; 1427 1428static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1429{ 1430 switch (imm_mode) { 1431 case IMM_ZX: 1432 return extract64(imm, 0, 5); 1433 case IMM_SX: 1434 return sextract64(imm, 0, 5); 1435 case IMM_TRUNC_SEW: 1436 return extract64(imm, 0, s->sew + 3); 1437 case IMM_TRUNC_2SEW: 1438 return extract64(imm, 0, s->sew + 4); 1439 default: 1440 g_assert_not_reached(); 1441 } 1442} 1443 1444static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1445 gen_helper_opivx *fn, DisasContext *s, 1446 imm_mode_t imm_mode) 1447{ 1448 TCGv_ptr dest, src2, mask; 1449 TCGv src1; 1450 TCGv_i32 desc; 1451 uint32_t data = 0; 1452 1453 TCGLabel *over = gen_new_label(); 1454 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1455 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1456 1457 dest = tcg_temp_new_ptr(); 1458 mask = tcg_temp_new_ptr(); 1459 src2 = tcg_temp_new_ptr(); 1460 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1461 1462 data = FIELD_DP32(data, VDATA, VM, vm); 1463 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1464 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1465 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1466 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1467 s->cfg_ptr->vlen / 8, data)); 1468 1469 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1470 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1471 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1472 1473 fn(dest, mask, src1, src2, cpu_env, desc); 1474 1475 tcg_temp_free_ptr(dest); 1476 tcg_temp_free_ptr(mask); 1477 tcg_temp_free_ptr(src2); 1478 mark_vs_dirty(s); 1479 gen_set_label(over); 1480 return true; 1481} 1482 1483typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1484 uint32_t, uint32_t); 1485 1486static inline bool 1487do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1488 gen_helper_opivx *fn, imm_mode_t imm_mode) 1489{ 1490 if (!opivx_check(s, a)) { 1491 return false; 1492 } 1493 1494 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1495 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1496 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1497 mark_vs_dirty(s); 1498 return true; 1499 } 1500 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1501} 1502 1503/* OPIVI with GVEC IR */ 1504#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1505static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1506{ \ 1507 static gen_helper_opivx * const fns[4] = { \ 1508 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1509 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1510 }; \ 1511 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1512 fns[s->sew], IMM_MODE); \ 1513} 1514 1515GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1516 1517static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1518 int64_t c, uint32_t oprsz, uint32_t maxsz) 1519{ 1520 TCGv_i64 tmp = tcg_constant_i64(c); 1521 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1522} 1523 1524GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1525 1526/* Vector Widening Integer Add/Subtract */ 1527 1528/* OPIVV with WIDEN */ 1529static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1530{ 1531 return require_rvv(s) && 1532 vext_check_isa_ill(s) && 1533 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1534} 1535 1536static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1537 gen_helper_gvec_4_ptr *fn, 1538 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1539{ 1540 if (checkfn(s, a)) { 1541 uint32_t data = 0; 1542 TCGLabel *over = gen_new_label(); 1543 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1544 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1545 1546 data = FIELD_DP32(data, VDATA, VM, a->vm); 1547 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1548 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1549 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1550 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1551 vreg_ofs(s, a->rs1), 1552 vreg_ofs(s, a->rs2), 1553 cpu_env, s->cfg_ptr->vlen / 8, 1554 s->cfg_ptr->vlen / 8, 1555 data, fn); 1556 mark_vs_dirty(s); 1557 gen_set_label(over); 1558 return true; 1559 } 1560 return false; 1561} 1562 1563#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1564static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1565{ \ 1566 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1567 gen_helper_##NAME##_b, \ 1568 gen_helper_##NAME##_h, \ 1569 gen_helper_##NAME##_w \ 1570 }; \ 1571 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1572} 1573 1574GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1575GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1576GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1577GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1578 1579/* OPIVX with WIDEN */ 1580static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1581{ 1582 return require_rvv(s) && 1583 vext_check_isa_ill(s) && 1584 vext_check_ds(s, a->rd, a->rs2, a->vm); 1585} 1586 1587static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1588 gen_helper_opivx *fn) 1589{ 1590 if (opivx_widen_check(s, a)) { 1591 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1592 } 1593 return false; 1594} 1595 1596#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1597static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1598{ \ 1599 static gen_helper_opivx * const fns[3] = { \ 1600 gen_helper_##NAME##_b, \ 1601 gen_helper_##NAME##_h, \ 1602 gen_helper_##NAME##_w \ 1603 }; \ 1604 return do_opivx_widen(s, a, fns[s->sew]); \ 1605} 1606 1607GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1608GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1609GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1610GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1611 1612/* WIDEN OPIVV with WIDEN */ 1613static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1614{ 1615 return require_rvv(s) && 1616 vext_check_isa_ill(s) && 1617 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1618} 1619 1620static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1621 gen_helper_gvec_4_ptr *fn) 1622{ 1623 if (opiwv_widen_check(s, a)) { 1624 uint32_t data = 0; 1625 TCGLabel *over = gen_new_label(); 1626 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1627 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1628 1629 data = FIELD_DP32(data, VDATA, VM, a->vm); 1630 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1631 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1632 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1633 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1634 vreg_ofs(s, a->rs1), 1635 vreg_ofs(s, a->rs2), 1636 cpu_env, s->cfg_ptr->vlen / 8, 1637 s->cfg_ptr->vlen / 8, data, fn); 1638 mark_vs_dirty(s); 1639 gen_set_label(over); 1640 return true; 1641 } 1642 return false; 1643} 1644 1645#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1646static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1647{ \ 1648 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1649 gen_helper_##NAME##_b, \ 1650 gen_helper_##NAME##_h, \ 1651 gen_helper_##NAME##_w \ 1652 }; \ 1653 return do_opiwv_widen(s, a, fns[s->sew]); \ 1654} 1655 1656GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1657GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1658GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1659GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1660 1661/* WIDEN OPIVX with WIDEN */ 1662static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1663{ 1664 return require_rvv(s) && 1665 vext_check_isa_ill(s) && 1666 vext_check_dd(s, a->rd, a->rs2, a->vm); 1667} 1668 1669static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1670 gen_helper_opivx *fn) 1671{ 1672 if (opiwx_widen_check(s, a)) { 1673 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1674 } 1675 return false; 1676} 1677 1678#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1679static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1680{ \ 1681 static gen_helper_opivx * const fns[3] = { \ 1682 gen_helper_##NAME##_b, \ 1683 gen_helper_##NAME##_h, \ 1684 gen_helper_##NAME##_w \ 1685 }; \ 1686 return do_opiwx_widen(s, a, fns[s->sew]); \ 1687} 1688 1689GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1690GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1691GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1692GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1693 1694/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1695/* OPIVV without GVEC IR */ 1696#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1697static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1698{ \ 1699 if (CHECK(s, a)) { \ 1700 uint32_t data = 0; \ 1701 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1702 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1703 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1704 }; \ 1705 TCGLabel *over = gen_new_label(); \ 1706 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1707 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1708 \ 1709 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1710 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1711 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1712 data = \ 1713 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1714 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1715 vreg_ofs(s, a->rs1), \ 1716 vreg_ofs(s, a->rs2), cpu_env, \ 1717 s->cfg_ptr->vlen / 8, \ 1718 s->cfg_ptr->vlen / 8, data, \ 1719 fns[s->sew]); \ 1720 mark_vs_dirty(s); \ 1721 gen_set_label(over); \ 1722 return true; \ 1723 } \ 1724 return false; \ 1725} 1726 1727/* 1728 * For vadc and vsbc, an illegal instruction exception is raised if the 1729 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1730 */ 1731static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1732{ 1733 return require_rvv(s) && 1734 vext_check_isa_ill(s) && 1735 (a->rd != 0) && 1736 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1737} 1738 1739GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1740GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1741 1742/* 1743 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1744 * destination vector register overlaps a source vector register group. 