1/* 2 * 3 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2 or later, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program. If not, see <http://www.gnu.org/licenses/>. 16 */ 17#include "tcg/tcg-op-gvec.h" 18#include "tcg/tcg-gvec-desc.h" 19#include "internals.h" 20 21static inline bool is_overlapped(const int8_t astart, int8_t asize, 22 const int8_t bstart, int8_t bsize) 23{ 24 const int8_t aend = astart + asize; 25 const int8_t bend = bstart + bsize; 26 27 return MAX(aend, bend) - MIN(astart, bstart) < asize + bsize; 28} 29 30static bool require_rvv(DisasContext *s) 31{ 32 return s->mstatus_vs != 0; 33} 34 35static bool require_rvf(DisasContext *s) 36{ 37 if (s->mstatus_fs == 0) { 38 return false; 39 } 40 41 switch (s->sew) { 42 case MO_16: 43 case MO_32: 44 return has_ext(s, RVF); 45 case MO_64: 46 return has_ext(s, RVD); 47 default: 48 return false; 49 } 50} 51 52static bool require_scale_rvf(DisasContext *s) 53{ 54 if (s->mstatus_fs == 0) { 55 return false; 56 } 57 58 switch (s->sew) { 59 case MO_8: 60 case MO_16: 61 return has_ext(s, RVF); 62 case MO_32: 63 return has_ext(s, RVD); 64 default: 65 return false; 66 } 67} 68 69static bool require_zve32f(DisasContext *s) 70{ 71 /* RVV + Zve32f = RVV. */ 72 if (has_ext(s, RVV)) { 73 return true; 74 } 75 76 /* Zve32f doesn't support FP64. (Section 18.2) */ 77 return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true; 78} 79 80static bool require_scale_zve32f(DisasContext *s) 81{ 82 /* RVV + Zve32f = RVV. */ 83 if (has_ext(s, RVV)) { 84 return true; 85 } 86 87 /* Zve32f doesn't support FP64. (Section 18.2) */ 88 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 89} 90 91static bool require_zve64f(DisasContext *s) 92{ 93 /* RVV + Zve64f = RVV. */ 94 if (has_ext(s, RVV)) { 95 return true; 96 } 97 98 /* Zve64f doesn't support FP64. (Section 18.2) */ 99 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true; 100} 101 102static bool require_scale_zve64f(DisasContext *s) 103{ 104 /* RVV + Zve64f = RVV. */ 105 if (has_ext(s, RVV)) { 106 return true; 107 } 108 109 /* Zve64f doesn't support FP64. (Section 18.2) */ 110 return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true; 111} 112 113/* Destination vector register group cannot overlap source mask register. */ 114static bool require_vm(int vm, int vd) 115{ 116 return (vm != 0 || vd != 0); 117} 118 119static bool require_nf(int vd, int nf, int lmul) 120{ 121 int size = nf << MAX(lmul, 0); 122 return size <= 8 && vd + size <= 32; 123} 124 125/* 126 * Vector register should aligned with the passed-in LMUL (EMUL). 127 * If LMUL < 0, i.e. fractional LMUL, any vector register is allowed. 128 */ 129static bool require_align(const int8_t val, const int8_t lmul) 130{ 131 return lmul <= 0 || extract32(val, 0, lmul) == 0; 132} 133 134/* 135 * A destination vector register group can overlap a source vector 136 * register group only if one of the following holds: 137 * 1. The destination EEW equals the source EEW. 138 * 2. The destination EEW is smaller than the source EEW and the overlap 139 * is in the lowest-numbered part of the source register group. 140 * 3. The destination EEW is greater than the source EEW, the source EMUL 141 * is at least 1, and the overlap is in the highest-numbered part of 142 * the destination register group. 143 * (Section 5.2) 144 * 145 * This function returns true if one of the following holds: 146 * * Destination vector register group does not overlap a source vector 147 * register group. 148 * * Rule 3 met. 149 * For rule 1, overlap is allowed so this function doesn't need to be called. 150 * For rule 2, (vd == vs). Caller has to check whether: (vd != vs) before 151 * calling this function. 152 */ 153static bool require_noover(const int8_t dst, const int8_t dst_lmul, 154 const int8_t src, const int8_t src_lmul) 155{ 156 int8_t dst_size = dst_lmul <= 0 ? 1 : 1 << dst_lmul; 157 int8_t src_size = src_lmul <= 0 ? 1 : 1 << src_lmul; 158 159 /* Destination EEW is greater than the source EEW, check rule 3. */ 160 if (dst_size > src_size) { 161 if (dst < src && 162 src_lmul >= 0 && 163 is_overlapped(dst, dst_size, src, src_size) && 164 !is_overlapped(dst, dst_size, src + src_size, src_size)) { 165 return true; 166 } 167 } 168 169 return !is_overlapped(dst, dst_size, src, src_size); 170} 171 172static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2) 173{ 174 TCGv s1, dst; 175 176 if (!require_rvv(s) || 177 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 178 s->cfg_ptr->ext_zve64f)) { 179 return false; 180 } 181 182 dst = dest_gpr(s, rd); 183 184 if (rd == 0 && rs1 == 0) { 185 s1 = tcg_temp_new(); 186 tcg_gen_mov_tl(s1, cpu_vl); 187 } else if (rs1 == 0) { 188 /* As the mask is at least one bit, RV_VLEN_MAX is >= VLMAX */ 189 s1 = tcg_constant_tl(RV_VLEN_MAX); 190 } else { 191 s1 = get_gpr(s, rs1, EXT_ZERO); 192 } 193 194 gen_helper_vsetvl(dst, cpu_env, s1, s2); 195 gen_set_gpr(s, rd, dst); 196 mark_vs_dirty(s); 197 198 gen_set_pc_imm(s, s->pc_succ_insn); 199 tcg_gen_lookup_and_goto_ptr(); 200 s->base.is_jmp = DISAS_NORETURN; 201 202 if (rd == 0 && rs1 == 0) { 203 tcg_temp_free(s1); 204 } 205 206 return true; 207} 208 209static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2) 210{ 211 TCGv dst; 212 213 if (!require_rvv(s) || 214 !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f || 215 s->cfg_ptr->ext_zve64f)) { 216 return false; 217 } 218 219 dst = dest_gpr(s, rd); 220 221 gen_helper_vsetvl(dst, cpu_env, s1, s2); 222 gen_set_gpr(s, rd, dst); 223 mark_vs_dirty(s); 224 gen_set_pc_imm(s, s->pc_succ_insn); 225 tcg_gen_lookup_and_goto_ptr(); 226 s->base.is_jmp = DISAS_NORETURN; 227 228 return true; 229} 230 231static bool trans_vsetvl(DisasContext *s, arg_vsetvl *a) 232{ 233 TCGv s2 = get_gpr(s, a->rs2, EXT_ZERO); 234 return do_vsetvl(s, a->rd, a->rs1, s2); 235} 236 237static bool trans_vsetvli(DisasContext *s, arg_vsetvli *a) 238{ 239 TCGv s2 = tcg_constant_tl(a->zimm); 240 return do_vsetvl(s, a->rd, a->rs1, s2); 241} 242 243static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a) 244{ 245 TCGv s1 = tcg_const_tl(a->rs1); 246 TCGv s2 = tcg_const_tl(a->zimm); 247 return do_vsetivli(s, a->rd, s1, s2); 248} 249 250/* vector register offset from env */ 251static uint32_t vreg_ofs(DisasContext *s, int reg) 252{ 253 return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8; 254} 255 256/* check functions */ 257 258/* 259 * Vector unit-stride, strided, unit-stride segment, strided segment 260 * store check function. 261 * 262 * Rules to be checked here: 263 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 264 * 2. Destination vector register number is multiples of EMUL. 265 * (Section 3.4.2, 7.3) 266 * 3. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 267 * 4. Vector register numbers accessed by the segment load or store 268 * cannot increment past 31. (Section 7.8) 269 */ 270static bool vext_check_store(DisasContext *s, int vd, int nf, uint8_t eew) 271{ 272 int8_t emul = eew - s->sew + s->lmul; 273 return (emul >= -3 && emul <= 3) && 274 require_align(vd, emul) && 275 require_nf(vd, nf, emul); 276} 277 278/* 279 * Vector unit-stride, strided, unit-stride segment, strided segment 280 * load check function. 281 * 282 * Rules to be checked here: 283 * 1. All rules applies to store instructions are applies 284 * to load instructions. 285 * 2. Destination vector register group for a masked vector 286 * instruction cannot overlap the source mask register (v0). 287 * (Section 5.3) 288 */ 289static bool vext_check_load(DisasContext *s, int vd, int nf, int vm, 290 uint8_t eew) 291{ 292 return vext_check_store(s, vd, nf, eew) && require_vm(vm, vd); 293} 294 295/* 296 * Vector indexed, indexed segment store check function. 297 * 298 * Rules to be checked here: 299 * 1. EMUL must within the range: 1/8 <= EMUL <= 8. (Section 7.3) 300 * 2. Index vector register number is multiples of EMUL. 301 * (Section 3.4.2, 7.3) 302 * 3. Destination vector register number is multiples of LMUL. 303 * (Section 3.4.2, 7.3) 304 * 4. The EMUL setting must be such that EMUL * NFIELDS ≤ 8. (Section 7.8) 305 * 5. Vector register numbers accessed by the segment load or store 306 * cannot increment past 31. (Section 7.8) 307 */ 308static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf, 309 uint8_t eew) 310{ 311 int8_t emul = eew - s->sew + s->lmul; 312 bool ret = (emul >= -3 && emul <= 3) && 313 require_align(vs2, emul) && 314 require_align(vd, s->lmul) && 315 require_nf(vd, nf, s->lmul); 316 317 /* 318 * All Zve* extensions support all vector load and store instructions, 319 * except Zve64* extensions do not support EEW=64 for index values 320 * when XLEN=32. (Section 18.2) 321 */ 322 if (get_xl(s) == MXL_RV32) { 323 ret &= (!has_ext(s, RVV) && 324 s->cfg_ptr->ext_zve64f ? eew != MO_64 : true); 325 } 326 327 return ret; 328} 329 330/* 331 * Vector indexed, indexed segment load check function. 332 * 333 * Rules to be checked here: 334 * 1. All rules applies to store instructions are applies 335 * to load instructions. 336 * 2. Destination vector register group for a masked vector 337 * instruction cannot overlap the source mask register (v0). 338 * (Section 5.3) 339 * 3. Destination vector register cannot overlap a source vector 340 * register (vs2) group. 341 * (Section 5.2) 342 * 4. Destination vector register groups cannot overlap 343 * the source vector register (vs2) group for 344 * indexed segment load instructions. (Section 7.8.3) 345 */ 346static bool vext_check_ld_index(DisasContext *s, int vd, int vs2, 347 int nf, int vm, uint8_t eew) 348{ 349 int8_t seg_vd; 350 int8_t emul = eew - s->sew + s->lmul; 351 bool ret = vext_check_st_index(s, vd, vs2, nf, eew) && 352 require_vm(vm, vd); 353 354 /* Each segment register group has to follow overlap rules. */ 355 for (int i = 0; i < nf; ++i) { 356 seg_vd = vd + (1 << MAX(s->lmul, 0)) * i; 357 358 if (eew > s->sew) { 359 if (seg_vd != vs2) { 360 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 361 } 362 } else if (eew < s->sew) { 363 ret &= require_noover(seg_vd, s->lmul, vs2, emul); 364 } 365 366 /* 367 * Destination vector register groups cannot overlap 368 * the source vector register (vs2) group for 369 * indexed segment load instructions. 370 */ 371 if (nf > 1) { 372 ret &= !is_overlapped(seg_vd, 1 << MAX(s->lmul, 0), 373 vs2, 1 << MAX(emul, 0)); 374 } 375 } 376 return ret; 377} 378 379static bool vext_check_ss(DisasContext *s, int vd, int vs, int vm) 380{ 381 return require_vm(vm, vd) && 382 require_align(vd, s->lmul) && 383 require_align(vs, s->lmul); 384} 385 386/* 387 * Check function for vector instruction with format: 388 * single-width result and single-width sources (SEW = SEW op SEW) 389 * 390 * Rules to be checked here: 391 * 1. Destination vector register group for a masked vector 392 * instruction cannot overlap the source mask register (v0). 393 * (Section 5.3) 394 * 2. Destination vector register number is multiples of LMUL. 395 * (Section 3.4.2) 396 * 3. Source (vs2, vs1) vector register number are multiples of LMUL. 397 * (Section 3.4.2) 398 */ 399static bool vext_check_sss(DisasContext *s, int vd, int vs1, int vs2, int vm) 400{ 401 return vext_check_ss(s, vd, vs2, vm) && 402 require_align(vs1, s->lmul); 403} 404 405static bool vext_check_ms(DisasContext *s, int vd, int vs) 406{ 407 bool ret = require_align(vs, s->lmul); 408 if (vd != vs) { 409 ret &= require_noover(vd, 0, vs, s->lmul); 410 } 411 return ret; 412} 413 414/* 415 * Check function for maskable vector instruction with format: 416 * single-width result and single-width sources (SEW = SEW op SEW) 417 * 418 * Rules to be checked here: 419 * 1. Source (vs2, vs1) vector register number are multiples of LMUL. 420 * (Section 3.4.2) 421 * 2. Destination vector register cannot overlap a source vector 422 * register (vs2, vs1) group. 423 * (Section 5.2) 424 * 3. The destination vector register group for a masked vector 425 * instruction cannot overlap the source mask register (v0), 426 * unless the destination vector register is being written 427 * with a mask value (e.g., comparisons) or the scalar result 428 * of a reduction. (Section 5.3) 429 */ 430static bool vext_check_mss(DisasContext *s, int vd, int vs1, int vs2) 431{ 432 bool ret = vext_check_ms(s, vd, vs2) && 433 require_align(vs1, s->lmul); 434 if (vd != vs1) { 435 ret &= require_noover(vd, 0, vs1, s->lmul); 436 } 437 return ret; 438} 439 440/* 441 * Common check function for vector widening instructions 442 * of double-width result (2*SEW). 443 * 444 * Rules to be checked here: 445 * 1. The largest vector register group used by an instruction 446 * can not be greater than 8 vector registers (Section 5.2): 447 * => LMUL < 8. 448 * => SEW < 64. 449 * 2. Double-width SEW cannot greater than ELEN. 450 * 3. Destination vector register number is multiples of 2 * LMUL. 451 * (Section 3.4.2) 452 * 4. Destination vector register group for a masked vector 453 * instruction cannot overlap the source mask register (v0). 454 * (Section 5.3) 455 */ 456static bool vext_wide_check_common(DisasContext *s, int vd, int vm) 457{ 458 return (s->lmul <= 2) && 459 (s->sew < MO_64) && 460 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 461 require_align(vd, s->lmul + 1) && 462 require_vm(vm, vd); 463} 464 465/* 466 * Common check function for vector narrowing instructions 467 * of single-width result (SEW) and double-width source (2*SEW). 468 * 469 * Rules to be checked here: 470 * 1. The largest vector register group used by an instruction 471 * can not be greater than 8 vector registers (Section 5.2): 472 * => LMUL < 8. 473 * => SEW < 64. 474 * 2. Double-width SEW cannot greater than ELEN. 475 * 3. Source vector register number is multiples of 2 * LMUL. 476 * (Section 3.4.2) 477 * 4. Destination vector register number is multiples of LMUL. 478 * (Section 3.4.2) 479 * 5. Destination vector register group for a masked vector 480 * instruction cannot overlap the source mask register (v0). 481 * (Section 5.3) 482 */ 483static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2, 484 int vm) 485{ 486 return (s->lmul <= 2) && 487 (s->sew < MO_64) && 488 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) && 489 require_align(vs2, s->lmul + 1) && 490 require_align(vd, s->lmul) && 491 require_vm(vm, vd); 492} 493 494static bool vext_check_ds(DisasContext *s, int vd, int vs, int vm) 495{ 496 return vext_wide_check_common(s, vd, vm) && 497 require_align(vs, s->lmul) && 498 require_noover(vd, s->lmul + 1, vs, s->lmul); 499} 500 501static bool vext_check_dd(DisasContext *s, int vd, int vs, int vm) 502{ 503 return vext_wide_check_common(s, vd, vm) && 504 require_align(vs, s->lmul + 1); 505} 506 507/* 508 * Check function for vector instruction with format: 509 * double-width result and single-width sources (2*SEW = SEW op SEW) 510 * 511 * Rules to be checked here: 512 * 1. All rules in defined in widen common rules are applied. 