1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 656 657 dest = tcg_temp_new_ptr(); 658 mask = tcg_temp_new_ptr(); 659 base = get_gpr(s, rs1, EXT_NONE); 660 661 /* 662 * As simd_desc supports at most 2048 bytes, and in this implementation, 663 * the max vector group length is 4096 bytes. So split it into two parts. 664 * 665 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 666 * The second part is lmul, encoded in data of simd_desc. 667 */ 668 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 669 s->cfg_ptr->vlen / 8, data)); 670 671 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 672 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 673 674 fn(dest, mask, base, cpu_env, desc); 675 676 tcg_temp_free_ptr(dest); 677 tcg_temp_free_ptr(mask); 678 679 if (!is_store) { 680 mark_vs_dirty(s); 681 } 682 683 gen_set_label(over); 684 return true; 685} 686 687static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 688{ 689 uint32_t data = 0; 690 gen_helper_ldst_us *fn; 691 static gen_helper_ldst_us * const fns[2][4] = { 692 /* masked unit stride load */ 693 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 694 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 695 /* unmasked unit stride load */ 696 { gen_helper_vle8_v, gen_helper_vle16_v, 697 gen_helper_vle32_v, gen_helper_vle64_v } 698 }; 699 700 fn = fns[a->vm][eew]; 701 if (fn == NULL) { 702 return false; 703 } 704 705 /* 706 * Vector load/store instructions have the EEW encoded 707 * directly in the instructions. The maximum vector size is 708 * calculated with EMUL rather than LMUL. 709 */ 710 uint8_t emul = vext_get_emul(s, eew); 711 data = FIELD_DP32(data, VDATA, VM, a->vm); 712 data = FIELD_DP32(data, VDATA, LMUL, emul); 713 data = FIELD_DP32(data, VDATA, NF, a->nf); 714 data = FIELD_DP32(data, VDATA, VTA, s->vta); 715 data = FIELD_DP32(data, VDATA, VMA, s->vma); 716 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 717} 718 719static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 720{ 721 return require_rvv(s) && 722 vext_check_isa_ill(s) && 723 vext_check_load(s, a->rd, a->nf, a->vm, eew); 724} 725 726GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 727GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 728GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 729GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 730 731static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 732{ 733 uint32_t data = 0; 734 gen_helper_ldst_us *fn; 735 static gen_helper_ldst_us * const fns[2][4] = { 736 /* masked unit stride store */ 737 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 738 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 739 /* unmasked unit stride store */ 740 { gen_helper_vse8_v, gen_helper_vse16_v, 741 gen_helper_vse32_v, gen_helper_vse64_v } 742 }; 743 744 fn = fns[a->vm][eew]; 745 if (fn == NULL) { 746 return false; 747 } 748 749 uint8_t emul = vext_get_emul(s, eew); 750 data = FIELD_DP32(data, VDATA, VM, a->vm); 751 data = FIELD_DP32(data, VDATA, LMUL, emul); 752 data = FIELD_DP32(data, VDATA, NF, a->nf); 753 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 754} 755 756static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 757{ 758 return require_rvv(s) && 759 vext_check_isa_ill(s) && 760 vext_check_store(s, a->rd, a->nf, eew); 761} 762 763GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 764GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 765GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 766GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 767 768/* 769 *** unit stride mask load and store 770 */ 771static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 772{ 773 uint32_t data = 0; 774 gen_helper_ldst_us *fn = gen_helper_vlm_v; 775 776 /* EMUL = 1, NFIELDS = 1 */ 777 data = FIELD_DP32(data, VDATA, LMUL, 0); 778 data = FIELD_DP32(data, VDATA, NF, 1); 779 /* Mask destination register are always tail-agnostic */ 780 data = FIELD_DP32(data, VDATA, VTA, s->cfg_vta_all_1s); 781 data = FIELD_DP32(data, VDATA, VMA, s->vma); 782 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 783} 784 785static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 786{ 787 /* EMUL = 1, NFIELDS = 1 */ 788 return require_rvv(s) && vext_check_isa_ill(s); 789} 790 791static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 792{ 793 uint32_t data = 0; 794 gen_helper_ldst_us *fn = gen_helper_vsm_v; 795 796 /* EMUL = 1, NFIELDS = 1 */ 797 data = FIELD_DP32(data, VDATA, LMUL, 0); 798 data = FIELD_DP32(data, VDATA, NF, 1); 799 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 800} 801 802static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 803{ 804 /* EMUL = 1, NFIELDS = 1 */ 805 return require_rvv(s) && vext_check_isa_ill(s); 806} 807 808GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 809GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 810 811/* 812 *** stride load and store 813 */ 814typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 815 TCGv, TCGv_env, TCGv_i32); 816 817static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 818 uint32_t data, gen_helper_ldst_stride *fn, 819 DisasContext *s, bool is_store) 820{ 821 TCGv_ptr dest, mask; 822 TCGv base, stride; 823 TCGv_i32 desc; 824 825 TCGLabel *over = gen_new_label(); 826 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 827 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 828 829 dest = tcg_temp_new_ptr(); 830 mask = tcg_temp_new_ptr(); 831 base = get_gpr(s, rs1, EXT_NONE); 832 stride = get_gpr(s, rs2, EXT_NONE); 833 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 834 s->cfg_ptr->vlen / 8, data)); 835 836 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 837 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 838 839 fn(dest, mask, base, stride, cpu_env, desc); 840 841 tcg_temp_free_ptr(dest); 842 tcg_temp_free_ptr(mask); 843 844 if (!is_store) { 845 mark_vs_dirty(s); 846 } 847 848 gen_set_label(over); 849 return true; 850} 851 852static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 853{ 854 uint32_t data = 0; 855 gen_helper_ldst_stride *fn; 856 static gen_helper_ldst_stride * const fns[4] = { 857 gen_helper_vlse8_v, gen_helper_vlse16_v, 858 gen_helper_vlse32_v, gen_helper_vlse64_v 859 }; 860 861 fn = fns[eew]; 862 if (fn == NULL) { 863 return false; 864 } 865 866 uint8_t emul = vext_get_emul(s, eew); 867 data = FIELD_DP32(data, VDATA, VM, a->vm); 868 data = FIELD_DP32(data, VDATA, LMUL, emul); 869 data = FIELD_DP32(data, VDATA, NF, a->nf); 870 data = FIELD_DP32(data, VDATA, VTA, s->vta); 871 data = FIELD_DP32(data, VDATA, VMA, s->vma); 872 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 873} 874 875static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 876{ 877 return require_rvv(s) && 878 vext_check_isa_ill(s) && 879 vext_check_load(s, a->rd, a->nf, a->vm, eew); 880} 881 882GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 883GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 884GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 885GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 886 887static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 888{ 889 uint32_t data = 0; 890 gen_helper_ldst_stride *fn; 891 static gen_helper_ldst_stride * const fns[4] = { 892 /* masked stride store */ 893 gen_helper_vsse8_v, gen_helper_vsse16_v, 894 gen_helper_vsse32_v, gen_helper_vsse64_v 895 }; 896 897 uint8_t emul = vext_get_emul(s, eew); 898 data = FIELD_DP32(data, VDATA, VM, a->vm); 899 data = FIELD_DP32(data, VDATA, LMUL, emul); 900 data = FIELD_DP32(data, VDATA, NF, a->nf); 901 fn = fns[eew]; 902 if (fn == NULL) { 903 return false; 904 } 905 906 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 907} 908 909static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 910{ 911 return require_rvv(s) && 912 vext_check_isa_ill(s) && 913 vext_check_store(s, a->rd, a->nf, eew); 914} 915 916GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 917GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 918GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 919GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 920 921/* 922 *** index load and store 923 */ 924typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 925 TCGv_ptr, TCGv_env, TCGv_i32); 926 927static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 928 uint32_t data, gen_helper_ldst_index *fn, 929 DisasContext *s, bool is_store) 930{ 931 TCGv_ptr dest, mask, index; 932 TCGv base; 933 TCGv_i32 desc; 934 935 TCGLabel *over = gen_new_label(); 936 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 937 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 938 939 dest = tcg_temp_new_ptr(); 940 mask = tcg_temp_new_ptr(); 941 index = tcg_temp_new_ptr(); 942 base = get_gpr(s, rs1, EXT_NONE); 943 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 944 s->cfg_ptr->vlen / 8, data)); 945 946 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 947 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 948 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 949 950 fn(dest, mask, base, index, cpu_env, desc); 951 952 tcg_temp_free_ptr(dest); 953 tcg_temp_free_ptr(mask); 954 tcg_temp_free_ptr(index); 955 956 if (!is_store) { 957 mark_vs_dirty(s); 958 } 959 960 gen_set_label(over); 961 return true; 962} 963 964static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 965{ 966 uint32_t data = 0; 967 gen_helper_ldst_index *fn; 968 static gen_helper_ldst_index * const fns[4][4] = { 969 /* 970 * offset vector register group EEW = 8, 971 * data vector register group EEW = SEW 972 */ 973 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 974 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 975 /* 976 * offset vector register group EEW = 16, 977 * data vector register group EEW = SEW 978 */ 979 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 980 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 981 /* 982 * offset vector register group EEW = 32, 983 * data vector register group EEW = SEW 984 */ 985 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 986 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 987 /* 988 * offset vector register group EEW = 64, 989 * data vector register group EEW = SEW 990 */ 991 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 992 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 993 }; 994 995 fn = fns[eew][s->sew]; 996 997 uint8_t emul = vext_get_emul(s, s->sew); 998 data = FIELD_DP32(data, VDATA, VM, a->vm); 999 data = FIELD_DP32(data, VDATA, LMUL, emul); 1000 data = FIELD_DP32(data, VDATA, NF, a->nf); 1001 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1002 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1003 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 1004} 1005 1006static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1007{ 1008 return require_rvv(s) && 1009 vext_check_isa_ill(s) && 1010 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 1011} 1012 1013GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1014GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1015GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1016GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1017 1018static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1019{ 1020 uint32_t data = 0; 1021 gen_helper_ldst_index *fn; 1022 static gen_helper_ldst_index * const fns[4][4] = { 1023 /* 1024 * offset vector register group EEW = 8, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1028 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1029 /* 1030 * offset vector register group EEW = 16, 1031 * data vector register group EEW = SEW 1032 */ 1033 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1034 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1035 /* 1036 * offset vector register group EEW = 32, 1037 * data vector register group EEW = SEW 1038 */ 1039 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1040 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1041 /* 1042 * offset vector register group EEW = 64, 1043 * data vector register group EEW = SEW 1044 */ 1045 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1046 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1047 }; 1048 1049 fn = fns[eew][s->sew]; 1050 1051 uint8_t emul = vext_get_emul(s, s->sew); 1052 data = FIELD_DP32(data, VDATA, VM, a->vm); 1053 data = FIELD_DP32(data, VDATA, LMUL, emul); 1054 data = FIELD_DP32(data, VDATA, NF, a->nf); 1055 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1056} 1057 1058static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1059{ 1060 return require_rvv(s) && 1061 vext_check_isa_ill(s) && 1062 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1063} 1064 1065GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1066GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1067GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1068GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1069 1070/* 1071 *** unit stride fault-only-first load 1072 */ 1073static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1074 gen_helper_ldst_us *fn, DisasContext *s) 1075{ 1076 TCGv_ptr dest, mask; 1077 TCGv base; 1078 TCGv_i32 desc; 1079 1080 TCGLabel *over = gen_new_label(); 1081 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1082 