1745 */ 1746static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1747{ 1748 return require_rvv(s) && 1749 vext_check_isa_ill(s) && 1750 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1751} 1752 1753GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1754GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1755 1756static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1757{ 1758 return require_rvv(s) && 1759 vext_check_isa_ill(s) && 1760 (a->rd != 0) && 1761 vext_check_ss(s, a->rd, a->rs2, a->vm); 1762} 1763 1764/* OPIVX without GVEC IR */ 1765#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1766static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1767{ \ 1768 if (CHECK(s, a)) { \ 1769 static gen_helper_opivx * const fns[4] = { \ 1770 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1771 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1772 }; \ 1773 \ 1774 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1775 } \ 1776 return false; \ 1777} 1778 1779GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1780GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1781 1782static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1783{ 1784 return require_rvv(s) && 1785 vext_check_isa_ill(s) && 1786 vext_check_ms(s, a->rd, a->rs2); 1787} 1788 1789GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1790GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1791 1792/* OPIVI without GVEC IR */ 1793#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1794static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1795{ \ 1796 if (CHECK(s, a)) { \ 1797 static gen_helper_opivx * const fns[4] = { \ 1798 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1799 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1800 }; \ 1801 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1802 fns[s->sew], s, IMM_MODE); \ 1803 } \ 1804 return false; \ 1805} 1806 1807GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1808GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1809 1810/* Vector Bitwise Logical Instructions */ 1811GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1812GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1813GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1814GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1815GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1816GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1817GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1818GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1819GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1820 1821/* Vector Single-Width Bit Shift Instructions */ 1822GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1823GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1824GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1825 1826typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1827 uint32_t, uint32_t); 1828 1829static inline bool 1830do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1831 gen_helper_opivx *fn) 1832{ 1833 if (!opivx_check(s, a)) { 1834 return false; 1835 } 1836 1837 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1838 TCGv_i32 src1 = tcg_temp_new_i32(); 1839 1840 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1841 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1842 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1843 src1, MAXSZ(s), MAXSZ(s)); 1844 1845 tcg_temp_free_i32(src1); 1846 mark_vs_dirty(s); 1847 return true; 1848 } 1849 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1850} 1851 1852#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1853static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1854{ \ 1855 static gen_helper_opivx * const fns[4] = { \ 1856 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1857 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1858 }; \ 1859 \ 1860 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1861} 1862 1863GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1864GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1865GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1866 1867GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1868GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1869GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1870 1871/* Vector Narrowing Integer Right Shift Instructions */ 1872static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1873{ 1874 return require_rvv(s) && 1875 vext_check_isa_ill(s) && 1876 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1877} 1878 1879/* OPIVV with NARROW */ 1880#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1881static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1882{ \ 1883 if (opiwv_narrow_check(s, a)) { \ 1884 uint32_t data = 0; \ 1885 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1886 gen_helper_##NAME##_b, \ 1887 gen_helper_##NAME##_h, \ 1888 gen_helper_##NAME##_w, \ 1889 }; \ 1890 TCGLabel *over = gen_new_label(); \ 1891 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1892 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1893 \ 1894 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1895 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1896 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1897 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1898 vreg_ofs(s, a->rs1), \ 1899 vreg_ofs(s, a->rs2), cpu_env, \ 1900 s->cfg_ptr->vlen / 8, \ 1901 s->cfg_ptr->vlen / 8, data, \ 1902 fns[s->sew]); \ 1903 mark_vs_dirty(s); \ 1904 gen_set_label(over); \ 1905 return true; \ 1906 } \ 1907 return false; \ 1908} 1909GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1910GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1911 1912static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1913{ 1914 return require_rvv(s) && 1915 vext_check_isa_ill(s) && 1916 vext_check_sd(s, a->rd, a->rs2, a->vm); 1917} 1918 1919/* OPIVX with NARROW */ 1920#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1921static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1922{ \ 1923 if (opiwx_narrow_check(s, a)) { \ 1924 static gen_helper_opivx * const fns[3] = { \ 1925 gen_helper_##NAME##_b, \ 1926 gen_helper_##NAME##_h, \ 1927 gen_helper_##NAME##_w, \ 1928 }; \ 1929 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1930 } \ 1931 return false; \ 1932} 1933 1934GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1935GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1936 1937/* OPIWI with NARROW */ 1938#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1939static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1940{ \ 1941 if (opiwx_narrow_check(s, a)) { \ 1942 static gen_helper_opivx * const fns[3] = { \ 1943 gen_helper_##OPIVX##_b, \ 1944 gen_helper_##OPIVX##_h, \ 1945 gen_helper_##OPIVX##_w, \ 1946 }; \ 1947 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1948 fns[s->sew], s, IMM_MODE); \ 1949 } \ 1950 return false; \ 1951} 1952 1953GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1954GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1955 1956/* Vector Integer Comparison Instructions */ 1957/* 1958 * For all comparison instructions, an illegal instruction exception is raised 1959 * if the destination vector register overlaps a source vector register group 1960 * and LMUL > 1. 1961 */ 1962static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1963{ 1964 return require_rvv(s) && 1965 vext_check_isa_ill(s) && 1966 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1967} 1968 1969GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1970GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1971GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1972GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1973GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1974GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1975 1976static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1977{ 1978 return require_rvv(s) && 1979 vext_check_isa_ill(s) && 1980 vext_check_ms(s, a->rd, a->rs2); 1981} 1982 1983GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1984GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1985GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1986GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1987GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1988GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1989GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1990GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1991 1992GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1993GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1994GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1995GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1996GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1997GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1998 1999/* Vector Integer Min/Max Instructions */ 2000GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 2001GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 2002GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2003GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2004GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2005GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2006GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2007GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2008 2009/* Vector Single-Width Integer Multiply Instructions */ 2010 2011static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2012{ 2013 /* 2014 * All Zve* extensions support all vector integer instructions, 2015 * except that the vmulh integer multiply variants 2016 * that return the high word of the product 2017 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2018 * are not included for EEW=64 in Zve64*. (Section 18.2) 2019 */ 2020 return opivv_check(s, a) && 2021 (!has_ext(s, RVV) && 2022 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2023} 2024 2025static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2026{ 2027 /* 2028 * All Zve* extensions support all vector integer instructions, 2029 * except that the vmulh integer multiply variants 2030 * that return the high