513 * 2. Source (vs2, vs1) vector register number are multiples of LMUL. 514 * (Section 3.4.2) 515 * 3. Destination vector register cannot overlap a source vector 516 * register (vs2, vs1) group. 517 * (Section 5.2) 518 */ 519static bool vext_check_dss(DisasContext *s, int vd, int vs1, int vs2, int vm) 520{ 521 return vext_check_ds(s, vd, vs2, vm) && 522 require_align(vs1, s->lmul) && 523 require_noover(vd, s->lmul + 1, vs1, s->lmul); 524} 525 526/* 527 * Check function for vector instruction with format: 528 * double-width result and double-width source1 and single-width 529 * source2 (2*SEW = 2*SEW op SEW) 530 * 531 * Rules to be checked here: 532 * 1. All rules in defined in widen common rules are applied. 533 * 2. Source 1 (vs2) vector register number is multiples of 2 * LMUL. 534 * (Section 3.4.2) 535 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 536 * (Section 3.4.2) 537 * 4. Destination vector register cannot overlap a source vector 538 * register (vs1) group. 539 * (Section 5.2) 540 */ 541static bool vext_check_dds(DisasContext *s, int vd, int vs1, int vs2, int vm) 542{ 543 return vext_check_ds(s, vd, vs1, vm) && 544 require_align(vs2, s->lmul + 1); 545} 546 547static bool vext_check_sd(DisasContext *s, int vd, int vs, int vm) 548{ 549 bool ret = vext_narrow_check_common(s, vd, vs, vm); 550 if (vd != vs) { 551 ret &= require_noover(vd, s->lmul, vs, s->lmul + 1); 552 } 553 return ret; 554} 555 556/* 557 * Check function for vector instruction with format: 558 * single-width result and double-width source 1 and single-width 559 * source 2 (SEW = 2*SEW op SEW) 560 * 561 * Rules to be checked here: 562 * 1. All rules in defined in narrow common rules are applied. 563 * 2. Destination vector register cannot overlap a source vector 564 * register (vs2) group. 565 * (Section 5.2) 566 * 3. Source 2 (vs1) vector register number is multiples of LMUL. 567 * (Section 3.4.2) 568 */ 569static bool vext_check_sds(DisasContext *s, int vd, int vs1, int vs2, int vm) 570{ 571 return vext_check_sd(s, vd, vs2, vm) && 572 require_align(vs1, s->lmul); 573} 574 575/* 576 * Check function for vector reduction instructions. 577 * 578 * Rules to be checked here: 579 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 580 * (Section 3.4.2) 581 */ 582static bool vext_check_reduction(DisasContext *s, int vs2) 583{ 584 return require_align(vs2, s->lmul) && (s->vstart == 0); 585} 586 587/* 588 * Check function for vector slide instructions. 589 * 590 * Rules to be checked here: 591 * 1. Source 1 (vs2) vector register number is multiples of LMUL. 592 * (Section 3.4.2) 593 * 2. Destination vector register number is multiples of LMUL. 594 * (Section 3.4.2) 595 * 3. Destination vector register group for a masked vector 596 * instruction cannot overlap the source mask register (v0). 597 * (Section 5.3) 598 * 4. The destination vector register group for vslideup, vslide1up, 599 * vfslide1up, cannot overlap the source vector register (vs2) group. 600 * (Section 5.2, 16.3.1, 16.3.3) 601 */ 602static bool vext_check_slide(DisasContext *s, int vd, int vs2, 603 int vm, bool is_over) 604{ 605 bool ret = require_align(vs2, s->lmul) && 606 require_align(vd, s->lmul) && 607 require_vm(vm, vd); 608 if (is_over) { 609 ret &= (vd != vs2); 610 } 611 return ret; 612} 613 614/* 615 * In cpu_get_tb_cpu_state(), set VILL if RVV was not present. 616 * So RVV is also be checked in this function. 617 */ 618static bool vext_check_isa_ill(DisasContext *s) 619{ 620 return !s->vill; 621} 622 623/* common translation macro */ 624#define GEN_VEXT_TRANS(NAME, EEW, ARGTYPE, OP, CHECK) \ 625static bool trans_##NAME(DisasContext *s, arg_##ARGTYPE * a) \ 626{ \ 627 if (CHECK(s, a, EEW)) { \ 628 return OP(s, a, EEW); \ 629 } \ 630 return false; \ 631} 632 633static uint8_t vext_get_emul(DisasContext *s, uint8_t eew) 634{ 635 int8_t emul = eew - s->sew + s->lmul; 636 return emul < 0 ? 0 : emul; 637} 638 639/* 640 *** unit stride load and store 641 */ 642typedef void gen_helper_ldst_us(TCGv_ptr, TCGv_ptr, TCGv, 643 TCGv_env, TCGv_i32); 644 645static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data, 646 gen_helper_ldst_us *fn, DisasContext *s, 647 bool is_store) 648{ 649 TCGv_ptr dest, mask; 650 TCGv base; 651 TCGv_i32 desc; 652 653 TCGLabel *over = gen_new_label(); 654 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 655 656 dest = tcg_temp_new_ptr(); 657 mask = tcg_temp_new_ptr(); 658 base = get_gpr(s, rs1, EXT_NONE); 659 660 /* 661 * As simd_desc supports at most 2048 bytes, and in this implementation, 662 * the max vector group length is 4096 bytes. So split it into two parts. 663 * 664 * The first part is vlen in bytes, encoded in maxsz of simd_desc. 665 * The second part is lmul, encoded in data of simd_desc. 666 */ 667 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 668 s->cfg_ptr->vlen / 8, data)); 669 670 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 671 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 672 673 fn(dest, mask, base, cpu_env, desc); 674 675 tcg_temp_free_ptr(dest); 676 tcg_temp_free_ptr(mask); 677 678 if (!is_store) { 679 mark_vs_dirty(s); 680 } 681 682 gen_set_label(over); 683 return true; 684} 685 686static bool ld_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 687{ 688 uint32_t data = 0; 689 gen_helper_ldst_us *fn; 690 static gen_helper_ldst_us * const fns[2][4] = { 691 /* masked unit stride load */ 692 { gen_helper_vle8_v_mask, gen_helper_vle16_v_mask, 693 gen_helper_vle32_v_mask, gen_helper_vle64_v_mask }, 694 /* unmasked unit stride load */ 695 { gen_helper_vle8_v, gen_helper_vle16_v, 696 gen_helper_vle32_v, gen_helper_vle64_v } 697 }; 698 699 fn = fns[a->vm][eew]; 700 if (fn == NULL) { 701 return false; 702 } 703 704 /* 705 * Vector load/store instructions have the EEW encoded 706 * directly in the instructions. The maximum vector size is 707 * calculated with EMUL rather than LMUL. 708 */ 709 uint8_t emul = vext_get_emul(s, eew); 710 data = FIELD_DP32(data, VDATA, VM, a->vm); 711 data = FIELD_DP32(data, VDATA, LMUL, emul); 712 data = FIELD_DP32(data, VDATA, NF, a->nf); 713 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 714} 715 716static bool ld_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 717{ 718 return require_rvv(s) && 719 vext_check_isa_ill(s) && 720 vext_check_load(s, a->rd, a->nf, a->vm, eew); 721} 722 723GEN_VEXT_TRANS(vle8_v, MO_8, r2nfvm, ld_us_op, ld_us_check) 724GEN_VEXT_TRANS(vle16_v, MO_16, r2nfvm, ld_us_op, ld_us_check) 725GEN_VEXT_TRANS(vle32_v, MO_32, r2nfvm, ld_us_op, ld_us_check) 726GEN_VEXT_TRANS(vle64_v, MO_64, r2nfvm, ld_us_op, ld_us_check) 727 728static bool st_us_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 729{ 730 uint32_t data = 0; 731 gen_helper_ldst_us *fn; 732 static gen_helper_ldst_us * const fns[2][4] = { 733 /* masked unit stride store */ 734 { gen_helper_vse8_v_mask, gen_helper_vse16_v_mask, 735 gen_helper_vse32_v_mask, gen_helper_vse64_v_mask }, 736 /* unmasked unit stride store */ 737 { gen_helper_vse8_v, gen_helper_vse16_v, 738 gen_helper_vse32_v, gen_helper_vse64_v } 739 }; 740 741 fn = fns[a->vm][eew]; 742 if (fn == NULL) { 743 return false; 744 } 745 746 uint8_t emul = vext_get_emul(s, eew); 747 data = FIELD_DP32(data, VDATA, VM, a->vm); 748 data = FIELD_DP32(data, VDATA, LMUL, emul); 749 data = FIELD_DP32(data, VDATA, NF, a->nf); 750 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 751} 752 753static bool st_us_check(DisasContext *s, arg_r2nfvm* a, uint8_t eew) 754{ 755 return require_rvv(s) && 756 vext_check_isa_ill(s) && 757 vext_check_store(s, a->rd, a->nf, eew); 758} 759 760GEN_VEXT_TRANS(vse8_v, MO_8, r2nfvm, st_us_op, st_us_check) 761GEN_VEXT_TRANS(vse16_v, MO_16, r2nfvm, st_us_op, st_us_check) 762GEN_VEXT_TRANS(vse32_v, MO_32, r2nfvm, st_us_op, st_us_check) 763GEN_VEXT_TRANS(vse64_v, MO_64, r2nfvm, st_us_op, st_us_check) 764 765/* 766 *** unit stride mask load and store 767 */ 768static bool ld_us_mask_op(DisasContext *s, arg_vlm_v *a, uint8_t eew) 769{ 770 uint32_t data = 0; 771 gen_helper_ldst_us *fn = gen_helper_vlm_v; 772 773 /* EMUL = 1, NFIELDS = 1 */ 774 data = FIELD_DP32(data, VDATA, LMUL, 0); 775 data = FIELD_DP32(data, VDATA, NF, 1); 776 return ldst_us_trans(a->rd, a->rs1, data, fn, s, false); 777} 778 779static bool ld_us_mask_check(DisasContext *s, arg_vlm_v *a, uint8_t eew) 780{ 781 /* EMUL = 1, NFIELDS = 1 */ 782 return require_rvv(s) && vext_check_isa_ill(s); 783} 784 785static bool st_us_mask_op(DisasContext *s, arg_vsm_v *a, uint8_t eew) 786{ 787 uint32_t data = 0; 788 gen_helper_ldst_us *fn = gen_helper_vsm_v; 789 790 /* EMUL = 1, NFIELDS = 1 */ 791 data = FIELD_DP32(data, VDATA, LMUL, 0); 792 data = FIELD_DP32(data, VDATA, NF, 1); 793 return ldst_us_trans(a->rd, a->rs1, data, fn, s, true); 794} 795 796static bool st_us_mask_check(DisasContext *s, arg_vsm_v *a, uint8_t eew) 797{ 798 /* EMUL = 1, NFIELDS = 1 */ 799 return require_rvv(s) && vext_check_isa_ill(s); 800} 801 802GEN_VEXT_TRANS(vlm_v, MO_8, vlm_v, ld_us_mask_op, ld_us_mask_check) 803GEN_VEXT_TRANS(vsm_v, MO_8, vsm_v, st_us_mask_op, st_us_mask_check) 804 805/* 806 *** stride load and store 807 */ 808typedef void gen_helper_ldst_stride(TCGv_ptr, TCGv_ptr, TCGv, 809 TCGv, TCGv_env, TCGv_i32); 810 811static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2, 812 uint32_t data, gen_helper_ldst_stride *fn, 813 DisasContext *s, bool is_store) 814{ 815 TCGv_ptr dest, mask; 816 TCGv base, stride; 817 TCGv_i32 desc; 818 819 TCGLabel *over = gen_new_label(); 820 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 821 822 dest = tcg_temp_new_ptr(); 823 mask = tcg_temp_new_ptr(); 824 base = get_gpr(s, rs1, EXT_NONE); 825 stride = get_gpr(s, rs2, EXT_NONE); 826 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 827 s->cfg_ptr->vlen / 8, data)); 828 829 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 830 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 831 832 fn(dest, mask, base, stride, cpu_env, desc); 833 834 tcg_temp_free_ptr(dest); 835 tcg_temp_free_ptr(mask); 836 837 if (!is_store) { 838 mark_vs_dirty(s); 839 } 840 841 gen_set_label(over); 842 return true; 843} 844 845static bool ld_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 846{ 847 uint32_t data = 0; 848 gen_helper_ldst_stride *fn; 849 static gen_helper_ldst_stride * const fns[4] = { 850 gen_helper_vlse8_v, gen_helper_vlse16_v, 851 gen_helper_vlse32_v, gen_helper_vlse64_v 852 }; 853 854 fn = fns[eew]; 855 if (fn == NULL) { 856 return false; 857 } 858 859 uint8_t emul = vext_get_emul(s, eew); 860 data = FIELD_DP32(data, VDATA, VM, a->vm); 861 data = FIELD_DP32(data, VDATA, LMUL, emul); 862 data = FIELD_DP32(data, VDATA, NF, a->nf); 863 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 864} 865 866static bool ld_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 867{ 868 return require_rvv(s) && 869 vext_check_isa_ill(s) && 870 vext_check_load(s, a->rd, a->nf, a->vm, eew); 871} 872 873GEN_VEXT_TRANS(vlse8_v, MO_8, rnfvm, ld_stride_op, ld_stride_check) 874GEN_VEXT_TRANS(vlse16_v, MO_16, rnfvm, ld_stride_op, ld_stride_check) 875GEN_VEXT_TRANS(vlse32_v, MO_32, rnfvm, ld_stride_op, ld_stride_check) 876GEN_VEXT_TRANS(vlse64_v, MO_64, rnfvm, ld_stride_op, ld_stride_check) 877 878static bool st_stride_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 879{ 880 uint32_t data = 0; 881 gen_helper_ldst_stride *fn; 882 static gen_helper_ldst_stride * const fns[4] = { 883 /* masked stride store */ 884 gen_helper_vsse8_v, gen_helper_vsse16_v, 885 gen_helper_vsse32_v, gen_helper_vsse64_v 886 }; 887 888 uint8_t emul = vext_get_emul(s, eew); 889 data = FIELD_DP32(data, VDATA, VM, a->vm); 890 data = FIELD_DP32(data, VDATA, LMUL, emul); 891 data = FIELD_DP32(data, VDATA, NF, a->nf); 892 fn = fns[eew]; 893 if (fn == NULL) { 894 return false; 895 } 896 897 return ldst_stride_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 898} 899 900static bool st_stride_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 901{ 902 return require_rvv(s) && 903 vext_check_isa_ill(s) && 904 vext_check_store(s, a->rd, a->nf, eew); 905} 906 907GEN_VEXT_TRANS(vsse8_v, MO_8, rnfvm, st_stride_op, st_stride_check) 908GEN_VEXT_TRANS(vsse16_v, MO_16, rnfvm, st_stride_op, st_stride_check) 909GEN_VEXT_TRANS(vsse32_v, MO_32, rnfvm, st_stride_op, st_stride_check) 910GEN_VEXT_TRANS(vsse64_v, MO_64, rnfvm, st_stride_op, st_stride_check) 911 912/* 913 *** index load and store 914 */ 915typedef void gen_helper_ldst_index(TCGv_ptr, TCGv_ptr, TCGv, 916 TCGv_ptr, TCGv_env, TCGv_i32); 917 918static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 919 uint32_t data, gen_helper_ldst_index *fn, 920 DisasContext *s, bool is_store) 921{ 922 TCGv_ptr dest, mask, index; 923 TCGv base; 924 TCGv_i32 desc; 925 926 TCGLabel *over = gen_new_label(); 927 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 928 929 dest = tcg_temp_new_ptr(); 930 mask = tcg_temp_new_ptr(); 931 index = tcg_temp_new_ptr(); 932 base = get_gpr(s, rs1, EXT_NONE); 933 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 934 s->cfg_ptr->vlen / 8, data)); 935 936 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 937 tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); 938 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 939 940 fn(dest, mask, base, index, cpu_env, desc); 941 942 tcg_temp_free_ptr(dest); 943 tcg_temp_free_ptr(mask); 944 tcg_temp_free_ptr(index); 945 946 if (!is_store) { 947 mark_vs_dirty(s); 948 } 949 950 gen_set_label(over); 951 return true; 952} 953 954static bool ld_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 955{ 956 uint32_t data = 0; 957 gen_helper_ldst_index *fn; 958 static gen_helper_ldst_index * const fns[4][4] = { 959 /* 960 * offset vector register group EEW = 8, 961 * data vector register group EEW = SEW 962 */ 963 { gen_helper_vlxei8_8_v, gen_helper_vlxei8_16_v, 964 gen_helper_vlxei8_32_v, gen_helper_vlxei8_64_v }, 965 /* 966 * offset vector register group EEW = 16, 967 * data vector register group EEW = SEW 968 */ 969 { gen_helper_vlxei16_8_v, gen_helper_vlxei16_16_v, 970 gen_helper_vlxei16_32_v, gen_helper_vlxei16_64_v }, 971 /* 972 * offset vector register group EEW = 32, 973 * data vector register group EEW = SEW 974 */ 975 { gen_helper_vlxei32_8_v, gen_helper_vlxei32_16_v, 976 gen_helper_vlxei32_32_v, gen_helper_vlxei32_64_v }, 977 /* 978 * offset vector register group EEW = 64, 979 * data vector register group EEW = SEW 980 */ 981 { gen_helper_vlxei64_8_v, gen_helper_vlxei64_16_v, 982 gen_helper_vlxei64_32_v, gen_helper_vlxei64_64_v } 983 }; 984 985 fn = fns[eew][s->sew]; 986 987 uint8_t emul = vext_get_emul(s, s->sew); 988 data = FIELD_DP32(data, VDATA, VM, a->vm); 989 data = FIELD_DP32(data, VDATA, LMUL, emul); 990 data = FIELD_DP32(data, VDATA, NF, a->nf); 