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1083 1084 dest = tcg_temp_new_ptr(); 1085 mask = tcg_temp_new_ptr(); 1086 base = get_gpr(s, rs1, EXT_NONE); 1087 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1088 s->cfg_ptr->vlen / 8, data)); 1089 1090 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1091 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1092 1093 fn(dest, mask, base, cpu_env, desc); 1094 1095 tcg_temp_free_ptr(dest); 1096 tcg_temp_free_ptr(mask); 1097 mark_vs_dirty(s); 1098 gen_set_label(over); 1099 return true; 1100} 1101 1102static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1103{ 1104 uint32_t data = 0; 1105 gen_helper_ldst_us *fn; 1106 static gen_helper_ldst_us * const fns[4] = { 1107 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1108 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1109 }; 1110 1111 fn = fns[eew]; 1112 if (fn == NULL) { 1113 return false; 1114 } 1115 1116 uint8_t emul = vext_get_emul(s, eew); 1117 data = FIELD_DP32(data, VDATA, VM, a->vm); 1118 data = FIELD_DP32(data, VDATA, LMUL, emul); 1119 data = FIELD_DP32(data, VDATA, NF, a->nf); 1120 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1121 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1122 return ldff_trans(a->rd, a->rs1, data, fn, s); 1123} 1124 1125GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1126GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1127GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1128GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1129 1130/* 1131 * load and store whole register instructions 1132 */ 1133typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1134 1135static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1136 uint32_t width, gen_helper_ldst_whole *fn, 1137 DisasContext *s, bool is_store) 1138{ 1139 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1140 TCGLabel *over = gen_new_label(); 1141 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1142 1143 TCGv_ptr dest; 1144 TCGv base; 1145 TCGv_i32 desc; 1146 1147 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1148 dest = tcg_temp_new_ptr(); 1149 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1150 s->cfg_ptr->vlen / 8, data)); 1151 1152 base = get_gpr(s, rs1, EXT_NONE); 1153 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1154 1155 fn(dest, base, cpu_env, desc); 1156 1157 tcg_temp_free_ptr(dest); 1158 1159 if (!is_store) { 1160 mark_vs_dirty(s); 1161 } 1162 gen_set_label(over); 1163 1164 return true; 1165} 1166 1167/* 1168 * load and store whole register instructions ignore vtype and vl setting. 1169 * Thus, we don't need to check vill bit. (Section 7.9) 1170 */ 1171#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1172static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1173{ \ 1174 if (require_rvv(s) && \ 1175 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1176 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1177 gen_helper_##NAME, s, IS_STORE); \ 1178 } \ 1179 return false; \ 1180} 1181 1182GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1183GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1184GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1185GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1186GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1187GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1188GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1189GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1190GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1191GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1192GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1193GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1194GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1195GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1196GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1197GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1198 1199/* 1200 * The vector whole register store instructions are encoded similar to 1201 * unmasked unit-stride store of elements with EEW=8. 1202 */ 1203GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1204GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1205GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1206GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1207 1208/* 1209 *** Vector Integer Arithmetic Instructions 1210 */ 1211 1212/* 1213 * MAXSZ returns the maximum vector size can be operated in bytes, 1214 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1215 * to accerlate vector operation. 1216 */ 1217static inline uint32_t MAXSZ(DisasContext *s) 1218{ 1219 int scale = s->lmul - 3; 1220 return s->cfg_ptr->vlen >> -scale; 1221} 1222 1223static bool opivv_check(DisasContext *s, arg_rmrr *a) 1224{ 1225 return require_rvv(s) && 1226 vext_check_isa_ill(s) && 1227 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1228} 1229 1230typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1231 uint32_t, uint32_t, uint32_t); 1232 1233static inline bool 1234do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1235 gen_helper_gvec_4_ptr *fn) 1236{ 1237 TCGLabel *over = gen_new_label(); 1238 if (!opivv_check(s, a)) { 1239 return false; 1240 } 1241 1242 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1243 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1244 1245 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1246 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1247 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1248 MAXSZ(s), MAXSZ(s)); 1249 } else { 1250 uint32_t data = 0; 1251 1252 data = FIELD_DP32(data, VDATA, VM, a->vm); 1253 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1254 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1255 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1256 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1257 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1258 cpu_env, s->cfg_ptr->vlen / 8, 1259 s->cfg_ptr->vlen / 8, data, fn); 1260 } 1261 mark_vs_dirty(s); 1262 gen_set_label(over); 1263 return true; 1264} 1265 1266/* OPIVV with GVEC IR */ 1267#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1268static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1269{ \ 1270 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1271 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1272 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1273 }; \ 1274 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1275} 1276 1277GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1278GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1279 1280typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1281 TCGv_env, TCGv_i32); 1282 1283static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1284 gen_helper_opivx *fn, DisasContext *s) 1285{ 1286 TCGv_ptr dest, src2, mask; 1287 TCGv src1; 1288 TCGv_i32 desc; 1289 uint32_t data = 0; 1290 1291 TCGLabel *over = gen_new_label(); 1292 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1293 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1294 1295 dest = tcg_temp_new_ptr(); 1296 mask = tcg_temp_new_ptr(); 1297 src2 = tcg_temp_new_ptr(); 1298 src1 = get_gpr(s, rs1, EXT_SIGN); 1299 1300 data = FIELD_DP32(data, VDATA, VM, vm); 1301 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1302 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1303 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1304 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1305 s->cfg_ptr->vlen / 8, data)); 1306 1307 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1308 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1309 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1310 1311 fn(dest, mask, src1, src2, cpu_env, desc); 1312 1313 tcg_temp_free_ptr(dest); 1314 tcg_temp_free_ptr(mask); 1315 tcg_temp_free_ptr(src2); 1316 mark_vs_dirty(s); 1317 gen_set_label(over); 1318 return true; 1319} 1320 1321static bool opivx_check(DisasContext *s, arg_rmrr *a) 1322{ 1323 return require_rvv(s) && 1324 vext_check_isa_ill(s) && 1325 vext_check_ss(s, a->rd, a->rs2, a->vm); 1326} 1327 1328typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1329 uint32_t, uint32_t); 1330 1331static inline bool 1332do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1333 gen_helper_opivx *fn) 1334{ 1335 if (!opivx_check(s, a)) { 1336 return false; 1337 } 1338 1339 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1340 TCGv_i64 src1 = tcg_temp_new_i64(); 1341 1342 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1343 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1344 src1, MAXSZ(s), MAXSZ(s)); 1345 1346 tcg_temp_free_i64(src1); 1347 mark_vs_dirty(s); 1348 return true; 1349 } 1350 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1351} 1352 1353/* OPIVX with GVEC IR */ 1354#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1355static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1356{ \ 1357 static gen_helper_opivx * const fns[4] = { \ 1358 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1359 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1360 }; \ 1361 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1362} 1363 1364GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1365GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1366 1367static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1368{ 1369 tcg_gen_vec_sub8_i64(d, b, a); 1370} 1371 1372static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1373{ 1374 tcg_gen_vec_sub16_i64(d, b, a); 1375} 1376 1377static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1378{ 1379 tcg_gen_sub_i32(ret, arg2, arg1); 1380} 1381 1382static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1383{ 1384 tcg_gen_sub_i64(ret, arg2, arg1); 1385} 1386 1387static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1388{ 1389 tcg_gen_sub_vec(vece, r, b, a); 1390} 1391 1392static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1393 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1394{ 1395 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1396 static const GVecGen2s rsub_op[4] = { 1397 { .fni8 = gen_vec_rsub8_i64, 1398 .fniv = gen_rsub_vec, 1399 .fno = gen_helper_vec_rsubs8, 1400 .opt_opc = vecop_list, 1401 .vece = MO_8 }, 1402 { .fni8 = gen_vec_rsub16_i64, 1403 .fniv = gen_rsub_vec, 1404 .fno = gen_helper_vec_rsubs16, 1405 .opt_opc = vecop_list, 1406 .vece = MO_16 }, 1407 { .fni4 = gen_rsub_i32, 1408 .fniv = gen_rsub_vec, 1409 .fno = gen_helper_vec_rsubs32, 1410 .opt_opc = vecop_list, 1411 .vece = MO_32 }, 1412 { .fni8 = gen_rsub_i64, 1413 .fniv = gen_rsub_vec, 1414 .fno = gen_helper_vec_rsubs64, 1415 .opt_opc = vecop_list, 1416 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1417 .vece = MO_64 }, 1418 }; 1419 1420 tcg_debug_assert(vece <= MO_64); 1421 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1422} 1423 1424GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1425 1426typedef enum { 1427 IMM_ZX, /* Zero-extended */ 1428 IMM_SX, /* Sign-extended */ 1429 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1430 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1431} imm_mode_t; 1432 1433static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1434{ 1435 switch (imm_mode) { 1436 case IMM_ZX: 1437 return extract64(imm, 0, 5); 1438 case IMM_SX: 1439 return sextract64(imm, 0, 5); 1440 case IMM_TRUNC_SEW: 1441 return extract64(imm, 0, s->sew + 3); 1442 case IMM_TRUNC_2SEW: 1443 return extract64(imm, 0, s->sew + 4); 1444 default: 1445 g_assert_not_reached(); 1446 } 1447} 1448 1449static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1450 gen_helper_opivx *fn, DisasContext *s, 1451 imm_mode_t imm_mode) 1452{ 1453 TCGv_ptr dest, src2, mask; 1454 TCGv src1; 1455 TCGv_i32 desc; 1456 uint32_t data = 0; 1457 1458 TCGLabel *over = gen_new_label(); 1459 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1460 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1461 1462 dest = tcg_temp_new_ptr(); 1463 mask = tcg_temp_new_ptr(); 1464 src2 = tcg_temp_new_ptr(); 1465 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1466 1467 data = FIELD_DP32(data, VDATA, VM, vm); 1468 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1469 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1470 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s); 1471 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1472 s->cfg_ptr->vlen / 8, data)); 1473 1474 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1475 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1476 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1477 1478 fn(dest, mask, src1, src2, cpu_env, desc); 1479 1480 tcg_temp_free_ptr(dest); 1481 tcg_temp_free_ptr(mask); 1482 tcg_temp_free_ptr(src2); 1483 mark_vs_dirty(s); 1484 gen_set_label(over); 1485 return true; 1486} 1487 1488typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1489 uint32_t, uint32_t); 1490 1491static inline bool 1492do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1493 gen_helper_opivx *fn, imm_mode_t imm_mode) 1494{ 1495 if (!opivx_check(s, a)) { 1496 return false; 1497 } 1498 1499 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1500 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1501 