word of the product 2031 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2032 * are not included for EEW=64 in Zve64*. (Section 18.2) 2033 */ 2034 return opivx_check(s, a) && 2035 (!has_ext(s, RVV) && 2036 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2037} 2038 2039GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2040GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2041GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2042GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2043GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2044GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2045GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2046GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2047 2048/* Vector Integer Divide Instructions */ 2049GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2050GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2051GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2052GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2053GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2054GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2055GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2056GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2057 2058/* Vector Widening Integer Multiply Instructions */ 2059GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2060GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2061GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2062GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2063GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2064GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2065 2066/* Vector Single-Width Integer Multiply-Add Instructions */ 2067GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2068GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2069GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2070GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2071GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2072GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2073GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2074GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2075 2076/* Vector Widening Integer Multiply-Add Instructions */ 2077GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2078GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2079GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2080GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2081GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2082GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2083GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2084 2085/* Vector Integer Merge and Move Instructions */ 2086static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2087{ 2088 if (require_rvv(s) && 2089 vext_check_isa_ill(s) && 2090 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2091 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2092 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2093 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2094 vreg_ofs(s, a->rs1), 2095 MAXSZ(s), MAXSZ(s)); 2096 } else { 2097 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2098 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2099 static gen_helper_gvec_2_ptr * const fns[4] = { 2100 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2101 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2102 }; 2103 TCGLabel *over = gen_new_label(); 2104 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2105 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2106 2107 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2108 cpu_env, s->cfg_ptr->vlen / 8, 2109 s->cfg_ptr->vlen / 8, data, 2110 fns[s->sew]); 2111 gen_set_label(over); 2112 } 2113 mark_vs_dirty(s); 2114 return true; 2115 } 2116 return false; 2117} 2118 2119typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2120static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2121{ 2122 if (require_rvv(s) && 2123 vext_check_isa_ill(s) && 2124 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2125 vext_check_ss(s, a->rd, 0, 1)) { 2126 TCGv s1; 2127 TCGLabel *over = gen_new_label(); 2128 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2129 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2130 2131 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2132 2133 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2134 if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { 2135 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2136 tcg_gen_ext_tl_i64(s1_i64, s1); 2137 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2138 MAXSZ(s), MAXSZ(s), s1_i64); 2139 tcg_temp_free_i64(s1_i64); 2140 } else { 2141 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2142 MAXSZ(s), MAXSZ(s), s1); 2143 } 2144 } else { 2145 TCGv_i32 desc; 2146 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2147 TCGv_ptr dest = tcg_temp_new_ptr(); 2148 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2149 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2150 static gen_helper_vmv_vx * const fns[4] = { 2151 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2152 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2153 }; 2154 2155 tcg_gen_ext_tl_i64(s1_i64, s1); 2156 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2157 s->cfg_ptr->vlen / 8, data)); 2158 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2159 fns[s->sew](dest, s1_i64, cpu_env, desc); 2160 2161 tcg_temp_free_ptr(dest); 2162 tcg_temp_free_i64(s1_i64); 2163 } 2164 2165 mark_vs_dirty(s); 2166 gen_set_label(over); 2167 return true; 2168 } 2169 return false; 2170} 2171 2172static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2173{ 2174 if (require_rvv(s) && 2175 vext_check_isa_ill(s) && 2176 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2177 vext_check_ss(s, a->rd, 0, 1)) { 2178 int64_t simm = sextract64(a->rs1, 0, 5); 2179 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2180 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2181 MAXSZ(s), MAXSZ(s), simm); 2182 mark_vs_dirty(s); 2183 } else { 2184 TCGv_i32 desc; 2185 TCGv_i64 s1; 2186 TCGv_ptr dest; 2187 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2188 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2189 static gen_helper_vmv_vx * const fns[4] = { 2190 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2191 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2192 }; 2193 TCGLabel *over = gen_new_label(); 2194 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2195 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2196 2197 s1 = tcg_constant_i64(simm); 2198 dest = tcg_temp_new_ptr(); 2199 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2200 s->cfg_ptr->vlen / 8, data)); 2201 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2202 fns[s->sew](dest, s1, cpu_env, desc); 2203 2204 tcg_temp_free_ptr(dest); 2205 mark_vs_dirty(s); 2206 gen_set_label(over); 2207 } 2208 return true; 2209 } 2210 return false; 2211} 2212 2213GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2214GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2215GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2216 2217/* 2218 *** Vector Fixed-Point Arithmetic Instructions 2219 */ 2220 2221/* Vector Single-Width Saturating Add and Subtract */ 2222GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2223GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2224GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2225GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2226GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2227GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2228GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2229GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2230GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2231GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2232 2233/* Vector Single-Width Averaging Add and Subtract */ 2234GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2235GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2236GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2237GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2238GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2239GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2240GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2241GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2242 2243/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2244 2245static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2246{ 2247 /* 2248 * All Zve* extensions support all vector fixed-point arithmetic 2249 * instructions, except that vsmul.vv and vsmul.vx are not supported 2250 * for EEW=64 in Zve64*. (Section 18.2) 2251 */ 2252 return opivv_check(s, a) && 2253 (!has_ext(s, RVV) && 2254 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2255} 2256 2257static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2258{ 2259 /* 2260 * All Zve* extensions support all vector fixed-point arithmetic 2261 * instructions, except that vsmul.vv and vsmul.vx are not supported 2262 * for EEW=64 in Zve64*. (Section 18.2) 2263 */ 2264 return opivx_check(s, a) && 2265 (!has_ext(s, RVV) && 2266 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2267} 2268 2269GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2270GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2271 2272/* Vector Single-Width Scaling Shift Instructions */ 2273GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2274GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2275GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2276GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2277GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2278GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2279 2280/* Vector Narrowing Fixed-Point Clip Instructions */ 2281GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2282GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2283GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2284GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2285GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2286GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2287 2288/* 2289 *** Vector Float Point Arithmetic Instructions 2290 */ 2291 2292/* 2293 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2294 * RVF and RVD can be treated equally. 