991 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, false); 992} 993 994static bool ld_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 995{ 996 return require_rvv(s) && 997 vext_check_isa_ill(s) && 998 vext_check_ld_index(s, a->rd, a->rs2, a->nf, a->vm, eew); 999} 1000 1001GEN_VEXT_TRANS(vlxei8_v, MO_8, rnfvm, ld_index_op, ld_index_check) 1002GEN_VEXT_TRANS(vlxei16_v, MO_16, rnfvm, ld_index_op, ld_index_check) 1003GEN_VEXT_TRANS(vlxei32_v, MO_32, rnfvm, ld_index_op, ld_index_check) 1004GEN_VEXT_TRANS(vlxei64_v, MO_64, rnfvm, ld_index_op, ld_index_check) 1005 1006static bool st_index_op(DisasContext *s, arg_rnfvm *a, uint8_t eew) 1007{ 1008 uint32_t data = 0; 1009 gen_helper_ldst_index *fn; 1010 static gen_helper_ldst_index * const fns[4][4] = { 1011 /* 1012 * offset vector register group EEW = 8, 1013 * data vector register group EEW = SEW 1014 */ 1015 { gen_helper_vsxei8_8_v, gen_helper_vsxei8_16_v, 1016 gen_helper_vsxei8_32_v, gen_helper_vsxei8_64_v }, 1017 /* 1018 * offset vector register group EEW = 16, 1019 * data vector register group EEW = SEW 1020 */ 1021 { gen_helper_vsxei16_8_v, gen_helper_vsxei16_16_v, 1022 gen_helper_vsxei16_32_v, gen_helper_vsxei16_64_v }, 1023 /* 1024 * offset vector register group EEW = 32, 1025 * data vector register group EEW = SEW 1026 */ 1027 { gen_helper_vsxei32_8_v, gen_helper_vsxei32_16_v, 1028 gen_helper_vsxei32_32_v, gen_helper_vsxei32_64_v }, 1029 /* 1030 * offset vector register group EEW = 64, 1031 * data vector register group EEW = SEW 1032 */ 1033 { gen_helper_vsxei64_8_v, gen_helper_vsxei64_16_v, 1034 gen_helper_vsxei64_32_v, gen_helper_vsxei64_64_v } 1035 }; 1036 1037 fn = fns[eew][s->sew]; 1038 1039 uint8_t emul = vext_get_emul(s, s->sew); 1040 data = FIELD_DP32(data, VDATA, VM, a->vm); 1041 data = FIELD_DP32(data, VDATA, LMUL, emul); 1042 data = FIELD_DP32(data, VDATA, NF, a->nf); 1043 return ldst_index_trans(a->rd, a->rs1, a->rs2, data, fn, s, true); 1044} 1045 1046static bool st_index_check(DisasContext *s, arg_rnfvm* a, uint8_t eew) 1047{ 1048 return require_rvv(s) && 1049 vext_check_isa_ill(s) && 1050 vext_check_st_index(s, a->rd, a->rs2, a->nf, eew); 1051} 1052 1053GEN_VEXT_TRANS(vsxei8_v, MO_8, rnfvm, st_index_op, st_index_check) 1054GEN_VEXT_TRANS(vsxei16_v, MO_16, rnfvm, st_index_op, st_index_check) 1055GEN_VEXT_TRANS(vsxei32_v, MO_32, rnfvm, st_index_op, st_index_check) 1056GEN_VEXT_TRANS(vsxei64_v, MO_64, rnfvm, st_index_op, st_index_check) 1057 1058/* 1059 *** unit stride fault-only-first load 1060 */ 1061static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data, 1062 gen_helper_ldst_us *fn, DisasContext *s) 1063{ 1064 TCGv_ptr dest, mask; 1065 TCGv base; 1066 TCGv_i32 desc; 1067 1068 TCGLabel *over = gen_new_label(); 1069 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1070 1071 dest = tcg_temp_new_ptr(); 1072 mask = tcg_temp_new_ptr(); 1073 base = get_gpr(s, rs1, EXT_NONE); 1074 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1075 s->cfg_ptr->vlen / 8, data)); 1076 1077 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1078 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1079 1080 fn(dest, mask, base, cpu_env, desc); 1081 1082 tcg_temp_free_ptr(dest); 1083 tcg_temp_free_ptr(mask); 1084 mark_vs_dirty(s); 1085 gen_set_label(over); 1086 return true; 1087} 1088 1089static bool ldff_op(DisasContext *s, arg_r2nfvm *a, uint8_t eew) 1090{ 1091 uint32_t data = 0; 1092 gen_helper_ldst_us *fn; 1093 static gen_helper_ldst_us * const fns[4] = { 1094 gen_helper_vle8ff_v, gen_helper_vle16ff_v, 1095 gen_helper_vle32ff_v, gen_helper_vle64ff_v 1096 }; 1097 1098 fn = fns[eew]; 1099 if (fn == NULL) { 1100 return false; 1101 } 1102 1103 uint8_t emul = vext_get_emul(s, eew); 1104 data = FIELD_DP32(data, VDATA, VM, a->vm); 1105 data = FIELD_DP32(data, VDATA, LMUL, emul); 1106 data = FIELD_DP32(data, VDATA, NF, a->nf); 1107 return ldff_trans(a->rd, a->rs1, data, fn, s); 1108} 1109 1110GEN_VEXT_TRANS(vle8ff_v, MO_8, r2nfvm, ldff_op, ld_us_check) 1111GEN_VEXT_TRANS(vle16ff_v, MO_16, r2nfvm, ldff_op, ld_us_check) 1112GEN_VEXT_TRANS(vle32ff_v, MO_32, r2nfvm, ldff_op, ld_us_check) 1113GEN_VEXT_TRANS(vle64ff_v, MO_64, r2nfvm, ldff_op, ld_us_check) 1114 1115/* 1116 * load and store whole register instructions 1117 */ 1118typedef void gen_helper_ldst_whole(TCGv_ptr, TCGv, TCGv_env, TCGv_i32); 1119 1120static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf, 1121 uint32_t width, gen_helper_ldst_whole *fn, 1122 DisasContext *s, bool is_store) 1123{ 1124 uint32_t evl = (s->cfg_ptr->vlen / 8) * nf / width; 1125 TCGLabel *over = gen_new_label(); 1126 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, evl, over); 1127 1128 TCGv_ptr dest; 1129 TCGv base; 1130 TCGv_i32 desc; 1131 1132 uint32_t data = FIELD_DP32(0, VDATA, NF, nf); 1133 dest = tcg_temp_new_ptr(); 1134 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1135 s->cfg_ptr->vlen / 8, data)); 1136 1137 base = get_gpr(s, rs1, EXT_NONE); 1138 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1139 1140 fn(dest, base, cpu_env, desc); 1141 1142 tcg_temp_free_ptr(dest); 1143 1144 if (!is_store) { 1145 mark_vs_dirty(s); 1146 } 1147 gen_set_label(over); 1148 1149 return true; 1150} 1151 1152/* 1153 * load and store whole register instructions ignore vtype and vl setting. 1154 * Thus, we don't need to check vill bit. (Section 7.9) 1155 */ 1156#define GEN_LDST_WHOLE_TRANS(NAME, ARG_NF, WIDTH, IS_STORE) \ 1157static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 1158{ \ 1159 if (require_rvv(s) && \ 1160 QEMU_IS_ALIGNED(a->rd, ARG_NF)) { \ 1161 return ldst_whole_trans(a->rd, a->rs1, ARG_NF, WIDTH, \ 1162 gen_helper_##NAME, s, IS_STORE); \ 1163 } \ 1164 return false; \ 1165} 1166 1167GEN_LDST_WHOLE_TRANS(vl1re8_v, 1, 1, false) 1168GEN_LDST_WHOLE_TRANS(vl1re16_v, 1, 2, false) 1169GEN_LDST_WHOLE_TRANS(vl1re32_v, 1, 4, false) 1170GEN_LDST_WHOLE_TRANS(vl1re64_v, 1, 8, false) 1171GEN_LDST_WHOLE_TRANS(vl2re8_v, 2, 1, false) 1172GEN_LDST_WHOLE_TRANS(vl2re16_v, 2, 2, false) 1173GEN_LDST_WHOLE_TRANS(vl2re32_v, 2, 4, false) 1174GEN_LDST_WHOLE_TRANS(vl2re64_v, 2, 8, false) 1175GEN_LDST_WHOLE_TRANS(vl4re8_v, 4, 1, false) 1176GEN_LDST_WHOLE_TRANS(vl4re16_v, 4, 2, false) 1177GEN_LDST_WHOLE_TRANS(vl4re32_v, 4, 4, false) 1178GEN_LDST_WHOLE_TRANS(vl4re64_v, 4, 8, false) 1179GEN_LDST_WHOLE_TRANS(vl8re8_v, 8, 1, false) 1180GEN_LDST_WHOLE_TRANS(vl8re16_v, 8, 2, false) 1181GEN_LDST_WHOLE_TRANS(vl8re32_v, 8, 4, false) 1182GEN_LDST_WHOLE_TRANS(vl8re64_v, 8, 8, false) 1183 1184/* 1185 * The vector whole register store instructions are encoded similar to 1186 * unmasked unit-stride store of elements with EEW=8. 1187 */ 1188GEN_LDST_WHOLE_TRANS(vs1r_v, 1, 1, true) 1189GEN_LDST_WHOLE_TRANS(vs2r_v, 2, 1, true) 1190GEN_LDST_WHOLE_TRANS(vs4r_v, 4, 1, true) 1191GEN_LDST_WHOLE_TRANS(vs8r_v, 8, 1, true) 1192 1193/* 1194 *** Vector Integer Arithmetic Instructions 1195 */ 1196 1197/* 1198 * MAXSZ returns the maximum vector size can be operated in bytes, 1199 * which is used in GVEC IR when vl_eq_vlmax flag is set to true 1200 * to accerlate vector operation. 1201 */ 1202static inline uint32_t MAXSZ(DisasContext *s) 1203{ 1204 int scale = s->lmul - 3; 1205 return s->cfg_ptr->vlen >> -scale; 1206} 1207 1208static bool opivv_check(DisasContext *s, arg_rmrr *a) 1209{ 1210 return require_rvv(s) && 1211 vext_check_isa_ill(s) && 1212 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1213} 1214 1215typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, 1216 uint32_t, uint32_t, uint32_t); 1217 1218static inline bool 1219do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn, 1220 gen_helper_gvec_4_ptr *fn) 1221{ 1222 TCGLabel *over = gen_new_label(); 1223 if (!opivv_check(s, a)) { 1224 return false; 1225 } 1226 1227 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1228 1229 if (a->vm && s->vl_eq_vlmax) { 1230 gvec_fn(s->sew, vreg_ofs(s, a->rd), 1231 vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), 1232 MAXSZ(s), MAXSZ(s)); 1233 } else { 1234 uint32_t data = 0; 1235 1236 data = FIELD_DP32(data, VDATA, VM, a->vm); 1237 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1238 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1239 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 1240 cpu_env, s->cfg_ptr->vlen / 8, 1241 s->cfg_ptr->vlen / 8, data, fn); 1242 } 1243 mark_vs_dirty(s); 1244 gen_set_label(over); 1245 return true; 1246} 1247 1248/* OPIVV with GVEC IR */ 1249#define GEN_OPIVV_GVEC_TRANS(NAME, SUF) \ 1250static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1251{ \ 1252 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1253 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1254 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1255 }; \ 1256 return do_opivv_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1257} 1258 1259GEN_OPIVV_GVEC_TRANS(vadd_vv, add) 1260GEN_OPIVV_GVEC_TRANS(vsub_vv, sub) 1261 1262typedef void gen_helper_opivx(TCGv_ptr, TCGv_ptr, TCGv, TCGv_ptr, 1263 TCGv_env, TCGv_i32); 1264 1265static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm, 1266 gen_helper_opivx *fn, DisasContext *s) 1267{ 1268 TCGv_ptr dest, src2, mask; 1269 TCGv src1; 1270 TCGv_i32 desc; 1271 uint32_t data = 0; 1272 1273 TCGLabel *over = gen_new_label(); 1274 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1275 1276 dest = tcg_temp_new_ptr(); 1277 mask = tcg_temp_new_ptr(); 1278 src2 = tcg_temp_new_ptr(); 1279 src1 = get_gpr(s, rs1, EXT_SIGN); 1280 1281 data = FIELD_DP32(data, VDATA, VM, vm); 1282 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1283 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1284 s->cfg_ptr->vlen / 8, data)); 1285 1286 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1287 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1288 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1289 1290 fn(dest, mask, src1, src2, cpu_env, desc); 1291 1292 tcg_temp_free_ptr(dest); 1293 tcg_temp_free_ptr(mask); 1294 tcg_temp_free_ptr(src2); 1295 mark_vs_dirty(s); 1296 gen_set_label(over); 1297 return true; 1298} 1299 1300static bool opivx_check(DisasContext *s, arg_rmrr *a) 1301{ 1302 return require_rvv(s) && 1303 vext_check_isa_ill(s) && 1304 vext_check_ss(s, a->rd, a->rs2, a->vm); 1305} 1306 1307typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t, TCGv_i64, 1308 uint32_t, uint32_t); 1309 1310static inline bool 1311do_opivx_gvec(DisasContext *s, arg_rmrr *a, GVecGen2sFn *gvec_fn, 1312 gen_helper_opivx *fn) 1313{ 1314 if (!opivx_check(s, a)) { 1315 return false; 1316 } 1317 1318 if (a->vm && s->vl_eq_vlmax) { 1319 TCGv_i64 src1 = tcg_temp_new_i64(); 1320 1321 tcg_gen_ext_tl_i64(src1, get_gpr(s, a->rs1, EXT_SIGN)); 1322 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1323 src1, MAXSZ(s), MAXSZ(s)); 1324 1325 tcg_temp_free_i64(src1); 1326 mark_vs_dirty(s); 1327 return true; 1328 } 1329 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1330} 1331 1332/* OPIVX with GVEC IR */ 1333#define GEN_OPIVX_GVEC_TRANS(NAME, SUF) \ 1334static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1335{ \ 1336 static gen_helper_opivx * const fns[4] = { \ 1337 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1338 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1339 }; \ 1340 return do_opivx_gvec(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1341} 1342 1343GEN_OPIVX_GVEC_TRANS(vadd_vx, adds) 1344GEN_OPIVX_GVEC_TRANS(vsub_vx, subs) 1345 1346static void gen_vec_rsub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1347{ 1348 tcg_gen_vec_sub8_i64(d, b, a); 1349} 1350 1351static void gen_vec_rsub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1352{ 1353 tcg_gen_vec_sub16_i64(d, b, a); 1354} 1355 1356static void gen_rsub_i32(TCGv_i32 ret, TCGv_i32 arg1, TCGv_i32 arg2) 1357{ 1358 tcg_gen_sub_i32(ret, arg2, arg1); 1359} 1360 1361static void gen_rsub_i64(TCGv_i64 ret, TCGv_i64 arg1, TCGv_i64 arg2) 1362{ 1363 tcg_gen_sub_i64(ret, arg2, arg1); 1364} 1365 1366static void gen_rsub_vec(unsigned vece, TCGv_vec r, TCGv_vec a, TCGv_vec b) 1367{ 1368 tcg_gen_sub_vec(vece, r, b, a); 1369} 1370 1371static void tcg_gen_gvec_rsubs(unsigned vece, uint32_t dofs, uint32_t aofs, 1372 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1373{ 1374 static const TCGOpcode vecop_list[] = { INDEX_op_sub_vec, 0 }; 1375 static const GVecGen2s rsub_op[4] = { 1376 { .fni8 = gen_vec_rsub8_i64, 1377 .fniv = gen_rsub_vec, 1378 .fno = gen_helper_vec_rsubs8, 1379 .opt_opc = vecop_list, 1380 .vece = MO_8 }, 1381 { .fni8 = gen_vec_rsub16_i64, 1382 .fniv = gen_rsub_vec, 1383 .fno = gen_helper_vec_rsubs16, 1384 .opt_opc = vecop_list, 1385 .vece = MO_16 }, 1386 { .fni4 = gen_rsub_i32, 1387 .fniv = gen_rsub_vec, 1388 .fno = gen_helper_vec_rsubs32, 1389 .opt_opc = vecop_list, 1390 .vece = MO_32 }, 1391 { .fni8 = gen_rsub_i64, 1392 .fniv = gen_rsub_vec, 1393 .fno = gen_helper_vec_rsubs64, 1394 .opt_opc = vecop_list, 1395 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1396 .vece = MO_64 }, 1397 }; 1398 1399 tcg_debug_assert(vece <= MO_64); 1400 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &rsub_op[vece]); 1401} 1402 1403GEN_OPIVX_GVEC_TRANS(vrsub_vx, rsubs) 1404 1405typedef enum { 1406 IMM_ZX, /* Zero-extended */ 1407 IMM_SX, /* Sign-extended */ 1408 IMM_TRUNC_SEW, /* Truncate to log(SEW) bits */ 1409 IMM_TRUNC_2SEW, /* Truncate to log(2*SEW) bits */ 1410} imm_mode_t; 1411 1412static int64_t extract_imm(DisasContext *s, uint32_t imm, imm_mode_t imm_mode) 1413{ 1414 switch (imm_mode) { 1415 case IMM_ZX: 1416 return extract64(imm, 0, 5); 1417 case IMM_SX: 1418 return sextract64(imm, 0, 5); 1419 case IMM_TRUNC_SEW: 1420 return extract64(imm, 0, s->sew + 3); 1421 case IMM_TRUNC_2SEW: 1422 return extract64(imm, 0, s->sew + 4); 1423 default: 1424 g_assert_not_reached(); 1425 } 1426} 1427 1428static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm, 1429 gen_helper_opivx *fn, DisasContext *s, 1430 imm_mode_t imm_mode) 1431{ 1432 TCGv_ptr dest, src2, mask; 1433 TCGv src1; 1434 TCGv_i32 desc; 1435 uint32_t data = 0; 1436 1437 TCGLabel *over = gen_new_label(); 1438 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1439 1440 dest = tcg_temp_new_ptr(); 1441 mask = tcg_temp_new_ptr(); 1442 src2 = tcg_temp_new_ptr(); 1443 src1 = tcg_constant_tl(extract_imm(s, imm, imm_mode)); 1444 1445 data = FIELD_DP32(data, VDATA, VM, vm); 1446 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1447 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 1448 s->cfg_ptr->vlen / 8, data)); 1449 1450 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 1451 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 1452 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 1453 1454 fn(dest, mask, src1, src2, cpu_env, desc); 1455 1456 tcg_temp_free_ptr(dest); 1457 tcg_temp_free_ptr(mask); 1458 tcg_temp_free_ptr(src2); 1459 