1 /* 2 * RISC-V FPU Emulation Helpers for QEMU. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "qemu/host-utils.h" 22 #include "exec/exec-all.h" 23 #include "exec/helper-proto.h" 24 #include "fpu/softfloat.h" 25 #include "internals.h" 26 27 target_ulong riscv_cpu_get_fflags(CPURISCVState *env) 28 { 29 int soft = get_float_exception_flags(&env->fp_status); 30 target_ulong hard = 0; 31 32 hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0; 33 hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0; 34 hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0; 35 hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0; 36 hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0; 37 38 return hard; 39 } 40 41 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard) 42 { 43 int soft = 0; 44 45 soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0; 46 soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0; 47 soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0; 48 soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0; 49 soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0; 50 51 set_float_exception_flags(soft, &env->fp_status); 52 } 53 54 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm) 55 { 56 int softrm; 57 58 if (rm == 7) { 59 rm = env->frm; 60 } 61 switch (rm) { 62 case 0: 63 softrm = float_round_nearest_even; 64 break; 65 case 1: 66 softrm = float_round_to_zero; 67 break; 68 case 2: 69 softrm = float_round_down; 70 break; 71 case 3: 72 softrm = float_round_up; 73 break; 74 case 4: 75 softrm = float_round_ties_away; 76 break; 77 default: 78 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC()); 79 } 80 81 set_float_rounding_mode(softrm, &env->fp_status); 82 } 83 84 static uint64_t do_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 85 uint64_t frs3, int flags) 86 { 87 return nanbox_s(float32_muladd(frs1, frs2, frs3, flags, &env->fp_status)); 88 } 89 90 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 91 uint64_t frs3) 92 { 93 return do_fmadd_s(env, frs1, frs2, frs3, 0); 94 } 95 96 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 97 uint64_t frs3) 98 { 99 return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status); 100 } 101 102 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 103 uint64_t frs3) 104 { 105 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_c); 106 } 107 108 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 109 uint64_t frs3) 110 { 111 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c, 112 &env->fp_status); 113 } 114 115 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 116 uint64_t frs3) 117 { 118 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_product); 119 } 120 121 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 122 uint64_t frs3) 123 { 124 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product, 125 &env->fp_status); 126 } 127 128 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 129 uint64_t frs3) 130 { 131 return do_fmadd_s(env, frs1, frs2, frs3, 132 float_muladd_negate_c | float_muladd_negate_product); 133 } 134 135 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 136 uint64_t frs3) 137 { 138 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c | 139 float_muladd_negate_product, &env->fp_status); 140 } 141 142 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 143 { 144 return nanbox_s(float32_add(frs1, frs2, &env->fp_status)); 145 } 146 147 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 148 { 149 return nanbox_s(float32_sub(frs1, frs2, &env->fp_status)); 150 } 151 152 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 153 { 154 return nanbox_s(float32_mul(frs1, frs2, &env->fp_status)); 155 } 156 157 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 158 { 159 return nanbox_s(float32_div(frs1, frs2, &env->fp_status)); 160 } 161 162 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 163 { 164 return nanbox_s(float32_minnum(frs1, frs2, &env->fp_status)); 165 } 166 167 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 168 { 169 return nanbox_s(float32_maxnum(frs1, frs2, &env->fp_status)); 170 } 171 172 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1) 173 { 174 return nanbox_s(float32_sqrt(frs1, &env->fp_status)); 175 } 176 177 target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 178 { 179 return float32_le(frs1, frs2, &env->fp_status); 180 } 181 182 target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 183 { 184 return float32_lt(frs1, frs2, &env->fp_status); 185 } 186 187 target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 188 { 189 return float32_eq_quiet(frs1, frs2, &env->fp_status); 190 } 191 192 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1) 193 { 194 return float32_to_int32(frs1, &env->fp_status); 195 } 196 197 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1) 198 { 199 return (int32_t)float32_to_uint32(frs1, &env->fp_status); 200 } 201 202 #if defined(TARGET_RISCV64) 203 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1) 204 { 205 return float32_to_int64(frs1, &env->fp_status); 206 } 207 208 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1) 209 { 210 return float32_to_uint64(frs1, &env->fp_status); 211 } 212 #endif 213 214 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1) 215 { 216 return nanbox_s(int32_to_float32((int32_t)rs1, &env->fp_status)); 217 } 218 219 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1) 220 { 221 return nanbox_s(uint32_to_float32((uint32_t)rs1, &env->fp_status)); 222 } 223 224 #if defined(TARGET_RISCV64) 225 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1) 226 { 227 return nanbox_s(int64_to_float32(rs1, &env->fp_status)); 228 } 229 230 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1) 231 { 232 return nanbox_s(uint64_to_float32(rs1, &env->fp_status)); 233 } 234 #endif 235 236 target_ulong helper_fclass_s(uint64_t frs1) 237 { 238 return fclass_s(frs1); 239 } 240 241 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 242 { 243 return float64_add(frs1, frs2, &env->fp_status); 244 } 245 246 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 247 { 248 return float64_sub(frs1, frs2, &env->fp_status); 249 } 250 251 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 252 { 253 return float64_mul(frs1, frs2, &env->fp_status); 254 } 255 256 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 257 { 258 return float64_div(frs1, frs2, &env->fp_status); 259 } 260 261 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 262 { 263 return float64_minnum(frs1, frs2, &env->fp_status); 264 } 265 266 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 267 { 268 return float64_maxnum(frs1, frs2, &env->fp_status); 269 } 270 271 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1) 272 { 273 return nanbox_s(float64_to_float32(rs1, &env->fp_status)); 274 } 275 276 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1) 277 { 278 return float32_to_float64(rs1, &env->fp_status); 279 } 280 281 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1) 282 { 283 return float64_sqrt(frs1, &env->fp_status); 284 } 285 286 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 287 { 288 return float64_le(frs1, frs2, &env->fp_status); 289 } 290 291 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 292 { 293 return float64_lt(frs1, frs2, &env->fp_status); 294 } 295 296 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 297 { 298 return float64_eq_quiet(frs1, frs2, &env->fp_status); 299 } 300 301 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1) 302 { 303 return float64_to_int32(frs1, &env->fp_status); 304 } 305 306 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1) 307 { 308 return (int32_t)float64_to_uint32(frs1, &env->fp_status); 309 } 310 311 #if defined(TARGET_RISCV64) 312 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1) 313 { 314 return float64_to_int64(frs1, &env->fp_status); 315 } 316 317 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1) 318 { 319 return float64_to_uint64(frs1, &env->fp_status); 320 } 321 #endif 322 323 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1) 324 { 325 return int32_to_float64((int32_t)rs1, &env->fp_status); 326 } 327 328 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1) 329 { 330 return uint32_to_float64((uint32_t)rs1, &env->fp_status); 331 } 332 333 #if defined(TARGET_RISCV64) 334 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1) 335 { 336 return int64_to_float64(rs1, &env->fp_status); 337 } 338 339 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1) 340 { 341 return uint64_to_float64(rs1, &env->fp_status); 342 } 343 #endif 344 345 target_ulong helper_fclass_d(uint64_t frs1) 346 { 347 return fclass_d(frs1); 348 } 349