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1502 mark_vs_dirty(s); 1503 return true; 1504 } 1505 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1506} 1507 1508/* OPIVI with GVEC IR */ 1509#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1510static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1511{ \ 1512 static gen_helper_opivx * const fns[4] = { \ 1513 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1514 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1515 }; \ 1516 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1517 fns[s->sew], IMM_MODE); \ 1518} 1519 1520GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1521 1522static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1523 int64_t c, uint32_t oprsz, uint32_t maxsz) 1524{ 1525 TCGv_i64 tmp = tcg_constant_i64(c); 1526 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1527} 1528 1529GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1530 1531/* Vector Widening Integer Add/Subtract */ 1532 1533/* OPIVV with WIDEN */ 1534static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1535{ 1536 return require_rvv(s) && 1537 vext_check_isa_ill(s) && 1538 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1539} 1540 1541static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1542 gen_helper_gvec_4_ptr *fn, 1543 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1544{ 1545 if (checkfn(s, a)) { 1546 uint32_t data = 0; 1547 TCGLabel *over = gen_new_label(); 1548 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1549 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1550 1551 data = FIELD_DP32(data, VDATA, VM, a->vm); 1552 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1553 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1554 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1555 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1556 vreg_ofs(s, a->rs1), 1557 vreg_ofs(s, a->rs2), 1558 cpu_env, s->cfg_ptr->vlen / 8, 1559 s->cfg_ptr->vlen / 8, 1560 data, fn); 1561 mark_vs_dirty(s); 1562 gen_set_label(over); 1563 return true; 1564 } 1565 return false; 1566} 1567 1568#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1569static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1570{ \ 1571 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1572 gen_helper_##NAME##_b, \ 1573 gen_helper_##NAME##_h, \ 1574 gen_helper_##NAME##_w \ 1575 }; \ 1576 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1577} 1578 1579GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1580GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1581GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1582GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1583 1584/* OPIVX with WIDEN */ 1585static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1586{ 1587 return require_rvv(s) && 1588 vext_check_isa_ill(s) && 1589 vext_check_ds(s, a->rd, a->rs2, a->vm); 1590} 1591 1592static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1593 gen_helper_opivx *fn) 1594{ 1595 if (opivx_widen_check(s, a)) { 1596 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1597 } 1598 return false; 1599} 1600 1601#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1602static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1603{ \ 1604 static gen_helper_opivx * const fns[3] = { \ 1605 gen_helper_##NAME##_b, \ 1606 gen_helper_##NAME##_h, \ 1607 gen_helper_##NAME##_w \ 1608 }; \ 1609 return do_opivx_widen(s, a, fns[s->sew]); \ 1610} 1611 1612GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1613GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1614GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1615GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1616 1617/* WIDEN OPIVV with WIDEN */ 1618static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1619{ 1620 return require_rvv(s) && 1621 vext_check_isa_ill(s) && 1622 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1623} 1624 1625static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1626 gen_helper_gvec_4_ptr *fn) 1627{ 1628 if (opiwv_widen_check(s, a)) { 1629 uint32_t data = 0; 1630 TCGLabel *over = gen_new_label(); 1631 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1632 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 1633 1634 data = FIELD_DP32(data, VDATA, VM, a->vm); 1635 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1636 data = FIELD_DP32(data, VDATA, VTA, s->vta); 1637 data = FIELD_DP32(data, VDATA, VMA, s->vma); 1638 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1639 vreg_ofs(s, a->rs1), 1640 vreg_ofs(s, a->rs2), 1641 cpu_env, s->cfg_ptr->vlen / 8, 1642 s->cfg_ptr->vlen / 8, data, fn); 1643 mark_vs_dirty(s); 1644 gen_set_label(over); 1645 return true; 1646 } 1647 return false; 1648} 1649 1650#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1651static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1652{ \ 1653 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1654 gen_helper_##NAME##_b, \ 1655 gen_helper_##NAME##_h, \ 1656 gen_helper_##NAME##_w \ 1657 }; \ 1658 return do_opiwv_widen(s, a, fns[s->sew]); \ 1659} 1660 1661GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1662GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1663GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1664GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1665 1666/* WIDEN OPIVX with WIDEN */ 1667static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1668{ 1669 return require_rvv(s) && 1670 vext_check_isa_ill(s) && 1671 vext_check_dd(s, a->rd, a->rs2, a->vm); 1672} 1673 1674static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1675 gen_helper_opivx *fn) 1676{ 1677 if (opiwx_widen_check(s, a)) { 1678 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1679 } 1680 return false; 1681} 1682 1683#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1684static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1685{ \ 1686 static gen_helper_opivx * const fns[3] = { \ 1687 gen_helper_##NAME##_b, \ 1688 gen_helper_##NAME##_h, \ 1689 gen_helper_##NAME##_w \ 1690 }; \ 1691 return do_opiwx_widen(s, a, fns[s->sew]); \ 1692} 1693 1694GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1695GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1696GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1697GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1698 1699/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1700/* OPIVV without GVEC IR */ 1701#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1702static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1703{ \ 1704 if (CHECK(s, a)) { \ 1705 uint32_t data = 0; \ 1706 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1707 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1708 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1709 }; \ 1710 TCGLabel *over = gen_new_label(); \ 1711 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1712 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1713 \ 1714 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1715 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1716 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1717 data = \ 1718 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 1719 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1720 vreg_ofs(s, a->rs1), \ 1721 vreg_ofs(s, a->rs2), cpu_env, \ 1722 s->cfg_ptr->vlen / 8, \ 1723 s->cfg_ptr->vlen / 8, data, \ 1724 fns[s->sew]); \ 1725 mark_vs_dirty(s); \ 1726 gen_set_label(over); \ 1727 return true; \ 1728 } \ 1729 return false; \ 1730} 1731 1732/* 1733 * For vadc and vsbc, an illegal instruction exception is raised if the 1734 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1735 */ 1736static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1737{ 1738 return require_rvv(s) && 1739 vext_check_isa_ill(s) && 1740 (a->rd != 0) && 1741 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1742} 1743 1744GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1745GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1746 1747/* 1748 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1749 * destination vector register overlaps a source vector register group. 1750 */ 1751static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1752{ 1753 return require_rvv(s) && 1754 vext_check_isa_ill(s) && 1755 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1756} 1757 1758GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1759GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1760 1761static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1762{ 1763 return require_rvv(s) && 1764 vext_check_isa_ill(s) && 1765 (a->rd != 0) && 1766 vext_check_ss(s, a->rd, a->rs2, a->vm); 1767} 1768 1769/* OPIVX without GVEC IR */ 1770#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1771static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1772{ \ 1773 if (CHECK(s, a)) { \ 1774 static gen_helper_opivx * const fns[4] = { \ 1775 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1776 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1777 }; \ 1778 \ 1779 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1780 } \ 1781 return false; \ 1782} 1783 1784GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1785GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1786 1787static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1788{ 1789 return require_rvv(s) && 1790 vext_check_isa_ill(s) && 1791 vext_check_ms(s, a->rd, a->rs2); 1792} 1793 1794GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1795GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1796 1797/* OPIVI without GVEC IR */ 1798#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1799static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1800{ \ 1801 if (CHECK(s, a)) { \ 1802 static gen_helper_opivx * const fns[4] = { \ 1803 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1804 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1805 }; \ 1806 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1807 fns[s->sew], s, IMM_MODE); \ 1808 } \ 1809 return false; \ 1810} 1811 1812GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1813GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1814 1815/* Vector Bitwise Logical Instructions */ 1816GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1817GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1818GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1819GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1820GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1821GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1822GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1823GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1824GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1825 1826/* Vector Single-Width Bit Shift Instructions */ 1827GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1828GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1829GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1830 1831typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1832 uint32_t, uint32_t); 1833 1834static inline bool 1835do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1836 gen_helper_opivx *fn) 1837{ 1838 if (!opivx_check(s, a)) { 1839 return false; 1840 } 1841 1842 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 1843 TCGv_i32 src1 = tcg_temp_new_i32(); 1844 1845 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1846 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1847 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1848 src1, MAXSZ(s), MAXSZ(s)); 1849 1850 tcg_temp_free_i32(src1); 1851 mark_vs_dirty(s); 1852 return true; 1853 } 1854 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1855} 1856 1857#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1858static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1859{ \ 1860 static gen_helper_opivx * const fns[4] = { \ 1861 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1862 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1863 }; \ 1864 \ 1865 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1866} 1867 1868GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1869GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1870GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1871 1872GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1873GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1874GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1875 1876/* Vector Narrowing Integer Right Shift Instructions */ 1877static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1878{ 1879 return require_rvv(s) && 1880 vext_check_isa_ill(s) && 1881 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1882} 1883 1884/* OPIVV with NARROW */ 1885#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1886static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1887{ \ 1888 if (opiwv_narrow_check(s, a)) { \ 1889 uint32_t data = 0; \ 1890 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1891 gen_helper_##NAME##_b, \ 1892 gen_helper_##NAME##_h, \ 1893 gen_helper_##NAME##_w, \ 1894 }; \ 1895 TCGLabel *over = gen_new_label(); \ 1896 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1897 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 