2295 * We don't have to deal with the cases of: SEW > FLEN. 2296 * 2297 * If SEW < FLEN, check whether input fp register is a valid 2298 * NaN-boxed value, in which case the least-significant SEW bits 2299 * of the f regsiter are used, else the canonical NaN value is used. 2300 */ 2301static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2302{ 2303 switch (s->sew) { 2304 case 1: 2305 gen_check_nanbox_h(out, in); 2306 break; 2307 case 2: 2308 gen_check_nanbox_s(out, in); 2309 break; 2310 case 3: 2311 tcg_gen_mov_i64(out, in); 2312 break; 2313 default: 2314 g_assert_not_reached(); 2315 } 2316} 2317 2318/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2319 2320/* 2321 * If the current SEW does not correspond to a supported IEEE floating-point 2322 * type, an illegal instruction exception is raised. 2323 */ 2324static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2325{ 2326 return require_rvv(s) && 2327 require_rvf(s) && 2328 vext_check_isa_ill(s) && 2329 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2330 require_zve32f(s) && 2331 require_zve64f(s); 2332} 2333 2334/* OPFVV without GVEC IR */ 2335#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2336static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2337{ \ 2338 if (CHECK(s, a)) { \ 2339 uint32_t data = 0; \ 2340 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2341 gen_helper_##NAME##_h, \ 2342 gen_helper_##NAME##_w, \ 2343 gen_helper_##NAME##_d, \ 2344 }; \ 2345 TCGLabel *over = gen_new_label(); \ 2346 gen_set_rm(s, RISCV_FRM_DYN); \ 2347 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2348 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2349 \ 2350 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2351 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2352 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2353 data = \ 2354 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2355 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2356 vreg_ofs(s, a->rs1), \ 2357 vreg_ofs(s, a->rs2), cpu_env, \ 2358 s->cfg_ptr->vlen / 8, \ 2359 s->cfg_ptr->vlen / 8, data, \ 2360 fns[s->sew - 1]); \ 2361 mark_vs_dirty(s); \ 2362 gen_set_label(over); \ 2363 return true; \ 2364 } \ 2365 return false; \ 2366} 2367GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2368GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2369 2370typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2371 TCGv_env, TCGv_i32); 2372 2373static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2374 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2375{ 2376 TCGv_ptr dest, src2, mask; 2377 TCGv_i32 desc; 2378 TCGv_i64 t1; 2379 2380 TCGLabel *over = gen_new_label(); 2381 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2382 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2383 2384 dest = tcg_temp_new_ptr(); 2385 mask = tcg_temp_new_ptr(); 2386 src2 = tcg_temp_new_ptr(); 2387 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2388 s->cfg_ptr->vlen / 8, data)); 2389 2390 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2391 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2392 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2393 2394 /* NaN-box f[rs1] */ 2395 t1 = tcg_temp_new_i64(); 2396 do_nanbox(s, t1, cpu_fpr[rs1]); 2397 2398 fn(dest, mask, t1, src2, cpu_env, desc); 2399 2400 tcg_temp_free_ptr(dest); 2401 tcg_temp_free_ptr(mask); 2402 tcg_temp_free_ptr(src2); 2403 tcg_temp_free_i64(t1); 2404 mark_vs_dirty(s); 2405 gen_set_label(over); 2406 return true; 2407} 2408 2409/* 2410 * If the current SEW does not correspond to a supported IEEE floating-point 2411 * type, an illegal instruction exception is raised 2412 */ 2413static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2414{ 2415 return require_rvv(s) && 2416 require_rvf(s) && 2417 vext_check_isa_ill(s) && 2418 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2419 require_zve32f(s) && 2420 require_zve64f(s); 2421} 2422 2423/* OPFVF without GVEC IR */ 2424#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2425static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2426{ \ 2427 if (CHECK(s, a)) { \ 2428 uint32_t data = 0; \ 2429 static gen_helper_opfvf *const fns[3] = { \ 2430 gen_helper_##NAME##_h, \ 2431 gen_helper_##NAME##_w, \ 2432 gen_helper_##NAME##_d, \ 2433 }; \ 2434 gen_set_rm(s, RISCV_FRM_DYN); \ 2435 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2436 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2437 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2438 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2439 s->cfg_vta_all_1s); \ 2440 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2441 fns[s->sew - 1], s); \ 2442 } \ 2443 return false; \ 2444} 2445 2446GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2447GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2448GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2449 2450/* Vector Widening Floating-Point Add/Subtract Instructions */ 2451static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2452{ 2453 return require_rvv(s) && 2454 require_scale_rvf(s) && 2455 (s->sew != MO_8) && 2456 vext_check_isa_ill(s) && 2457 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2458 require_scale_zve32f(s) && 2459 require_scale_zve64f(s); 2460} 2461 2462/* OPFVV with WIDEN */ 2463#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2464static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2465{ \ 2466 if (CHECK(s, a)) { \ 2467 uint32_t data = 0; \ 2468 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2469 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2470 }; \ 2471 TCGLabel *over = gen_new_label(); \ 2472 gen_set_rm(s, RISCV_FRM_DYN); \ 2473 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2474 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2475 \ 2476 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2477 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2478 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2479 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2480 vreg_ofs(s, a->rs1), \ 2481 vreg_ofs(s, a->rs2), cpu_env, \ 2482 s->cfg_ptr->vlen / 8, \ 2483 s->cfg_ptr->vlen / 8, data, \ 2484 fns[s->sew - 1]); \ 2485 mark_vs_dirty(s); \ 2486 gen_set_label(over); \ 2487 return true; \ 2488 } \ 2489 return false; \ 2490} 2491 2492GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2493GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2494 2495static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2496{ 2497 return require_rvv(s) && 2498 require_scale_rvf(s) && 2499 (s->sew != MO_8) && 2500 vext_check_isa_ill(s) && 2501 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2502 require_scale_zve32f(s) && 2503 require_scale_zve64f(s); 2504} 2505 2506/* OPFVF with WIDEN */ 2507#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2508static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2509{ \ 2510 if (opfvf_widen_check(s, a)) { \ 2511 uint32_t data = 0; \ 2512 static gen_helper_opfvf *const fns[2] = { \ 2513 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2514 }; \ 2515 gen_set_rm(s, RISCV_FRM_DYN); \ 2516 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2517 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2518 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2519 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2520 fns[s->sew - 1], s); \ 2521 } \ 2522 return false; \ 2523} 2524 2525GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2526GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2527 2528static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2529{ 2530 return require_rvv(s) && 2531 require_scale_rvf(s) && 2532 (s->sew != MO_8) && 2533 vext_check_isa_ill(s) && 2534 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2535 require_scale_zve32f(s) && 2536 require_scale_zve64f(s); 2537} 2538 2539/* WIDEN OPFVV with WIDEN */ 2540#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2541static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2542{ \ 2543 if (opfwv_widen_check(s, a)) { \ 2544 uint32_t data = 0; \ 2545 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2546 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2547 }; \ 2548 TCGLabel *over = gen_new_label(); \ 2549 gen_set_rm(s, RISCV_FRM_DYN); \ 2550 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2551 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2552 \ 2553 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2554 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2555 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2556 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2557 vreg_ofs(s, a->rs1), \ 2558 vreg_ofs(s, a->rs2), cpu_env, \ 2559 s->cfg_ptr->vlen / 8, \ 2560 s->cfg_ptr->vlen / 8, data, \ 2561 fns[s->sew - 1]); \ 2562 mark_vs_dirty(s); \ 2563 gen_set_label(over); \ 2564 return true; \ 2565 } \ 2566 return false; \ 2567} 2568 2569GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2570GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2571 2572static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2573{ 2574 return require_rvv(s) && 2575 require_scale_rvf(s) && 2576 (s->sew != MO_8) && 2577 vext_check_isa_ill(s) && 2578 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2579 require_scale_zve32f(s) && 2580 require_scale_zve64f(s); 2581} 2582 2583/* WIDEN OPFVF with WIDEN */ 2584#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2585static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2586{ \ 2587 if (opfwf_widen_check(s, a)) { \ 2588 uint32_t data = 0; \ 2589 static gen_helper_opfvf *const fns[2] = { \ 2590 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2591 }; \ 2592 gen_set_rm(s, RISCV_FRM_DYN); \ 2593 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2594 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2595 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2596 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2597 fns[s->sew - 1], s); \ 2598 } \ 2599 return false; \ 2600} 2601 