1 /* 2 * RISC-V FPU Emulation Helpers for QEMU. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2 or later, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "qemu/host-utils.h" 22 #include "exec/exec-all.h" 23 #include "exec/helper-proto.h" 24 #include "fpu/softfloat.h" 25 #include "internals.h" 26 27 target_ulong riscv_cpu_get_fflags(CPURISCVState *env) 28 { 29 int soft = get_float_exception_flags(&env->fp_status); 30 target_ulong hard = 0; 31 32 hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0; 33 hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0; 34 hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0; 35 hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0; 36 hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0; 37 38 return hard; 39 } 40 41 void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard) 42 { 43 int soft = 0; 44 45 soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0; 46 soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0; 47 soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0; 48 soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0; 49 soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0; 50 51 set_float_exception_flags(soft, &env->fp_status); 52 } 53 54 void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm) 55 { 56 int softrm; 57 58 if (rm == 7) { 59 rm = env->frm; 60 } 61 switch (rm) { 62 case 0: 63 softrm = float_round_nearest_even; 64 break; 65 case 1: 66 softrm = float_round_to_zero; 67 break; 68 case 2: 69 softrm = float_round_down; 70 break; 71 case 3: 72 softrm = float_round_up; 73 break; 74 case 4: 75 softrm = float_round_ties_away; 76 break; 77 default: 78 riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC()); 79 } 80 81 set_float_rounding_mode(softrm, &env->fp_status); 82 } 83 84 static uint64_t do_fmadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2, 85 uint64_t rs3, int flags) 86 { 87 float32 frs1 = check_nanbox_s(rs1); 88 float32 frs2 = check_nanbox_s(rs2); 89 float32 frs3 = check_nanbox_s(rs3); 90 return nanbox_s(float32_muladd(frs1, frs2, frs3, flags, &env->fp_status)); 91 } 92 93 uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 94 uint64_t frs3) 95 { 96 return do_fmadd_s(env, frs1, frs2, frs3, 0); 97 } 98 99 uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 100 uint64_t frs3) 101 { 102 return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status); 103 } 104 105 uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 106 uint64_t frs3) 107 { 108 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_c); 109 } 110 111 uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 112 uint64_t frs3) 113 { 114 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c, 115 &env->fp_status); 116 } 117 118 uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 119 uint64_t frs3) 120 { 121 return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_product); 122 } 123 124 uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 125 uint64_t frs3) 126 { 127 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product, 128 &env->fp_status); 129 } 130 131 uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 132 uint64_t frs3) 133 { 134 return do_fmadd_s(env, frs1, frs2, frs3, 135 float_muladd_negate_c | float_muladd_negate_product); 136 } 137 138 uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2, 139 uint64_t frs3) 140 { 141 return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c | 142 float_muladd_negate_product, &env->fp_status); 143 } 144 145 uint64_t helper_fadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 146 { 147 float32 frs1 = check_nanbox_s(rs1); 148 float32 frs2 = check_nanbox_s(rs2); 149 return nanbox_s(float32_add(frs1, frs2, &env->fp_status)); 150 } 151 152 uint64_t helper_fsub_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 153 { 154 float32 frs1 = check_nanbox_s(rs1); 155 float32 frs2 = check_nanbox_s(rs2); 156 return nanbox_s(float32_sub(frs1, frs2, &env->fp_status)); 157 } 158 159 uint64_t helper_fmul_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 160 { 161 float32 frs1 = check_nanbox_s(rs1); 162 float32 frs2 = check_nanbox_s(rs2); 163 return nanbox_s(float32_mul(frs1, frs2, &env->fp_status)); 164 } 165 166 uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 167 { 168 float32 frs1 = check_nanbox_s(rs1); 169 float32 frs2 = check_nanbox_s(rs2); 170 return nanbox_s(float32_div(frs1, frs2, &env->fp_status)); 171 } 172 173 uint64_t helper_fmin_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 174 { 175 float32 frs1 = check_nanbox_s(rs1); 176 float32 frs2 = check_nanbox_s(rs2); 177 return nanbox_s(float32_minnum(frs1, frs2, &env->fp_status)); 178 } 179 180 uint64_t helper_fmax_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 181 { 182 float32 frs1 = check_nanbox_s(rs1); 183 float32 frs2 = check_nanbox_s(rs2); 184 return nanbox_s(float32_maxnum(frs1, frs2, &env->fp_status)); 185 } 186 187 uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t rs1) 188 { 189 float32 frs1 = check_nanbox_s(rs1); 190 return nanbox_s(float32_sqrt(frs1, &env->fp_status)); 