1898 \ 1899 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1900 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1901 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 1902 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1903 vreg_ofs(s, a->rs1), \ 1904 vreg_ofs(s, a->rs2), cpu_env, \ 1905 s->cfg_ptr->vlen / 8, \ 1906 s->cfg_ptr->vlen / 8, data, \ 1907 fns[s->sew]); \ 1908 mark_vs_dirty(s); \ 1909 gen_set_label(over); \ 1910 return true; \ 1911 } \ 1912 return false; \ 1913} 1914GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1915GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1916 1917static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1918{ 1919 return require_rvv(s) && 1920 vext_check_isa_ill(s) && 1921 vext_check_sd(s, a->rd, a->rs2, a->vm); 1922} 1923 1924/* OPIVX with NARROW */ 1925#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1926static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1927{ \ 1928 if (opiwx_narrow_check(s, a)) { \ 1929 static gen_helper_opivx * const fns[3] = { \ 1930 gen_helper_##NAME##_b, \ 1931 gen_helper_##NAME##_h, \ 1932 gen_helper_##NAME##_w, \ 1933 }; \ 1934 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1935 } \ 1936 return false; \ 1937} 1938 1939GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1940GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1941 1942/* OPIWI with NARROW */ 1943#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1944static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1945{ \ 1946 if (opiwx_narrow_check(s, a)) { \ 1947 static gen_helper_opivx * const fns[3] = { \ 1948 gen_helper_##OPIVX##_b, \ 1949 gen_helper_##OPIVX##_h, \ 1950 gen_helper_##OPIVX##_w, \ 1951 }; \ 1952 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1953 fns[s->sew], s, IMM_MODE); \ 1954 } \ 1955 return false; \ 1956} 1957 1958GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1959GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1960 1961/* Vector Integer Comparison Instructions */ 1962/* 1963 * For all comparison instructions, an illegal instruction exception is raised 1964 * if the destination vector register overlaps a source vector register group 1965 * and LMUL > 1. 1966 */ 1967static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1968{ 1969 return require_rvv(s) && 1970 vext_check_isa_ill(s) && 1971 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1972} 1973 1974GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1975GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1976GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1977GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1978GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1979GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1980 1981static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1982{ 1983 return require_rvv(s) && 1984 vext_check_isa_ill(s) && 1985 vext_check_ms(s, a->rd, a->rs2); 1986} 1987 1988GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1989GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1990GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1991GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1992GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1993GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1994GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1995GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1996 1997GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1998GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1999GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 2000GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 2001GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 2002GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 2003 2004/* Vector Integer Min/Max Instructions */ 2005GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 2006GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 2007GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 2008GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 2009GEN_OPIVX_TRANS(vminu_vx, opivx_check) 2010GEN_OPIVX_TRANS(vmin_vx, opivx_check) 2011GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 2012GEN_OPIVX_TRANS(vmax_vx, opivx_check) 2013 2014/* Vector Single-Width Integer Multiply Instructions */ 2015 2016static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 2017{ 2018 /* 2019 * All Zve* extensions support all vector integer instructions, 2020 * except that the vmulh integer multiply variants 2021 * that return the high word of the product 2022 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2023 * are not included for EEW=64 in Zve64*. (Section 18.2) 2024 */ 2025 return opivv_check(s, a) && 2026 (!has_ext(s, RVV) && 2027 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2028} 2029 2030static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 2031{ 2032 /* 2033 * All Zve* extensions support all vector integer instructions, 2034 * except that the vmulh integer multiply variants 2035 * that return the high word of the product 2036 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2037 * are not included for EEW=64 in Zve64*. (Section 18.2) 2038 */ 2039 return opivx_check(s, a) && 2040 (!has_ext(s, RVV) && 2041 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2042} 2043 2044GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2045GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2046GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2047GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2048GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2049GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2050GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2051GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2052 2053/* Vector Integer Divide Instructions */ 2054GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2055GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2056GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2057GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2058GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2059GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2060GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2061GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2062 2063/* Vector Widening Integer Multiply Instructions */ 2064GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2065GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2066GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2067GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2068GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2069GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2070 2071/* Vector Single-Width Integer Multiply-Add Instructions */ 2072GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2073GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2074GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2075GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2076GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2077GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2078GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2079GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2080 2081/* Vector Widening Integer Multiply-Add Instructions */ 2082GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2083GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2084GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2085GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2086GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2087GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2088GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2089 2090/* Vector Integer Merge and Move Instructions */ 2091static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2092{ 2093 if (require_rvv(s) && 2094 vext_check_isa_ill(s) && 2095 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2096 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2097 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2098 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2099 vreg_ofs(s, a->rs1), 2100 MAXSZ(s), MAXSZ(s)); 2101 } else { 2102 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2103 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2104 static gen_helper_gvec_2_ptr * const fns[4] = { 2105 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2106 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2107 }; 2108 TCGLabel *over = gen_new_label(); 2109 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2110 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2111 2112 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2113 cpu_env, s->cfg_ptr->vlen / 8, 2114 s->cfg_ptr->vlen / 8, data, 2115 fns[s->sew]); 2116 gen_set_label(over); 2117 } 2118 mark_vs_dirty(s); 2119 return true; 2120 } 2121 return false; 2122} 2123 2124typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2125static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2126{ 2127 if (require_rvv(s) && 2128 vext_check_isa_ill(s) && 2129 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2130 vext_check_ss(s, a->rd, 0, 1)) { 2131 TCGv s1; 2132 TCGLabel *over = gen_new_label(); 2133 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2134 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2135 2136 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2137 2138 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2139 if (get_xl(s) == MXL_RV32 && s->sew == MO_64) { 2140 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2141 tcg_gen_ext_tl_i64(s1_i64, s1); 2142 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2143 MAXSZ(s), MAXSZ(s), s1_i64); 2144 tcg_temp_free_i64(s1_i64); 2145 } else { 2146 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2147 MAXSZ(s), MAXSZ(s), s1); 2148 } 2149 } else { 2150 TCGv_i32 desc; 2151 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2152 TCGv_ptr dest = tcg_temp_new_ptr(); 2153 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2154 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2155 static gen_helper_vmv_vx * const fns[4] = { 2156 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2157 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2158 }; 2159 2160 tcg_gen_ext_tl_i64(s1_i64, s1); 2161 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2162 s->cfg_ptr->vlen / 8, data)); 2163 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2164 fns[s->sew](dest, s1_i64, cpu_env, desc); 2165 2166 tcg_temp_free_ptr(dest); 2167 tcg_temp_free_i64(s1_i64); 2168 } 2169 2170 mark_vs_dirty(s); 2171 gen_set_label(over); 2172 return true; 2173 } 2174 return false; 2175} 2176 2177static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2178{ 2179 if (require_rvv(s) && 2180 vext_check_isa_ill(s) && 2181 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2182 vext_check_ss(s, a->rd, 0, 1)) { 2183 int64_t simm = sextract64(a->rs1, 0, 5); 2184 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2185 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2186 MAXSZ(s), MAXSZ(s), simm); 2187 mark_vs_dirty(s); 2188 } else { 2189 TCGv_i32 desc; 2190 TCGv_i64 s1; 2191 TCGv_ptr dest; 2192 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2193 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2194 static gen_helper_vmv_vx * const fns[4] = { 2195 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2196 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2197 }; 2198 TCGLabel *over = gen_new_label(); 2199 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2200 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2201 2202 s1 = tcg_constant_i64(simm); 2203 dest = tcg_temp_new_ptr(); 2204 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2205 s->cfg_ptr->vlen / 8, data)); 2206 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2207 fns[s->sew](dest, s1, cpu_env, desc); 2208 2209 tcg_temp_free_ptr(dest); 2210 mark_vs_dirty(s); 2211 gen_set_label(over); 2212 } 2213 return true; 2214 } 2215 return false; 2216} 2217 2218GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2219GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2220GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2221 2222/* 2223 *** Vector Fixed-Point Arithmetic Instructions 2224 */ 2225 2226/* Vector Single-Width Saturating Add and Subtract */ 2227GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2228GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2229GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2230GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2231GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2232GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2233GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2234GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2235GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2236GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2237 2238/* Vector Single-Width Averaging Add and Subtract */ 2239GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2240GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2241GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2242GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2243GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2244GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2245GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2246GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2247 