2602GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2603GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2604 2605/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2606GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2607GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2608GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2609GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2610GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2611 2612/* Vector Widening Floating-Point Multiply */ 2613GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2614GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2615 2616/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2617GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2618GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2619GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2620GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2621GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2622GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2623GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2624GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2625GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2626GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2627GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2628GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2629GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2630GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2631GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2632GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2633 2634/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2635GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2636GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2637GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2638GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2639GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2640GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2641GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2642GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2643 2644/* Vector Floating-Point Square-Root Instruction */ 2645 2646/* 2647 * If the current SEW does not correspond to a supported IEEE floating-point 2648 * type, an illegal instruction exception is raised 2649 */ 2650static bool opfv_check(DisasContext *s, arg_rmr *a) 2651{ 2652 return require_rvv(s) && 2653 require_rvf(s) && 2654 vext_check_isa_ill(s) && 2655 /* OPFV instructions ignore vs1 check */ 2656 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2657 require_zve32f(s) && 2658 require_zve64f(s); 2659} 2660 2661static bool do_opfv(DisasContext *s, arg_rmr *a, 2662 gen_helper_gvec_3_ptr *fn, 2663 bool (*checkfn)(DisasContext *, arg_rmr *), 2664 int rm) 2665{ 2666 if (checkfn(s, a)) { 2667 if (rm != RISCV_FRM_DYN) { 2668 gen_set_rm(s, RISCV_FRM_DYN); 2669 } 2670 2671 uint32_t data = 0; 2672 TCGLabel *over = gen_new_label(); 2673 gen_set_rm(s, rm); 2674 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2675 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2676 2677 data = FIELD_DP32(data, VDATA, VM, a->vm); 2678 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2679 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2680 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2681 vreg_ofs(s, a->rs2), cpu_env, 2682 s->cfg_ptr->vlen / 8, 2683 s->cfg_ptr->vlen / 8, data, fn); 2684 mark_vs_dirty(s); 2685 gen_set_label(over); 2686 return true; 2687 } 2688 return false; 2689} 2690 2691#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2692static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2693{ \ 2694 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2695 gen_helper_##NAME##_h, \ 2696 gen_helper_##NAME##_w, \ 2697 gen_helper_##NAME##_d \ 2698 }; \ 2699 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2700} 2701 2702GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2703GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2704GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2705 2706/* Vector Floating-Point MIN/MAX Instructions */ 2707GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2708GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2709GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2710GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2711 2712/* Vector Floating-Point Sign-Injection Instructions */ 2713GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2714GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2715GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2716GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2717GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2718GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2719 2720/* Vector Floating-Point Compare Instructions */ 2721static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2722{ 2723 return require_rvv(s) && 2724 require_rvf(s) && 2725 vext_check_isa_ill(s) && 2726 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2727 require_zve32f(s) && 2728 require_zve64f(s); 2729} 2730 2731GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2732GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2733GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2734GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2735 2736static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2737{ 2738 return require_rvv(s) && 2739 require_rvf(s) && 2740 vext_check_isa_ill(s) && 2741 vext_check_ms(s, a->rd, a->rs2) && 2742 require_zve32f(s) && 2743 require_zve64f(s); 2744} 2745 2746GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2747GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2748GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2749GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2750GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2751GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2752 2753/* Vector Floating-Point Classify Instruction */ 2754GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2755 2756/* Vector Floating-Point Merge Instruction */ 2757GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2758 2759static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2760{ 2761 if (require_rvv(s) && 2762 require_rvf(s) && 2763 vext_check_isa_ill(s) && 2764 require_align(a->rd, s->lmul) && 2765 require_zve32f(s) && 2766 require_zve64f(s)) { 2767 gen_set_rm(s, RISCV_FRM_DYN); 2768 2769 TCGv_i64 t1; 2770 2771 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2772 t1 = tcg_temp_new_i64(); 2773 /* NaN-box f[rs1] */ 2774 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2775 2776 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2777 MAXSZ(s), MAXSZ(s), t1); 2778 mark_vs_dirty(s); 2779 } else { 2780 TCGv_ptr dest; 2781 TCGv_i32 desc; 2782 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2783 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2784 static gen_helper_vmv_vx * const fns[3] = { 2785 gen_helper_vmv_v_x_h, 2786 gen_helper_vmv_v_x_w, 2787 gen_helper_vmv_v_x_d, 2788 }; 2789 TCGLabel *over = gen_new_label(); 2790 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2791 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2792 2793 t1 = tcg_temp_new_i64(); 2794 /* NaN-box f[rs1] */ 2795 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2796 2797 dest = tcg_temp_new_ptr(); 2798 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2799 s->cfg_ptr->vlen / 8, data)); 2800 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2801 2802 fns[s->sew - 1](dest, t1, cpu_env, desc); 2803 2804 tcg_temp_free_ptr(dest); 2805 mark_vs_dirty(s); 2806 gen_set_label(over); 2807 } 2808 tcg_temp_free_i64(t1); 2809 return true; 2810 } 2811 return false; 2812} 2813 2814/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2815#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2816static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2817{ \ 2818 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2819 gen_helper_##HELPER##_h, \ 2820 gen_helper_##HELPER##_w, \ 2821 gen_helper_##HELPER##_d \ 2822 }; \ 2823 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2824} 2825 2826GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2827GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2828GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2829GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2830/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2831GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2832GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2833 2834/* Widening Floating-Point/Integer Type-Convert Instructions */ 2835 2836/* 2837 * If the current SEW does not correspond to a supported IEEE floating-point 2838 * type, an illegal instruction exception is raised 2839 */ 2840static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2841{ 2842 return require_rvv(s) && 2843 vext_check_isa_ill(s) && 2844 vext_check_ds(s, a->rd, a->rs2, a->vm); 2845} 2846 2847static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2848{ 2849 return opfv_widen_check(s, a) && 2850 require_rvf(s) && 2851 require_zve32f(s) && 2852 require_zve64f(s); 2853} 2854 2855static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2856{ 2857 return opfv_widen_check(s, a) && 2858 require_scale_rvf(s) && 2859 (s->sew != MO_8) && 2860 require_scale_zve32f(s) && 2861 require_scale_zve64f(s); 2862} 2863 2864#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2865static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2866{ \ 2867 if (CHECK(s, a)) { \ 2868 if (FRM != RISCV_FRM_DYN) { \ 2869 gen_set_rm(s, RISCV_FRM_DYN); \ 2870 } \ 2871 \ 2872 uint32_t data = 0; \ 2873 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2874 gen_helper_##HELPER##_h, \ 2875 gen_helper_##HELPER##_w, \ 2876 }; \ 2877 TCGLabel *over = gen_new_label(); \ 2878 gen_set_rm(s, FRM); \ 2879 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2880 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2881 \ 2882 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2883 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2884 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2885 