mark_vs_dirty(s); 1460 gen_set_label(over); 1461 return true; 1462} 1463 1464typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, 1465 uint32_t, uint32_t); 1466 1467static inline bool 1468do_opivi_gvec(DisasContext *s, arg_rmrr *a, GVecGen2iFn *gvec_fn, 1469 gen_helper_opivx *fn, imm_mode_t imm_mode) 1470{ 1471 if (!opivx_check(s, a)) { 1472 return false; 1473 } 1474 1475 if (a->vm && s->vl_eq_vlmax) { 1476 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1477 extract_imm(s, a->rs1, imm_mode), MAXSZ(s), MAXSZ(s)); 1478 mark_vs_dirty(s); 1479 return true; 1480 } 1481 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s, imm_mode); 1482} 1483 1484/* OPIVI with GVEC IR */ 1485#define GEN_OPIVI_GVEC_TRANS(NAME, IMM_MODE, OPIVX, SUF) \ 1486static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1487{ \ 1488 static gen_helper_opivx * const fns[4] = { \ 1489 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1490 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1491 }; \ 1492 return do_opivi_gvec(s, a, tcg_gen_gvec_##SUF, \ 1493 fns[s->sew], IMM_MODE); \ 1494} 1495 1496GEN_OPIVI_GVEC_TRANS(vadd_vi, IMM_SX, vadd_vx, addi) 1497 1498static void tcg_gen_gvec_rsubi(unsigned vece, uint32_t dofs, uint32_t aofs, 1499 int64_t c, uint32_t oprsz, uint32_t maxsz) 1500{ 1501 TCGv_i64 tmp = tcg_constant_i64(c); 1502 tcg_gen_gvec_rsubs(vece, dofs, aofs, tmp, oprsz, maxsz); 1503} 1504 1505GEN_OPIVI_GVEC_TRANS(vrsub_vi, IMM_SX, vrsub_vx, rsubi) 1506 1507/* Vector Widening Integer Add/Subtract */ 1508 1509/* OPIVV with WIDEN */ 1510static bool opivv_widen_check(DisasContext *s, arg_rmrr *a) 1511{ 1512 return require_rvv(s) && 1513 vext_check_isa_ill(s) && 1514 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm); 1515} 1516 1517static bool do_opivv_widen(DisasContext *s, arg_rmrr *a, 1518 gen_helper_gvec_4_ptr *fn, 1519 bool (*checkfn)(DisasContext *, arg_rmrr *)) 1520{ 1521 if (checkfn(s, a)) { 1522 uint32_t data = 0; 1523 TCGLabel *over = gen_new_label(); 1524 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1525 1526 data = FIELD_DP32(data, VDATA, VM, a->vm); 1527 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1528 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1529 vreg_ofs(s, a->rs1), 1530 vreg_ofs(s, a->rs2), 1531 cpu_env, s->cfg_ptr->vlen / 8, 1532 s->cfg_ptr->vlen / 8, 1533 data, fn); 1534 mark_vs_dirty(s); 1535 gen_set_label(over); 1536 return true; 1537 } 1538 return false; 1539} 1540 1541#define GEN_OPIVV_WIDEN_TRANS(NAME, CHECK) \ 1542static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1543{ \ 1544 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1545 gen_helper_##NAME##_b, \ 1546 gen_helper_##NAME##_h, \ 1547 gen_helper_##NAME##_w \ 1548 }; \ 1549 return do_opivv_widen(s, a, fns[s->sew], CHECK); \ 1550} 1551 1552GEN_OPIVV_WIDEN_TRANS(vwaddu_vv, opivv_widen_check) 1553GEN_OPIVV_WIDEN_TRANS(vwadd_vv, opivv_widen_check) 1554GEN_OPIVV_WIDEN_TRANS(vwsubu_vv, opivv_widen_check) 1555GEN_OPIVV_WIDEN_TRANS(vwsub_vv, opivv_widen_check) 1556 1557/* OPIVX with WIDEN */ 1558static bool opivx_widen_check(DisasContext *s, arg_rmrr *a) 1559{ 1560 return require_rvv(s) && 1561 vext_check_isa_ill(s) && 1562 vext_check_ds(s, a->rd, a->rs2, a->vm); 1563} 1564 1565static bool do_opivx_widen(DisasContext *s, arg_rmrr *a, 1566 gen_helper_opivx *fn) 1567{ 1568 if (opivx_widen_check(s, a)) { 1569 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1570 } 1571 return false; 1572} 1573 1574#define GEN_OPIVX_WIDEN_TRANS(NAME) \ 1575static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1576{ \ 1577 static gen_helper_opivx * const fns[3] = { \ 1578 gen_helper_##NAME##_b, \ 1579 gen_helper_##NAME##_h, \ 1580 gen_helper_##NAME##_w \ 1581 }; \ 1582 return do_opivx_widen(s, a, fns[s->sew]); \ 1583} 1584 1585GEN_OPIVX_WIDEN_TRANS(vwaddu_vx) 1586GEN_OPIVX_WIDEN_TRANS(vwadd_vx) 1587GEN_OPIVX_WIDEN_TRANS(vwsubu_vx) 1588GEN_OPIVX_WIDEN_TRANS(vwsub_vx) 1589 1590/* WIDEN OPIVV with WIDEN */ 1591static bool opiwv_widen_check(DisasContext *s, arg_rmrr *a) 1592{ 1593 return require_rvv(s) && 1594 vext_check_isa_ill(s) && 1595 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm); 1596} 1597 1598static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a, 1599 gen_helper_gvec_4_ptr *fn) 1600{ 1601 if (opiwv_widen_check(s, a)) { 1602 uint32_t data = 0; 1603 TCGLabel *over = gen_new_label(); 1604 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 1605 1606 data = FIELD_DP32(data, VDATA, VM, a->vm); 1607 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 1608 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 1609 vreg_ofs(s, a->rs1), 1610 vreg_ofs(s, a->rs2), 1611 cpu_env, s->cfg_ptr->vlen / 8, 1612 s->cfg_ptr->vlen / 8, data, fn); 1613 mark_vs_dirty(s); 1614 gen_set_label(over); 1615 return true; 1616 } 1617 return false; 1618} 1619 1620#define GEN_OPIWV_WIDEN_TRANS(NAME) \ 1621static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1622{ \ 1623 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1624 gen_helper_##NAME##_b, \ 1625 gen_helper_##NAME##_h, \ 1626 gen_helper_##NAME##_w \ 1627 }; \ 1628 return do_opiwv_widen(s, a, fns[s->sew]); \ 1629} 1630 1631GEN_OPIWV_WIDEN_TRANS(vwaddu_wv) 1632GEN_OPIWV_WIDEN_TRANS(vwadd_wv) 1633GEN_OPIWV_WIDEN_TRANS(vwsubu_wv) 1634GEN_OPIWV_WIDEN_TRANS(vwsub_wv) 1635 1636/* WIDEN OPIVX with WIDEN */ 1637static bool opiwx_widen_check(DisasContext *s, arg_rmrr *a) 1638{ 1639 return require_rvv(s) && 1640 vext_check_isa_ill(s) && 1641 vext_check_dd(s, a->rd, a->rs2, a->vm); 1642} 1643 1644static bool do_opiwx_widen(DisasContext *s, arg_rmrr *a, 1645 gen_helper_opivx *fn) 1646{ 1647 if (opiwx_widen_check(s, a)) { 1648 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1649 } 1650 return false; 1651} 1652 1653#define GEN_OPIWX_WIDEN_TRANS(NAME) \ 1654static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1655{ \ 1656 static gen_helper_opivx * const fns[3] = { \ 1657 gen_helper_##NAME##_b, \ 1658 gen_helper_##NAME##_h, \ 1659 gen_helper_##NAME##_w \ 1660 }; \ 1661 return do_opiwx_widen(s, a, fns[s->sew]); \ 1662} 1663 1664GEN_OPIWX_WIDEN_TRANS(vwaddu_wx) 1665GEN_OPIWX_WIDEN_TRANS(vwadd_wx) 1666GEN_OPIWX_WIDEN_TRANS(vwsubu_wx) 1667GEN_OPIWX_WIDEN_TRANS(vwsub_wx) 1668 1669/* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */ 1670/* OPIVV without GVEC IR */ 1671#define GEN_OPIVV_TRANS(NAME, CHECK) \ 1672static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1673{ \ 1674 if (CHECK(s, a)) { \ 1675 uint32_t data = 0; \ 1676 static gen_helper_gvec_4_ptr * const fns[4] = { \ 1677 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1678 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1679 }; \ 1680 TCGLabel *over = gen_new_label(); \ 1681 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1682 \ 1683 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1684 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1685 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1686 vreg_ofs(s, a->rs1), \ 1687 vreg_ofs(s, a->rs2), cpu_env, \ 1688 s->cfg_ptr->vlen / 8, \ 1689 s->cfg_ptr->vlen / 8, data, \ 1690 fns[s->sew]); \ 1691 mark_vs_dirty(s); \ 1692 gen_set_label(over); \ 1693 return true; \ 1694 } \ 1695 return false; \ 1696} 1697 1698/* 1699 * For vadc and vsbc, an illegal instruction exception is raised if the 1700 * destination vector register is v0 and LMUL > 1. (Section 11.4) 1701 */ 1702static bool opivv_vadc_check(DisasContext *s, arg_rmrr *a) 1703{ 1704 return require_rvv(s) && 1705 vext_check_isa_ill(s) && 1706 (a->rd != 0) && 1707 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm); 1708} 1709 1710GEN_OPIVV_TRANS(vadc_vvm, opivv_vadc_check) 1711GEN_OPIVV_TRANS(vsbc_vvm, opivv_vadc_check) 1712 1713/* 1714 * For vmadc and vmsbc, an illegal instruction exception is raised if the 1715 * destination vector register overlaps a source vector register group. 1716 */ 1717static bool opivv_vmadc_check(DisasContext *s, arg_rmrr *a) 1718{ 1719 return require_rvv(s) && 1720 vext_check_isa_ill(s) && 1721 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1722} 1723 1724GEN_OPIVV_TRANS(vmadc_vvm, opivv_vmadc_check) 1725GEN_OPIVV_TRANS(vmsbc_vvm, opivv_vmadc_check) 1726 1727static bool opivx_vadc_check(DisasContext *s, arg_rmrr *a) 1728{ 1729 return require_rvv(s) && 1730 vext_check_isa_ill(s) && 1731 (a->rd != 0) && 1732 vext_check_ss(s, a->rd, a->rs2, a->vm); 1733} 1734 1735/* OPIVX without GVEC IR */ 1736#define GEN_OPIVX_TRANS(NAME, CHECK) \ 1737static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1738{ \ 1739 if (CHECK(s, a)) { \ 1740 static gen_helper_opivx * const fns[4] = { \ 1741 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1742 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1743 }; \ 1744 \ 1745 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1746 } \ 1747 return false; \ 1748} 1749 1750GEN_OPIVX_TRANS(vadc_vxm, opivx_vadc_check) 1751GEN_OPIVX_TRANS(vsbc_vxm, opivx_vadc_check) 1752 1753static bool opivx_vmadc_check(DisasContext *s, arg_rmrr *a) 1754{ 1755 return require_rvv(s) && 1756 vext_check_isa_ill(s) && 1757 vext_check_ms(s, a->rd, a->rs2); 1758} 1759 1760GEN_OPIVX_TRANS(vmadc_vxm, opivx_vmadc_check) 1761GEN_OPIVX_TRANS(vmsbc_vxm, opivx_vmadc_check) 1762 1763/* OPIVI without GVEC IR */ 1764#define GEN_OPIVI_TRANS(NAME, IMM_MODE, OPIVX, CHECK) \ 1765static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1766{ \ 1767 if (CHECK(s, a)) { \ 1768 static gen_helper_opivx * const fns[4] = { \ 1769 gen_helper_##OPIVX##_b, gen_helper_##OPIVX##_h, \ 1770 gen_helper_##OPIVX##_w, gen_helper_##OPIVX##_d, \ 1771 }; \ 1772 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1773 fns[s->sew], s, IMM_MODE); \ 1774 } \ 1775 return false; \ 1776} 1777 1778GEN_OPIVI_TRANS(vadc_vim, IMM_SX, vadc_vxm, opivx_vadc_check) 1779GEN_OPIVI_TRANS(vmadc_vim, IMM_SX, vmadc_vxm, opivx_vmadc_check) 1780 1781/* Vector Bitwise Logical Instructions */ 1782GEN_OPIVV_GVEC_TRANS(vand_vv, and) 1783GEN_OPIVV_GVEC_TRANS(vor_vv, or) 1784GEN_OPIVV_GVEC_TRANS(vxor_vv, xor) 1785GEN_OPIVX_GVEC_TRANS(vand_vx, ands) 1786GEN_OPIVX_GVEC_TRANS(vor_vx, ors) 1787GEN_OPIVX_GVEC_TRANS(vxor_vx, xors) 1788GEN_OPIVI_GVEC_TRANS(vand_vi, IMM_SX, vand_vx, andi) 1789GEN_OPIVI_GVEC_TRANS(vor_vi, IMM_SX, vor_vx, ori) 1790GEN_OPIVI_GVEC_TRANS(vxor_vi, IMM_SX, vxor_vx, xori) 1791 1792/* Vector Single-Width Bit Shift Instructions */ 1793GEN_OPIVV_GVEC_TRANS(vsll_vv, shlv) 1794GEN_OPIVV_GVEC_TRANS(vsrl_vv, shrv) 1795GEN_OPIVV_GVEC_TRANS(vsra_vv, sarv) 1796 1797typedef void GVecGen2sFn32(unsigned, uint32_t, uint32_t, TCGv_i32, 1798 uint32_t, uint32_t); 1799 1800static inline bool 1801do_opivx_gvec_shift(DisasContext *s, arg_rmrr *a, GVecGen2sFn32 *gvec_fn, 1802 gen_helper_opivx *fn) 1803{ 1804 if (!opivx_check(s, a)) { 1805 return false; 1806 } 1807 1808 if (a->vm && s->vl_eq_vlmax) { 1809 TCGv_i32 src1 = tcg_temp_new_i32(); 1810 1811 tcg_gen_trunc_tl_i32(src1, get_gpr(s, a->rs1, EXT_NONE)); 1812 tcg_gen_extract_i32(src1, src1, 0, s->sew + 3); 1813 gvec_fn(s->sew, vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), 1814 src1, MAXSZ(s), MAXSZ(s)); 1815 1816 tcg_temp_free_i32(src1); 1817 mark_vs_dirty(s); 1818 return true; 1819 } 1820 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fn, s); 1821} 1822 1823#define GEN_OPIVX_GVEC_SHIFT_TRANS(NAME, SUF) \ 1824static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1825{ \ 1826 static gen_helper_opivx * const fns[4] = { \ 1827 gen_helper_##NAME##_b, gen_helper_##NAME##_h, \ 1828 gen_helper_##NAME##_w, gen_helper_##NAME##_d, \ 1829 }; \ 1830 \ 1831 return do_opivx_gvec_shift(s, a, tcg_gen_gvec_##SUF, fns[s->sew]); \ 1832} 1833 1834GEN_OPIVX_GVEC_SHIFT_TRANS(vsll_vx, shls) 1835GEN_OPIVX_GVEC_SHIFT_TRANS(vsrl_vx, shrs) 1836GEN_OPIVX_GVEC_SHIFT_TRANS(vsra_vx, sars) 1837 1838GEN_OPIVI_GVEC_TRANS(vsll_vi, IMM_TRUNC_SEW, vsll_vx, shli) 1839GEN_OPIVI_GVEC_TRANS(vsrl_vi, IMM_TRUNC_SEW, vsrl_vx, shri) 1840GEN_OPIVI_GVEC_TRANS(vsra_vi, IMM_TRUNC_SEW, vsra_vx, sari) 1841 1842/* Vector Narrowing Integer Right Shift Instructions */ 1843static bool opiwv_narrow_check(DisasContext *s, arg_rmrr *a) 1844{ 1845 return require_rvv(s) && 1846 vext_check_isa_ill(s) && 1847 vext_check_sds(s, a->rd, a->rs1, a->rs2, a->vm); 1848} 1849 1850/* OPIVV with NARROW */ 1851#define GEN_OPIWV_NARROW_TRANS(NAME) \ 1852static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1853{ \ 1854 if (opiwv_narrow_check(s, a)) { \ 1855 uint32_t data = 0; \ 1856 static gen_helper_gvec_4_ptr * const fns[3] = { \ 1857 gen_helper_##NAME##_b, \ 1858 gen_helper_##NAME##_h, \ 1859 gen_helper_##NAME##_w, \ 1860 }; \ 1861 TCGLabel *over = gen_new_label(); \ 1862 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 1863 \ 1864 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 1865 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 1866 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 1867 vreg_ofs(s, a->rs1), \ 1868 vreg_ofs(s, a->rs2), cpu_env, \ 1869 s->cfg_ptr->vlen / 8, \ 1870 s->cfg_ptr->vlen / 8, data, \ 1871 fns[s->sew]); \ 1872 mark_vs_dirty(s); \ 1873 gen_set_label(over); \ 1874 return true; \ 1875 } \ 1876 return false; \ 1877} 1878GEN_OPIWV_NARROW_TRANS(vnsra_wv) 1879GEN_OPIWV_NARROW_TRANS(vnsrl_wv) 1880 1881static bool opiwx_narrow_check(DisasContext *s, arg_rmrr *a) 1882{ 1883 return require_rvv(s) && 1884 vext_check_isa_ill(s) && 1885 vext_check_sd(s, a->rd, a->rs2, a->vm); 1886} 1887 1888/* OPIVX with NARROW */ 1889#define GEN_OPIWX_NARROW_TRANS(NAME) \ 1890static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1891{ \ 1892 if (opiwx_narrow_check(s, a)) { \ 1893 static gen_helper_opivx * const fns[3] = { \ 1894 gen_helper_##NAME##_b, \ 1895 gen_helper_##NAME##_h, \ 1896 gen_helper_##NAME##_w, \ 1897 }; \ 1898 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s);\ 1899 } \ 1900 return false; \ 1901} 1902 1903GEN_OPIWX_NARROW_TRANS(vnsra_wx) 1904GEN_OPIWX_NARROW_TRANS(vnsrl_wx) 1905 1906/* OPIWI with NARROW */ 1907#define GEN_OPIWI_NARROW_TRANS(NAME, IMM_MODE, OPIVX) \ 1908static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 1909{ \ 1910 if (opiwx_narrow_check(s, a)) { \ 1911 static gen_helper_opivx * const fns[3] = { \ 1912 gen_helper_##OPIVX##_b, \ 1913 gen_helper_##OPIVX##_h, \ 1914 gen_helper_##OPIVX##_w, \ 1915 }; \ 1916 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, \ 1917 fns[s->sew], s, IMM_MODE); \ 1918 } \ 1919 return false; \ 1920} 1921 1922GEN_OPIWI_NARROW_TRANS(vnsra_wi, IMM_ZX, vnsra_wx) 1923GEN_OPIWI_NARROW_TRANS(vnsrl_wi, IMM_ZX, vnsrl_wx) 1924 1925/* Vector Integer Comparison Instructions */ 1926/* 1927 * For all comparison instructions, an illegal instruction exception is raised 1928 * if the destination vector register overlaps a source vector register group 1929 * and LMUL > 1. 