1 /* 2 * RISC-V FPU Emulation Helpers for QEMU. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "qemu/host-utils.h" 22 #include "exec/exec-all.h" 23 #include "exec/helper-proto.h" 24 #include "fpu/softfloat.h" 25 #include "internals.h" 26 27 target_ulong riscv_cpu_get_fflags(CPURISCVState *env) 28 { 29 int soft = get_float_exception_flags(&env->fp_status); 30 target_ulong hard = 0; 31 32 hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0; 33 hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0; 34 hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0; 35 hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0; 36 hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0; 37 38 return hard; 39 } 40 41 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard) 42 { 43 int soft = 0; 44 45 soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0; 46 soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0; 47 soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0; 48 soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0; 49 soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0; 50 51 set_float_exception_flags(soft, &env->fp_status); 52 } 53 54 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm) 55 { 56 int softrm; 57 58 if (rm == 7) { 59 rm = env->frm; 60 } 61 switch (rm) { 62 case 0: 63 softrm = float_round_nearest_even; 64 break; 65 case 1: 66 softrm = float_round_to_zero; 67 break; 68 case 2: 69 softrm = float_round_down; 70 break; 71 case 3: 72 softrm = float_round_up; 73 break; 74 case 4: 75 softrm = float_round_ties_away; 76 break; 77 default: 78 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC()); 79 } 80 81 set_float_rounding_mode(softrm, &env->fp_status); 82 } 83 84 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 85 uint64_t frs3) 86 { 87 return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status); 88 } 89 90 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 91 uint64_t frs3) 92 { 93 return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status); 94 } 95 96 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 97 uint64_t frs3) 98 { 99 return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c, 100 &env->fp_status); 101 } 102 103 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 104 uint64_t frs3) 105 { 106 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c, 107 &env->fp_status); 108 } 109 110 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 111 uint64_t frs3) 112 { 113 return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product, 114 &env->fp_status); 115 } 116 117 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 118 uint64_t frs3) 119 { 120 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product, 121 &env->fp_status); 122 } 123 124 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 125 uint64_t frs3) 126 { 127 return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c | 128 float_muladd_negate_product, &env->fp_status); 129 } 130 131 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 132 uint64_t frs3) 133 { 134 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c | 135 float_muladd_negate_product, &env->fp_status); 136 } 137 138 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 139 { 140 return float32_add(frs1, frs2, &env->fp_status); 141 } 142 143 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 144 { 145 return float32_sub(frs1, frs2, &env->fp_status); 146 } 147 148 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 149 { 150 return float32_mul(frs1, frs2, &env->fp_status); 151 } 152 153 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 154 { 155 return float32_div(frs1, frs2, &env->fp_status); 156 } 157 158 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 159 { 160 return float32_minnum(frs1, frs2, &env->fp_status); 161 } 162 163 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 164 { 165 return float32_maxnum(frs1, frs2, &env->fp_status); 166 } 167 168 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1) 169 { 170 return float32_sqrt(frs1, &env->fp_status); 171 } 172 173 target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 174 { 175 return float32_le(frs1, frs2, &env->fp_status); 176 } 177 178 target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 179 { 180 return float32_lt(frs1, frs2, &env->fp_status); 181 } 182 183 target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 184 { 185 return float32_eq_quiet(frs1, frs2, &env->fp_status); 186 } 187 188 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1) 189 { 190 return float32_to_int32(frs1, &env->fp_status); 191 } 192 193 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1) 194 { 195 return (int32_t)float32_to_uint32(frs1, &env->fp_status); 196 } 197 198 #if defined(TARGET_RISCV64) 199 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1) 200 { 201 return float32_to_int64(frs1, &env->fp_status); 202 } 203 204 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1) 205 { 206 return float32_to_uint64(frs1, &env->fp_status); 207 } 208 #endif 209 210 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1) 211 { 212 return int32_to_float32((int32_t)rs1, &env->fp_status); 213 } 214 215 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1) 216 { 217 return uint32_to_float32((uint32_t)rs1, &env->fp_status); 218 } 219 220 #if defined(TARGET_RISCV64) 221 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1) 222 { 223 return int64_to_float32(rs1, &env->fp_status); 224 } 225 226 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1) 227 { 228 return uint64_to_float32(rs1, &env->fp_status); 229 } 230 #endif 231 232 target_ulong helper_fclass_s(uint64_t frs1) 233 { 234 return fclass_s(frs1); 235 } 236 237 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 238 { 239 return float64_add(frs1, frs2, &env->fp_status); 240 } 241 242 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 243 { 244 return float64_sub(frs1, frs2, &env->fp_status); 245 } 246 247 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 248 { 249 return float64_mul(frs1, frs2, &env->fp_status); 250 } 251 252 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 253 { 254 return float64_div(frs1, frs2, &env->fp_status); 255 } 256 257 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 258 { 259 return float64_minnum(frs1, frs2, &env->fp_status); 260 } 261 262 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 263 { 264 return float64_maxnum(frs1, frs2, &env->fp_status); 265 } 266 267 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1) 268 { 269 return float64_to_float32(rs1, &env->fp_status); 270 } 271 272 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1) 273 { 274 return float32_to_float64(rs1, &env->fp_status); 275 } 276 277 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1) 278 { 279 return float64_sqrt(frs1, &env->fp_status); 280 } 281 282 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 283 { 284 return float64_le(frs1, frs2, &env->fp_status); 285 } 286 287 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 288 { 289 return float64_lt(frs1, frs2, &env->fp_status); 290 } 291 292 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 293 { 294 return float64_eq_quiet(frs1, frs2, &env->fp_status); 295 } 296 297 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1) 298 { 299 return float64_to_int32(frs1, &env->fp_status); 300 } 301 302 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1) 303 { 304 return (int32_t)float64_to_uint32(frs1, &env->fp_status); 305 } 306 307 #if defined(TARGET_RISCV64) 308 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1) 309 { 310 return float64_to_int64(frs1, &env->fp_status); 311 } 312 313 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1) 314 { 315 return float64_to_uint64(frs1, &env->fp_status); 316 } 317 #endif 318 319 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1) 320 { 321 return int32_to_float64((int32_t)rs1, &env->fp_status); 322 } 323 324 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1) 325 { 326 return uint32_to_float64((uint32_t)rs1, &env->fp_status); 327 } 328 329 #if defined(TARGET_RISCV64) 330 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1) 331 { 332 return int64_to_float64(rs1, &env->fp_status); 333 } 334 335 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1) 336 { 337 return uint64_to_float64(rs1, &env->fp_status); 338 } 339 #endif 340 341 target_ulong helper_fclass_d(uint64_t frs1) 342 { 343 return fclass_d(frs1); 344 } 345