xref: /openbmc/qemu/target/riscv/gdbstub.c (revision 9c707525)
1 /*
2  * RISC-V GDB Server Stub
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "exec/gdbstub.h"
21 #include "gdbstub/helpers.h"
22 #include "cpu.h"
23 
24 struct TypeSize {
25     const char *gdb_type;
26     const char *id;
27     int size;
28     const char suffix;
29 };
30 
31 static const struct TypeSize vec_lanes[] = {
32     /* quads */
33     { "uint128", "quads", 128, 'q' },
34     /* 64 bit */
35     { "uint64", "longs", 64, 'l' },
36     /* 32 bit */
37     { "uint32", "words", 32, 'w' },
38     /* 16 bit */
39     { "uint16", "shorts", 16, 's' },
40     /*
41      * TODO: currently there is no reliable way of telling
42      * if the remote gdb actually understands ieee_half so
43      * we don't expose it in the target description for now.
44      * { "ieee_half", 16, 'h', 'f' },
45      */
46     /* bytes */
47     { "uint8", "bytes", 8, 'b' },
48 };
49 
50 int riscv_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
51 {
52     RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
53     RISCVCPU *cpu = RISCV_CPU(cs);
54     CPURISCVState *env = &cpu->env;
55     target_ulong tmp;
56 
57     if (n < 32) {
58         tmp = env->gpr[n];
59     } else if (n == 32) {
60         tmp = env->pc;
61     } else {
62         return 0;
63     }
64 
65     switch (mcc->misa_mxl_max) {
66     case MXL_RV32:
67         return gdb_get_reg32(mem_buf, tmp);
68     case MXL_RV64:
69     case MXL_RV128:
70         return gdb_get_reg64(mem_buf, tmp);
71     default:
72         g_assert_not_reached();
73     }
74     return 0;
75 }
76 
77 int riscv_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
78 {
79     RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
80     RISCVCPU *cpu = RISCV_CPU(cs);
81     CPURISCVState *env = &cpu->env;
82     int length = 0;
83     target_ulong tmp;
84 
85     switch (mcc->misa_mxl_max) {
86     case MXL_RV32:
87         tmp = (int32_t)ldl_p(mem_buf);
88         length = 4;
89         break;
90     case MXL_RV64:
91     case MXL_RV128:
92         if (env->xl < MXL_RV64) {
93             tmp = (int32_t)ldq_p(mem_buf);
94         } else {
95             tmp = ldq_p(mem_buf);
96         }
97         length = 8;
98         break;
99     default:
100         g_assert_not_reached();
101     }
102     if (n > 0 && n < 32) {
103         env->gpr[n] = tmp;
104     } else if (n == 32) {
105         env->pc = tmp;
106     }
107 
108     return length;
109 }
110 
111 static int riscv_gdb_get_fpu(CPUState *cs, GByteArray *buf, int n)
112 {
113     RISCVCPU *cpu = RISCV_CPU(cs);
114     CPURISCVState *env = &cpu->env;
115 
116     if (n < 32) {
117         if (env->misa_ext & RVD) {
118             return gdb_get_reg64(buf, env->fpr[n]);
119         }
120         if (env->misa_ext & RVF) {
121             return gdb_get_reg32(buf, env->fpr[n]);
122         }
123     }
124     return 0;
125 }
126 
127 static int riscv_gdb_set_fpu(CPUState *cs, uint8_t *mem_buf, int n)
128 {
129     RISCVCPU *cpu = RISCV_CPU(cs);
130     CPURISCVState *env = &cpu->env;
131 
132     if (n < 32) {
133         env->fpr[n] = ldq_p(mem_buf); /* always 64-bit */
134         return sizeof(uint64_t);
135     }
136     return 0;
137 }
138 
139 static int riscv_gdb_get_vector(CPUState *cs, GByteArray *buf, int n)
140 {
141     RISCVCPU *cpu = RISCV_CPU(cs);
142     CPURISCVState *env = &cpu->env;
143     uint16_t vlenb = cpu->cfg.vlenb;
144     if (n < 32) {
145         int i;
146         int cnt = 0;
147         for (i = 0; i < vlenb; i += 8) {
148             cnt += gdb_get_reg64(buf,
149                                  env->vreg[(n * vlenb + i) / 8]);
150         }
151         return cnt;