2248/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2249 2250static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2251{ 2252 /* 2253 * All Zve* extensions support all vector fixed-point arithmetic 2254 * instructions, except that vsmul.vv and vsmul.vx are not supported 2255 * for EEW=64 in Zve64*. (Section 18.2) 2256 */ 2257 return opivv_check(s, a) && 2258 (!has_ext(s, RVV) && 2259 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2260} 2261 2262static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2263{ 2264 /* 2265 * All Zve* extensions support all vector fixed-point arithmetic 2266 * instructions, except that vsmul.vv and vsmul.vx are not supported 2267 * for EEW=64 in Zve64*. (Section 18.2) 2268 */ 2269 return opivx_check(s, a) && 2270 (!has_ext(s, RVV) && 2271 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2272} 2273 2274GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2275GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2276 2277/* Vector Single-Width Scaling Shift Instructions */ 2278GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2279GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2280GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2281GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2282GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2283GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2284 2285/* Vector Narrowing Fixed-Point Clip Instructions */ 2286GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2287GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2288GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2289GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2290GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2291GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2292 2293/* 2294 *** Vector Float Point Arithmetic Instructions 2295 */ 2296 2297/* 2298 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2299 * RVF and RVD can be treated equally. 2300 * We don't have to deal with the cases of: SEW > FLEN. 2301 * 2302 * If SEW < FLEN, check whether input fp register is a valid 2303 * NaN-boxed value, in which case the least-significant SEW bits 2304 * of the f regsiter are used, else the canonical NaN value is used. 2305 */ 2306static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2307{ 2308 switch (s->sew) { 2309 case 1: 2310 gen_check_nanbox_h(out, in); 2311 break; 2312 case 2: 2313 gen_check_nanbox_s(out, in); 2314 break; 2315 case 3: 2316 tcg_gen_mov_i64(out, in); 2317 break; 2318 default: 2319 g_assert_not_reached(); 2320 } 2321} 2322 2323/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2324 2325/* 2326 * If the current SEW does not correspond to a supported IEEE floating-point 2327 * type, an illegal instruction exception is raised. 2328 */ 2329static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2330{ 2331 return require_rvv(s) && 2332 require_rvf(s) && 2333 vext_check_isa_ill(s) && 2334 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2335 require_zve32f(s) && 2336 require_zve64f(s); 2337} 2338 2339/* OPFVV without GVEC IR */ 2340#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2341static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2342{ \ 2343 if (CHECK(s, a)) { \ 2344 uint32_t data = 0; \ 2345 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2346 gen_helper_##NAME##_h, \ 2347 gen_helper_##NAME##_w, \ 2348 gen_helper_##NAME##_d, \ 2349 }; \ 2350 TCGLabel *over = gen_new_label(); \ 2351 gen_set_rm(s, RISCV_FRM_DYN); \ 2352 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2353 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2354 \ 2355 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2356 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2357 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2358 data = \ 2359 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 2360 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2361 vreg_ofs(s, a->rs1), \ 2362 vreg_ofs(s, a->rs2), cpu_env, \ 2363 s->cfg_ptr->vlen / 8, \ 2364 s->cfg_ptr->vlen / 8, data, \ 2365 fns[s->sew - 1]); \ 2366 mark_vs_dirty(s); \ 2367 gen_set_label(over); \ 2368 return true; \ 2369 } \ 2370 return false; \ 2371} 2372GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2373GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2374 2375typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2376 TCGv_env, TCGv_i32); 2377 2378static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2379 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2380{ 2381 TCGv_ptr dest, src2, mask; 2382 TCGv_i32 desc; 2383 TCGv_i64 t1; 2384 2385 TCGLabel *over = gen_new_label(); 2386 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2387 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2388 2389 dest = tcg_temp_new_ptr(); 2390 mask = tcg_temp_new_ptr(); 2391 src2 = tcg_temp_new_ptr(); 2392 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2393 s->cfg_ptr->vlen / 8, data)); 2394 2395 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2396 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2397 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2398 2399 /* NaN-box f[rs1] */ 2400 t1 = tcg_temp_new_i64(); 2401 do_nanbox(s, t1, cpu_fpr[rs1]); 2402 2403 fn(dest, mask, t1, src2, cpu_env, desc); 2404 2405 tcg_temp_free_ptr(dest); 2406 tcg_temp_free_ptr(mask); 2407 tcg_temp_free_ptr(src2); 2408 tcg_temp_free_i64(t1); 2409 mark_vs_dirty(s); 2410 gen_set_label(over); 2411 return true; 2412} 2413 2414/* 2415 * If the current SEW does not correspond to a supported IEEE floating-point 2416 * type, an illegal instruction exception is raised 2417 */ 2418static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2419{ 2420 return require_rvv(s) && 2421 require_rvf(s) && 2422 vext_check_isa_ill(s) && 2423 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2424 require_zve32f(s) && 2425 require_zve64f(s); 2426} 2427 2428/* OPFVF without GVEC IR */ 2429#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2430static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2431{ \ 2432 if (CHECK(s, a)) { \ 2433 uint32_t data = 0; \ 2434 static gen_helper_opfvf *const fns[3] = { \ 2435 gen_helper_##NAME##_h, \ 2436 gen_helper_##NAME##_w, \ 2437 gen_helper_##NAME##_d, \ 2438 }; \ 2439 gen_set_rm(s, RISCV_FRM_DYN); \ 2440 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2441 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2442 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2443 data = FIELD_DP32(data, VDATA, VTA_ALL_1S, \ 2444 s->cfg_vta_all_1s); \ 2445 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2446 fns[s->sew - 1], s); \ 2447 } \ 2448 return false; \ 2449} 2450 2451GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2452GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2453GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2454 2455/* Vector Widening Floating-Point Add/Subtract Instructions */ 2456static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2457{ 2458 return require_rvv(s) && 2459 require_scale_rvf(s) && 2460 (s->sew != MO_8) && 2461 vext_check_isa_ill(s) && 2462 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2463 require_scale_zve32f(s) && 2464 require_scale_zve64f(s); 2465} 2466 2467/* OPFVV with WIDEN */ 2468#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2469static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2470{ \ 2471 if (CHECK(s, a)) { \ 2472 uint32_t data = 0; \ 2473 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2474 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2475 }; \ 2476 TCGLabel *over = gen_new_label(); \ 2477 gen_set_rm(s, RISCV_FRM_DYN); \ 2478 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2479 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over);\ 2480 \ 2481 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2482 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2483 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2484 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2485 vreg_ofs(s, a->rs1), \ 2486 vreg_ofs(s, a->rs2), cpu_env, \ 2487 s->cfg_ptr->vlen / 8, \ 2488 s->cfg_ptr->vlen / 8, data, \ 2489 fns[s->sew - 1]); \ 2490 mark_vs_dirty(s); \ 2491 gen_set_label(over); \ 2492 return true; \ 2493 } \ 2494 return false; \ 2495} 2496 2497GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2498GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2499 2500static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2501{ 2502 return require_rvv(s) && 2503 require_scale_rvf(s) && 2504 (s->sew != MO_8) && 2505 vext_check_isa_ill(s) && 2506 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2507 require_scale_zve32f(s) && 2508 require_scale_zve64f(s); 2509} 2510 2511/* OPFVF with WIDEN */ 2512#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2513static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2514{ \ 2515 if (opfvf_widen_check(s, a)) { \ 2516 uint32_t data = 0; \ 2517 static gen_helper_opfvf *const fns[2] = { \ 2518 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2519 }; \ 2520 gen_set_rm(s, RISCV_FRM_DYN); \ 2521 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2522 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2523 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2524 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2525 fns[s->sew - 1], s); \ 2526 } \ 2527 return false; \ 2528} 2529 2530GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2531GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2532 2533static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2534{ 2535 return require_rvv(s) && 2536 require_scale_rvf(s) && 2537 (s->sew != MO_8) && 2538 vext_check_isa_ill(s) && 2539 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2540 require_scale_zve32f(s) && 2541 require_scale_zve64f(s); 2542} 2543 2544/* WIDEN OPFVV with WIDEN */ 2545#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2546static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2547{ \ 2548 if (opfwv_widen_check(s, a)) { \ 2549 uint32_t data = 0; \ 2550 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2551 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2552 }; \ 2553 TCGLabel *over = gen_new_label(); \ 2554 gen_set_rm(s, RISCV_FRM_DYN); \ 2555 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2556 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2557 \ 2558 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2559 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2560 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2561 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2562 vreg_ofs(s, a->rs1), \ 2563 vreg_ofs(s, a->rs2), cpu_env, \ 2564 s->cfg_ptr->vlen / 8, \ 2565 s->cfg_ptr->vlen / 8, data, \ 2566 fns[s->sew - 1]); \ 2567 mark_vs_dirty(s); \ 2568 gen_set_label(over); \ 2569 return true; \ 2570 } \ 2571 return false; \ 2572} 2573 2574GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2575GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2576 2577static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2578{ 2579 return require_rvv(s) && 2580 require_scale_rvf(s) && 2581 (s->sew != MO_8) && 2582 vext_check_isa_ill(s) && 2583 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2584 require_scale_zve32f(s) && 2585 require_scale_zve64f(s); 2586} 2587 2588/* WIDEN OPFVF with WIDEN */ 2589#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2590static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2591{ \ 2592 if (opfwf_widen_check(s, a)) { \ 2593 uint32_t data = 0; \ 2594 static gen_helper_opfvf *const fns[2] = { \ 2595 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2596 }; \ 2597 gen_set_rm(s, RISCV_FRM_DYN); \ 2598 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2599 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2600 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2601 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2602 fns[s->sew - 1], s); \ 2603 } \ 2604 return false; \ 2605} 2606 2607GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2608GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2609 2610/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2611GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2612GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2613GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2614GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2615GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2616 2617/* Vector Widening Floating-Point Multiply */ 2618GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2619GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2620 