1930 */ 1931static bool opivv_cmp_check(DisasContext *s, arg_rmrr *a) 1932{ 1933 return require_rvv(s) && 1934 vext_check_isa_ill(s) && 1935 vext_check_mss(s, a->rd, a->rs1, a->rs2); 1936} 1937 1938GEN_OPIVV_TRANS(vmseq_vv, opivv_cmp_check) 1939GEN_OPIVV_TRANS(vmsne_vv, opivv_cmp_check) 1940GEN_OPIVV_TRANS(vmsltu_vv, opivv_cmp_check) 1941GEN_OPIVV_TRANS(vmslt_vv, opivv_cmp_check) 1942GEN_OPIVV_TRANS(vmsleu_vv, opivv_cmp_check) 1943GEN_OPIVV_TRANS(vmsle_vv, opivv_cmp_check) 1944 1945static bool opivx_cmp_check(DisasContext *s, arg_rmrr *a) 1946{ 1947 return require_rvv(s) && 1948 vext_check_isa_ill(s) && 1949 vext_check_ms(s, a->rd, a->rs2); 1950} 1951 1952GEN_OPIVX_TRANS(vmseq_vx, opivx_cmp_check) 1953GEN_OPIVX_TRANS(vmsne_vx, opivx_cmp_check) 1954GEN_OPIVX_TRANS(vmsltu_vx, opivx_cmp_check) 1955GEN_OPIVX_TRANS(vmslt_vx, opivx_cmp_check) 1956GEN_OPIVX_TRANS(vmsleu_vx, opivx_cmp_check) 1957GEN_OPIVX_TRANS(vmsle_vx, opivx_cmp_check) 1958GEN_OPIVX_TRANS(vmsgtu_vx, opivx_cmp_check) 1959GEN_OPIVX_TRANS(vmsgt_vx, opivx_cmp_check) 1960 1961GEN_OPIVI_TRANS(vmseq_vi, IMM_SX, vmseq_vx, opivx_cmp_check) 1962GEN_OPIVI_TRANS(vmsne_vi, IMM_SX, vmsne_vx, opivx_cmp_check) 1963GEN_OPIVI_TRANS(vmsleu_vi, IMM_SX, vmsleu_vx, opivx_cmp_check) 1964GEN_OPIVI_TRANS(vmsle_vi, IMM_SX, vmsle_vx, opivx_cmp_check) 1965GEN_OPIVI_TRANS(vmsgtu_vi, IMM_SX, vmsgtu_vx, opivx_cmp_check) 1966GEN_OPIVI_TRANS(vmsgt_vi, IMM_SX, vmsgt_vx, opivx_cmp_check) 1967 1968/* Vector Integer Min/Max Instructions */ 1969GEN_OPIVV_GVEC_TRANS(vminu_vv, umin) 1970GEN_OPIVV_GVEC_TRANS(vmin_vv, smin) 1971GEN_OPIVV_GVEC_TRANS(vmaxu_vv, umax) 1972GEN_OPIVV_GVEC_TRANS(vmax_vv, smax) 1973GEN_OPIVX_TRANS(vminu_vx, opivx_check) 1974GEN_OPIVX_TRANS(vmin_vx, opivx_check) 1975GEN_OPIVX_TRANS(vmaxu_vx, opivx_check) 1976GEN_OPIVX_TRANS(vmax_vx, opivx_check) 1977 1978/* Vector Single-Width Integer Multiply Instructions */ 1979 1980static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a) 1981{ 1982 /* 1983 * All Zve* extensions support all vector integer instructions, 1984 * except that the vmulh integer multiply variants 1985 * that return the high word of the product 1986 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 1987 * are not included for EEW=64 in Zve64*. (Section 18.2) 1988 */ 1989 return opivv_check(s, a) && 1990 (!has_ext(s, RVV) && 1991 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 1992} 1993 1994static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) 1995{ 1996 /* 1997 * All Zve* extensions support all vector integer instructions, 1998 * except that the vmulh integer multiply variants 1999 * that return the high word of the product 2000 * (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) 2001 * are not included for EEW=64 in Zve64*. (Section 18.2) 2002 */ 2003 return opivx_check(s, a) && 2004 (!has_ext(s, RVV) && 2005 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2006} 2007 2008GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) 2009GEN_OPIVV_TRANS(vmulh_vv, vmulh_vv_check) 2010GEN_OPIVV_TRANS(vmulhu_vv, vmulh_vv_check) 2011GEN_OPIVV_TRANS(vmulhsu_vv, vmulh_vv_check) 2012GEN_OPIVX_GVEC_TRANS(vmul_vx, muls) 2013GEN_OPIVX_TRANS(vmulh_vx, vmulh_vx_check) 2014GEN_OPIVX_TRANS(vmulhu_vx, vmulh_vx_check) 2015GEN_OPIVX_TRANS(vmulhsu_vx, vmulh_vx_check) 2016 2017/* Vector Integer Divide Instructions */ 2018GEN_OPIVV_TRANS(vdivu_vv, opivv_check) 2019GEN_OPIVV_TRANS(vdiv_vv, opivv_check) 2020GEN_OPIVV_TRANS(vremu_vv, opivv_check) 2021GEN_OPIVV_TRANS(vrem_vv, opivv_check) 2022GEN_OPIVX_TRANS(vdivu_vx, opivx_check) 2023GEN_OPIVX_TRANS(vdiv_vx, opivx_check) 2024GEN_OPIVX_TRANS(vremu_vx, opivx_check) 2025GEN_OPIVX_TRANS(vrem_vx, opivx_check) 2026 2027/* Vector Widening Integer Multiply Instructions */ 2028GEN_OPIVV_WIDEN_TRANS(vwmul_vv, opivv_widen_check) 2029GEN_OPIVV_WIDEN_TRANS(vwmulu_vv, opivv_widen_check) 2030GEN_OPIVV_WIDEN_TRANS(vwmulsu_vv, opivv_widen_check) 2031GEN_OPIVX_WIDEN_TRANS(vwmul_vx) 2032GEN_OPIVX_WIDEN_TRANS(vwmulu_vx) 2033GEN_OPIVX_WIDEN_TRANS(vwmulsu_vx) 2034 2035/* Vector Single-Width Integer Multiply-Add Instructions */ 2036GEN_OPIVV_TRANS(vmacc_vv, opivv_check) 2037GEN_OPIVV_TRANS(vnmsac_vv, opivv_check) 2038GEN_OPIVV_TRANS(vmadd_vv, opivv_check) 2039GEN_OPIVV_TRANS(vnmsub_vv, opivv_check) 2040GEN_OPIVX_TRANS(vmacc_vx, opivx_check) 2041GEN_OPIVX_TRANS(vnmsac_vx, opivx_check) 2042GEN_OPIVX_TRANS(vmadd_vx, opivx_check) 2043GEN_OPIVX_TRANS(vnmsub_vx, opivx_check) 2044 2045/* Vector Widening Integer Multiply-Add Instructions */ 2046GEN_OPIVV_WIDEN_TRANS(vwmaccu_vv, opivv_widen_check) 2047GEN_OPIVV_WIDEN_TRANS(vwmacc_vv, opivv_widen_check) 2048GEN_OPIVV_WIDEN_TRANS(vwmaccsu_vv, opivv_widen_check) 2049GEN_OPIVX_WIDEN_TRANS(vwmaccu_vx) 2050GEN_OPIVX_WIDEN_TRANS(vwmacc_vx) 2051GEN_OPIVX_WIDEN_TRANS(vwmaccsu_vx) 2052GEN_OPIVX_WIDEN_TRANS(vwmaccus_vx) 2053 2054/* Vector Integer Merge and Move Instructions */ 2055static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a) 2056{ 2057 if (require_rvv(s) && 2058 vext_check_isa_ill(s) && 2059 /* vmv.v.v has rs2 = 0 and vm = 1 */ 2060 vext_check_sss(s, a->rd, a->rs1, 0, 1)) { 2061 if (s->vl_eq_vlmax) { 2062 tcg_gen_gvec_mov(s->sew, vreg_ofs(s, a->rd), 2063 vreg_ofs(s, a->rs1), 2064 MAXSZ(s), MAXSZ(s)); 2065 } else { 2066 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2067 static gen_helper_gvec_2_ptr * const fns[4] = { 2068 gen_helper_vmv_v_v_b, gen_helper_vmv_v_v_h, 2069 gen_helper_vmv_v_v_w, gen_helper_vmv_v_v_d, 2070 }; 2071 TCGLabel *over = gen_new_label(); 2072 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2073 2074 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), 2075 cpu_env, s->cfg_ptr->vlen / 8, 2076 s->cfg_ptr->vlen / 8, data, 2077 fns[s->sew]); 2078 gen_set_label(over); 2079 } 2080 mark_vs_dirty(s); 2081 return true; 2082 } 2083 return false; 2084} 2085 2086typedef void gen_helper_vmv_vx(TCGv_ptr, TCGv_i64, TCGv_env, TCGv_i32); 2087static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a) 2088{ 2089 if (require_rvv(s) && 2090 vext_check_isa_ill(s) && 2091 /* vmv.v.x has rs2 = 0 and vm = 1 */ 2092 vext_check_ss(s, a->rd, 0, 1)) { 2093 TCGv s1; 2094 TCGLabel *over = gen_new_label(); 2095 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2096 2097 s1 = get_gpr(s, a->rs1, EXT_SIGN); 2098 2099 if (s->vl_eq_vlmax) { 2100 tcg_gen_gvec_dup_tl(s->sew, vreg_ofs(s, a->rd), 2101 MAXSZ(s), MAXSZ(s), s1); 2102 } else { 2103 TCGv_i32 desc; 2104 TCGv_i64 s1_i64 = tcg_temp_new_i64(); 2105 TCGv_ptr dest = tcg_temp_new_ptr(); 2106 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2107 static gen_helper_vmv_vx * const fns[4] = { 2108 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2109 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2110 }; 2111 2112 tcg_gen_ext_tl_i64(s1_i64, s1); 2113 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2114 s->cfg_ptr->vlen / 8, data)); 2115 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2116 fns[s->sew](dest, s1_i64, cpu_env, desc); 2117 2118 tcg_temp_free_ptr(dest); 2119 tcg_temp_free_i64(s1_i64); 2120 } 2121 2122 mark_vs_dirty(s); 2123 gen_set_label(over); 2124 return true; 2125 } 2126 return false; 2127} 2128 2129static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a) 2130{ 2131 if (require_rvv(s) && 2132 vext_check_isa_ill(s) && 2133 /* vmv.v.i has rs2 = 0 and vm = 1 */ 2134 vext_check_ss(s, a->rd, 0, 1)) { 2135 int64_t simm = sextract64(a->rs1, 0, 5); 2136 if (s->vl_eq_vlmax) { 2137 tcg_gen_gvec_dup_imm(s->sew, vreg_ofs(s, a->rd), 2138 MAXSZ(s), MAXSZ(s), simm); 2139 mark_vs_dirty(s); 2140 } else { 2141 TCGv_i32 desc; 2142 TCGv_i64 s1; 2143 TCGv_ptr dest; 2144 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2145 static gen_helper_vmv_vx * const fns[4] = { 2146 gen_helper_vmv_v_x_b, gen_helper_vmv_v_x_h, 2147 gen_helper_vmv_v_x_w, gen_helper_vmv_v_x_d, 2148 }; 2149 TCGLabel *over = gen_new_label(); 2150 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2151 2152 s1 = tcg_constant_i64(simm); 2153 dest = tcg_temp_new_ptr(); 2154 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2155 s->cfg_ptr->vlen / 8, data)); 2156 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2157 fns[s->sew](dest, s1, cpu_env, desc); 2158 2159 tcg_temp_free_ptr(dest); 2160 mark_vs_dirty(s); 2161 gen_set_label(over); 2162 } 2163 return true; 2164 } 2165 return false; 2166} 2167 2168GEN_OPIVV_TRANS(vmerge_vvm, opivv_vadc_check) 2169GEN_OPIVX_TRANS(vmerge_vxm, opivx_vadc_check) 2170GEN_OPIVI_TRANS(vmerge_vim, IMM_SX, vmerge_vxm, opivx_vadc_check) 2171 2172/* 2173 *** Vector Fixed-Point Arithmetic Instructions 2174 */ 2175 2176/* Vector Single-Width Saturating Add and Subtract */ 2177GEN_OPIVV_TRANS(vsaddu_vv, opivv_check) 2178GEN_OPIVV_TRANS(vsadd_vv, opivv_check) 2179GEN_OPIVV_TRANS(vssubu_vv, opivv_check) 2180GEN_OPIVV_TRANS(vssub_vv, opivv_check) 2181GEN_OPIVX_TRANS(vsaddu_vx, opivx_check) 2182GEN_OPIVX_TRANS(vsadd_vx, opivx_check) 2183GEN_OPIVX_TRANS(vssubu_vx, opivx_check) 2184GEN_OPIVX_TRANS(vssub_vx, opivx_check) 2185GEN_OPIVI_TRANS(vsaddu_vi, IMM_SX, vsaddu_vx, opivx_check) 2186GEN_OPIVI_TRANS(vsadd_vi, IMM_SX, vsadd_vx, opivx_check) 2187 2188/* Vector Single-Width Averaging Add and Subtract */ 2189GEN_OPIVV_TRANS(vaadd_vv, opivv_check) 2190GEN_OPIVV_TRANS(vaaddu_vv, opivv_check) 2191GEN_OPIVV_TRANS(vasub_vv, opivv_check) 2192GEN_OPIVV_TRANS(vasubu_vv, opivv_check) 2193GEN_OPIVX_TRANS(vaadd_vx, opivx_check) 2194GEN_OPIVX_TRANS(vaaddu_vx, opivx_check) 2195GEN_OPIVX_TRANS(vasub_vx, opivx_check) 2196GEN_OPIVX_TRANS(vasubu_vx, opivx_check) 2197 2198/* Vector Single-Width Fractional Multiply with Rounding and Saturation */ 2199 2200static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a) 2201{ 2202 /* 2203 * All Zve* extensions support all vector fixed-point arithmetic 2204 * instructions, except that vsmul.vv and vsmul.vx are not supported 2205 * for EEW=64 in Zve64*. (Section 18.2) 2206 */ 2207 return opivv_check(s, a) && 2208 (!has_ext(s, RVV) && 2209 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2210} 2211 2212static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) 2213{ 2214 /* 2215 * All Zve* extensions support all vector fixed-point arithmetic 2216 * instructions, except that vsmul.vv and vsmul.vx are not supported 2217 * for EEW=64 in Zve64*. (Section 18.2) 2218 */ 2219 return opivx_check(s, a) && 2220 (!has_ext(s, RVV) && 2221 s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true); 2222} 2223 2224GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) 2225GEN_OPIVX_TRANS(vsmul_vx, vsmul_vx_check) 2226 2227/* Vector Single-Width Scaling Shift Instructions */ 2228GEN_OPIVV_TRANS(vssrl_vv, opivv_check) 2229GEN_OPIVV_TRANS(vssra_vv, opivv_check) 2230GEN_OPIVX_TRANS(vssrl_vx, opivx_check) 2231GEN_OPIVX_TRANS(vssra_vx, opivx_check) 2232GEN_OPIVI_TRANS(vssrl_vi, IMM_TRUNC_SEW, vssrl_vx, opivx_check) 2233GEN_OPIVI_TRANS(vssra_vi, IMM_TRUNC_SEW, vssra_vx, opivx_check) 2234 2235/* Vector Narrowing Fixed-Point Clip Instructions */ 2236GEN_OPIWV_NARROW_TRANS(vnclipu_wv) 2237GEN_OPIWV_NARROW_TRANS(vnclip_wv) 2238GEN_OPIWX_NARROW_TRANS(vnclipu_wx) 2239GEN_OPIWX_NARROW_TRANS(vnclip_wx) 2240GEN_OPIWI_NARROW_TRANS(vnclipu_wi, IMM_ZX, vnclipu_wx) 2241GEN_OPIWI_NARROW_TRANS(vnclip_wi, IMM_ZX, vnclip_wx) 2242 2243/* 2244 *** Vector Float Point Arithmetic Instructions 2245 */ 2246 2247/* 2248 * As RVF-only cpus always have values NaN-boxed to 64-bits, 2249 * RVF and RVD can be treated equally. 2250 * We don't have to deal with the cases of: SEW > FLEN. 2251 * 2252 * If SEW < FLEN, check whether input fp register is a valid 2253 * NaN-boxed value, in which case the least-significant SEW bits 2254 * of the f regsiter are used, else the canonical NaN value is used. 2255 */ 2256static void do_nanbox(DisasContext *s, TCGv_i64 out, TCGv_i64 in) 2257{ 2258 switch (s->sew) { 2259 case 1: 2260 gen_check_nanbox_h(out, in); 2261 break; 2262 case 2: 2263 gen_check_nanbox_s(out, in); 2264 break; 2265 case 3: 2266 tcg_gen_mov_i64(out, in); 2267 break; 2268 default: 2269 g_assert_not_reached(); 2270 } 2271} 2272 2273/* Vector Single-Width Floating-Point Add/Subtract Instructions */ 2274 2275/* 2276 * If the current SEW does not correspond to a supported IEEE floating-point 2277 * type, an illegal instruction exception is raised. 2278 */ 2279static bool opfvv_check(DisasContext *s, arg_rmrr *a) 2280{ 2281 return require_rvv(s) && 2282 require_rvf(s) && 2283 vext_check_isa_ill(s) && 2284 vext_check_sss(s, a->rd, a->rs1, a->rs2, a->vm) && 2285 require_zve32f(s) && 2286 require_zve64f(s); 2287} 2288 2289/* OPFVV without GVEC IR */ 2290#define GEN_OPFVV_TRANS(NAME, CHECK) \ 2291static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2292{ \ 2293 if (CHECK(s, a)) { \ 2294 uint32_t data = 0; \ 2295 static gen_helper_gvec_4_ptr * const fns[3] = { \ 2296 gen_helper_##NAME##_h, \ 2297 gen_helper_##NAME##_w, \ 2298 gen_helper_##NAME##_d, \ 2299 }; \ 2300 TCGLabel *over = gen_new_label(); \ 2301 gen_set_rm(s, RISCV_FRM_DYN); \ 2302 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2303 \ 2304 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2305 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2306 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2307 vreg_ofs(s, a->rs1), \ 2308 vreg_ofs(s, a->rs2), cpu_env, \ 2309 s->cfg_ptr->vlen / 8, \ 2310 s->cfg_ptr->vlen / 8, data, \ 2311 fns[s->sew - 1]); \ 2312 mark_vs_dirty(s); \ 2313 gen_set_label(over); \ 2314 return true; \ 2315 } \ 2316 return false; \ 2317} 2318GEN_OPFVV_TRANS(vfadd_vv, opfvv_check) 2319GEN_OPFVV_TRANS(vfsub_vv, opfvv_check) 2320 2321typedef void gen_helper_opfvf(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_ptr, 2322 TCGv_env, TCGv_i32); 2323 2324static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, 2325 uint32_t data, gen_helper_opfvf *fn, DisasContext *s) 2326{ 2327 TCGv_ptr dest, src2, mask; 2328 TCGv_i32 desc; 2329 TCGv_i64 t1; 2330 2331 TCGLabel *over = gen_new_label(); 2332 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2333 2334 dest = tcg_temp_new_ptr(); 2335 mask = tcg_temp_new_ptr(); 2336 src2 = tcg_temp_new_ptr(); 2337 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2338 s->cfg_ptr->vlen / 8, data)); 2339 2340 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); 2341 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); 2342 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 2343 2344 /* NaN-box f[rs1] */ 2345 t1 = tcg_temp_new_i64(); 2346 do_nanbox(s, t1, cpu_fpr[rs1]); 2347 2348 fn(dest, mask, t1, src2, cpu_env, desc); 2349 2350 tcg_temp_free_ptr(dest); 2351 tcg_temp_free_ptr(mask); 2352 tcg_temp_free_ptr(src2); 2353 tcg_temp_free_i64(t1); 2354 mark_vs_dirty(s); 2355 gen_set_label(over); 2356 return true; 2357} 2358 2359/* 2360 * If the current SEW does not correspond to a supported IEEE floating-point 2361 * type, an illegal instruction exception is raised 2362 */ 2363static bool opfvf_check(DisasContext *s, arg_rmrr *a) 2364{ 2365 return require_rvv(s) && 2366 require_rvf(s) && 2367 vext_check_isa_ill(s) && 2368 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2369 require_zve32f(s) && 2370 require_zve64f(s); 2371} 2372 2373/* OPFVF without GVEC IR */ 2374#define GEN_OPFVF_TRANS(NAME, CHECK) \ 2375static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2376{ \ 2377 if (CHECK(s, a)) { \ 2378 uint32_t data = 0; \ 2379 static gen_helper_opfvf *const fns[3] = { \ 2380 gen_helper_##NAME##_h, \ 2381 gen_helper_##NAME##_w, \ 2382 gen_helper_##NAME##_d, \ 2383 }; \ 2384 gen_set_rm(s, RISCV_FRM_DYN); \ 2385 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2386 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2387 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2388 fns[s->sew - 1], s); \ 2389 } \ 2390 return false; \ 2391} 2392 2393GEN_OPFVF_TRANS(vfadd_vf, opfvf_check) 2394GEN_OPFVF_TRANS(vfsub_vf, opfvf_check) 2395GEN_OPFVF_TRANS(vfrsub_vf, opfvf_check) 2396 2397/* Vector Widening Floating-Point Add/Subtract Instructions */ 2398static bool opfvv_widen_check(DisasContext *s, arg_rmrr *a) 2399{ 2400 return require_rvv(s) && 2401 require_scale_rvf(s) && 2402 (s->sew != MO_8) && 2403 vext_check_isa_ill(s) && 2404 vext_check_dss(s, a->rd, a->rs1, a->rs2, a->vm) && 2405 require_scale_zve32f(s) && 2406 require_scale_zve64f(s); 2407} 2408 2409/* OPFVV with WIDEN */ 2410#define GEN_OPFVV_WIDEN_TRANS(NAME, CHECK) \ 2411static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2412{ \ 2413 if (CHECK(s, a)) { \ 2414 uint32_t data = 0; \ 2415 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2416 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2417 }; \ 2418 TCGLabel *over = gen_new_label(); \ 2419 gen_set_rm(s, RISCV_FRM_DYN); \ 2420 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2421 \ 2422 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2423 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2424 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2425 vreg_ofs(s, a->rs1), \ 2426 vreg_ofs(s, a->rs2), cpu_env, \ 2427 s->cfg_ptr->vlen / 8, \ 2428 s->cfg_ptr->vlen / 8, data, \ 2429 fns[s->sew - 1]); \ 2430 mark_vs_dirty(s); \ 2431 gen_set_label(over); \ 2432 return true; \ 2433 } \ 2434 return false; \ 2435} 2436 2437GEN_OPFVV_WIDEN_TRANS(vfwadd_vv, opfvv_widen_check) 2438GEN_OPFVV_WIDEN_TRANS(vfwsub_vv, opfvv_widen_check) 2439 2440static bool opfvf_widen_check(DisasContext *s, arg_rmrr *a) 2441{ 2442 return require_rvv(s) && 2443 require_scale_rvf(s) && 2444 (s->sew != MO_8) && 2445 vext_check_isa_ill(s) && 2446 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2447 require_scale_zve32f(s) && 2448 require_scale_zve64f(s); 2449} 2450 2451/* OPFVF with WIDEN */ 2452#define GEN_OPFVF_WIDEN_TRANS(NAME) \ 2453static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2454{ \ 2455 if (opfvf_widen_check(s, a)) { \ 2456 uint32_t data = 0; \ 2457 static gen_helper_opfvf *const fns[2] = { \ 2458 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2459 }; \ 2460 gen_set_rm(s, RISCV_FRM_DYN); \ 2461 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2462 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2463 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2464 fns[s->sew - 1], s); \ 2465 } \ 2466 return false; \ 2467} 2468 2469GEN_OPFVF_WIDEN_TRANS(vfwadd_vf) 2470GEN_OPFVF_WIDEN_TRANS(vfwsub_vf) 2471 2472static bool opfwv_widen_check(DisasContext *s, arg_rmrr *a) 2473{ 2474 return require_rvv(s) && 2475 require_scale_rvf(s) && 2476 (s->sew != MO_8) && 2477 vext_check_isa_ill(s) && 2478 vext_check_dds(s, a->rd, a->rs1, a->rs2, a->vm) && 2479 require_scale_zve32f(s) && 2480 require_scale_zve64f(s); 2481} 2482 2483/* WIDEN OPFVV with WIDEN */ 2484#define GEN_OPFWV_WIDEN_TRANS(NAME) \ 2485static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2486{ \ 2487 if (opfwv_widen_check(s, a)) { \ 2488 uint32_t data = 0; \ 2489 static gen_helper_gvec_4_ptr * const fns[2] = { \ 2490 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2491 }; \ 2492 TCGLabel *over = gen_new_label(); \ 2493 gen_set_rm(s, RISCV_FRM_DYN); \ 2494 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2495 \ 2496 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2497 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2498 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2499 vreg_ofs(s, a->rs1), \ 2500 vreg_ofs(s, a->rs2), cpu_env, \ 2501 s->cfg_ptr->vlen / 8, \ 2502 s->cfg_ptr->vlen / 8, data, \ 2503 fns[s->sew - 1]); \ 2504 mark_vs_dirty(s); \ 2505 gen_set_label(over); \ 2506 return true; \ 2507 } \ 2508 return false; \ 2509} 2510 2511GEN_OPFWV_WIDEN_TRANS(vfwadd_wv) 2512GEN_OPFWV_WIDEN_TRANS(vfwsub_wv) 2513 2514static bool opfwf_widen_check(DisasContext *s, arg_rmrr *a) 2515{ 2516 return require_rvv(s) && 2517 require_scale_rvf(s) && 2518 (s->sew != MO_8) && 2519 vext_check_isa_ill(s) && 2520 vext_check_dd(s, a->rd, a->rs2, a->vm) && 2521 require_scale_zve32f(s) && 2522 require_scale_zve64f(s); 2523} 2524 2525/* WIDEN OPFVF with WIDEN */ 2526#define GEN_OPFWF_WIDEN_TRANS(NAME) \ 2527static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \ 2528{ \ 2529 if (opfwf_widen_check(s, a)) { \ 2530 uint32_t data = 0; \ 2531 static gen_helper_opfvf *const fns[2] = { \ 2532 gen_helper_##NAME##_h, gen_helper_##NAME##_w, \ 2533 }; \ 2534 gen_set_rm(s, RISCV_FRM_DYN); \ 2535 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2536 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2537 return opfvf_trans(a->rd, a->rs1, a->rs2, data, \ 2538 fns[s->sew - 1], s); \ 2539 } \ 2540 return false; \ 2541} 2542 2543GEN_OPFWF_WIDEN_TRANS(vfwadd_wf) 2544GEN_OPFWF_WIDEN_TRANS(vfwsub_wf) 2545 2546/* Vector Single-Width Floating-Point Multiply/Divide Instructions */ 2547GEN_OPFVV_TRANS(vfmul_vv, opfvv_check) 2548GEN_OPFVV_TRANS(vfdiv_vv, opfvv_check) 2549GEN_OPFVF_TRANS(vfmul_vf, opfvf_check) 2550GEN_OPFVF_TRANS(vfdiv_vf, opfvf_check) 2551GEN_OPFVF_TRANS(vfrdiv_vf, opfvf_check) 2552 2553/* Vector Widening Floating-Point Multiply */ 2554GEN_OPFVV_WIDEN_TRANS(vfwmul_vv, opfvv_widen_check) 2555GEN_OPFVF_WIDEN_TRANS(vfwmul_vf) 2556 2557/* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */ 2558GEN_OPFVV_TRANS(vfmacc_vv, opfvv_check) 2559GEN_OPFVV_TRANS(vfnmacc_vv, opfvv_check) 2560GEN_OPFVV_TRANS(vfmsac_vv, opfvv_check) 2561GEN_OPFVV_TRANS(vfnmsac_vv, opfvv_check) 2562GEN_OPFVV_TRANS(vfmadd_vv, opfvv_check) 2563GEN_OPFVV_TRANS(vfnmadd_vv, opfvv_check) 2564GEN_OPFVV_TRANS(vfmsub_vv, opfvv_check) 2565GEN_OPFVV_TRANS(vfnmsub_vv, opfvv_check) 2566GEN_OPFVF_TRANS(vfmacc_vf, opfvf_check) 2567GEN_OPFVF_TRANS(vfnmacc_vf, opfvf_check) 2568GEN_OPFVF_TRANS(vfmsac_vf, opfvf_check) 2569GEN_OPFVF_TRANS(vfnmsac_vf, opfvf_check) 2570GEN_OPFVF_TRANS(vfmadd_vf, opfvf_check) 2571GEN_OPFVF_TRANS(vfnmadd_vf, opfvf_check) 2572GEN_OPFVF_TRANS(vfmsub_vf, opfvf_check) 2573GEN_OPFVF_TRANS(vfnmsub_vf, opfvf_check) 2574 2575/* Vector Widening Floating-Point Fused Multiply-Add Instructions */ 2576GEN_OPFVV_WIDEN_TRANS(vfwmacc_vv, opfvv_widen_check) 2577GEN_OPFVV_WIDEN_TRANS(vfwnmacc_vv, opfvv_widen_check) 2578GEN_OPFVV_WIDEN_TRANS(vfwmsac_vv, opfvv_widen_check) 2579GEN_OPFVV_WIDEN_TRANS(vfwnmsac_vv, opfvv_widen_check) 2580GEN_OPFVF_WIDEN_TRANS(vfwmacc_vf) 2581GEN_OPFVF_WIDEN_TRANS(vfwnmacc_vf) 2582GEN_OPFVF_WIDEN_TRANS(vfwmsac_vf) 2583GEN_OPFVF_WIDEN_TRANS(vfwnmsac_vf) 2584 2585/* Vector Floating-Point Square-Root Instruction */ 2586 2587/* 2588 * If the current SEW does not correspond to a supported IEEE floating-point 2589 * type, an illegal instruction exception is raised 2590 */ 2591static bool opfv_check(DisasContext *s, arg_rmr *a) 2592{ 2593 return require_rvv(s) && 2594 require_rvf(s) && 2595 vext_check_isa_ill(s) && 2596 /* OPFV instructions ignore vs1 check */ 2597 vext_check_ss(s, a->rd, a->rs2, a->vm) && 2598 require_zve32f(s) && 2599 require_zve64f(s); 2600} 2601 2602static bool do_opfv(DisasContext *s, arg_rmr *a, 2603 gen_helper_gvec_3_ptr *fn, 2604 bool (*checkfn)(DisasContext *, arg_rmr *), 2605 int rm) 2606{ 2607 if (checkfn(s, a)) { 2608 if (rm != RISCV_FRM_DYN) { 2609 gen_set_rm(s, RISCV_FRM_DYN); 2610 } 2611 2612 uint32_t data = 0; 2613 TCGLabel *over = gen_new_label(); 2614 gen_set_rm(s, rm); 2615 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2616 2617 data = FIELD_DP32(data, VDATA, VM, a->vm); 2618 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 2619 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 2620 vreg_ofs(s, a->rs2), cpu_env, 2621 s->cfg_ptr->vlen / 8, 2622 s->cfg_ptr->vlen / 8, data, fn); 2623 mark_vs_dirty(s); 2624 gen_set_label(over); 2625 return true; 2626 } 2627 return false; 2628} 2629 2630#define GEN_OPFV_TRANS(NAME, CHECK, FRM) \ 2631static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2632{ \ 2633 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2634 gen_helper_##NAME##_h, \ 2635 gen_helper_##NAME##_w, \ 2636 gen_helper_##NAME##_d \ 2637 }; \ 2638 return do_opfv(s, a, fns[s->sew - 1], CHECK, FRM); \ 2639} 2640 2641GEN_OPFV_TRANS(vfsqrt_v, opfv_check, RISCV_FRM_DYN) 2642GEN_OPFV_TRANS(vfrsqrt7_v, opfv_check, RISCV_FRM_DYN) 2643GEN_OPFV_TRANS(vfrec7_v, opfv_check, RISCV_FRM_DYN) 2644 2645/* Vector Floating-Point MIN/MAX Instructions */ 2646GEN_OPFVV_TRANS(vfmin_vv, opfvv_check) 2647GEN_OPFVV_TRANS(vfmax_vv, opfvv_check) 2648GEN_OPFVF_TRANS(vfmin_vf, opfvf_check) 2649GEN_OPFVF_TRANS(vfmax_vf, opfvf_check) 2650 2651/* Vector Floating-Point Sign-Injection Instructions */ 2652GEN_OPFVV_TRANS(vfsgnj_vv, opfvv_check) 2653GEN_OPFVV_TRANS(vfsgnjn_vv, opfvv_check) 2654GEN_OPFVV_TRANS(vfsgnjx_vv, opfvv_check) 2655GEN_OPFVF_TRANS(vfsgnj_vf, opfvf_check) 2656GEN_OPFVF_TRANS(vfsgnjn_vf, opfvf_check) 2657GEN_OPFVF_TRANS(vfsgnjx_vf, opfvf_check) 2658 2659/* Vector Floating-Point Compare Instructions */ 2660static bool opfvv_cmp_check(DisasContext *s, arg_rmrr *a) 2661{ 2662 return require_rvv(s) && 2663 require_rvf(s) && 2664 vext_check_isa_ill(s) && 2665 vext_check_mss(s, a->rd, a->rs1, a->rs2) && 2666 require_zve32f(s) && 2667 require_zve64f(s); 2668} 2669 2670GEN_OPFVV_TRANS(vmfeq_vv, opfvv_cmp_check) 2671GEN_OPFVV_TRANS(vmfne_vv, opfvv_cmp_check) 2672GEN_OPFVV_TRANS(vmflt_vv, opfvv_cmp_check) 2673GEN_OPFVV_TRANS(vmfle_vv, opfvv_cmp_check) 2674 2675static bool opfvf_cmp_check(DisasContext *s, arg_rmrr *a) 2676{ 2677 return require_rvv(s) && 2678 require_rvf(s) && 2679 vext_check_isa_ill(s) && 2680 vext_check_ms(s, a->rd, a->rs2) && 2681 require_zve32f(s) && 2682 require_zve64f(s); 2683} 2684 2685GEN_OPFVF_TRANS(vmfeq_vf, opfvf_cmp_check) 2686GEN_OPFVF_TRANS(vmfne_vf, opfvf_cmp_check) 2687GEN_OPFVF_TRANS(vmflt_vf, opfvf_cmp_check) 2688GEN_OPFVF_TRANS(vmfle_vf, opfvf_cmp_check) 2689GEN_OPFVF_TRANS(vmfgt_vf, opfvf_cmp_check) 2690GEN_OPFVF_TRANS(vmfge_vf, opfvf_cmp_check) 2691 2692/* Vector Floating-Point Classify Instruction */ 2693GEN_OPFV_TRANS(vfclass_v, opfv_check, RISCV_FRM_DYN) 2694 2695/* Vector Floating-Point Merge Instruction */ 2696GEN_OPFVF_TRANS(vfmerge_vfm, opfvf_check) 2697 2698static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a) 2699{ 2700 if (require_rvv(s) && 2701 require_rvf(s) && 2702 vext_check_isa_ill(s) && 2703 require_align(a->rd, s->lmul) && 2704 require_zve32f(s) && 2705 require_zve64f(s)) { 2706 gen_set_rm(s, RISCV_FRM_DYN); 2707 2708 TCGv_i64 t1; 2709 2710 if (s->vl_eq_vlmax) { 2711 t1 = tcg_temp_new_i64(); 2712 /* NaN-box f[rs1] */ 2713 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2714 2715 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 2716 MAXSZ(s), MAXSZ(s), t1); 2717 mark_vs_dirty(s); 2718 } else { 2719 TCGv_ptr dest; 2720 TCGv_i32 desc; 2721 uint32_t data = FIELD_DP32(0, VDATA, LMUL, s->lmul); 2722 static gen_helper_vmv_vx * const fns[3] = { 2723 gen_helper_vmv_v_x_h, 2724 gen_helper_vmv_v_x_w, 2725 gen_helper_vmv_v_x_d, 2726 }; 2727 TCGLabel *over = gen_new_label(); 2728 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 2729 2730 t1 = tcg_temp_new_i64(); 2731 /* NaN-box f[rs1] */ 2732 do_nanbox(s, t1, cpu_fpr[a->rs1]); 2733 2734 dest = tcg_temp_new_ptr(); 2735 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 2736 s->cfg_ptr->vlen / 8, data)); 2737 tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); 2738 2739 fns[s->sew - 1](dest, t1, cpu_env, desc); 2740 2741 tcg_temp_free_ptr(dest); 2742 mark_vs_dirty(s); 2743 gen_set_label(over); 2744 } 2745 tcg_temp_free_i64(t1); 2746 return true; 2747 } 2748 return false; 2749} 2750 2751/* Single-Width Floating-Point/Integer Type-Convert Instructions */ 2752#define GEN_OPFV_CVT_TRANS(NAME, HELPER, FRM) \ 2753static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2754{ \ 2755 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2756 gen_helper_##HELPER##_h, \ 2757 gen_helper_##HELPER##_w, \ 2758 gen_helper_##HELPER##_d \ 2759 }; \ 2760 return do_opfv(s, a, fns[s->sew - 1], opfv_check, FRM); \ 2761} 2762 2763GEN_OPFV_CVT_TRANS(vfcvt_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_DYN) 2764GEN_OPFV_CVT_TRANS(vfcvt_x_f_v, vfcvt_x_f_v, RISCV_FRM_DYN) 2765GEN_OPFV_CVT_TRANS(vfcvt_f_xu_v, vfcvt_f_xu_v, RISCV_FRM_DYN) 2766GEN_OPFV_CVT_TRANS(vfcvt_f_x_v, vfcvt_f_x_v, RISCV_FRM_DYN) 2767/* Reuse the helper functions from vfcvt.xu.f.v and vfcvt.x.f.v */ 2768GEN_OPFV_CVT_TRANS(vfcvt_rtz_xu_f_v, vfcvt_xu_f_v, RISCV_FRM_RTZ) 2769GEN_OPFV_CVT_TRANS(vfcvt_rtz_x_f_v, vfcvt_x_f_v, RISCV_FRM_RTZ) 2770 2771/* Widening Floating-Point/Integer Type-Convert Instructions */ 2772 2773/* 2774 * If the current SEW does not correspond to a supported IEEE floating-point 2775 * type, an illegal instruction exception is raised 2776 */ 2777static bool opfv_widen_check(DisasContext *s, arg_rmr *a) 2778{ 2779 return require_rvv(s) && 2780 vext_check_isa_ill(s) && 2781 vext_check_ds(s, a->rd, a->rs2, a->vm); 2782} 2783 2784static bool opxfv_widen_check(DisasContext *s, arg_rmr *a) 2785{ 2786 return opfv_widen_check(s, a) && 2787 require_rvf(s) && 2788 require_zve32f(s) && 2789 require_zve64f(s); 2790} 2791 2792static bool opffv_widen_check(DisasContext *s, arg_rmr *a) 2793{ 2794 return opfv_widen_check(s, a) && 2795 require_scale_rvf(s) && 2796 (s->sew != MO_8) && 2797 require_scale_zve32f(s) && 2798 require_scale_zve64f(s); 2799} 2800 2801#define GEN_OPFV_WIDEN_TRANS(NAME, CHECK, HELPER, FRM) \ 2802static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2803{ \ 2804 if (CHECK(s, a)) { \ 2805 if (FRM != RISCV_FRM_DYN) { \ 2806 gen_set_rm(s, RISCV_FRM_DYN); \ 2807 } \ 2808 \ 2809 uint32_t data = 0; \ 2810 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2811 gen_helper_##HELPER##_h, \ 2812 gen_helper_##HELPER##_w, \ 2813 }; \ 2814 TCGLabel *over = gen_new_label(); \ 2815 gen_set_rm(s, FRM); \ 2816 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2817 \ 2818 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2819 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2820 