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2886 vreg_ofs(s, a->rs2), cpu_env, \ 2887 s->cfg_ptr->vlen / 8, \ 2888 s->cfg_ptr->vlen / 8, data, \ 2889 fns[s->sew - 1]); \ 2890 mark_vs_dirty(s); \ 2891 gen_set_label(over); \ 2892 return true; \ 2893 } \ 2894 return false; \ 2895} 2896 2897GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2898 RISCV_FRM_DYN) 2899GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2900 RISCV_FRM_DYN) 2901GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2902 RISCV_FRM_DYN) 2903/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2904GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2905 RISCV_FRM_RTZ) 2906GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2907 RISCV_FRM_RTZ) 2908 2909static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2910{ 2911 return require_rvv(s) && 2912 require_scale_rvf(s) && 2913 vext_check_isa_ill(s) && 2914 /* OPFV widening instructions ignore vs1 check */ 2915 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2916 require_scale_zve32f(s) && 2917 require_scale_zve64f(s); 2918} 2919 2920#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2921static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2922{ \ 2923 if (opfxv_widen_check(s, a)) { \ 2924 uint32_t data = 0; \ 2925 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2926 gen_helper_##NAME##_b, \ 2927 gen_helper_##NAME##_h, \ 2928 gen_helper_##NAME##_w, \ 2929 }; \ 2930 TCGLabel *over = gen_new_label(); \ 2931 gen_set_rm(s, RISCV_FRM_DYN); \ 2932 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2933 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2934 \ 2935 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2936 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2937 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2938 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2939 vreg_ofs(s, a->rs2), cpu_env, \ 2940 s->cfg_ptr->vlen / 8, \ 2941 s->cfg_ptr->vlen / 8, data, \ 2942 fns[s->sew]); \ 2943 mark_vs_dirty(s); \ 2944 gen_set_label(over); \ 2945 return true; \ 2946 } \ 2947 return false; \ 2948} 2949 2950GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2951GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2952 2953/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2954 2955/* 2956 * If the current SEW does not correspond to a supported IEEE floating-point 2957 * type, an illegal instruction exception is raised 2958 */ 2959static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2960{ 2961 return require_rvv(s) && 2962 vext_check_isa_ill(s) && 2963 /* OPFV narrowing instructions ignore vs1 check */ 2964 vext_check_sd(s, a->rd, a->rs2, a->vm); 2965} 2966 2967static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2968{ 2969 return opfv_narrow_check(s, a) && 2970 require_rvf(s) && 2971 (s->sew != MO_64) && 2972 require_zve32f(s) && 2973 require_zve64f(s); 2974} 2975 2976static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2977{ 2978 return opfv_narrow_check(s, a) && 2979 require_scale_rvf(s) && 2980 (s->sew != MO_8) && 2981 require_scale_zve32f(s) && 2982 require_scale_zve64f(s); 2983} 2984 2985#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2986static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2987{ \ 2988 if (CHECK(s, a)) { \ 2989 if (FRM != RISCV_FRM_DYN) { \ 2990 gen_set_rm(s, RISCV_FRM_DYN); \ 2991 } \ 2992 \ 2993 uint32_t data = 0; \ 2994 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2995 gen_helper_##HELPER##_h, \ 2996 gen_helper_##HELPER##_w, \ 2997 }; \ 2998 TCGLabel *over = gen_new_label(); \ 2999 gen_set_rm(s, FRM); \ 3000 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3001 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3002 \ 3003 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3004 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3005 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3006 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3007 vreg_ofs(s, a->rs2), cpu_env, \ 3008 s->cfg_ptr->vlen / 8, \ 3009 s->cfg_ptr->vlen / 8, data, \ 3010 fns[s->sew - 1]); \ 3011 mark_vs_dirty(s); \ 3012 gen_set_label(over); \ 3013 return true; \ 3014 } \ 3015 return false; \ 3016} 3017 3018GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 3019 RISCV_FRM_DYN) 3020GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 3021 RISCV_FRM_DYN) 3022GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3023 RISCV_FRM_DYN) 3024/* Reuse the helper function from vfncvt.f.f.w */ 3025GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3026 RISCV_FRM_ROD) 3027 3028static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 3029{ 3030 return require_rvv(s) && 3031 require_scale_rvf(s) && 3032 vext_check_isa_ill(s) && 3033 /* OPFV narrowing instructions ignore vs1 check */ 3034 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3035 require_scale_zve32f(s) && 3036 require_scale_zve64f(s); 3037} 3038 3039#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3040static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3041{ \ 3042 if (opxfv_narrow_check(s, a)) { \ 3043 if (FRM != RISCV_FRM_DYN) { \ 3044 gen_set_rm(s, RISCV_FRM_DYN); \ 3045 } \ 3046 \ 3047 uint32_t data = 0; \ 3048 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3049 gen_helper_##HELPER##_b, \ 3050 gen_helper_##HELPER##_h, \ 3051 gen_helper_##HELPER##_w, \ 3052 }; \ 3053 TCGLabel *over = gen_new_label(); \ 3054 gen_set_rm(s, FRM); \ 3055 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3056 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3057 \ 3058 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3059 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3060 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3061 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3062 vreg_ofs(s, a->rs2), cpu_env, \ 3063 s->cfg_ptr->vlen / 8, \ 3064 s->cfg_ptr->vlen / 8, data, \ 3065 fns[s->sew]); \ 3066 mark_vs_dirty(s); \ 3067 gen_set_label(over); \ 3068 return true; \ 3069 } \ 3070 return false; \ 3071} 3072 3073GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3074GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3075/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3076GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3077GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3078 3079/* 3080 *** Vector Reduction Operations 3081 */ 3082/* Vector Single-Width Integer Reduction Instructions */ 3083static bool reduction_check(DisasContext *s, arg_rmrr *a) 3084{ 3085 return require_rvv(s) && 3086 vext_check_isa_ill(s) && 3087 vext_check_reduction(s, a->rs2); 3088} 3089 3090GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3091GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3092GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3093GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3094GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3095GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3096GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3097GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3098 3099/* Vector Widening Integer Reduction Instructions */ 3100static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3101{ 3102 return reduction_check(s, a) && (s->sew < MO_64) && 3103 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3104} 3105 3106GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3107GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3108 3109/* Vector Single-Width Floating-Point Reduction Instructions */ 3110static bool freduction_check(DisasContext *s, arg_rmrr *a) 3111{ 3112 return reduction_check(s, a) && 3113 require_rvf(s) && 3114 require_zve32f(s) && 3115 require_zve64f(s); 3116} 3117 3118GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3119GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3120GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3121 3122/* Vector Widening Floating-Point Reduction Instructions */ 3123static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3124{ 3125 return reduction_widen_check(s, a) && 3126 require_scale_rvf(s) && 3127 (s->sew != MO_8); 3128} 3129 3130GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3131 3132/* 3133 *** Vector Mask Operations 3134 */ 3135 3136/* Vector Mask-Register Logical Instructions */ 3137#define GEN_MM_TRANS(NAME) \ 3138static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3139{ \ 3140 if (require_rvv(s) && \ 3141 vext_check_isa_ill(s)) { \ 3142 uint32_t data = 0; \ 3143 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3144 TCGLabel *over = gen_new_label(); \ 3145 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3146 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3147 \ 3148 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3149 data = \ 3150 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3151 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3152 vreg_ofs(s, a->rs1), \ 3153 vreg_ofs(s, a->rs2), cpu_env, \ 3154 s->cfg_ptr->vlen / 8, \ 3155 s->cfg_ptr->vlen / 8, data, fn); \ 3156 mark_vs_dirty(s); \ 3157 gen_set_label(over); \ 3158 return true; \ 3159 } \ 3160 return false; \ 3161} 3162 3163GEN_MM_TRANS(vmand_mm) 3164GEN_MM_TRANS(vmnand_mm) 3165GEN_MM_TRANS(vmandn_mm) 3166GEN_MM_TRANS(vmxor_mm) 3167GEN_MM_TRANS(vmor_mm) 3168GEN_MM_TRANS(vmnor_mm) 3169GEN_MM_TRANS(vmorn_mm) 3170GEN_MM_TRANS(vmxnor_mm) 3171 3172/* Vector count population in mask vcpop */ 3173static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3174{ 3175 if (require_rvv(s) && 3176 vext_check_isa_ill(s) && 3177 s->vstart == 0) { 3178 TCGv_ptr src2, mask; 3179 TCGv dst; 3180 TCGv_i32 desc; 3181 uint32_t data = 0; 3182 data = FIELD_DP32(data, VDATA, VM, a->vm); 3183 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3184 3185 mask = tcg_temp_new_ptr(); 3186 src2 = tcg_temp_new_ptr(); 3187 dst = dest_gpr(s, a->rd); 3188 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3189 s->cfg_ptr->vlen / 8, data)); 3190 3191 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3192 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3193 3194 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3195 gen_set_gpr(s, a->rd, dst); 3196 3197 tcg_temp_free_ptr(mask); 3198 tcg_temp_free_ptr(src2); 3199 3200 return true; 3201 } 3202 return false; 3203} 3204 3205/* vmfirst find-first-set mask bit */ 3206static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3207{ 3208 if (require_rvv(s) && 3209 vext_check_isa_ill(s) && 3210 s->vstart == 0) { 3211 TCGv_ptr src2, mask; 3212 TCGv dst; 3213 TCGv_i32 desc; 3214 uint32_t data = 0; 3215 data = FIELD_DP32(data, VDATA, VM, a->vm); 3216 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3217 3218 mask = tcg_temp_new_ptr(); 3219 src2 = tcg_temp_new_ptr(); 3220 dst = dest_gpr(s, a->rd); 3221 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3222 s->cfg_ptr->vlen / 8, data)); 3223 3224 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3225 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3226 3227 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3228 gen_set_gpr(s, a->rd, dst); 3229 3230 tcg_temp_free_ptr(mask); 3231 tcg_temp_free_ptr(src2); 3232 return true; 3233 } 3234 return false; 3235} 3236 3237/* vmsbf.m set-before-first mask bit */ 3238/* vmsif.m set-includ-first mask bit */ 3239/* vmsof.m set-only-first mask bit */ 3240#define GEN_M_TRANS(NAME) \ 3241static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3242{ \ 3243 if (require_rvv(s) && \ 3244 vext_check_isa_ill(s) && \ 3245 require_vm(a->vm, a->rd) && \ 3246 (a->rd != a->rs2) && \ 3247 (s->vstart == 0)) { \ 3248 uint32_t data = 0; \ 3249 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3250 TCGLabel *over = gen_new_label(); \ 3251 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3252 \ 3253 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3254 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3255 data = \ 3256 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3257 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3258 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3259 cpu_env, s->cfg_ptr->vlen / 8, \ 3260 s->cfg_ptr->vlen / 8, \ 3261 data, fn); \ 3262 mark_vs_dirty(s); \ 3263 gen_set_label(over); \ 3264 return true; \ 3265 } \ 3266 return false; \ 3267} 3268 3269GEN_M_TRANS(vmsbf_m) 3270GEN_M_TRANS(vmsif_m) 3271GEN_M_TRANS(vmsof_m) 3272 3273/* 3274 * Vector Iota Instruction 3275 * 3276 * 1. The destination register cannot overlap the source register. 3277 * 2. If masked, cannot overlap the mask register ('v0'). 3278 * 3. An illegal instruction exception is raised if vstart is non-zero. 3279 */ 3280static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3281{ 3282 if (require_rvv(s) && 3283 vext_check_isa_ill(s) && 3284 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3285 require_vm(a->vm, a->rd) && 3286 require_align(a->rd, s->lmul) && 3287 (s->vstart == 0)) { 3288 uint32_t data = 0; 3289 TCGLabel *over = gen_new_label(); 3290 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3291 3292 data = FIELD_DP32(data, VDATA, VM, a->vm); 3293 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3294 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3295 static gen_helper_gvec_3_ptr * const fns[4] = { 3296 gen_helper_viota_m_b, gen_helper_viota_m_h, 3297 gen_helper_viota_m_w, gen_helper_viota_m_d, 3298 }; 3299 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3300 vreg_ofs(s, a->rs2), cpu_env, 3301 s->cfg_ptr->vlen / 8, 3302 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3303 mark_vs_dirty(s); 3304 gen_set_label(over); 3305 return true; 3306 } 3307 return false; 3308} 3309 3310/* Vector Element Index Instruction */ 3311static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3312{ 3313 if (require_rvv(s) && 3314 vext_check_isa_ill(s) && 3315 require_align(a->rd, s->lmul) && 3316 require_vm(a->vm, a->rd)) { 3317 uint32_t data = 0; 3318 TCGLabel *over = gen_new_label(); 3319 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3320 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3321 3322 data = FIELD_DP32(data, VDATA, VM, a->vm); 3323 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3324 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3325 static gen_helper_gvec_2_ptr * const fns[4] = { 3326 gen_helper_vid_v_b, gen_helper_vid_v_h, 3327 gen_helper_vid_v_w, gen_helper_vid_v_d, 3328 }; 3329 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3330 cpu_env, s->cfg_ptr->vlen / 8, 3331 s->cfg_ptr->vlen / 8, 3332 data, fns[s->sew]); 3333 mark_vs_dirty(s); 3334 gen_set_label(over); 3335 return true; 3336 } 3337 return false; 3338} 3339 3340/* 3341 *** Vector Permutation Instructions 3342 */ 3343 3344static void load_element(TCGv_i64 dest, TCGv_ptr base, 3345 int ofs, int sew, bool sign) 3346{ 3347 switch (sew) { 3348 case MO_8: 3349 if (!sign) { 3350 tcg_gen_ld8u_i64(dest, base, ofs); 3351 } else { 3352 tcg_gen_ld8s_i64(dest, base, ofs); 3353 } 3354 break; 3355 case MO_16: 3356 if (!sign) { 3357 tcg_gen_ld16u_i64(dest, base, ofs); 3358 } else { 3359 tcg_gen_ld16s_i64(dest, base, ofs); 3360 } 3361 break; 3362 case MO_32: 3363 if (!sign) { 3364 tcg_gen_ld32u_i64(dest, base, ofs); 3365 } else { 3366 tcg_gen_ld32s_i64(dest, base, ofs); 3367 } 3368 break; 3369 case MO_64: 3370 tcg_gen_ld_i64(dest, base, ofs); 3371 break; 3372 default: 3373 g_assert_not_reached(); 3374 break; 3375 } 3376} 3377 3378/* offset of the idx element with base regsiter r */ 3379static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3380{ 3381#if HOST_BIG_ENDIAN 3382 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3383#else 3384 return vreg_ofs(s, r) + (idx << s->sew); 3385#endif 3386} 3387 3388/* adjust the index according to the endian */ 3389static void endian_adjust(TCGv_i32 ofs, int sew) 3390{ 3391#if HOST_BIG_ENDIAN 3392 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3393#endif 3394} 3395 3396/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3397static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3398 int vreg, TCGv idx, int vlmax) 3399{ 3400 TCGv_i32 ofs = tcg_temp_new_i32(); 3401 TCGv_ptr base = tcg_temp_new_ptr(); 3402 TCGv_i64 t_idx = tcg_temp_new_i64(); 3403 TCGv_i64 t_vlmax, t_zero; 3404 3405 /* 3406 * Mask the index to the length so that we do 3407 * not produce an out-of-range load. 3408 */ 3409 tcg_gen_trunc_tl_i32(ofs, idx); 3410 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3411 3412 /* Convert the index to an offset. */ 3413 endian_adjust(ofs, s->sew); 3414 tcg_gen_shli_i32(ofs, ofs, s->sew); 3415 3416 /* Convert the index to a pointer. */ 3417 tcg_gen_ext_i32_ptr(base, ofs); 3418 tcg_gen_add_ptr(base, base, cpu_env); 3419 3420 /* Perform the load. */ 3421 load_element(dest, base, 3422 vreg_ofs(s, vreg), s->sew, false); 3423 tcg_temp_free_ptr(base); 3424 tcg_temp_free_i32(ofs); 3425 3426 /* Flush out-of-range indexing to zero. */ 3427 t_vlmax = tcg_constant_i64(vlmax); 3428 t_zero = tcg_constant_i64(0); 3429 tcg_gen_extu_tl_i64(t_idx, idx); 3430 3431 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3432 t_vlmax, dest, t_zero); 3433 3434 tcg_temp_free_i64(t_idx); 3435} 3436 3437static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3438 int vreg, int idx, bool sign) 3439{ 3440 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3441} 3442 3443/* Integer Scalar Move Instruction */ 3444 3445static void store_element(TCGv_i64 val, TCGv_ptr base, 3446 int ofs, int sew) 3447{ 3448 switch (sew) { 3449 case MO_8: 3450 tcg_gen_st8_i64(val, base, ofs); 3451 break; 3452 case MO_16: 3453 tcg_gen_st16_i64(val, base, ofs); 3454 break; 3455 case MO_32: 3456 tcg_gen_st32_i64(val, base, ofs); 3457 break; 3458 case MO_64: 3459 tcg_gen_st_i64(val, base, ofs); 3460 break; 3461 default: 3462 g_assert_not_reached(); 3463 break; 3464 } 3465} 3466 3467/* 3468 * Store vreg[idx] = val. 3469 * The index must be in range of VLMAX. 3470 */ 3471static void vec_element_storei(DisasContext *s, int vreg, 3472 int idx, TCGv_i64 val) 3473{ 3474 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3475} 3476 3477/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3478static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3479{ 3480 if (require_rvv(s) && 3481 vext_check_isa_ill(s)) { 3482 TCGv_i64 t1; 3483 TCGv dest; 3484 3485 t1 = tcg_temp_new_i64(); 3486 dest = tcg_temp_new(); 3487 /* 3488 * load vreg and sign-extend to 64 bits, 3489 * then truncate to XLEN bits before storing to gpr. 3490 */ 3491 vec_element_loadi(s, t1, a->rs2, 0, true); 3492 tcg_gen_trunc_i64_tl(dest, t1); 3493 gen_set_gpr(s, a->rd, dest); 3494 tcg_temp_free_i64(t1); 3495 tcg_temp_free(dest); 3496 3497 return true; 3498 } 3499 return false; 3500} 3501 3502/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3503static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3504{ 3505 if (require_rvv(s) && 3506 vext_check_isa_ill(s)) { 3507 /* This instruction ignores LMUL and vector register groups */ 3508 TCGv_i64 t1; 3509 TCGv s1; 3510 TCGLabel *over = gen_new_label(); 3511 3512 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3513 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3514 3515 t1 = tcg_temp_new_i64(); 3516 3517 /* 3518 * load gpr and sign-extend to 64 bits, 3519 * then truncate to SEW bits when storing to vreg. 3520 */ 3521 s1 = get_gpr(s, a->rs1, EXT_NONE); 3522 tcg_gen_ext_tl_i64(t1, s1); 3523 vec_element_storei(s, a->rd, 0, t1); 3524 tcg_temp_free_i64(t1); 3525 mark_vs_dirty(s); 3526 gen_set_label(over); 3527 return true; 3528 } 3529 return false; 3530} 3531 3532/* Floating-Point Scalar Move Instructions */ 3533static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3534{ 3535 if (require_rvv(s) && 3536 require_rvf(s) && 3537 vext_check_isa_ill(s) && 3538 require_zve32f(s) && 3539 require_zve64f(s)) { 3540 gen_set_rm(s, RISCV_FRM_DYN); 3541 3542 unsigned int ofs = (8 << s->sew); 3543 unsigned int len = 64 - ofs; 3544 TCGv_i64 t_nan; 3545 3546 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3547 /* NaN-box f[rd] as necessary for SEW */ 3548 if (len) { 3549 t_nan = tcg_constant_i64(UINT64_MAX); 3550 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3551 t_nan, ofs, len); 3552 } 3553 3554 mark_fs_dirty(s); 3555 return true; 3556 } 3557 return false; 3558} 3559 3560/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3561static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3562{ 3563 if (require_rvv(s) && 3564 require_rvf(s) && 3565 vext_check_isa_ill(s) && 3566 require_zve32f(s) && 3567 