2621/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2622GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2623GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2624GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2625GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2626GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2627GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2628GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2629GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2630GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2631GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2632GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2633GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2634GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2635GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2636GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2637GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2638 2639/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2640GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2641GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2642GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2643GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2644GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2645GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2646GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2647GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2648 2649/* Vector Floating-Point Square-Root Instruction */ 2650 2651/* 2652 * If the current SEW does not correspond to a supported IEEE floating-point 2653 * type, an illegal instruction exception is raised 2654 */ 2655static bool opfv_check(DisasContext *s, arg_rmr *a) 2656{ 2657 return require_rvv(s) && 2658 require_rvf(s) && 2659 vext_check_isa_ill(s) && 2660 /* OPFV instructions ignore vs1 check */ 2661 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2662 require_zve32f(s) && 2663 require_zve64f(s); 2664} 2665 2666static bool do_opfv(DisasContext *s, arg_rmr *a, 2667 gen_helper_gvec_3_ptr *fn, 2668 bool (*checkfn)(DisasContext *, arg_rmr *), 2669 int rm) 2670{ 2671 if (checkfn(s, a)) { 2672 if (rm != RISCV_FRM_DYN) { 2673 gen_set_rm(s, RISCV_FRM_DYN); 2674 } 2675 2676 uint32_t data = 0; 2677 TCGLabel *over = gen_new_label(); 2678 gen_set_rm(s, rm); 2679 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2680 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2681 2682 data = FIELD_DP32(data, VDATA, VM, a->vm); 2683 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2684 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2685 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2686 vreg_ofs(s, a->rs2), cpu_env, 2687 s->cfg_ptr->vlen / 8, 2688 s->cfg_ptr->vlen / 8, data, fn); 2689 mark_vs_dirty(s); 2690 gen_set_label(over); 2691 return true; 2692 } 2693 return false; 2694} 2695 2696#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2697static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2698{ \ 2699 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2700 gen_helper_##NAME##_h, \ 2701 gen_helper_##NAME##_w, \ 2702 gen_helper_##NAME##_d \ 2703 }; \ 2704 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2705} 2706 2707GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2708GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2709GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2710 2711/* Vector Floating-Point MIN/MAX Instructions */ 2712GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2713GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2714GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2715GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2716 2717/* Vector Floating-Point Sign-Injection Instructions */ 2718GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2719GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2720GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2721GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2722GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2723GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2724 2725/* Vector Floating-Point Compare Instructions */ 2726static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2727{ 2728 return require_rvv(s) && 2729 require_rvf(s) && 2730 vext_check_isa_ill(s) && 2731 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2732 require_zve32f(s) && 2733 require_zve64f(s); 2734} 2735 2736GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2737GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2738GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2739GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2740 2741static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2742{ 2743 return require_rvv(s) && 2744 require_rvf(s) && 2745 vext_check_isa_ill(s) && 2746 vext_check_ms(s, a->rd, a->rs2) && 2747 require_zve32f(s) && 2748 require_zve64f(s); 2749} 2750 2751GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2752GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2753GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2754GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2755GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2756GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2757 2758/* Vector Floating-Point Classify Instruction */ 2759GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2760 2761/* Vector Floating-Point Merge Instruction */ 2762GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2763 2764static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2765{ 2766 if (require_rvv(s) && 2767 require_rvf(s) && 2768 vext_check_isa_ill(s) && 2769 require_align(a->rd, s->lmul) && 2770 require_zve32f(s) && 2771 require_zve64f(s)) { 2772 gen_set_rm(s, RISCV_FRM_DYN); 2773 2774 TCGv_i64 t1; 2775 2776 if (s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 2777 t1 = tcg_temp_new_i64(); 2778 /* NaN-box f[rs1] */ 2779 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2780 2781 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2782 MAXSZ(s), MAXSZ(s), t1); 2783 mark_vs_dirty(s); 2784 } else { 2785 TCGv_ptr dest; 2786 TCGv_i32 desc; 2787 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2788 data = FIELD_DP32(data, VDATA, VTA, s->vta); 2789 static gen_helper_vmv_vx * const fns[3] = { 2790 gen_helper_vmv_v_x_h, 2791 gen_helper_vmv_v_x_w, 2792 gen_helper_vmv_v_x_d, 2793 }; 2794 TCGLabel *over = gen_new_label(); 2795 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2796 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 2797 2798 t1 = tcg_temp_new_i64(); 2799 /* NaN-box f[rs1] */ 2800 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2801 2802 dest = tcg_temp_new_ptr(); 2803 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2804 s->cfg_ptr->vlen / 8, data)); 2805 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2806 2807 fns[s->sew - 1](dest, t1, cpu_env, desc); 2808 2809 tcg_temp_free_ptr(dest); 2810 mark_vs_dirty(s); 2811 gen_set_label(over); 2812 } 2813 tcg_temp_free_i64(t1); 2814 return true; 2815 } 2816 return false; 2817} 2818 2819/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2820#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2821static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2822{ \ 2823 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2824 gen_helper_##HELPER##_h, \ 2825 gen_helper_##HELPER##_w, \ 2826 gen_helper_##HELPER##_d \ 2827 }; \ 2828 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2829} 2830 2831GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2832GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2833GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2834GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2835/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2836GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2837GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2838 2839/* Widening Floating-Point/Integer Type-Convert Instructions */ 2840 2841/* 2842 * If the current SEW does not correspond to a supported IEEE floating-point 2843 * type, an illegal instruction exception is raised 2844 */ 2845static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2846{ 2847 return require_rvv(s) && 2848 vext_check_isa_ill(s) && 2849 vext_check_ds(s, a->rd, a->rs2, a->vm); 2850} 2851 2852static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2853{ 2854 return opfv_widen_check(s, a) && 2855 require_rvf(s) && 2856 require_zve32f(s) && 2857 require_zve64f(s); 2858} 2859 2860static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2861{ 2862 return opfv_widen_check(s, a) && 2863 require_scale_rvf(s) && 2864 (s->sew != MO_8) && 2865 require_scale_zve32f(s) && 2866 require_scale_zve64f(s); 2867} 2868 2869#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2870static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2871{ \ 2872 if (CHECK(s, a)) { \ 2873 if (FRM != RISCV_FRM_DYN) { \ 2874 gen_set_rm(s, RISCV_FRM_DYN); \ 2875 } \ 2876 \ 2877 uint32_t data = 0; \ 2878 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2879 gen_helper_##HELPER##_h, \ 2880 gen_helper_##HELPER##_w, \ 2881 }; \ 2882 TCGLabel *over = gen_new_label(); \ 2883 gen_set_rm(s, FRM); \ 2884 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2885 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2886 \ 2887 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2888 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2889 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2890 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2891 vreg_ofs(s, a->rs2), cpu_env, \ 2892 s->cfg_ptr->vlen / 8, \ 2893 s->cfg_ptr->vlen / 8, data, \ 2894 fns[s->sew - 1]); \ 2895 mark_vs_dirty(s); \ 2896 gen_set_label(over); \ 2897 return true; \ 2898 } \ 2899 return false; \ 2900} 2901 2902GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2903 RISCV_FRM_DYN) 2904GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2905 RISCV_FRM_DYN) 2906GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2907 RISCV_FRM_DYN) 2908/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2909GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2910 RISCV_FRM_RTZ) 2911GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2912 RISCV_FRM_RTZ) 2913 2914static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2915{ 2916 return require_rvv(s) && 2917 require_scale_rvf(s) && 2918 vext_check_isa_ill(s) && 2919 /* OPFV widening instructions ignore vs1 check */ 2920 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2921 require_scale_zve32f(s) && 2922 require_scale_zve64f(s); 2923} 2924 2925#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2926static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2927{ \ 2928 if (opfxv_widen_check(s, a)) { \ 2929 uint32_t data = 0; \ 2930 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2931 gen_helper_##NAME##_b, \ 2932 gen_helper_##NAME##_h, \ 2933 gen_helper_##NAME##_w, \ 2934 }; \ 2935 TCGLabel *over = gen_new_label(); \ 2936 gen_set_rm(s, RISCV_FRM_DYN); \ 2937 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2938 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 2939 \ 2940 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2941 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2942 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 2943 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2944 vreg_ofs(s, a->rs2), cpu_env, \ 2945 s->cfg_ptr->vlen / 8, \ 2946 s->cfg_ptr->vlen / 8, data, \ 2947 fns[s->sew]); \ 2948 mark_vs_dirty(s); \ 2949 gen_set_label(over); \ 2950 return true; \ 2951 } \ 2952 return false; \ 2953} 2954 2955GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2956GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2957 2958/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2959 2960/* 2961 * If the current SEW does not correspond to a supported IEEE floating-point 2962 * type, an illegal instruction exception is raised 2963 */ 2964static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2965{ 2966 return require_rvv(s) && 2967 vext_check_isa_ill(s) && 2968 /* OPFV narrowing instructions ignore vs1 check */ 2969 vext_check_sd(s, a->rd, a->rs2, a->vm); 2970} 2971 2972static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2973{ 2974 return opfv_narrow_check(s, a) && 2975 require_rvf(s) && 2976 (s->sew != MO_64) && 2977 require_zve32f(s) && 2978 require_zve64f(s); 2979} 2980 2981static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2982{ 2983 return opfv_narrow_check(s, a) && 2984 require_scale_rvf(s) && 2985 (s->sew != MO_8) && 2986 require_scale_zve32f(s) && 2987 require_scale_zve64f(s); 2988} 2989 2990#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2991static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2992{ \ 2993 if (CHECK(s, a)) { \ 2994 if (FRM != RISCV_FRM_DYN) { \ 2995 gen_set_rm(s, RISCV_FRM_DYN); \ 2996 } \ 2997 \ 2998 uint32_t data = 0; \ 2999 static gen_helper_gvec_3_ptr * const fns[2] = { \ 3000 gen_helper_##HELPER##_h, \ 3001 gen_helper_##HELPER##_w, \ 3002 }; \ 3003 TCGLabel *over = gen_new_label(); \ 3004 gen_set_rm(s, FRM); \ 3005 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3006 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3007 \ 3008 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3009 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3010 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3011 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3012 vreg_ofs(s, a->rs2), cpu_env, \ 3013 s->cfg_ptr->vlen / 8, \ 3014 s->cfg_ptr->vlen / 8, data, \ 3015 fns[s->sew - 1]); \ 3016 mark_vs_dirty(s); \ 3017 gen_set_label(over); \ 