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2821 vreg_ofs(s, a->rs2), cpu_env, \ 2822 s->cfg_ptr->vlen / 8, \ 2823 s->cfg_ptr->vlen / 8, data, \ 2824 fns[s->sew - 1]); \ 2825 mark_vs_dirty(s); \ 2826 gen_set_label(over); \ 2827 return true; \ 2828 } \ 2829 return false; \ 2830} 2831 2832GEN_OPFV_WIDEN_TRANS(vfwcvt_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2833 RISCV_FRM_DYN) 2834GEN_OPFV_WIDEN_TRANS(vfwcvt_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2835 RISCV_FRM_DYN) 2836GEN_OPFV_WIDEN_TRANS(vfwcvt_f_f_v, opffv_widen_check, vfwcvt_f_f_v, 2837 RISCV_FRM_DYN) 2838/* Reuse the helper functions from vfwcvt.xu.f.v and vfwcvt.x.f.v */ 2839GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_xu_f_v, opxfv_widen_check, vfwcvt_xu_f_v, 2840 RISCV_FRM_RTZ) 2841GEN_OPFV_WIDEN_TRANS(vfwcvt_rtz_x_f_v, opxfv_widen_check, vfwcvt_x_f_v, 2842 RISCV_FRM_RTZ) 2843 2844static bool opfxv_widen_check(DisasContext *s, arg_rmr *a) 2845{ 2846 return require_rvv(s) && 2847 require_scale_rvf(s) && 2848 vext_check_isa_ill(s) && 2849 /* OPFV widening instructions ignore vs1 check */ 2850 vext_check_ds(s, a->rd, a->rs2, a->vm) && 2851 require_scale_zve32f(s) && 2852 require_scale_zve64f(s); 2853} 2854 2855#define GEN_OPFXV_WIDEN_TRANS(NAME) \ 2856static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2857{ \ 2858 if (opfxv_widen_check(s, a)) { \ 2859 uint32_t data = 0; \ 2860 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2861 gen_helper_##NAME##_b, \ 2862 gen_helper_##NAME##_h, \ 2863 gen_helper_##NAME##_w, \ 2864 }; \ 2865 TCGLabel *over = gen_new_label(); \ 2866 gen_set_rm(s, RISCV_FRM_DYN); \ 2867 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2868 \ 2869 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2870 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2871 vreg_ofs(s, a->rs2), cpu_env, \ 2872 s->cfg_ptr->vlen / 8, \ 2873 s->cfg_ptr->vlen / 8, data, \ 2874 fns[s->sew]); \ 2875 mark_vs_dirty(s); \ 2876 gen_set_label(over); \ 2877 return true; \ 2878 } \ 2879 return false; \ 2880} 2881 2882GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_xu_v) 2883GEN_OPFXV_WIDEN_TRANS(vfwcvt_f_x_v) 2884 2885/* Narrowing Floating-Point/Integer Type-Convert Instructions */ 2886 2887/* 2888 * If the current SEW does not correspond to a supported IEEE floating-point 2889 * type, an illegal instruction exception is raised 2890 */ 2891static bool opfv_narrow_check(DisasContext *s, arg_rmr *a) 2892{ 2893 return require_rvv(s) && 2894 vext_check_isa_ill(s) && 2895 /* OPFV narrowing instructions ignore vs1 check */ 2896 vext_check_sd(s, a->rd, a->rs2, a->vm); 2897} 2898 2899static bool opfxv_narrow_check(DisasContext *s, arg_rmr *a) 2900{ 2901 return opfv_narrow_check(s, a) && 2902 require_rvf(s) && 2903 (s->sew != MO_64) && 2904 require_zve32f(s) && 2905 require_zve64f(s); 2906} 2907 2908static bool opffv_narrow_check(DisasContext *s, arg_rmr *a) 2909{ 2910 return opfv_narrow_check(s, a) && 2911 require_scale_rvf(s) && 2912 (s->sew != MO_8) && 2913 require_scale_zve32f(s) && 2914 require_scale_zve64f(s); 2915} 2916 2917#define GEN_OPFV_NARROW_TRANS(NAME, CHECK, HELPER, FRM) \ 2918static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2919{ \ 2920 if (CHECK(s, a)) { \ 2921 if (FRM != RISCV_FRM_DYN) { \ 2922 gen_set_rm(s, RISCV_FRM_DYN); \ 2923 } \ 2924 \ 2925 uint32_t data = 0; \ 2926 static gen_helper_gvec_3_ptr * const fns[2] = { \ 2927 gen_helper_##HELPER##_h, \ 2928 gen_helper_##HELPER##_w, \ 2929 }; \ 2930 TCGLabel *over = gen_new_label(); \ 2931 gen_set_rm(s, FRM); \ 2932 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2933 \ 2934 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2935 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 2936 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2937 vreg_ofs(s, a->rs2), cpu_env, \ 2938 s->cfg_ptr->vlen / 8, \ 2939 s->cfg_ptr->vlen / 8, data, \ 2940 fns[s->sew - 1]); \ 2941 mark_vs_dirty(s); \ 2942 gen_set_label(over); \ 2943 return true; \ 2944 } \ 2945 return false; \ 2946} 2947 2948GEN_OPFV_NARROW_TRANS(vfncvt_f_xu_w, opfxv_narrow_check, vfncvt_f_xu_w, 2949 RISCV_FRM_DYN) 2950GEN_OPFV_NARROW_TRANS(vfncvt_f_x_w, opfxv_narrow_check, vfncvt_f_x_w, 2951 RISCV_FRM_DYN) 2952GEN_OPFV_NARROW_TRANS(vfncvt_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2953 RISCV_FRM_DYN) 2954/* Reuse the helper function from vfncvt.f.f.w */ 2955GEN_OPFV_NARROW_TRANS(vfncvt_rod_f_f_w, opffv_narrow_check, vfncvt_f_f_w, 2956 RISCV_FRM_ROD) 2957 2958static bool opxfv_narrow_check(DisasContext *s, arg_rmr *a) 2959{ 2960 return require_rvv(s) && 2961 require_scale_rvf(s) && 2962 vext_check_isa_ill(s) && 2963 /* OPFV narrowing instructions ignore vs1 check */ 2964 vext_check_sd(s, a->rd, a->rs2, a->vm) && 2965 require_scale_zve32f(s) && 2966 require_scale_zve64f(s); 2967} 2968 2969#define GEN_OPXFV_NARROW_TRANS(NAME, HELPER, FRM) \ 2970static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 2971{ \ 2972 if (opxfv_narrow_check(s, a)) { \ 2973 if (FRM != RISCV_FRM_DYN) { \ 2974 gen_set_rm(s, RISCV_FRM_DYN); \ 2975 } \ 2976 \ 2977 uint32_t data = 0; \ 2978 static gen_helper_gvec_3_ptr * const fns[3] = { \ 2979 gen_helper_##HELPER##_b, \ 2980 gen_helper_##HELPER##_h, \ 2981 gen_helper_##HELPER##_w, \ 2982 }; \ 2983 TCGLabel *over = gen_new_label(); \ 2984 gen_set_rm(s, FRM); \ 2985 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 2986 \ 2987 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 2988 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 2989 vreg_ofs(s, a->rs2), cpu_env, \ 2990 s->cfg_ptr->vlen / 8, \ 2991 s->cfg_ptr->vlen / 8, data, \ 2992 fns[s->sew]); \ 2993 mark_vs_dirty(s); \ 2994 gen_set_label(over); \ 2995 return true; \ 2996 } \ 2997 return false; \ 2998} 2999 3000GEN_OPXFV_NARROW_TRANS(vfncvt_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_DYN) 3001GEN_OPXFV_NARROW_TRANS(vfncvt_x_f_w, vfncvt_x_f_w, RISCV_FRM_DYN) 3002/* Reuse the helper functions from vfncvt.xu.f.w and vfncvt.x.f.w */ 3003GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_xu_f_w, vfncvt_xu_f_w, RISCV_FRM_RTZ) 3004GEN_OPXFV_NARROW_TRANS(vfncvt_rtz_x_f_w, vfncvt_x_f_w, RISCV_FRM_RTZ) 3005 3006/* 3007 *** Vector Reduction Operations 3008 */ 3009/* Vector Single-Width Integer Reduction Instructions */ 3010static bool reduction_check(DisasContext *s, arg_rmrr *a) 3011{ 3012 return require_rvv(s) && 3013 vext_check_isa_ill(s) && 3014 vext_check_reduction(s, a->rs2); 3015} 3016 3017GEN_OPIVV_TRANS(vredsum_vs, reduction_check) 3018GEN_OPIVV_TRANS(vredmaxu_vs, reduction_check) 3019GEN_OPIVV_TRANS(vredmax_vs, reduction_check) 3020GEN_OPIVV_TRANS(vredminu_vs, reduction_check) 3021GEN_OPIVV_TRANS(vredmin_vs, reduction_check) 3022GEN_OPIVV_TRANS(vredand_vs, reduction_check) 3023GEN_OPIVV_TRANS(vredor_vs, reduction_check) 3024GEN_OPIVV_TRANS(vredxor_vs, reduction_check) 3025 3026/* Vector Widening Integer Reduction Instructions */ 3027static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) 3028{ 3029 return reduction_check(s, a) && (s->sew < MO_64) && 3030 ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)); 3031} 3032 3033GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) 3034GEN_OPIVV_WIDEN_TRANS(vwredsumu_vs, reduction_widen_check) 3035 3036/* Vector Single-Width Floating-Point Reduction Instructions */ 3037static bool freduction_check(DisasContext *s, arg_rmrr *a) 3038{ 3039 return reduction_check(s, a) && 3040 require_rvf(s) && 3041 require_zve32f(s) && 3042 require_zve64f(s); 3043} 3044 3045GEN_OPFVV_TRANS(vfredsum_vs, freduction_check) 3046GEN_OPFVV_TRANS(vfredmax_vs, freduction_check) 3047GEN_OPFVV_TRANS(vfredmin_vs, freduction_check) 3048 3049/* Vector Widening Floating-Point Reduction Instructions */ 3050static bool freduction_widen_check(DisasContext *s, arg_rmrr *a) 3051{ 3052 return reduction_widen_check(s, a) && 3053 require_scale_rvf(s) && 3054 (s->sew != MO_8); 3055} 3056 3057GEN_OPFVV_WIDEN_TRANS(vfwredsum_vs, freduction_widen_check) 3058 3059/* 3060 *** Vector Mask Operations 3061 */ 3062 3063/* Vector Mask-Register Logical Instructions */ 3064#define GEN_MM_TRANS(NAME) \ 3065static bool trans_##NAME(DisasContext *s, arg_r *a) \ 3066{ \ 3067 if (require_rvv(s) && \ 3068 vext_check_isa_ill(s)) { \ 3069 uint32_t data = 0; \ 3070 gen_helper_gvec_4_ptr *fn = gen_helper_##NAME; \ 3071 TCGLabel *over = gen_new_label(); \ 3072 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3073 \ 3074 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3075 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ 3076 vreg_ofs(s, a->rs1), \ 3077 vreg_ofs(s, a->rs2), cpu_env, \ 3078 s->cfg_ptr->vlen / 8, \ 3079 s->cfg_ptr->vlen / 8, data, fn); \ 3080 mark_vs_dirty(s); \ 3081 gen_set_label(over); \ 3082 return true; \ 3083 } \ 3084 return false; \ 3085} 3086 3087GEN_MM_TRANS(vmand_mm) 3088GEN_MM_TRANS(vmnand_mm) 3089GEN_MM_TRANS(vmandn_mm) 3090GEN_MM_TRANS(vmxor_mm) 3091GEN_MM_TRANS(vmor_mm) 3092GEN_MM_TRANS(vmnor_mm) 3093GEN_MM_TRANS(vmorn_mm) 3094GEN_MM_TRANS(vmxnor_mm) 3095 3096/* Vector count population in mask vcpop */ 3097static bool trans_vcpop_m(DisasContext *s, arg_rmr *a) 3098{ 3099 if (require_rvv(s) && 3100 vext_check_isa_ill(s) && 3101 s->vstart == 0) { 3102 TCGv_ptr src2, mask; 3103 TCGv dst; 3104 TCGv_i32 desc; 3105 uint32_t data = 0; 3106 data = FIELD_DP32(data, VDATA, VM, a->vm); 3107 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3108 3109 mask = tcg_temp_new_ptr(); 3110 src2 = tcg_temp_new_ptr(); 3111 dst = dest_gpr(s, a->rd); 3112 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3113 s->cfg_ptr->vlen / 8, data)); 3114 3115 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3116 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3117 3118 gen_helper_vcpop_m(dst, mask, src2, cpu_env, desc); 3119 gen_set_gpr(s, a->rd, dst); 3120 3121 tcg_temp_free_ptr(mask); 3122 tcg_temp_free_ptr(src2); 3123 3124 return true; 3125 } 3126 return false; 3127} 3128 3129/* vmfirst find-first-set mask bit */ 3130static bool trans_vfirst_m(DisasContext *s, arg_rmr *a) 3131{ 3132 if (require_rvv(s) && 3133 vext_check_isa_ill(s) && 3134 s->vstart == 0) { 3135 TCGv_ptr src2, mask; 3136 TCGv dst; 3137 TCGv_i32 desc; 3138 uint32_t data = 0; 3139 data = FIELD_DP32(data, VDATA, VM, a->vm); 3140 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3141 3142 mask = tcg_temp_new_ptr(); 3143 src2 = tcg_temp_new_ptr(); 3144 dst = dest_gpr(s, a->rd); 3145 desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8, 3146 s->cfg_ptr->vlen / 8, data)); 3147 3148 tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); 3149 tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); 3150 3151 gen_helper_vfirst_m(dst, mask, src2, cpu_env, desc); 3152 gen_set_gpr(s, a->rd, dst); 3153 3154 tcg_temp_free_ptr(mask); 3155 tcg_temp_free_ptr(src2); 3156 return true; 3157 } 3158 return false; 3159} 3160 3161/* vmsbf.m set-before-first mask bit */ 3162/* vmsif.m set-includ-first mask bit */ 3163/* vmsof.m set-only-first mask bit */ 3164#define GEN_M_TRANS(NAME) \ 3165static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3166{ \ 3167 if (require_rvv(s) && \ 3168 vext_check_isa_ill(s) && \ 3169 require_vm(a->vm, a->rd) && \ 3170 (a->rd != a->rs2) && \ 3171 (s->vstart == 0)) { \ 3172 uint32_t data = 0; \ 3173 gen_helper_gvec_3_ptr *fn = gen_helper_##NAME; \ 3174 TCGLabel *over = gen_new_label(); \ 3175 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); \ 3176 \ 3177 data = FIELD_DP32(data, VDATA, VM, a->vm); \ 3178 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ 3179 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ 3180 vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ 3181 cpu_env, s->cfg_ptr->vlen / 8, \ 3182 s->cfg_ptr->vlen / 8, \ 3183 data, fn); \ 3184 mark_vs_dirty(s); \ 3185 gen_set_label(over); \ 3186 return true; \ 3187 } \ 3188 return false; \ 3189} 3190 3191GEN_M_TRANS(vmsbf_m) 3192GEN_M_TRANS(vmsif_m) 3193GEN_M_TRANS(vmsof_m) 3194 3195/* 3196 * Vector Iota Instruction 3197 * 3198 * 1. The destination register cannot overlap the source register. 3199 * 2. If masked, cannot overlap the mask register ('v0'). 3200 * 3. An illegal instruction exception is raised if vstart is non-zero. 3201 */ 3202static bool trans_viota_m(DisasContext *s, arg_viota_m *a) 3203{ 3204 if (require_rvv(s) && 3205 vext_check_isa_ill(s) && 3206 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs2, 1) && 3207 require_vm(a->vm, a->rd) && 3208 require_align(a->rd, s->lmul) && 3209 (s->vstart == 0)) { 3210 uint32_t data = 0; 3211 TCGLabel *over = gen_new_label(); 3212 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3213 3214 data = FIELD_DP32(data, VDATA, VM, a->vm); 3215 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3216 static gen_helper_gvec_3_ptr * const fns[4] = { 3217 gen_helper_viota_m_b, gen_helper_viota_m_h, 3218 gen_helper_viota_m_w, gen_helper_viota_m_d, 3219 }; 3220 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3221 vreg_ofs(s, a->rs2), cpu_env, 3222 s->cfg_ptr->vlen / 8, 3223 s->cfg_ptr->vlen / 8, data, fns[s->sew]); 3224 mark_vs_dirty(s); 3225 gen_set_label(over); 3226 return true; 3227 } 3228 return false; 3229} 3230 3231/* Vector Element Index Instruction */ 3232static bool trans_vid_v(DisasContext *s, arg_vid_v *a) 3233{ 3234 if (require_rvv(s) && 3235 vext_check_isa_ill(s) && 3236 require_align(a->rd, s->lmul) && 3237 require_vm(a->vm, a->rd)) { 3238 uint32_t data = 0; 3239 TCGLabel *over = gen_new_label(); 3240 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3241 3242 data = FIELD_DP32(data, VDATA, VM, a->vm); 3243 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3244 static gen_helper_gvec_2_ptr * const fns[4] = { 3245 gen_helper_vid_v_b, gen_helper_vid_v_h, 3246 gen_helper_vid_v_w, gen_helper_vid_v_d, 3247 }; 3248 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3249 cpu_env, s->cfg_ptr->vlen / 8, 3250 s->cfg_ptr->vlen / 8, 3251 data, fns[s->sew]); 3252 mark_vs_dirty(s); 3253 gen_set_label(over); 3254 return true; 3255 } 3256 return false; 3257} 3258 3259/* 3260 *** Vector Permutation Instructions 3261 */ 3262 3263static void load_element(TCGv_i64 dest, TCGv_ptr base, 3264 int ofs, int sew, bool sign) 3265{ 3266 switch (sew) { 3267 case MO_8: 3268 if (!sign) { 3269 tcg_gen_ld8u_i64(dest, base, ofs); 3270 } else { 3271 tcg_gen_ld8s_i64(dest, base, ofs); 3272 } 3273 break; 3274 case MO_16: 3275 if (!sign) { 3276 tcg_gen_ld16u_i64(dest, base, ofs); 3277 } else { 3278 tcg_gen_ld16s_i64(dest, base, ofs); 3279 } 3280 break; 3281 case MO_32: 3282 if (!sign) { 3283 tcg_gen_ld32u_i64(dest, base, ofs); 3284 } else { 3285 tcg_gen_ld32s_i64(dest, base, ofs); 3286 } 3287 break; 3288 case MO_64: 3289 tcg_gen_ld_i64(dest, base, ofs); 3290 break; 3291 default: 3292 g_assert_not_reached(); 3293 break; 3294 } 3295} 3296 3297/* offset of the idx element with base regsiter r */ 3298static uint32_t endian_ofs(DisasContext *s, int r, int idx) 3299{ 3300#if HOST_BIG_ENDIAN 3301 return vreg_ofs(s, r) + ((idx ^ (7 >> s->sew)) << s->sew); 3302#else 3303 return vreg_ofs(s, r) + (idx << s->sew); 3304#endif 3305} 3306 3307/* adjust the index according to the endian */ 3308static void endian_adjust(TCGv_i32 ofs, int sew) 3309{ 3310#if HOST_BIG_ENDIAN 3311 tcg_gen_xori_i32(ofs, ofs, 7 >> sew); 3312#endif 3313} 3314 3315/* Load idx >= VLMAX ? 