require_zve64f(s)) { 3568 gen_set_rm(s, RISCV_FRM_DYN); 3569 3570 /* The instructions ignore LMUL and vector register group. */ 3571 TCGv_i64 t1; 3572 TCGLabel *over = gen_new_label(); 3573 3574 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3575 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3576 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3577 3578 /* NaN-box f[rs1] */ 3579 t1 = tcg_temp_new_i64(); 3580 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3581 3582 vec_element_storei(s, a->rd, 0, t1); 3583 tcg_temp_free_i64(t1); 3584 mark_vs_dirty(s); 3585 gen_set_label(over); 3586 return true; 3587 } 3588 return false; 3589} 3590 3591/* Vector Slide Instructions */ 3592static bool slideup_check(DisasContext *s, arg_rmrr *a) 3593{ 3594 return require_rvv(s) && 3595 vext_check_isa_ill(s) && 3596 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3597} 3598 3599GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3600GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3601GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3602 3603static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3604{ 3605 return require_rvv(s) && 3606 vext_check_isa_ill(s) && 3607 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3608} 3609 3610GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3611GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3612GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3613 3614/* Vector Floating-Point Slide Instructions */ 3615static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3616{ 3617 return slideup_check(s, a) && 3618 require_rvf(s) && 3619 require_zve32f(s) && 3620 require_zve64f(s); 3621} 3622 3623static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3624{ 3625 return slidedown_check(s, a) && 3626 require_rvf(s) && 3627 require_zve32f(s) && 3628 require_zve64f(s); 3629} 3630 3631GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3632GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3633 3634/* Vector Register Gather Instruction */ 3635static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3636{ 3637 return require_rvv(s) && 3638 vext_check_isa_ill(s) && 3639 require_align(a->rd, s->lmul) && 3640 require_align(a->rs1, s->lmul) && 3641 require_align(a->rs2, s->lmul) && 3642 (a->rd != a->rs2 && a->rd != a->rs1) && 3643 require_vm(a->vm, a->rd); 3644} 3645 3646static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3647{ 3648 int8_t emul = MO_16 - s->sew + s->lmul; 3649 return require_rvv(s) && 3650 vext_check_isa_ill(s) && 3651 (emul >= -3 && emul <= 3) && 3652 require_align(a->rd, s->lmul) && 3653 require_align(a->rs1, emul) && 3654 require_align(a->rs2, s->lmul) && 3655 (a->rd != a->rs2 && a->rd != a->rs1) && 3656 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3657 a->rs1, 1 << MAX(emul, 0)) && 3658 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3659 a->rs2, 1 << MAX(s->lmul, 0)) && 3660 require_vm(a->vm, a->rd); 3661} 3662 3663GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3664GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3665 3666static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3667{ 3668 return require_rvv(s) && 3669 vext_check_isa_ill(s) && 3670 require_align(a->rd, s->lmul) && 3671 require_align(a->rs2, s->lmul) && 3672 (a->rd != a->rs2) && 3673 require_vm(a->vm, a->rd); 3674} 3675 3676/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3677static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3678{ 3679 if (!vrgather_vx_check(s, a)) { 3680 return false; 3681 } 3682 3683 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3684 int scale = s->lmul - (s->sew + 3); 3685 int vlmax = s->cfg_ptr->vlen >> -scale; 3686 TCGv_i64 dest = tcg_temp_new_i64(); 3687 3688 if (a->rs1 == 0) { 3689 vec_element_loadi(s, dest, a->rs2, 0, false); 3690 } else { 3691 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3692 } 3693 3694 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3695 MAXSZ(s), MAXSZ(s), dest); 3696 tcg_temp_free_i64(dest); 3697 mark_vs_dirty(s); 3698 } else { 3699 static gen_helper_opivx * const fns[4] = { 3700 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3701 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3702 }; 3703 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3704 } 3705 return true; 3706} 3707 3708/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3709static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3710{ 3711 if (!vrgather_vx_check(s, a)) { 3712 return false; 3713 } 3714 3715 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3716 int scale = s->lmul - (s->sew + 3); 3717 int vlmax = s->cfg_ptr->vlen >> -scale; 3718 if (a->rs1 >= vlmax) { 3719 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3720 MAXSZ(s), MAXSZ(s), 0); 3721 } else { 3722 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3723 endian_ofs(s, a->rs2, a->rs1), 3724 MAXSZ(s), MAXSZ(s)); 3725 } 3726 mark_vs_dirty(s); 3727 } else { 3728 static gen_helper_opivx * const fns[4] = { 3729 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3730 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3731 }; 3732 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3733 s, IMM_ZX); 3734 } 3735 return true; 3736} 3737 3738/* 3739 * Vector Compress Instruction 3740 * 3741 * The destination vector register group cannot overlap the 3742 * source vector register group or the source mask register. 3743 */ 3744static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3745{ 3746 return require_rvv(s) && 3747 vext_check_isa_ill(s) && 3748 require_align(a->rd, s->lmul) && 3749 require_align(a->rs2, s->lmul) && 3750 (a->rd != a->rs2) && 3751 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3752 (s->vstart == 0); 3753} 3754 3755static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3756{ 3757 if (vcompress_vm_check(s, a)) { 3758 uint32_t data = 0; 3759 static gen_helper_gvec_4_ptr * const fns[4] = { 3760 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3761 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3762 }; 3763 TCGLabel *over = gen_new_label(); 3764 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3765 3766 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3767 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3768 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3769 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3770 cpu_env, s->cfg_ptr->vlen / 8, 3771 s->cfg_ptr->vlen / 8, data, 3772 fns[s->sew]); 3773 mark_vs_dirty(s); 3774 gen_set_label(over); 3775 return true; 3776 } 3777 return false; 3778} 3779 3780/* 3781 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3782 * Thus, we don't need to check vill bit. (Section 16.6) 3783 */ 3784#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3785static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3786{ \ 3787 if (require_rvv(s) && \ 3788 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3789 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3790 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3791 if (s->vstart == 0) { \ 3792 /* EEW = 8 */ \ 3793 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3794 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3795 mark_vs_dirty(s); \ 3796 } else { \ 3797 TCGLabel *over = gen_new_label(); \ 3798 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3799 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3800 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3801 mark_vs_dirty(s); \ 3802 gen_set_label(over); \ 3803 } \ 3804 return true; \ 3805 } \ 3806 return false; \ 3807} 3808 3809GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3810GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3811GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3812GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3813 3814static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3815{ 3816 uint8_t from = (s->sew + 3) - div; 3817 bool ret = require_rvv(s) && 3818 (from >= 3 && from <= 8) && 3819 (a->rd != a->rs2) && 3820 require_align(a->rd, s->lmul) && 3821 require_align(a->rs2, s->lmul - div) && 3822 require_vm(a->vm, a->rd) && 3823 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3824 return ret; 3825} 3826 3827static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3828{ 3829 uint32_t data = 0; 3830 gen_helper_gvec_3_ptr *fn; 3831 TCGLabel *over = gen_new_label(); 3832 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3833 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3834 3835 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3836 { 3837 NULL, gen_helper_vzext_vf2_h, 3838 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3839 }, 3840 { 3841 NULL, NULL, 3842 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3843 }, 3844 { 3845 NULL, NULL, 3846 NULL, gen_helper_vzext_vf8_d 3847 }, 3848 { 3849 NULL, gen_helper_vsext_vf2_h, 3850 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3851 }, 3852 { 3853 NULL, NULL, 3854 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3855 }, 3856 { 3857 NULL, NULL, 3858 NULL, gen_helper_vsext_vf8_d 3859 } 3860 }; 3861 3862 fn = fns[seq][s->sew]; 3863 if (fn == NULL) { 3864 return false; 3865 } 3866 3867 data = FIELD_DP32(data, VDATA, VM, a->vm); 3868 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3869 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3870 3871 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3872 vreg_ofs(s, a->rs2), cpu_env, 3873 s->cfg_ptr->vlen / 8, 3874 s->cfg_ptr->vlen / 8, data, fn); 3875 3876 mark_vs_dirty(s); 3877 gen_set_label(over); 3878 return true; 3879} 3880 3881/* Vector Integer Extension */ 3882#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3883static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3884{ \ 3885 if (int_ext_check(s, a, DIV)) { \ 3886 return int_ext_op(s, a, SEQ); \ 3887 } \ 3888 return false; \ 3889} 3890 3891GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3892GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3893GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3894GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3895GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3896GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3897