3018 return true; \ 3019 } \ 3020 return false; \ 3021} 3022 3023GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 3024 RISCV_FRM_DYN) 3025GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 3026 RISCV_FRM_DYN) 3027GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3028 RISCV_FRM_DYN) 3029/* Reuse the helper function from vfncvt.f.f.w */ 3030GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 3031 RISCV_FRM_ROD) 3032 3033static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 3034{ 3035 return require_rvv(s) && 3036 require_scale_rvf(s) && 3037 vext_check_isa_ill(s) && 3038 /* OPFV narrowing instructions ignore vs1 check */ 3039 vext_check_sd(s, a->rd, a->rs2, a->vm) && 3040 require_scale_zve32f(s) && 3041 require_scale_zve64f(s); 3042} 3043 3044#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 3045static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3046{ \ 3047 if (opxfv_narrow_check(s, a)) { \ 3048 if (FRM != RISCV_FRM_DYN) { \ 3049 gen_set_rm(s, RISCV_FRM_DYN); \ 3050 } \ 3051 \ 3052 uint32_t data = 0; \ 3053 static gen_helper_gvec_3_ptr * const fns[3] = { \ 3054 gen_helper_##HELPER##_b, \ 3055 gen_helper_##HELPER##_h, \ 3056 gen_helper_##HELPER##_w, \ 3057 }; \ 3058 TCGLabel *over = gen_new_label(); \ 3059 gen_set_rm(s, FRM); \ 3060 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3061 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3062 \ 3063 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3064 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3065 data = FIELD_DP32(data, VDATA, VTA, s->vta); \ 3066 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3067 vreg_ofs(s, a->rs2), cpu_env, \ 3068 s->cfg_ptr->vlen / 8, \ 3069 s->cfg_ptr->vlen / 8, data, \ 3070 fns[s->sew]); \ 3071 mark_vs_dirty(s); \ 3072 gen_set_label(over); \ 3073 return true; \ 3074 } \ 3075 return false; \ 3076} 3077 3078GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3079GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3080/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3081GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3082GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3083 3084/* 3085 *** Vector Reduction Operations 3086 */ 3087/* Vector Single-Width Integer Reduction Instructions */ 3088static bool reduction_check(DisasContext *s, arg_rmrr *a) 3089{ 3090 return require_rvv(s) && 3091 vext_check_isa_ill(s) && 3092 vext_check_reduction(s, a->rs2); 3093} 3094 3095GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3096GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3097GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3098GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3099GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3100GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3101GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3102GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3103 3104/* Vector Widening Integer Reduction Instructions */ 3105static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3106{ 3107 return reduction_check(s, a) && (s->sew < MO_64) && 3108 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3109} 3110 3111GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3112GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3113 3114/* Vector Single-Width Floating-Point Reduction Instructions */ 3115static bool freduction_check(DisasContext *s, arg_rmrr *a) 3116{ 3117 return reduction_check(s, a) && 3118 require_rvf(s) && 3119 require_zve32f(s) && 3120 require_zve64f(s); 3121} 3122 3123GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3124GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3125GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3126 3127/* Vector Widening Floating-Point Reduction Instructions */ 3128static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3129{ 3130 return reduction_widen_check(s, a) && 3131 require_scale_rvf(s) && 3132 (s->sew != MO_8); 3133} 3134 3135GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3136 3137/* 3138 *** Vector Mask Operations 3139 */ 3140 3141/* Vector Mask-Register Logical Instructions */ 3142#define GEN_MM_TRANS(NAME) \ 3143static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3144{ \ 3145 if (require_rvv(s) && \ 3146 vext_check_isa_ill(s)) { \ 3147 uint32_t data = 0; \ 3148 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3149 TCGLabel *over = gen_new_label(); \ 3150 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3151 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); \ 3152 \ 3153 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3154 data = \ 3155 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3156 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3157 vreg_ofs(s, a->rs1), \ 3158 vreg_ofs(s, a->rs2), cpu_env, \ 3159 s->cfg_ptr->vlen / 8, \ 3160 s->cfg_ptr->vlen / 8, data, fn); \ 3161 mark_vs_dirty(s); \ 3162 gen_set_label(over); \ 3163 return true; \ 3164 } \ 3165 return false; \ 3166} 3167 3168GEN_MM_TRANS(vmand_mm) 3169GEN_MM_TRANS(vmnand_mm) 3170GEN_MM_TRANS(vmandn_mm) 3171GEN_MM_TRANS(vmxor_mm) 3172GEN_MM_TRANS(vmor_mm) 3173GEN_MM_TRANS(vmnor_mm) 3174GEN_MM_TRANS(vmorn_mm) 3175GEN_MM_TRANS(vmxnor_mm) 3176 3177/* Vector count population in mask vcpop */ 3178static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3179{ 3180 if (require_rvv(s) && 3181 vext_check_isa_ill(s) && 3182 s->vstart == 0) { 3183 TCGv_ptr src2, mask; 3184 TCGv dst; 3185 TCGv_i32 desc; 3186 uint32_t data = 0; 3187 data = FIELD_DP32(data, VDATA, VM, a->vm); 3188 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3189 3190 mask = tcg_temp_new_ptr(); 3191 src2 = tcg_temp_new_ptr(); 3192 dst = dest_gpr(s, a->rd); 3193 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3194 s->cfg_ptr->vlen / 8, data)); 3195 3196 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3197 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3198 3199 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3200 gen_set_gpr(s, a->rd, dst); 3201 3202 tcg_temp_free_ptr(mask); 3203 tcg_temp_free_ptr(src2); 3204 3205 return true; 3206 } 3207 return false; 3208} 3209 3210/* vmfirst find-first-set mask bit */ 3211static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3212{ 3213 if (require_rvv(s) && 3214 vext_check_isa_ill(s) && 3215 s->vstart == 0) { 3216 TCGv_ptr src2, mask; 3217 TCGv dst; 3218 TCGv_i32 desc; 3219 uint32_t data = 0; 3220 data = FIELD_DP32(data, VDATA, VM, a->vm); 3221 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3222 3223 mask = tcg_temp_new_ptr(); 3224 src2 = tcg_temp_new_ptr(); 3225 dst = dest_gpr(s, a->rd); 3226 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3227 s->cfg_ptr->vlen / 8, data)); 3228 3229 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3230 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3231 3232 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3233 gen_set_gpr(s, a->rd, dst); 3234 3235 tcg_temp_free_ptr(mask); 3236 tcg_temp_free_ptr(src2); 3237 return true; 3238 } 3239 return false; 3240} 3241 3242/* vmsbf.m set-before-first mask bit */ 3243/* vmsif.m set-includ-first mask bit */ 3244/* vmsof.m set-only-first mask bit */ 3245#define GEN_M_TRANS(NAME) \ 3246static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3247{ \ 3248 if (require_rvv(s) && \ 3249 vext_check_isa_ill(s) && \ 3250 require_vm(a->vm, a->rd) && \ 3251 (a->rd != a->rs2) && \ 3252 (s->vstart == 0)) { \ 3253 uint32_t data = 0; \ 3254 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3255 TCGLabel *over = gen_new_label(); \ 3256 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3257 \ 3258 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3259 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3260 data = \ 3261 FIELD_DP32(data, VDATA, VTA_ALL_1S, s->cfg_vta_all_1s);\ 3262 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3263 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3264 cpu_env, s->cfg_ptr->vlen / 8, \ 3265 s->cfg_ptr->vlen / 8, \ 3266 data, fn); \ 3267 mark_vs_dirty(s); \ 3268 gen_set_label(over); \ 3269 return true; \ 3270 } \ 3271 return false; \ 3272} 3273 3274GEN_M_TRANS(vmsbf_m) 3275GEN_M_TRANS(vmsif_m) 3276GEN_M_TRANS(vmsof_m) 3277 3278/* 3279 * Vector Iota Instruction 3280 * 3281 * 1. The destination register cannot overlap the source register. 3282 * 2. If masked, cannot overlap the mask register ('v0'). 3283 * 3. An illegal instruction exception is raised if vstart is non-zero. 3284 */ 3285static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3286{ 3287 if (require_rvv(s) && 3288 vext_check_isa_ill(s) && 3289 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3290 require_vm(a->vm, a->rd) && 3291 require_align(a->rd, s->lmul) && 3292 (s->vstart == 0)) { 3293 uint32_t data = 0; 3294 TCGLabel *over = gen_new_label(); 3295 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3296 3297 data = FIELD_DP32(data, VDATA, VM, a->vm); 3298 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3299 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3300 static gen_helper_gvec_3_ptr * const fns[4] = { 3301 gen_helper_viota_m_b, gen_helper_viota_m_h, 3302 gen_helper_viota_m_w, gen_helper_viota_m_d, 3303 }; 3304 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3305 vreg_ofs(s, a->rs2), cpu_env, 3306 s->cfg_ptr->vlen / 8, 3307 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3308 mark_vs_dirty(s); 3309 gen_set_label(over); 3310 return true; 3311 } 3312 return false; 3313} 3314 3315/* Vector Element Index Instruction */ 3316static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3317{ 3318 if (require_rvv(s) && 3319 vext_check_isa_ill(s) && 3320 require_align(a->rd, s->lmul) && 3321 require_vm(a->vm, a->rd)) { 3322 uint32_t data = 0; 3323 TCGLabel *over = gen_new_label(); 3324 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3325 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3326 3327 data = FIELD_DP32(data, VDATA, VM, a->vm); 3328 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3329 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3330 static gen_helper_gvec_2_ptr * const fns[4] = { 3331 gen_helper_vid_v_b, gen_helper_vid_v_h, 3332 gen_helper_vid_v_w, gen_helper_vid_v_d, 3333 }; 3334 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3335 cpu_env, s->cfg_ptr->vlen / 8, 3336 s->cfg_ptr->vlen / 8, 3337 data, fns[s->sew]); 3338 mark_vs_dirty(s); 3339 gen_set_label(over); 3340 return true; 3341 } 3342 return false; 3343} 3344 3345/* 3346 *** Vector Permutation Instructions 3347 */ 3348 3349static void load_element(TCGv_i64 dest, TCGv_ptr base, 3350 int ofs, int sew, bool sign) 3351{ 3352 switch (sew) { 3353 case MO_8: 3354 if (!sign) { 3355 tcg_gen_ld8u_i64(dest, base, ofs); 3356 } else { 3357 tcg_gen_ld8s_i64(dest, base, ofs); 3358 } 3359 break; 3360 case MO_16: 3361 if (!sign) { 3362 tcg_gen_ld16u_i64(dest, base, ofs); 3363 } else { 3364 tcg_gen_ld16s_i64(dest, base, ofs); 3365 } 3366 break; 3367 case MO_32: 3368 if (!sign) { 3369 tcg_gen_ld32u_i64(dest, base, ofs); 3370 } else { 3371 tcg_gen_ld32s_i64(dest, base, ofs); 3372 } 3373 break; 3374 case MO_64: 3375 tcg_gen_ld_i64(dest, base, ofs); 3376 break; 3377 default: 3378 g_assert_not_reached(); 3379 break; 3380 } 3381} 3382 3383/* offset of the idx element with base regsiter r */ 3384static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3385{ 3386#if HOST_BIG_ENDIAN 3387 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3388#else 3389 return vreg_ofs(s, r) + (idx << s->sew); 3390#endif 3391} 3392 3393/* adjust the index according to the endian */ 3394static void endian_adjust(TCGv_i32 ofs, int sew) 3395{ 3396#if HOST_BIG_ENDIAN 3397 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3398#endif 3399} 3400 3401/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3402static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3403 int vreg, TCGv idx, int vlmax) 3404{ 3405 TCGv_i32 ofs = tcg_temp_new_i32(); 3406 TCGv_ptr base = tcg_temp_new_ptr(); 3407 TCGv_i64 t_idx = tcg_temp_new_i64(); 3408 TCGv_i64 t_vlmax, t_zero; 3409 3410 /* 3411 * Mask the index to the length so that we do 3412 * not produce an out-of-range load. 3413 */ 3414 tcg_gen_trunc_tl_i32(ofs, idx); 3415 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3416 3417 /* Convert the index to an offset. */ 3418 endian_adjust(ofs, s->sew); 3419 tcg_gen_shli_i32(ofs, ofs, s->sew); 3420 3421 /* Convert the index to a pointer. */ 3422 tcg_gen_ext_i32_ptr(base, ofs); 3423 tcg_gen_add_ptr(base, base, cpu_env); 3424 3425 /* Perform the load. */ 3426 load_element(dest, base, 3427 vreg_ofs(s, vreg), s->sew, false); 3428 tcg_temp_free_ptr(base); 3429 tcg_temp_free_i32(ofs); 3430 3431 /* Flush out-of-range indexing to zero. */ 3432 t_vlmax = tcg_constant_i64(vlmax); 3433 t_zero = tcg_constant_i64(0); 3434 tcg_gen_extu_tl_i64(t_idx, idx); 3435 3436 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3437 t_vlmax, dest, t_zero); 3438 3439 tcg_temp_free_i64(t_idx); 3440} 3441 3442static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3443 int vreg, int idx, bool sign) 3444{ 3445 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3446} 3447 3448/* Integer Scalar Move Instruction */ 3449 3450static void store_element(TCGv_i64 val, TCGv_ptr base, 3451 int ofs, int sew) 3452{ 3453 switch (sew) { 3454 case MO_8: 3455 tcg_gen_st8_i64(val, base, ofs); 3456 break; 3457 case MO_16: 3458 tcg_gen_st16_i64(val, base, ofs); 3459 break; 3460 case MO_32: 3461 tcg_gen_st32_i64(val, base, ofs); 3462 break; 3463 case MO_64: 3464 tcg_gen_st_i64(val, base, ofs); 3465 break; 3466 default: 3467 g_assert_not_reached(); 3468 break; 3469 } 3470} 3471 3472/* 3473 * Store vreg[idx] = val. 3474 * The index must be in range of VLMAX. 