152     }
153 
154     return 0;
155 }
156 
157 static int riscv_gdb_set_vector(CPUState *cs, uint8_t *mem_buf, int n)
158 {
159     RISCVCPU *cpu = RISCV_CPU(cs);
160     CPURISCVState *env = &cpu->env;
161     uint16_t vlenb = cpu->cfg.vlenb;
162     if (n < 32) {
163         int i;
164         for (i = 0; i < vlenb; i += 8) {
165             env->vreg[(n * vlenb + i) / 8] = ldq_p(mem_buf + i);
166         }
167         return vlenb;
168     }
169 
170     return 0;
171 }
172 
173 static int riscv_gdb_get_csr(CPUState *cs, GByteArray *buf, int n)
174 {
175     RISCVCPU *cpu = RISCV_CPU(cs);
176     CPURISCVState *env = &cpu->env;
177 
178     if (n < CSR_TABLE_SIZE) {
179         target_ulong val = 0;
180         int result;
181 
182         result = riscv_csrrw_debug(env, n, &val, 0, 0);
183         if (result == RISCV_EXCP_NONE) {
184             return gdb_get_regl(buf, val);
185         }
186     }
187     return 0;
188 }
189 
190 static int riscv_gdb_set_csr(CPUState *cs, uint8_t *mem_buf, int n)
191 {
192     RISCVCPU *cpu = RISCV_CPU(cs);
193     CPURISCVState *env = &cpu->env;
194 
195     if (n < CSR_TABLE_SIZE) {
196         target_ulong val = ldtul_p(mem_buf);
197         int result;
198 
199         result = riscv_csrrw_debug(env, n, NULL, val, -1);
200         if (result == RISCV_EXCP_NONE) {
201             return sizeof(target_ulong);
202         }
203     }
204     return 0;
205 }
206 
207 static int riscv_gdb_get_virtual(CPUState *cs, GByteArray *buf, int n)
208 {
209     if (n == 0) {
210 #ifdef CONFIG_USER_ONLY
211         return gdb_get_regl(buf, 0);
212 #else
213         RISCVCPU *cpu = RISCV_CPU(cs);
214         CPURISCVState *env = &cpu->env;
215 
216         return gdb_get_regl(buf, env->priv);
217 #endif
218     }
219     return 0;
220 }
221 
222 static int riscv_gdb_set_virtual(CPUState *cs, uint8_t *mem_buf, int n)
223 {
224     if (n == 0) {
225 #ifndef CONFIG_USER_ONLY
226         RISCVCPU *cpu = RISCV_CPU(cs);
227         CPURISCVState *env = &cpu->env;
228 
229         env->priv = ldtul_p(mem_buf) & 0x3;
230         if (env->priv == PRV_RESERVED) {
231             env->priv = PRV_S;
232         }
233 #endif
234         return sizeof(target_ulong);
235     }
236     return 0;
237 }
238 
239 static GDBFeature *riscv_gen_dynamic_csr_feature(CPUState *cs, int base_reg)
240 {
241     RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
242     RISCVCPU *cpu = RISCV_CPU(cs);
243     CPURISCVState *env = &cpu->env;
244     GDBFeatureBuilder builder;
245     riscv_csr_predicate_fn predicate;
246     int bitsize = riscv_cpu_max_xlen(mcc);
247     const char *name;
248     int i;
249 
250 #if !defined(CONFIG_USER_ONLY)
251     env->debugger = true;
252 #endif
253 
254     /* Until gdb knows about 128-bit registers */
255     if (bitsize > 64) {
256         bitsize = 64;
257     }
258 
259     gdb_feature_builder_init(&builder, &cpu->dyn_csr_feature,
260                              "org.gnu.gdb.riscv.csr", "riscv-csr.xml",
261                              base_reg);
262 
263     for (i = 0; i < CSR_TABLE_SIZE; i++) {
264         if (env->priv_ver < csr_ops[i].min_priv_ver) {
265             continue;
266         }
267         predicate = csr_ops[i].predicate;
268         if (predicate && (predicate(env, i) == RISCV_EXCP_NONE)) {
269             name = csr_ops[i].name;
270             if (!name) {
271                 name = g_strdup_printf("csr%03x", i);
272             }
273 
274             gdb_feature_builder_append_reg(&builder, name, bitsize, i,
275                                            "int", NULL);
276         }
277     }
278 
279     gdb_feature_builder_end(&builder);
280 
281 #if !defined(CONFIG_USER_ONLY)