191 } 192 193 target_ulong helper_fle_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 194 { 195 float32 frs1 = check_nanbox_s(rs1); 196 float32 frs2 = check_nanbox_s(rs2); 197 return float32_le(frs1, frs2, &env->fp_status); 198 } 199 200 target_ulong helper_flt_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 201 { 202 float32 frs1 = check_nanbox_s(rs1); 203 float32 frs2 = check_nanbox_s(rs2); 204 return float32_lt(frs1, frs2, &env->fp_status); 205 } 206 207 target_ulong helper_feq_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2) 208 { 209 float32 frs1 = check_nanbox_s(rs1); 210 float32 frs2 = check_nanbox_s(rs2); 211 return float32_eq_quiet(frs1, frs2, &env->fp_status); 212 } 213 214 target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t rs1) 215 { 216 float32 frs1 = check_nanbox_s(rs1); 217 return float32_to_int32(frs1, &env->fp_status); 218 } 219 220 target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t rs1) 221 { 222 float32 frs1 = check_nanbox_s(rs1); 223 return (int32_t)float32_to_uint32(frs1, &env->fp_status); 224 } 225 226 #if defined(TARGET_RISCV64) 227 uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t rs1) 228 { 229 float32 frs1 = check_nanbox_s(rs1); 230 return float32_to_int64(frs1, &env->fp_status); 231 } 232 233 uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t rs1) 234 { 235 float32 frs1 = check_nanbox_s(rs1); 236 return float32_to_uint64(frs1, &env->fp_status); 237 } 238 #endif 239 240 uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1) 241 { 242 return nanbox_s(int32_to_float32((int32_t)rs1, &env->fp_status)); 243 } 244 245 uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1) 246 { 247 return nanbox_s(uint32_to_float32((uint32_t)rs1, &env->fp_status)); 248 } 249 250 #if defined(TARGET_RISCV64) 251 uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1) 252 { 253 return nanbox_s(int64_to_float32(rs1, &env->fp_status)); 254 } 255 256 uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1) 257 { 258 return nanbox_s(uint64_to_float32(rs1, &env->fp_status)); 259 } 260 #endif 261 262 target_ulong helper_fclass_s(uint64_t rs1) 263 { 264 float32 frs1 = check_nanbox_s(rs1); 265 return fclass_s(frs1); 266 } 267 268 uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 269 { 270 return float64_add(frs1, frs2, &env->fp_status); 271 } 272 273 uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 274 { 275 return float64_sub(frs1, frs2, &env->fp_status); 276 } 277 278 uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 279 { 280 return float64_mul(frs1, frs2, &env->fp_status); 281 } 282 283 uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 284 { 285 return float64_div(frs1, frs2, &env->fp_status); 286 } 287 288 uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 289 { 290 return float64_minnum(frs1, frs2, &env->fp_status); 291 } 292 293 uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 294 { 295 return float64_maxnum(frs1, frs2, &env->fp_status); 296 } 297 298 uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1) 299 { 300 return nanbox_s(float64_to_float32(rs1, &env->fp_status)); 301 } 302 303 uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1) 304 { 305 float32 frs1 = check_nanbox_s(rs1); 306 return float32_to_float64(frs1, &env->fp_status); 307 } 308 309 uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1) 310 { 311 return float64_sqrt(frs1, &env->fp_status); 312 } 313 314 target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 315 { 316 return float64_le(frs1, frs2, &env->fp_status); 317 } 318 319 target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 320 { 321 return float64_lt(frs1, frs2, &env->fp_status); 322 } 323 324 target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2) 325 { 326 return float64_eq_quiet(frs1, frs2, &env->fp_status); 327 } 328 329 target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1) 330 { 331 return float64_to_int32(frs1, &env->fp_status); 332 } 333 334 target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1) 335 { 336 return (int32_t)float64_to_uint32(frs1, &env->fp_status); 337 } 338 339 #if defined(TARGET_RISCV64) 340 uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1) 341 { 342 return float64_to_int64(frs1, &env->fp_status); 343 } 344 345 uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1) 346 { 347 return float64_to_uint64(frs1, &env->fp_status); 348 } 349 #endif 350 351 uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1) 352 { 353 return int32_to_float64((int32_t)rs1, &env->fp_status); 354 } 355 356 uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1) 357 { 358 return uint32_to_float64((uint32_t)rs1, &env->fp_status); 359 } 360 361 #if defined(TARGET_RISCV64) 362 uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1) 363 { 364 return int64_to_float64(rs1, &env->fp_status); 365 } 366 367 uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1) 368 { 369 return uint64_to_float64(rs1, &env->fp_status); 370 } 371 #endif 372 373 target_ulong helper_fclass_d(uint64_t frs1) 374 { 375 return fclass_d(frs1); 376 } 377