3475 */ 3476static void vec_element_storei(DisasContext *s, int vreg, 3477 int idx, TCGv_i64 val) 3478{ 3479 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3480} 3481 3482/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3483static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3484{ 3485 if (require_rvv(s) && 3486 vext_check_isa_ill(s)) { 3487 TCGv_i64 t1; 3488 TCGv dest; 3489 3490 t1 = tcg_temp_new_i64(); 3491 dest = tcg_temp_new(); 3492 /* 3493 * load vreg and sign-extend to 64 bits, 3494 * then truncate to XLEN bits before storing to gpr. 3495 */ 3496 vec_element_loadi(s, t1, a->rs2, 0, true); 3497 tcg_gen_trunc_i64_tl(dest, t1); 3498 gen_set_gpr(s, a->rd, dest); 3499 tcg_temp_free_i64(t1); 3500 tcg_temp_free(dest); 3501 3502 return true; 3503 } 3504 return false; 3505} 3506 3507/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3508static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3509{ 3510 if (require_rvv(s) && 3511 vext_check_isa_ill(s)) { 3512 /* This instruction ignores LMUL and vector register groups */ 3513 TCGv_i64 t1; 3514 TCGv s1; 3515 TCGLabel *over = gen_new_label(); 3516 3517 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3518 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3519 3520 t1 = tcg_temp_new_i64(); 3521 3522 /* 3523 * load gpr and sign-extend to 64 bits, 3524 * then truncate to SEW bits when storing to vreg. 3525 */ 3526 s1 = get_gpr(s, a->rs1, EXT_NONE); 3527 tcg_gen_ext_tl_i64(t1, s1); 3528 vec_element_storei(s, a->rd, 0, t1); 3529 tcg_temp_free_i64(t1); 3530 mark_vs_dirty(s); 3531 gen_set_label(over); 3532 return true; 3533 } 3534 return false; 3535} 3536 3537/* Floating-Point Scalar Move Instructions */ 3538static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3539{ 3540 if (require_rvv(s) && 3541 require_rvf(s) && 3542 vext_check_isa_ill(s) && 3543 require_zve32f(s) && 3544 require_zve64f(s)) { 3545 gen_set_rm(s, RISCV_FRM_DYN); 3546 3547 unsigned int ofs = (8 << s->sew); 3548 unsigned int len = 64 - ofs; 3549 TCGv_i64 t_nan; 3550 3551 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3552 /* NaN-box f[rd] as necessary for SEW */ 3553 if (len) { 3554 t_nan = tcg_constant_i64(UINT64_MAX); 3555 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3556 t_nan, ofs, len); 3557 } 3558 3559 mark_fs_dirty(s); 3560 return true; 3561 } 3562 return false; 3563} 3564 3565/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3566static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3567{ 3568 if (require_rvv(s) && 3569 require_rvf(s) && 3570 vext_check_isa_ill(s) && 3571 require_zve32f(s) && 3572 require_zve64f(s)) { 3573 gen_set_rm(s, RISCV_FRM_DYN); 3574 3575 /* The instructions ignore LMUL and vector register group. */ 3576 TCGv_i64 t1; 3577 TCGLabel *over = gen_new_label(); 3578 3579 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3580 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3581 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3582 3583 /* NaN-box f[rs1] */ 3584 t1 = tcg_temp_new_i64(); 3585 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3586 3587 vec_element_storei(s, a->rd, 0, t1); 3588 tcg_temp_free_i64(t1); 3589 mark_vs_dirty(s); 3590 gen_set_label(over); 3591 return true; 3592 } 3593 return false; 3594} 3595 3596/* Vector Slide Instructions */ 3597static bool slideup_check(DisasContext *s, arg_rmrr *a) 3598{ 3599 return require_rvv(s) && 3600 vext_check_isa_ill(s) && 3601 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3602} 3603 3604GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3605GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3606GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3607 3608static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3609{ 3610 return require_rvv(s) && 3611 vext_check_isa_ill(s) && 3612 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3613} 3614 3615GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3616GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3617GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3618 3619/* Vector Floating-Point Slide Instructions */ 3620static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3621{ 3622 return slideup_check(s, a) && 3623 require_rvf(s) && 3624 require_zve32f(s) && 3625 require_zve64f(s); 3626} 3627 3628static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3629{ 3630 return slidedown_check(s, a) && 3631 require_rvf(s) && 3632 require_zve32f(s) && 3633 require_zve64f(s); 3634} 3635 3636GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3637GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3638 3639/* Vector Register Gather Instruction */ 3640static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3641{ 3642 return require_rvv(s) && 3643 vext_check_isa_ill(s) && 3644 require_align(a->rd, s->lmul) && 3645 require_align(a->rs1, s->lmul) && 3646 require_align(a->rs2, s->lmul) && 3647 (a->rd != a->rs2 && a->rd != a->rs1) && 3648 require_vm(a->vm, a->rd); 3649} 3650 3651static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3652{ 3653 int8_t emul = MO_16 - s->sew + s->lmul; 3654 return require_rvv(s) && 3655 vext_check_isa_ill(s) && 3656 (emul >= -3 && emul <= 3) && 3657 require_align(a->rd, s->lmul) && 3658 require_align(a->rs1, emul) && 3659 require_align(a->rs2, s->lmul) && 3660 (a->rd != a->rs2 && a->rd != a->rs1) && 3661 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3662 a->rs1, 1 << MAX(emul, 0)) && 3663 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3664 a->rs2, 1 << MAX(s->lmul, 0)) && 3665 require_vm(a->vm, a->rd); 3666} 3667 3668GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3669GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3670 3671static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3672{ 3673 return require_rvv(s) && 3674 vext_check_isa_ill(s) && 3675 require_align(a->rd, s->lmul) && 3676 require_align(a->rs2, s->lmul) && 3677 (a->rd != a->rs2) && 3678 require_vm(a->vm, a->rd); 3679} 3680 3681/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3682static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3683{ 3684 if (!vrgather_vx_check(s, a)) { 3685 return false; 3686 } 3687 3688 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3689 int scale = s->lmul - (s->sew + 3); 3690 int vlmax = s->cfg_ptr->vlen >> -scale; 3691 TCGv_i64 dest = tcg_temp_new_i64(); 3692 3693 if (a->rs1 == 0) { 3694 vec_element_loadi(s, dest, a->rs2, 0, false); 3695 } else { 3696 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3697 } 3698 3699 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3700 MAXSZ(s), MAXSZ(s), dest); 3701 tcg_temp_free_i64(dest); 3702 mark_vs_dirty(s); 3703 } else { 3704 static gen_helper_opivx * const fns[4] = { 3705 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3706 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3707 }; 3708 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3709 } 3710 return true; 3711} 3712 3713/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3714static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3715{ 3716 if (!vrgather_vx_check(s, a)) { 3717 return false; 3718 } 3719 3720 if (a->vm && s->vl_eq_vlmax && !(s->vta && s->lmul < 0)) { 3721 int scale = s->lmul - (s->sew + 3); 3722 int vlmax = s->cfg_ptr->vlen >> -scale; 3723 if (a->rs1 >= vlmax) { 3724 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3725 MAXSZ(s), MAXSZ(s), 0); 3726 } else { 3727 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3728 endian_ofs(s, a->rs2, a->rs1), 3729 MAXSZ(s), MAXSZ(s)); 3730 } 3731 mark_vs_dirty(s); 3732 } else { 3733 static gen_helper_opivx * const fns[4] = { 3734 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3735 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3736 }; 3737 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3738 s, IMM_ZX); 3739 } 3740 return true; 3741} 3742 3743/* 3744 * Vector Compress Instruction 3745 * 3746 * The destination vector register group cannot overlap the 3747 * source vector register group or the source mask register. 3748 */ 3749static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3750{ 3751 return require_rvv(s) && 3752 vext_check_isa_ill(s) && 3753 require_align(a->rd, s->lmul) && 3754 require_align(a->rs2, s->lmul) && 3755 (a->rd != a->rs2) && 3756 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3757 (s->vstart == 0); 3758} 3759 3760static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3761{ 3762 if (vcompress_vm_check(s, a)) { 3763 uint32_t data = 0; 3764 static gen_helper_gvec_4_ptr * const fns[4] = { 3765 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3766 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3767 }; 3768 TCGLabel *over = gen_new_label(); 3769 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3770 3771 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3772 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3773 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3774 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3775 cpu_env, s->cfg_ptr->vlen / 8, 3776 s->cfg_ptr->vlen / 8, data, 3777 fns[s->sew]); 3778 mark_vs_dirty(s); 3779 gen_set_label(over); 3780 return true; 3781 } 3782 return false; 3783} 3784 3785/* 3786 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3787 * Thus, we don't need to check vill bit. (Section 16.6) 3788 */ 3789#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3790static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3791{ \ 3792 if (require_rvv(s) && \ 3793 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3794 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3795 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3796 if (s->vstart == 0) { \ 3797 /* EEW = 8 */ \ 3798 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3799 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3800 mark_vs_dirty(s); \ 3801 } else { \ 3802 TCGLabel *over = gen_new_label(); \ 3803 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3804 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3805 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3806 mark_vs_dirty(s); \ 3807 gen_set_label(over); \ 3808 } \ 3809 return true; \ 3810 } \ 3811 return false; \ 3812} 3813 3814GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3815GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3816GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3817GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3818 3819static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3820{ 3821 uint8_t from = (s->sew + 3) - div; 3822 bool ret = require_rvv(s) && 3823 (from >= 3 && from <= 8) && 3824 (a->rd != a->rs2) && 3825 require_align(a->rd, s->lmul) && 3826 require_align(a->rs2, s->lmul - div) && 3827 require_vm(a->vm, a->rd) && 3828 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3829 return ret; 3830} 3831 3832static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3833{ 3834 uint32_t data = 0; 3835 gen_helper_gvec_3_ptr *fn; 3836 TCGLabel *over = gen_new_label(); 3837 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3838 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3839 3840 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3841 { 3842 NULL, gen_helper_vzext_vf2_h, 3843 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3844 }, 3845 { 3846 NULL, NULL, 3847 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3848 }, 3849 { 3850 NULL, NULL, 3851 NULL, gen_helper_vzext_vf8_d 3852 }, 3853 { 3854 NULL, gen_helper_vsext_vf2_h, 3855 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3856 }, 3857 { 3858 NULL, NULL, 3859 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3860 }, 3861 { 3862 NULL, NULL, 3863 NULL, gen_helper_vsext_vf8_d 3864 } 3865 }; 3866 3867 fn = fns[seq][s->sew]; 3868 if (fn == NULL) { 3869 return false; 3870 } 3871 3872 data = FIELD_DP32(data, VDATA, VM, a->vm); 3873 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3874 data = FIELD_DP32(data, VDATA, VTA, s->vta); 3875 3876 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3877 vreg_ofs(s, a->rs2), cpu_env, 3878 s->cfg_ptr->vlen / 8, 3879 s->cfg_ptr->vlen / 8, data, fn); 3880 3881 mark_vs_dirty(s); 3882 gen_set_label(over); 3883 return true; 3884} 3885 3886/* Vector Integer Extension */ 3887#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3888static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3889{ \ 3890 if (int_ext_check(s, a, DIV)) { \ 3891 return int_ext_op(s, a, SEQ); \ 3892 } \ 3893 return false; \ 3894} 3895 3896GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3897GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3898GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3899GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3900GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3901GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3902