0 : vreg[idx] */ 3316static void vec_element_loadx(DisasContext *s, TCGv_i64 dest, 3317 int vreg, TCGv idx, int vlmax) 3318{ 3319 TCGv_i32 ofs = tcg_temp_new_i32(); 3320 TCGv_ptr base = tcg_temp_new_ptr(); 3321 TCGv_i64 t_idx = tcg_temp_new_i64(); 3322 TCGv_i64 t_vlmax, t_zero; 3323 3324 /* 3325 * Mask the index to the length so that we do 3326 * not produce an out-of-range load. 3327 */ 3328 tcg_gen_trunc_tl_i32(ofs, idx); 3329 tcg_gen_andi_i32(ofs, ofs, vlmax - 1); 3330 3331 /* Convert the index to an offset. */ 3332 endian_adjust(ofs, s->sew); 3333 tcg_gen_shli_i32(ofs, ofs, s->sew); 3334 3335 /* Convert the index to a pointer. */ 3336 tcg_gen_ext_i32_ptr(base, ofs); 3337 tcg_gen_add_ptr(base, base, cpu_env); 3338 3339 /* Perform the load. */ 3340 load_element(dest, base, 3341 vreg_ofs(s, vreg), s->sew, false); 3342 tcg_temp_free_ptr(base); 3343 tcg_temp_free_i32(ofs); 3344 3345 /* Flush out-of-range indexing to zero. */ 3346 t_vlmax = tcg_constant_i64(vlmax); 3347 t_zero = tcg_constant_i64(0); 3348 tcg_gen_extu_tl_i64(t_idx, idx); 3349 3350 tcg_gen_movcond_i64(TCG_COND_LTU, dest, t_idx, 3351 t_vlmax, dest, t_zero); 3352 3353 tcg_temp_free_i64(t_idx); 3354} 3355 3356static void vec_element_loadi(DisasContext *s, TCGv_i64 dest, 3357 int vreg, int idx, bool sign) 3358{ 3359 load_element(dest, cpu_env, endian_ofs(s, vreg, idx), s->sew, sign); 3360} 3361 3362/* Integer Scalar Move Instruction */ 3363 3364static void store_element(TCGv_i64 val, TCGv_ptr base, 3365 int ofs, int sew) 3366{ 3367 switch (sew) { 3368 case MO_8: 3369 tcg_gen_st8_i64(val, base, ofs); 3370 break; 3371 case MO_16: 3372 tcg_gen_st16_i64(val, base, ofs); 3373 break; 3374 case MO_32: 3375 tcg_gen_st32_i64(val, base, ofs); 3376 break; 3377 case MO_64: 3378 tcg_gen_st_i64(val, base, ofs); 3379 break; 3380 default: 3381 g_assert_not_reached(); 3382 break; 3383 } 3384} 3385 3386/* 3387 * Store vreg[idx] = val. 3388 * The index must be in range of VLMAX. 3389 */ 3390static void vec_element_storei(DisasContext *s, int vreg, 3391 int idx, TCGv_i64 val) 3392{ 3393 store_element(val, cpu_env, endian_ofs(s, vreg, idx), s->sew); 3394} 3395 3396/* vmv.x.s rd, vs2 # x[rd] = vs2[0] */ 3397static bool trans_vmv_x_s(DisasContext *s, arg_vmv_x_s *a) 3398{ 3399 if (require_rvv(s) && 3400 vext_check_isa_ill(s)) { 3401 TCGv_i64 t1; 3402 TCGv dest; 3403 3404 t1 = tcg_temp_new_i64(); 3405 dest = tcg_temp_new(); 3406 /* 3407 * load vreg and sign-extend to 64 bits, 3408 * then truncate to XLEN bits before storing to gpr. 3409 */ 3410 vec_element_loadi(s, t1, a->rs2, 0, true); 3411 tcg_gen_trunc_i64_tl(dest, t1); 3412 gen_set_gpr(s, a->rd, dest); 3413 tcg_temp_free_i64(t1); 3414 tcg_temp_free(dest); 3415 3416 return true; 3417 } 3418 return false; 3419} 3420 3421/* vmv.s.x vd, rs1 # vd[0] = rs1 */ 3422static bool trans_vmv_s_x(DisasContext *s, arg_vmv_s_x *a) 3423{ 3424 if (require_rvv(s) && 3425 vext_check_isa_ill(s)) { 3426 /* This instruction ignores LMUL and vector register groups */ 3427 TCGv_i64 t1; 3428 TCGv s1; 3429 TCGLabel *over = gen_new_label(); 3430 3431 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3432 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3433 3434 t1 = tcg_temp_new_i64(); 3435 3436 /* 3437 * load gpr and sign-extend to 64 bits, 3438 * then truncate to SEW bits when storing to vreg. 3439 */ 3440 s1 = get_gpr(s, a->rs1, EXT_NONE); 3441 tcg_gen_ext_tl_i64(t1, s1); 3442 vec_element_storei(s, a->rd, 0, t1); 3443 tcg_temp_free_i64(t1); 3444 mark_vs_dirty(s); 3445 gen_set_label(over); 3446 return true; 3447 } 3448 return false; 3449} 3450 3451/* Floating-Point Scalar Move Instructions */ 3452static bool trans_vfmv_f_s(DisasContext *s, arg_vfmv_f_s *a) 3453{ 3454 if (require_rvv(s) && 3455 require_rvf(s) && 3456 vext_check_isa_ill(s) && 3457 require_zve32f(s) && 3458 require_zve64f(s)) { 3459 gen_set_rm(s, RISCV_FRM_DYN); 3460 3461 unsigned int ofs = (8 << s->sew); 3462 unsigned int len = 64 - ofs; 3463 TCGv_i64 t_nan; 3464 3465 vec_element_loadi(s, cpu_fpr[a->rd], a->rs2, 0, false); 3466 /* NaN-box f[rd] as necessary for SEW */ 3467 if (len) { 3468 t_nan = tcg_constant_i64(UINT64_MAX); 3469 tcg_gen_deposit_i64(cpu_fpr[a->rd], cpu_fpr[a->rd], 3470 t_nan, ofs, len); 3471 } 3472 3473 mark_fs_dirty(s); 3474 return true; 3475 } 3476 return false; 3477} 3478 3479/* vfmv.s.f vd, rs1 # vd[0] = rs1 (vs2=0) */ 3480static bool trans_vfmv_s_f(DisasContext *s, arg_vfmv_s_f *a) 3481{ 3482 if (require_rvv(s) && 3483 require_rvf(s) && 3484 vext_check_isa_ill(s) && 3485 require_zve32f(s) && 3486 require_zve64f(s)) { 3487 gen_set_rm(s, RISCV_FRM_DYN); 3488 3489 /* The instructions ignore LMUL and vector register group. */ 3490 TCGv_i64 t1; 3491 TCGLabel *over = gen_new_label(); 3492 3493 /* if vl == 0 or vstart >= vl, skip vector register write back */ 3494 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3495 tcg_gen_brcond_tl(TCG_COND_GEU, cpu_vstart, cpu_vl, over); 3496 3497 /* NaN-box f[rs1] */ 3498 t1 = tcg_temp_new_i64(); 3499 do_nanbox(s, t1, cpu_fpr[a->rs1]); 3500 3501 vec_element_storei(s, a->rd, 0, t1); 3502 tcg_temp_free_i64(t1); 3503 mark_vs_dirty(s); 3504 gen_set_label(over); 3505 return true; 3506 } 3507 return false; 3508} 3509 3510/* Vector Slide Instructions */ 3511static bool slideup_check(DisasContext *s, arg_rmrr *a) 3512{ 3513 return require_rvv(s) && 3514 vext_check_isa_ill(s) && 3515 vext_check_slide(s, a->rd, a->rs2, a->vm, true); 3516} 3517 3518GEN_OPIVX_TRANS(vslideup_vx, slideup_check) 3519GEN_OPIVX_TRANS(vslide1up_vx, slideup_check) 3520GEN_OPIVI_TRANS(vslideup_vi, IMM_ZX, vslideup_vx, slideup_check) 3521 3522static bool slidedown_check(DisasContext *s, arg_rmrr *a) 3523{ 3524 return require_rvv(s) && 3525 vext_check_isa_ill(s) && 3526 vext_check_slide(s, a->rd, a->rs2, a->vm, false); 3527} 3528 3529GEN_OPIVX_TRANS(vslidedown_vx, slidedown_check) 3530GEN_OPIVX_TRANS(vslide1down_vx, slidedown_check) 3531GEN_OPIVI_TRANS(vslidedown_vi, IMM_ZX, vslidedown_vx, slidedown_check) 3532 3533/* Vector Floating-Point Slide Instructions */ 3534static bool fslideup_check(DisasContext *s, arg_rmrr *a) 3535{ 3536 return slideup_check(s, a) && 3537 require_rvf(s) && 3538 require_zve32f(s) && 3539 require_zve64f(s); 3540} 3541 3542static bool fslidedown_check(DisasContext *s, arg_rmrr *a) 3543{ 3544 return slidedown_check(s, a) && 3545 require_rvf(s) && 3546 require_zve32f(s) && 3547 require_zve64f(s); 3548} 3549 3550GEN_OPFVF_TRANS(vfslide1up_vf, fslideup_check) 3551GEN_OPFVF_TRANS(vfslide1down_vf, fslidedown_check) 3552 3553/* Vector Register Gather Instruction */ 3554static bool vrgather_vv_check(DisasContext *s, arg_rmrr *a) 3555{ 3556 return require_rvv(s) && 3557 vext_check_isa_ill(s) && 3558 require_align(a->rd, s->lmul) && 3559 require_align(a->rs1, s->lmul) && 3560 require_align(a->rs2, s->lmul) && 3561 (a->rd != a->rs2 && a->rd != a->rs1) && 3562 require_vm(a->vm, a->rd); 3563} 3564 3565static bool vrgatherei16_vv_check(DisasContext *s, arg_rmrr *a) 3566{ 3567 int8_t emul = MO_16 - s->sew + s->lmul; 3568 return require_rvv(s) && 3569 vext_check_isa_ill(s) && 3570 (emul >= -3 && emul <= 3) && 3571 require_align(a->rd, s->lmul) && 3572 require_align(a->rs1, emul) && 3573 require_align(a->rs2, s->lmul) && 3574 (a->rd != a->rs2 && a->rd != a->rs1) && 3575 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3576 a->rs1, 1 << MAX(emul, 0)) && 3577 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), 3578 a->rs2, 1 << MAX(s->lmul, 0)) && 3579 require_vm(a->vm, a->rd); 3580} 3581 3582GEN_OPIVV_TRANS(vrgather_vv, vrgather_vv_check) 3583GEN_OPIVV_TRANS(vrgatherei16_vv, vrgatherei16_vv_check) 3584 3585static bool vrgather_vx_check(DisasContext *s, arg_rmrr *a) 3586{ 3587 return require_rvv(s) && 3588 vext_check_isa_ill(s) && 3589 require_align(a->rd, s->lmul) && 3590 require_align(a->rs2, s->lmul) && 3591 (a->rd != a->rs2) && 3592 require_vm(a->vm, a->rd); 3593} 3594 3595/* vrgather.vx vd, vs2, rs1, vm # vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */ 3596static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a) 3597{ 3598 if (!vrgather_vx_check(s, a)) { 3599 return false; 3600 } 3601 3602 if (a->vm && s->vl_eq_vlmax) { 3603 int scale = s->lmul - (s->sew + 3); 3604 int vlmax = s->cfg_ptr->vlen >> -scale; 3605 TCGv_i64 dest = tcg_temp_new_i64(); 3606 3607 if (a->rs1 == 0) { 3608 vec_element_loadi(s, dest, a->rs2, 0, false); 3609 } else { 3610 vec_element_loadx(s, dest, a->rs2, cpu_gpr[a->rs1], vlmax); 3611 } 3612 3613 tcg_gen_gvec_dup_i64(s->sew, vreg_ofs(s, a->rd), 3614 MAXSZ(s), MAXSZ(s), dest); 3615 tcg_temp_free_i64(dest); 3616 mark_vs_dirty(s); 3617 } else { 3618 static gen_helper_opivx * const fns[4] = { 3619 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3620 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3621 }; 3622 return opivx_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], s); 3623 } 3624 return true; 3625} 3626 3627/* vrgather.vi vd, vs2, imm, vm # vd[i] = (imm >= VLMAX) ? 0 : vs2[imm] */ 3628static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a) 3629{ 3630 if (!vrgather_vx_check(s, a)) { 3631 return false; 3632 } 3633 3634 if (a->vm && s->vl_eq_vlmax) { 3635 int scale = s->lmul - (s->sew + 3); 3636 int vlmax = s->cfg_ptr->vlen >> -scale; 3637 if (a->rs1 >= vlmax) { 3638 tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), 3639 MAXSZ(s), MAXSZ(s), 0); 3640 } else { 3641 tcg_gen_gvec_dup_mem(s->sew, vreg_ofs(s, a->rd), 3642 endian_ofs(s, a->rs2, a->rs1), 3643 MAXSZ(s), MAXSZ(s)); 3644 } 3645 mark_vs_dirty(s); 3646 } else { 3647 static gen_helper_opivx * const fns[4] = { 3648 gen_helper_vrgather_vx_b, gen_helper_vrgather_vx_h, 3649 gen_helper_vrgather_vx_w, gen_helper_vrgather_vx_d 3650 }; 3651 return opivi_trans(a->rd, a->rs1, a->rs2, a->vm, fns[s->sew], 3652 s, IMM_ZX); 3653 } 3654 return true; 3655} 3656 3657/* 3658 * Vector Compress Instruction 3659 * 3660 * The destination vector register group cannot overlap the 3661 * source vector register group or the source mask register. 3662 */ 3663static bool vcompress_vm_check(DisasContext *s, arg_r *a) 3664{ 3665 return require_rvv(s) && 3666 vext_check_isa_ill(s) && 3667 require_align(a->rd, s->lmul) && 3668 require_align(a->rs2, s->lmul) && 3669 (a->rd != a->rs2) && 3670 !is_overlapped(a->rd, 1 << MAX(s->lmul, 0), a->rs1, 1) && 3671 (s->vstart == 0); 3672} 3673 3674static bool trans_vcompress_vm(DisasContext *s, arg_r *a) 3675{ 3676 if (vcompress_vm_check(s, a)) { 3677 uint32_t data = 0; 3678 static gen_helper_gvec_4_ptr * const fns[4] = { 3679 gen_helper_vcompress_vm_b, gen_helper_vcompress_vm_h, 3680 gen_helper_vcompress_vm_w, gen_helper_vcompress_vm_d, 3681 }; 3682 TCGLabel *over = gen_new_label(); 3683 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3684 3685 data = FIELD_DP32(data, VDATA, LMUL, s->lmul); 3686 tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3687 vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), 3688 cpu_env, s->cfg_ptr->vlen / 8, 3689 s->cfg_ptr->vlen / 8, data, 3690 fns[s->sew]); 3691 mark_vs_dirty(s); 3692 gen_set_label(over); 3693 return true; 3694 } 3695 return false; 3696} 3697 3698/* 3699 * Whole Vector Register Move Instructions ignore vtype and vl setting. 3700 * Thus, we don't need to check vill bit. (Section 16.6) 3701 */ 3702#define GEN_VMV_WHOLE_TRANS(NAME, LEN) \ 3703static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \ 3704{ \ 3705 if (require_rvv(s) && \ 3706 QEMU_IS_ALIGNED(a->rd, LEN) && \ 3707 QEMU_IS_ALIGNED(a->rs2, LEN)) { \ 3708 uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \ 3709 if (s->vstart == 0) { \ 3710 /* EEW = 8 */ \ 3711 tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ 3712 vreg_ofs(s, a->rs2), maxsz, maxsz); \ 3713 mark_vs_dirty(s); \ 3714 } else { \ 3715 TCGLabel *over = gen_new_label(); \ 3716 tcg_gen_brcondi_tl(TCG_COND_GEU, cpu_vstart, maxsz, over); \ 3717 tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs2), \ 3718 cpu_env, maxsz, maxsz, 0, gen_helper_vmvr_v); \ 3719 mark_vs_dirty(s); \ 3720 gen_set_label(over); \ 3721 } \ 3722 return true; \ 3723 } \ 3724 return false; \ 3725} 3726 3727GEN_VMV_WHOLE_TRANS(vmv1r_v, 1) 3728GEN_VMV_WHOLE_TRANS(vmv2r_v, 2) 3729GEN_VMV_WHOLE_TRANS(vmv4r_v, 4) 3730GEN_VMV_WHOLE_TRANS(vmv8r_v, 8) 3731 3732static bool int_ext_check(DisasContext *s, arg_rmr *a, uint8_t div) 3733{ 3734 uint8_t from = (s->sew + 3) - div; 3735 bool ret = require_rvv(s) && 3736 (from >= 3 && from <= 8) && 3737 (a->rd != a->rs2) && 3738 require_align(a->rd, s->lmul) && 3739 require_align(a->rs2, s->lmul - div) && 3740 require_vm(a->vm, a->rd) && 3741 require_noover(a->rd, s->lmul, a->rs2, s->lmul - div); 3742 return ret; 3743} 3744 3745static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq) 3746{ 3747 uint32_t data = 0; 3748 gen_helper_gvec_3_ptr *fn; 3749 TCGLabel *over = gen_new_label(); 3750 tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); 3751 3752 static gen_helper_gvec_3_ptr * const fns[6][4] = { 3753 { 3754 NULL, gen_helper_vzext_vf2_h, 3755 gen_helper_vzext_vf2_w, gen_helper_vzext_vf2_d 3756 }, 3757 { 3758 NULL, NULL, 3759 gen_helper_vzext_vf4_w, gen_helper_vzext_vf4_d, 3760 }, 3761 { 3762 NULL, NULL, 3763 NULL, gen_helper_vzext_vf8_d 3764 }, 3765 { 3766 NULL, gen_helper_vsext_vf2_h, 3767 gen_helper_vsext_vf2_w, gen_helper_vsext_vf2_d 3768 }, 3769 { 3770 NULL, NULL, 3771 gen_helper_vsext_vf4_w, gen_helper_vsext_vf4_d, 3772 }, 3773 { 3774 NULL, NULL, 3775 NULL, gen_helper_vsext_vf8_d 3776 } 3777 }; 3778 3779 fn = fns[seq][s->sew]; 3780 if (fn == NULL) { 3781 return false; 3782 } 3783 3784 data = FIELD_DP32(data, VDATA, VM, a->vm); 3785 3786 tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), 3787 vreg_ofs(s, a->rs2), cpu_env, 3788 s->cfg_ptr->vlen / 8, 3789 s->cfg_ptr->vlen / 8, data, fn); 3790 3791 mark_vs_dirty(s); 3792 gen_set_label(over); 3793 return true; 3794} 3795 3796/* Vector Integer Extension */ 3797#define GEN_INT_EXT_TRANS(NAME, DIV, SEQ) \ 3798static bool trans_##NAME(DisasContext *s, arg_rmr *a) \ 3799{ \ 3800 if (int_ext_check(s, a, DIV)) { \ 3801 return int_ext_op(s, a, SEQ); \ 3802 } \ 3803 return false; \ 3804} 3805 3806GEN_INT_EXT_TRANS(vzext_vf2, 1, 0) 3807GEN_INT_EXT_TRANS(vzext_vf4, 2, 1) 3808GEN_INT_EXT_TRANS(vzext_vf8, 3, 2) 3809GEN_INT_EXT_TRANS(vsext_vf2, 1, 3) 3810GEN_INT_EXT_TRANS(vsext_vf4, 2, 4) 3811GEN_INT_EXT_TRANS(vsext_vf8, 3, 5) 3812