282     env->debugger = false;
283 #endif
284 
285     return &cpu->dyn_csr_feature;
286 }
287 
288 static GDBFeature *ricsv_gen_dynamic_vector_feature(CPUState *cs, int base_reg)
289 {
290     RISCVCPU *cpu = RISCV_CPU(cs);
291     int reg_width = cpu->cfg.vlenb;
292     GDBFeatureBuilder builder;
293     int i;
294 
295     gdb_feature_builder_init(&builder, &cpu->dyn_vreg_feature,
296                              "org.gnu.gdb.riscv.vector", "riscv-vector.xml",
297                              base_reg);
298 
299     /* First define types and totals in a whole VL */
300     for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
301         int count = reg_width / vec_lanes[i].size;
302         gdb_feature_builder_append_tag(
303             &builder, "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
304             vec_lanes[i].id, vec_lanes[i].gdb_type, count);
305     }
306 
307     /* Define unions */
308     gdb_feature_builder_append_tag(&builder, "<union id=\"riscv_vector\">");
309     for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
310         gdb_feature_builder_append_tag(&builder,
311                                        "<field name=\"%c\" type=\"%s\"/>",
312                                        vec_lanes[i].suffix, vec_lanes[i].id);
313     }
314     gdb_feature_builder_append_tag(&builder, "</union>");
315 
316     /* Define vector registers */
317     for (i = 0; i < 32; i++) {
318         gdb_feature_builder_append_reg(&builder, g_strdup_printf("v%d", i),
319                                        reg_width, i, "riscv_vector", "vector");
320     }
321 
322     gdb_feature_builder_end(&builder);
323 
324     return &cpu->dyn_vreg_feature;
325 }
326 
327 void riscv_cpu_register_gdb_regs_for_features(CPUState *cs)
328 {
329     RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
330     RISCVCPU *cpu = RISCV_CPU(cs);
331     CPURISCVState *env = &cpu->env;
332     if (env->misa_ext & RVD) {
333         gdb_register_coprocessor(cs, riscv_gdb_get_fpu, riscv_gdb_set_fpu,
334                                  gdb_find_static_feature("riscv-64bit-fpu.xml"),
335                                  0);
336     } else if (env->misa_ext & RVF) {
337         gdb_register_coprocessor(cs, riscv_gdb_get_fpu, riscv_gdb_set_fpu,
338                                  gdb_find_static_feature("riscv-32bit-fpu.xml"),
339                                  0);
340     }
341     if (env->misa_ext & RVV) {
342         gdb_register_coprocessor(cs, riscv_gdb_get_vector,
343                                  riscv_gdb_set_vector,
344                                  ricsv_gen_dynamic_vector_feature(cs, cs->gdb_num_regs),
345                                  0);
346     }
347     switch (mcc->misa_mxl_max) {
348     case MXL_RV32:
349         gdb_register_coprocessor(cs, riscv_gdb_get_virtual,
350                                  riscv_gdb_set_virtual,
351                                  gdb_find_static_feature("riscv-32bit-virtual.xml"),
352                                  0);
353         break;
354     case MXL_RV64:
355     case MXL_RV128:
356         gdb_register_coprocessor(cs, riscv_gdb_get_virtual,
357                                  riscv_gdb_set_virtual,
358                                  gdb_find_static_feature("riscv-64bit-virtual.xml"),
359                                  0);
360         break;
361     default:
362         g_assert_not_reached();
363     }
364 
365     if (cpu->cfg.ext_zicsr) {
366         gdb_register_coprocessor(cs, riscv_gdb_get_csr, riscv_gdb_set_csr,
367                                  riscv_gen_dynamic_csr_feature(cs, cs->gdb_num_regs),
368                                  0);
369     }
370 }
371